1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fscrypt.h> 22 #include <linux/fsnotify.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/cache.h> 27 #include <linux/export.h> 28 #include <linux/security.h> 29 #include <linux/seqlock.h> 30 #include <linux/memblock.h> 31 #include <linux/bit_spinlock.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/list_lru.h> 34 #include "internal.h" 35 #include "mount.h" 36 37 /* 38 * Usage: 39 * dcache->d_inode->i_lock protects: 40 * - i_dentry, d_u.d_alias, d_inode of aliases 41 * dcache_hash_bucket lock protects: 42 * - the dcache hash table 43 * s_roots bl list spinlock protects: 44 * - the s_roots list (see __d_drop) 45 * dentry->d_sb->s_dentry_lru_lock protects: 46 * - the dcache lru lists and counters 47 * d_lock protects: 48 * - d_flags 49 * - d_name 50 * - d_lru 51 * - d_count 52 * - d_unhashed() 53 * - d_parent and d_subdirs 54 * - childrens' d_child and d_parent 55 * - d_u.d_alias, d_inode 56 * 57 * Ordering: 58 * dentry->d_inode->i_lock 59 * dentry->d_lock 60 * dentry->d_sb->s_dentry_lru_lock 61 * dcache_hash_bucket lock 62 * s_roots lock 63 * 64 * If there is an ancestor relationship: 65 * dentry->d_parent->...->d_parent->d_lock 66 * ... 67 * dentry->d_parent->d_lock 68 * dentry->d_lock 69 * 70 * If no ancestor relationship: 71 * arbitrary, since it's serialized on rename_lock 72 */ 73 int sysctl_vfs_cache_pressure __read_mostly = 100; 74 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 75 76 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 77 78 EXPORT_SYMBOL(rename_lock); 79 80 static struct kmem_cache *dentry_cache __read_mostly; 81 82 const struct qstr empty_name = QSTR_INIT("", 0); 83 EXPORT_SYMBOL(empty_name); 84 const struct qstr slash_name = QSTR_INIT("/", 1); 85 EXPORT_SYMBOL(slash_name); 86 87 /* 88 * This is the single most critical data structure when it comes 89 * to the dcache: the hashtable for lookups. Somebody should try 90 * to make this good - I've just made it work. 91 * 92 * This hash-function tries to avoid losing too many bits of hash 93 * information, yet avoid using a prime hash-size or similar. 94 */ 95 96 static unsigned int d_hash_shift __read_mostly; 97 98 static struct hlist_bl_head *dentry_hashtable __read_mostly; 99 100 static inline struct hlist_bl_head *d_hash(unsigned int hash) 101 { 102 return dentry_hashtable + (hash >> d_hash_shift); 103 } 104 105 #define IN_LOOKUP_SHIFT 10 106 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 107 108 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 109 unsigned int hash) 110 { 111 hash += (unsigned long) parent / L1_CACHE_BYTES; 112 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 113 } 114 115 116 /* Statistics gathering. */ 117 struct dentry_stat_t dentry_stat = { 118 .age_limit = 45, 119 }; 120 121 static DEFINE_PER_CPU(long, nr_dentry); 122 static DEFINE_PER_CPU(long, nr_dentry_unused); 123 static DEFINE_PER_CPU(long, nr_dentry_negative); 124 125 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 126 127 /* 128 * Here we resort to our own counters instead of using generic per-cpu counters 129 * for consistency with what the vfs inode code does. We are expected to harvest 130 * better code and performance by having our own specialized counters. 131 * 132 * Please note that the loop is done over all possible CPUs, not over all online 133 * CPUs. The reason for this is that we don't want to play games with CPUs going 134 * on and off. If one of them goes off, we will just keep their counters. 135 * 136 * glommer: See cffbc8a for details, and if you ever intend to change this, 137 * please update all vfs counters to match. 138 */ 139 static long get_nr_dentry(void) 140 { 141 int i; 142 long sum = 0; 143 for_each_possible_cpu(i) 144 sum += per_cpu(nr_dentry, i); 145 return sum < 0 ? 0 : sum; 146 } 147 148 static long get_nr_dentry_unused(void) 149 { 150 int i; 151 long sum = 0; 152 for_each_possible_cpu(i) 153 sum += per_cpu(nr_dentry_unused, i); 154 return sum < 0 ? 0 : sum; 155 } 156 157 static long get_nr_dentry_negative(void) 158 { 159 int i; 160 long sum = 0; 161 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry_negative, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 168 size_t *lenp, loff_t *ppos) 169 { 170 dentry_stat.nr_dentry = get_nr_dentry(); 171 dentry_stat.nr_unused = get_nr_dentry_unused(); 172 dentry_stat.nr_negative = get_nr_dentry_negative(); 173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 174 } 175 #endif 176 177 /* 178 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 179 * The strings are both count bytes long, and count is non-zero. 180 */ 181 #ifdef CONFIG_DCACHE_WORD_ACCESS 182 183 #include <asm/word-at-a-time.h> 184 /* 185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 186 * aligned allocation for this particular component. We don't 187 * strictly need the load_unaligned_zeropad() safety, but it 188 * doesn't hurt either. 189 * 190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 191 * need the careful unaligned handling. 192 */ 193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 194 { 195 unsigned long a,b,mask; 196 197 for (;;) { 198 a = read_word_at_a_time(cs); 199 b = load_unaligned_zeropad(ct); 200 if (tcount < sizeof(unsigned long)) 201 break; 202 if (unlikely(a != b)) 203 return 1; 204 cs += sizeof(unsigned long); 205 ct += sizeof(unsigned long); 206 tcount -= sizeof(unsigned long); 207 if (!tcount) 208 return 0; 209 } 210 mask = bytemask_from_count(tcount); 211 return unlikely(!!((a ^ b) & mask)); 212 } 213 214 #else 215 216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 217 { 218 do { 219 if (*cs != *ct) 220 return 1; 221 cs++; 222 ct++; 223 tcount--; 224 } while (tcount); 225 return 0; 226 } 227 228 #endif 229 230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 231 { 232 /* 233 * Be careful about RCU walk racing with rename: 234 * use 'READ_ONCE' to fetch the name pointer. 235 * 236 * NOTE! Even if a rename will mean that the length 237 * was not loaded atomically, we don't care. The 238 * RCU walk will check the sequence count eventually, 239 * and catch it. And we won't overrun the buffer, 240 * because we're reading the name pointer atomically, 241 * and a dentry name is guaranteed to be properly 242 * terminated with a NUL byte. 243 * 244 * End result: even if 'len' is wrong, we'll exit 245 * early because the data cannot match (there can 246 * be no NUL in the ct/tcount data) 247 */ 248 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 249 250 return dentry_string_cmp(cs, ct, tcount); 251 } 252 253 struct external_name { 254 union { 255 atomic_t count; 256 struct rcu_head head; 257 } u; 258 unsigned char name[]; 259 }; 260 261 static inline struct external_name *external_name(struct dentry *dentry) 262 { 263 return container_of(dentry->d_name.name, struct external_name, name[0]); 264 } 265 266 static void __d_free(struct rcu_head *head) 267 { 268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 269 270 kmem_cache_free(dentry_cache, dentry); 271 } 272 273 static void __d_free_external(struct rcu_head *head) 274 { 275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 276 kfree(external_name(dentry)); 277 kmem_cache_free(dentry_cache, dentry); 278 } 279 280 static inline int dname_external(const struct dentry *dentry) 281 { 282 return dentry->d_name.name != dentry->d_iname; 283 } 284 285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 286 { 287 spin_lock(&dentry->d_lock); 288 name->name = dentry->d_name; 289 if (unlikely(dname_external(dentry))) { 290 atomic_inc(&external_name(dentry)->u.count); 291 } else { 292 memcpy(name->inline_name, dentry->d_iname, 293 dentry->d_name.len + 1); 294 name->name.name = name->inline_name; 295 } 296 spin_unlock(&dentry->d_lock); 297 } 298 EXPORT_SYMBOL(take_dentry_name_snapshot); 299 300 void release_dentry_name_snapshot(struct name_snapshot *name) 301 { 302 if (unlikely(name->name.name != name->inline_name)) { 303 struct external_name *p; 304 p = container_of(name->name.name, struct external_name, name[0]); 305 if (unlikely(atomic_dec_and_test(&p->u.count))) 306 kfree_rcu(p, u.head); 307 } 308 } 309 EXPORT_SYMBOL(release_dentry_name_snapshot); 310 311 static inline void __d_set_inode_and_type(struct dentry *dentry, 312 struct inode *inode, 313 unsigned type_flags) 314 { 315 unsigned flags; 316 317 dentry->d_inode = inode; 318 flags = READ_ONCE(dentry->d_flags); 319 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 320 flags |= type_flags; 321 WRITE_ONCE(dentry->d_flags, flags); 322 } 323 324 static inline void __d_clear_type_and_inode(struct dentry *dentry) 325 { 326 unsigned flags = READ_ONCE(dentry->d_flags); 327 328 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 329 WRITE_ONCE(dentry->d_flags, flags); 330 dentry->d_inode = NULL; 331 if (dentry->d_flags & DCACHE_LRU_LIST) 332 this_cpu_inc(nr_dentry_negative); 333 } 334 335 static void dentry_free(struct dentry *dentry) 336 { 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 338 if (unlikely(dname_external(dentry))) { 339 struct external_name *p = external_name(dentry); 340 if (likely(atomic_dec_and_test(&p->u.count))) { 341 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 342 return; 343 } 344 } 345 /* if dentry was never visible to RCU, immediate free is OK */ 346 if (dentry->d_flags & DCACHE_NORCU) 347 __d_free(&dentry->d_u.d_rcu); 348 else 349 call_rcu(&dentry->d_u.d_rcu, __d_free); 350 } 351 352 /* 353 * Release the dentry's inode, using the filesystem 354 * d_iput() operation if defined. 355 */ 356 static void dentry_unlink_inode(struct dentry * dentry) 357 __releases(dentry->d_lock) 358 __releases(dentry->d_inode->i_lock) 359 { 360 struct inode *inode = dentry->d_inode; 361 362 raw_write_seqcount_begin(&dentry->d_seq); 363 __d_clear_type_and_inode(dentry); 364 hlist_del_init(&dentry->d_u.d_alias); 365 raw_write_seqcount_end(&dentry->d_seq); 366 spin_unlock(&dentry->d_lock); 367 spin_unlock(&inode->i_lock); 368 if (!inode->i_nlink) 369 fsnotify_inoderemove(inode); 370 if (dentry->d_op && dentry->d_op->d_iput) 371 dentry->d_op->d_iput(dentry, inode); 372 else 373 iput(inode); 374 } 375 376 /* 377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 378 * is in use - which includes both the "real" per-superblock 379 * LRU list _and_ the DCACHE_SHRINK_LIST use. 380 * 381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 382 * on the shrink list (ie not on the superblock LRU list). 383 * 384 * The per-cpu "nr_dentry_unused" counters are updated with 385 * the DCACHE_LRU_LIST bit. 386 * 387 * The per-cpu "nr_dentry_negative" counters are only updated 388 * when deleted from or added to the per-superblock LRU list, not 389 * from/to the shrink list. That is to avoid an unneeded dec/inc 390 * pair when moving from LRU to shrink list in select_collect(). 391 * 392 * These helper functions make sure we always follow the 393 * rules. d_lock must be held by the caller. 394 */ 395 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 396 static void d_lru_add(struct dentry *dentry) 397 { 398 D_FLAG_VERIFY(dentry, 0); 399 dentry->d_flags |= DCACHE_LRU_LIST; 400 this_cpu_inc(nr_dentry_unused); 401 if (d_is_negative(dentry)) 402 this_cpu_inc(nr_dentry_negative); 403 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 404 } 405 406 static void d_lru_del(struct dentry *dentry) 407 { 408 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 409 dentry->d_flags &= ~DCACHE_LRU_LIST; 410 this_cpu_dec(nr_dentry_unused); 411 if (d_is_negative(dentry)) 412 this_cpu_dec(nr_dentry_negative); 413 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 414 } 415 416 static void d_shrink_del(struct dentry *dentry) 417 { 418 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 419 list_del_init(&dentry->d_lru); 420 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 421 this_cpu_dec(nr_dentry_unused); 422 } 423 424 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 425 { 426 D_FLAG_VERIFY(dentry, 0); 427 list_add(&dentry->d_lru, list); 428 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 429 this_cpu_inc(nr_dentry_unused); 430 } 431 432 /* 433 * These can only be called under the global LRU lock, ie during the 434 * callback for freeing the LRU list. "isolate" removes it from the 435 * LRU lists entirely, while shrink_move moves it to the indicated 436 * private list. 437 */ 438 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 439 { 440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 441 dentry->d_flags &= ~DCACHE_LRU_LIST; 442 this_cpu_dec(nr_dentry_unused); 443 if (d_is_negative(dentry)) 444 this_cpu_dec(nr_dentry_negative); 445 list_lru_isolate(lru, &dentry->d_lru); 446 } 447 448 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 449 struct list_head *list) 450 { 451 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 452 dentry->d_flags |= DCACHE_SHRINK_LIST; 453 if (d_is_negative(dentry)) 454 this_cpu_dec(nr_dentry_negative); 455 list_lru_isolate_move(lru, &dentry->d_lru, list); 456 } 457 458 /** 459 * d_drop - drop a dentry 460 * @dentry: dentry to drop 461 * 462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 463 * be found through a VFS lookup any more. Note that this is different from 464 * deleting the dentry - d_delete will try to mark the dentry negative if 465 * possible, giving a successful _negative_ lookup, while d_drop will 466 * just make the cache lookup fail. 467 * 468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 469 * reason (NFS timeouts or autofs deletes). 470 * 471 * __d_drop requires dentry->d_lock 472 * ___d_drop doesn't mark dentry as "unhashed" 473 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 474 */ 475 static void ___d_drop(struct dentry *dentry) 476 { 477 struct hlist_bl_head *b; 478 /* 479 * Hashed dentries are normally on the dentry hashtable, 480 * with the exception of those newly allocated by 481 * d_obtain_root, which are always IS_ROOT: 482 */ 483 if (unlikely(IS_ROOT(dentry))) 484 b = &dentry->d_sb->s_roots; 485 else 486 b = d_hash(dentry->d_name.hash); 487 488 hlist_bl_lock(b); 489 __hlist_bl_del(&dentry->d_hash); 490 hlist_bl_unlock(b); 491 } 492 493 void __d_drop(struct dentry *dentry) 494 { 495 if (!d_unhashed(dentry)) { 496 ___d_drop(dentry); 497 dentry->d_hash.pprev = NULL; 498 write_seqcount_invalidate(&dentry->d_seq); 499 } 500 } 501 EXPORT_SYMBOL(__d_drop); 502 503 void d_drop(struct dentry *dentry) 504 { 505 spin_lock(&dentry->d_lock); 506 __d_drop(dentry); 507 spin_unlock(&dentry->d_lock); 508 } 509 EXPORT_SYMBOL(d_drop); 510 511 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 512 { 513 struct dentry *next; 514 /* 515 * Inform d_walk() and shrink_dentry_list() that we are no longer 516 * attached to the dentry tree 517 */ 518 dentry->d_flags |= DCACHE_DENTRY_KILLED; 519 if (unlikely(list_empty(&dentry->d_child))) 520 return; 521 __list_del_entry(&dentry->d_child); 522 /* 523 * Cursors can move around the list of children. While we'd been 524 * a normal list member, it didn't matter - ->d_child.next would've 525 * been updated. However, from now on it won't be and for the 526 * things like d_walk() it might end up with a nasty surprise. 527 * Normally d_walk() doesn't care about cursors moving around - 528 * ->d_lock on parent prevents that and since a cursor has no children 529 * of its own, we get through it without ever unlocking the parent. 530 * There is one exception, though - if we ascend from a child that 531 * gets killed as soon as we unlock it, the next sibling is found 532 * using the value left in its ->d_child.next. And if _that_ 533 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 534 * before d_walk() regains parent->d_lock, we'll end up skipping 535 * everything the cursor had been moved past. 536 * 537 * Solution: make sure that the pointer left behind in ->d_child.next 538 * points to something that won't be moving around. I.e. skip the 539 * cursors. 540 */ 541 while (dentry->d_child.next != &parent->d_subdirs) { 542 next = list_entry(dentry->d_child.next, struct dentry, d_child); 543 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 544 break; 545 dentry->d_child.next = next->d_child.next; 546 } 547 } 548 549 static void __dentry_kill(struct dentry *dentry) 550 { 551 struct dentry *parent = NULL; 552 bool can_free = true; 553 if (!IS_ROOT(dentry)) 554 parent = dentry->d_parent; 555 556 /* 557 * The dentry is now unrecoverably dead to the world. 558 */ 559 lockref_mark_dead(&dentry->d_lockref); 560 561 /* 562 * inform the fs via d_prune that this dentry is about to be 563 * unhashed and destroyed. 564 */ 565 if (dentry->d_flags & DCACHE_OP_PRUNE) 566 dentry->d_op->d_prune(dentry); 567 568 if (dentry->d_flags & DCACHE_LRU_LIST) { 569 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 570 d_lru_del(dentry); 571 } 572 /* if it was on the hash then remove it */ 573 __d_drop(dentry); 574 dentry_unlist(dentry, parent); 575 if (parent) 576 spin_unlock(&parent->d_lock); 577 if (dentry->d_inode) 578 dentry_unlink_inode(dentry); 579 else 580 spin_unlock(&dentry->d_lock); 581 this_cpu_dec(nr_dentry); 582 if (dentry->d_op && dentry->d_op->d_release) 583 dentry->d_op->d_release(dentry); 584 585 spin_lock(&dentry->d_lock); 586 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 587 dentry->d_flags |= DCACHE_MAY_FREE; 588 can_free = false; 589 } 590 spin_unlock(&dentry->d_lock); 591 if (likely(can_free)) 592 dentry_free(dentry); 593 cond_resched(); 594 } 595 596 static struct dentry *__lock_parent(struct dentry *dentry) 597 { 598 struct dentry *parent; 599 rcu_read_lock(); 600 spin_unlock(&dentry->d_lock); 601 again: 602 parent = READ_ONCE(dentry->d_parent); 603 spin_lock(&parent->d_lock); 604 /* 605 * We can't blindly lock dentry until we are sure 606 * that we won't violate the locking order. 607 * Any changes of dentry->d_parent must have 608 * been done with parent->d_lock held, so 609 * spin_lock() above is enough of a barrier 610 * for checking if it's still our child. 611 */ 612 if (unlikely(parent != dentry->d_parent)) { 613 spin_unlock(&parent->d_lock); 614 goto again; 615 } 616 rcu_read_unlock(); 617 if (parent != dentry) 618 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 619 else 620 parent = NULL; 621 return parent; 622 } 623 624 static inline struct dentry *lock_parent(struct dentry *dentry) 625 { 626 struct dentry *parent = dentry->d_parent; 627 if (IS_ROOT(dentry)) 628 return NULL; 629 if (likely(spin_trylock(&parent->d_lock))) 630 return parent; 631 return __lock_parent(dentry); 632 } 633 634 static inline bool retain_dentry(struct dentry *dentry) 635 { 636 WARN_ON(d_in_lookup(dentry)); 637 638 /* Unreachable? Get rid of it */ 639 if (unlikely(d_unhashed(dentry))) 640 return false; 641 642 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 643 return false; 644 645 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 646 if (dentry->d_op->d_delete(dentry)) 647 return false; 648 } 649 /* retain; LRU fodder */ 650 dentry->d_lockref.count--; 651 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 652 d_lru_add(dentry); 653 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 654 dentry->d_flags |= DCACHE_REFERENCED; 655 return true; 656 } 657 658 /* 659 * Finish off a dentry we've decided to kill. 660 * dentry->d_lock must be held, returns with it unlocked. 661 * Returns dentry requiring refcount drop, or NULL if we're done. 662 */ 663 static struct dentry *dentry_kill(struct dentry *dentry) 664 __releases(dentry->d_lock) 665 { 666 struct inode *inode = dentry->d_inode; 667 struct dentry *parent = NULL; 668 669 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 670 goto slow_positive; 671 672 if (!IS_ROOT(dentry)) { 673 parent = dentry->d_parent; 674 if (unlikely(!spin_trylock(&parent->d_lock))) { 675 parent = __lock_parent(dentry); 676 if (likely(inode || !dentry->d_inode)) 677 goto got_locks; 678 /* negative that became positive */ 679 if (parent) 680 spin_unlock(&parent->d_lock); 681 inode = dentry->d_inode; 682 goto slow_positive; 683 } 684 } 685 __dentry_kill(dentry); 686 return parent; 687 688 slow_positive: 689 spin_unlock(&dentry->d_lock); 690 spin_lock(&inode->i_lock); 691 spin_lock(&dentry->d_lock); 692 parent = lock_parent(dentry); 693 got_locks: 694 if (unlikely(dentry->d_lockref.count != 1)) { 695 dentry->d_lockref.count--; 696 } else if (likely(!retain_dentry(dentry))) { 697 __dentry_kill(dentry); 698 return parent; 699 } 700 /* we are keeping it, after all */ 701 if (inode) 702 spin_unlock(&inode->i_lock); 703 if (parent) 704 spin_unlock(&parent->d_lock); 705 spin_unlock(&dentry->d_lock); 706 return NULL; 707 } 708 709 /* 710 * Try to do a lockless dput(), and return whether that was successful. 711 * 712 * If unsuccessful, we return false, having already taken the dentry lock. 713 * 714 * The caller needs to hold the RCU read lock, so that the dentry is 715 * guaranteed to stay around even if the refcount goes down to zero! 716 */ 717 static inline bool fast_dput(struct dentry *dentry) 718 { 719 int ret; 720 unsigned int d_flags; 721 722 /* 723 * If we have a d_op->d_delete() operation, we sould not 724 * let the dentry count go to zero, so use "put_or_lock". 725 */ 726 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 727 return lockref_put_or_lock(&dentry->d_lockref); 728 729 /* 730 * .. otherwise, we can try to just decrement the 731 * lockref optimistically. 732 */ 733 ret = lockref_put_return(&dentry->d_lockref); 734 735 /* 736 * If the lockref_put_return() failed due to the lock being held 737 * by somebody else, the fast path has failed. We will need to 738 * get the lock, and then check the count again. 739 */ 740 if (unlikely(ret < 0)) { 741 spin_lock(&dentry->d_lock); 742 if (dentry->d_lockref.count > 1) { 743 dentry->d_lockref.count--; 744 spin_unlock(&dentry->d_lock); 745 return true; 746 } 747 return false; 748 } 749 750 /* 751 * If we weren't the last ref, we're done. 752 */ 753 if (ret) 754 return true; 755 756 /* 757 * Careful, careful. The reference count went down 758 * to zero, but we don't hold the dentry lock, so 759 * somebody else could get it again, and do another 760 * dput(), and we need to not race with that. 761 * 762 * However, there is a very special and common case 763 * where we don't care, because there is nothing to 764 * do: the dentry is still hashed, it does not have 765 * a 'delete' op, and it's referenced and already on 766 * the LRU list. 767 * 768 * NOTE! Since we aren't locked, these values are 769 * not "stable". However, it is sufficient that at 770 * some point after we dropped the reference the 771 * dentry was hashed and the flags had the proper 772 * value. Other dentry users may have re-gotten 773 * a reference to the dentry and change that, but 774 * our work is done - we can leave the dentry 775 * around with a zero refcount. 776 */ 777 smp_rmb(); 778 d_flags = READ_ONCE(dentry->d_flags); 779 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 780 781 /* Nothing to do? Dropping the reference was all we needed? */ 782 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 783 return true; 784 785 /* 786 * Not the fast normal case? Get the lock. We've already decremented 787 * the refcount, but we'll need to re-check the situation after 788 * getting the lock. 789 */ 790 spin_lock(&dentry->d_lock); 791 792 /* 793 * Did somebody else grab a reference to it in the meantime, and 794 * we're no longer the last user after all? Alternatively, somebody 795 * else could have killed it and marked it dead. Either way, we 796 * don't need to do anything else. 797 */ 798 if (dentry->d_lockref.count) { 799 spin_unlock(&dentry->d_lock); 800 return true; 801 } 802 803 /* 804 * Re-get the reference we optimistically dropped. We hold the 805 * lock, and we just tested that it was zero, so we can just 806 * set it to 1. 807 */ 808 dentry->d_lockref.count = 1; 809 return false; 810 } 811 812 813 /* 814 * This is dput 815 * 816 * This is complicated by the fact that we do not want to put 817 * dentries that are no longer on any hash chain on the unused 818 * list: we'd much rather just get rid of them immediately. 819 * 820 * However, that implies that we have to traverse the dentry 821 * tree upwards to the parents which might _also_ now be 822 * scheduled for deletion (it may have been only waiting for 823 * its last child to go away). 824 * 825 * This tail recursion is done by hand as we don't want to depend 826 * on the compiler to always get this right (gcc generally doesn't). 827 * Real recursion would eat up our stack space. 828 */ 829 830 /* 831 * dput - release a dentry 832 * @dentry: dentry to release 833 * 834 * Release a dentry. This will drop the usage count and if appropriate 835 * call the dentry unlink method as well as removing it from the queues and 836 * releasing its resources. If the parent dentries were scheduled for release 837 * they too may now get deleted. 838 */ 839 void dput(struct dentry *dentry) 840 { 841 while (dentry) { 842 might_sleep(); 843 844 rcu_read_lock(); 845 if (likely(fast_dput(dentry))) { 846 rcu_read_unlock(); 847 return; 848 } 849 850 /* Slow case: now with the dentry lock held */ 851 rcu_read_unlock(); 852 853 if (likely(retain_dentry(dentry))) { 854 spin_unlock(&dentry->d_lock); 855 return; 856 } 857 858 dentry = dentry_kill(dentry); 859 } 860 } 861 EXPORT_SYMBOL(dput); 862 863 864 /* This must be called with d_lock held */ 865 static inline void __dget_dlock(struct dentry *dentry) 866 { 867 dentry->d_lockref.count++; 868 } 869 870 static inline void __dget(struct dentry *dentry) 871 { 872 lockref_get(&dentry->d_lockref); 873 } 874 875 struct dentry *dget_parent(struct dentry *dentry) 876 { 877 int gotref; 878 struct dentry *ret; 879 880 /* 881 * Do optimistic parent lookup without any 882 * locking. 883 */ 884 rcu_read_lock(); 885 ret = READ_ONCE(dentry->d_parent); 886 gotref = lockref_get_not_zero(&ret->d_lockref); 887 rcu_read_unlock(); 888 if (likely(gotref)) { 889 if (likely(ret == READ_ONCE(dentry->d_parent))) 890 return ret; 891 dput(ret); 892 } 893 894 repeat: 895 /* 896 * Don't need rcu_dereference because we re-check it was correct under 897 * the lock. 898 */ 899 rcu_read_lock(); 900 ret = dentry->d_parent; 901 spin_lock(&ret->d_lock); 902 if (unlikely(ret != dentry->d_parent)) { 903 spin_unlock(&ret->d_lock); 904 rcu_read_unlock(); 905 goto repeat; 906 } 907 rcu_read_unlock(); 908 BUG_ON(!ret->d_lockref.count); 909 ret->d_lockref.count++; 910 spin_unlock(&ret->d_lock); 911 return ret; 912 } 913 EXPORT_SYMBOL(dget_parent); 914 915 static struct dentry * __d_find_any_alias(struct inode *inode) 916 { 917 struct dentry *alias; 918 919 if (hlist_empty(&inode->i_dentry)) 920 return NULL; 921 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 922 __dget(alias); 923 return alias; 924 } 925 926 /** 927 * d_find_any_alias - find any alias for a given inode 928 * @inode: inode to find an alias for 929 * 930 * If any aliases exist for the given inode, take and return a 931 * reference for one of them. If no aliases exist, return %NULL. 932 */ 933 struct dentry *d_find_any_alias(struct inode *inode) 934 { 935 struct dentry *de; 936 937 spin_lock(&inode->i_lock); 938 de = __d_find_any_alias(inode); 939 spin_unlock(&inode->i_lock); 940 return de; 941 } 942 EXPORT_SYMBOL(d_find_any_alias); 943 944 /** 945 * d_find_alias - grab a hashed alias of inode 946 * @inode: inode in question 947 * 948 * If inode has a hashed alias, or is a directory and has any alias, 949 * acquire the reference to alias and return it. Otherwise return NULL. 950 * Notice that if inode is a directory there can be only one alias and 951 * it can be unhashed only if it has no children, or if it is the root 952 * of a filesystem, or if the directory was renamed and d_revalidate 953 * was the first vfs operation to notice. 954 * 955 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 956 * any other hashed alias over that one. 957 */ 958 static struct dentry *__d_find_alias(struct inode *inode) 959 { 960 struct dentry *alias; 961 962 if (S_ISDIR(inode->i_mode)) 963 return __d_find_any_alias(inode); 964 965 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 966 spin_lock(&alias->d_lock); 967 if (!d_unhashed(alias)) { 968 __dget_dlock(alias); 969 spin_unlock(&alias->d_lock); 970 return alias; 971 } 972 spin_unlock(&alias->d_lock); 973 } 974 return NULL; 975 } 976 977 struct dentry *d_find_alias(struct inode *inode) 978 { 979 struct dentry *de = NULL; 980 981 if (!hlist_empty(&inode->i_dentry)) { 982 spin_lock(&inode->i_lock); 983 de = __d_find_alias(inode); 984 spin_unlock(&inode->i_lock); 985 } 986 return de; 987 } 988 EXPORT_SYMBOL(d_find_alias); 989 990 /* 991 * Try to kill dentries associated with this inode. 992 * WARNING: you must own a reference to inode. 993 */ 994 void d_prune_aliases(struct inode *inode) 995 { 996 struct dentry *dentry; 997 restart: 998 spin_lock(&inode->i_lock); 999 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1000 spin_lock(&dentry->d_lock); 1001 if (!dentry->d_lockref.count) { 1002 struct dentry *parent = lock_parent(dentry); 1003 if (likely(!dentry->d_lockref.count)) { 1004 __dentry_kill(dentry); 1005 dput(parent); 1006 goto restart; 1007 } 1008 if (parent) 1009 spin_unlock(&parent->d_lock); 1010 } 1011 spin_unlock(&dentry->d_lock); 1012 } 1013 spin_unlock(&inode->i_lock); 1014 } 1015 EXPORT_SYMBOL(d_prune_aliases); 1016 1017 /* 1018 * Lock a dentry from shrink list. 1019 * Called under rcu_read_lock() and dentry->d_lock; the former 1020 * guarantees that nothing we access will be freed under us. 1021 * Note that dentry is *not* protected from concurrent dentry_kill(), 1022 * d_delete(), etc. 1023 * 1024 * Return false if dentry has been disrupted or grabbed, leaving 1025 * the caller to kick it off-list. Otherwise, return true and have 1026 * that dentry's inode and parent both locked. 1027 */ 1028 static bool shrink_lock_dentry(struct dentry *dentry) 1029 { 1030 struct inode *inode; 1031 struct dentry *parent; 1032 1033 if (dentry->d_lockref.count) 1034 return false; 1035 1036 inode = dentry->d_inode; 1037 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1038 spin_unlock(&dentry->d_lock); 1039 spin_lock(&inode->i_lock); 1040 spin_lock(&dentry->d_lock); 1041 if (unlikely(dentry->d_lockref.count)) 1042 goto out; 1043 /* changed inode means that somebody had grabbed it */ 1044 if (unlikely(inode != dentry->d_inode)) 1045 goto out; 1046 } 1047 1048 parent = dentry->d_parent; 1049 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1050 return true; 1051 1052 spin_unlock(&dentry->d_lock); 1053 spin_lock(&parent->d_lock); 1054 if (unlikely(parent != dentry->d_parent)) { 1055 spin_unlock(&parent->d_lock); 1056 spin_lock(&dentry->d_lock); 1057 goto out; 1058 } 1059 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1060 if (likely(!dentry->d_lockref.count)) 1061 return true; 1062 spin_unlock(&parent->d_lock); 1063 out: 1064 if (inode) 1065 spin_unlock(&inode->i_lock); 1066 return false; 1067 } 1068 1069 static void shrink_dentry_list(struct list_head *list) 1070 { 1071 while (!list_empty(list)) { 1072 struct dentry *dentry, *parent; 1073 1074 dentry = list_entry(list->prev, struct dentry, d_lru); 1075 spin_lock(&dentry->d_lock); 1076 rcu_read_lock(); 1077 if (!shrink_lock_dentry(dentry)) { 1078 bool can_free = false; 1079 rcu_read_unlock(); 1080 d_shrink_del(dentry); 1081 if (dentry->d_lockref.count < 0) 1082 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1083 spin_unlock(&dentry->d_lock); 1084 if (can_free) 1085 dentry_free(dentry); 1086 continue; 1087 } 1088 rcu_read_unlock(); 1089 d_shrink_del(dentry); 1090 parent = dentry->d_parent; 1091 __dentry_kill(dentry); 1092 if (parent == dentry) 1093 continue; 1094 /* 1095 * We need to prune ancestors too. This is necessary to prevent 1096 * quadratic behavior of shrink_dcache_parent(), but is also 1097 * expected to be beneficial in reducing dentry cache 1098 * fragmentation. 1099 */ 1100 dentry = parent; 1101 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1102 dentry = dentry_kill(dentry); 1103 } 1104 } 1105 1106 static enum lru_status dentry_lru_isolate(struct list_head *item, 1107 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1108 { 1109 struct list_head *freeable = arg; 1110 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1111 1112 1113 /* 1114 * we are inverting the lru lock/dentry->d_lock here, 1115 * so use a trylock. If we fail to get the lock, just skip 1116 * it 1117 */ 1118 if (!spin_trylock(&dentry->d_lock)) 1119 return LRU_SKIP; 1120 1121 /* 1122 * Referenced dentries are still in use. If they have active 1123 * counts, just remove them from the LRU. Otherwise give them 1124 * another pass through the LRU. 1125 */ 1126 if (dentry->d_lockref.count) { 1127 d_lru_isolate(lru, dentry); 1128 spin_unlock(&dentry->d_lock); 1129 return LRU_REMOVED; 1130 } 1131 1132 if (dentry->d_flags & DCACHE_REFERENCED) { 1133 dentry->d_flags &= ~DCACHE_REFERENCED; 1134 spin_unlock(&dentry->d_lock); 1135 1136 /* 1137 * The list move itself will be made by the common LRU code. At 1138 * this point, we've dropped the dentry->d_lock but keep the 1139 * lru lock. This is safe to do, since every list movement is 1140 * protected by the lru lock even if both locks are held. 1141 * 1142 * This is guaranteed by the fact that all LRU management 1143 * functions are intermediated by the LRU API calls like 1144 * list_lru_add and list_lru_del. List movement in this file 1145 * only ever occur through this functions or through callbacks 1146 * like this one, that are called from the LRU API. 1147 * 1148 * The only exceptions to this are functions like 1149 * shrink_dentry_list, and code that first checks for the 1150 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1151 * operating only with stack provided lists after they are 1152 * properly isolated from the main list. It is thus, always a 1153 * local access. 1154 */ 1155 return LRU_ROTATE; 1156 } 1157 1158 d_lru_shrink_move(lru, dentry, freeable); 1159 spin_unlock(&dentry->d_lock); 1160 1161 return LRU_REMOVED; 1162 } 1163 1164 /** 1165 * prune_dcache_sb - shrink the dcache 1166 * @sb: superblock 1167 * @sc: shrink control, passed to list_lru_shrink_walk() 1168 * 1169 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1170 * is done when we need more memory and called from the superblock shrinker 1171 * function. 1172 * 1173 * This function may fail to free any resources if all the dentries are in 1174 * use. 1175 */ 1176 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1177 { 1178 LIST_HEAD(dispose); 1179 long freed; 1180 1181 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1182 dentry_lru_isolate, &dispose); 1183 shrink_dentry_list(&dispose); 1184 return freed; 1185 } 1186 1187 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1188 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1189 { 1190 struct list_head *freeable = arg; 1191 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1192 1193 /* 1194 * we are inverting the lru lock/dentry->d_lock here, 1195 * so use a trylock. If we fail to get the lock, just skip 1196 * it 1197 */ 1198 if (!spin_trylock(&dentry->d_lock)) 1199 return LRU_SKIP; 1200 1201 d_lru_shrink_move(lru, dentry, freeable); 1202 spin_unlock(&dentry->d_lock); 1203 1204 return LRU_REMOVED; 1205 } 1206 1207 1208 /** 1209 * shrink_dcache_sb - shrink dcache for a superblock 1210 * @sb: superblock 1211 * 1212 * Shrink the dcache for the specified super block. This is used to free 1213 * the dcache before unmounting a file system. 1214 */ 1215 void shrink_dcache_sb(struct super_block *sb) 1216 { 1217 do { 1218 LIST_HEAD(dispose); 1219 1220 list_lru_walk(&sb->s_dentry_lru, 1221 dentry_lru_isolate_shrink, &dispose, 1024); 1222 shrink_dentry_list(&dispose); 1223 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1224 } 1225 EXPORT_SYMBOL(shrink_dcache_sb); 1226 1227 /** 1228 * enum d_walk_ret - action to talke during tree walk 1229 * @D_WALK_CONTINUE: contrinue walk 1230 * @D_WALK_QUIT: quit walk 1231 * @D_WALK_NORETRY: quit when retry is needed 1232 * @D_WALK_SKIP: skip this dentry and its children 1233 */ 1234 enum d_walk_ret { 1235 D_WALK_CONTINUE, 1236 D_WALK_QUIT, 1237 D_WALK_NORETRY, 1238 D_WALK_SKIP, 1239 }; 1240 1241 /** 1242 * d_walk - walk the dentry tree 1243 * @parent: start of walk 1244 * @data: data passed to @enter() and @finish() 1245 * @enter: callback when first entering the dentry 1246 * 1247 * The @enter() callbacks are called with d_lock held. 1248 */ 1249 static void d_walk(struct dentry *parent, void *data, 1250 enum d_walk_ret (*enter)(void *, struct dentry *)) 1251 { 1252 struct dentry *this_parent; 1253 struct list_head *next; 1254 unsigned seq = 0; 1255 enum d_walk_ret ret; 1256 bool retry = true; 1257 1258 again: 1259 read_seqbegin_or_lock(&rename_lock, &seq); 1260 this_parent = parent; 1261 spin_lock(&this_parent->d_lock); 1262 1263 ret = enter(data, this_parent); 1264 switch (ret) { 1265 case D_WALK_CONTINUE: 1266 break; 1267 case D_WALK_QUIT: 1268 case D_WALK_SKIP: 1269 goto out_unlock; 1270 case D_WALK_NORETRY: 1271 retry = false; 1272 break; 1273 } 1274 repeat: 1275 next = this_parent->d_subdirs.next; 1276 resume: 1277 while (next != &this_parent->d_subdirs) { 1278 struct list_head *tmp = next; 1279 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1280 next = tmp->next; 1281 1282 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1283 continue; 1284 1285 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1286 1287 ret = enter(data, dentry); 1288 switch (ret) { 1289 case D_WALK_CONTINUE: 1290 break; 1291 case D_WALK_QUIT: 1292 spin_unlock(&dentry->d_lock); 1293 goto out_unlock; 1294 case D_WALK_NORETRY: 1295 retry = false; 1296 break; 1297 case D_WALK_SKIP: 1298 spin_unlock(&dentry->d_lock); 1299 continue; 1300 } 1301 1302 if (!list_empty(&dentry->d_subdirs)) { 1303 spin_unlock(&this_parent->d_lock); 1304 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1305 this_parent = dentry; 1306 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1307 goto repeat; 1308 } 1309 spin_unlock(&dentry->d_lock); 1310 } 1311 /* 1312 * All done at this level ... ascend and resume the search. 1313 */ 1314 rcu_read_lock(); 1315 ascend: 1316 if (this_parent != parent) { 1317 struct dentry *child = this_parent; 1318 this_parent = child->d_parent; 1319 1320 spin_unlock(&child->d_lock); 1321 spin_lock(&this_parent->d_lock); 1322 1323 /* might go back up the wrong parent if we have had a rename. */ 1324 if (need_seqretry(&rename_lock, seq)) 1325 goto rename_retry; 1326 /* go into the first sibling still alive */ 1327 do { 1328 next = child->d_child.next; 1329 if (next == &this_parent->d_subdirs) 1330 goto ascend; 1331 child = list_entry(next, struct dentry, d_child); 1332 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1333 rcu_read_unlock(); 1334 goto resume; 1335 } 1336 if (need_seqretry(&rename_lock, seq)) 1337 goto rename_retry; 1338 rcu_read_unlock(); 1339 1340 out_unlock: 1341 spin_unlock(&this_parent->d_lock); 1342 done_seqretry(&rename_lock, seq); 1343 return; 1344 1345 rename_retry: 1346 spin_unlock(&this_parent->d_lock); 1347 rcu_read_unlock(); 1348 BUG_ON(seq & 1); 1349 if (!retry) 1350 return; 1351 seq = 1; 1352 goto again; 1353 } 1354 1355 struct check_mount { 1356 struct vfsmount *mnt; 1357 unsigned int mounted; 1358 }; 1359 1360 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1361 { 1362 struct check_mount *info = data; 1363 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1364 1365 if (likely(!d_mountpoint(dentry))) 1366 return D_WALK_CONTINUE; 1367 if (__path_is_mountpoint(&path)) { 1368 info->mounted = 1; 1369 return D_WALK_QUIT; 1370 } 1371 return D_WALK_CONTINUE; 1372 } 1373 1374 /** 1375 * path_has_submounts - check for mounts over a dentry in the 1376 * current namespace. 1377 * @parent: path to check. 1378 * 1379 * Return true if the parent or its subdirectories contain 1380 * a mount point in the current namespace. 1381 */ 1382 int path_has_submounts(const struct path *parent) 1383 { 1384 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1385 1386 read_seqlock_excl(&mount_lock); 1387 d_walk(parent->dentry, &data, path_check_mount); 1388 read_sequnlock_excl(&mount_lock); 1389 1390 return data.mounted; 1391 } 1392 EXPORT_SYMBOL(path_has_submounts); 1393 1394 /* 1395 * Called by mount code to set a mountpoint and check if the mountpoint is 1396 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1397 * subtree can become unreachable). 1398 * 1399 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1400 * this reason take rename_lock and d_lock on dentry and ancestors. 1401 */ 1402 int d_set_mounted(struct dentry *dentry) 1403 { 1404 struct dentry *p; 1405 int ret = -ENOENT; 1406 write_seqlock(&rename_lock); 1407 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1408 /* Need exclusion wrt. d_invalidate() */ 1409 spin_lock(&p->d_lock); 1410 if (unlikely(d_unhashed(p))) { 1411 spin_unlock(&p->d_lock); 1412 goto out; 1413 } 1414 spin_unlock(&p->d_lock); 1415 } 1416 spin_lock(&dentry->d_lock); 1417 if (!d_unlinked(dentry)) { 1418 ret = -EBUSY; 1419 if (!d_mountpoint(dentry)) { 1420 dentry->d_flags |= DCACHE_MOUNTED; 1421 ret = 0; 1422 } 1423 } 1424 spin_unlock(&dentry->d_lock); 1425 out: 1426 write_sequnlock(&rename_lock); 1427 return ret; 1428 } 1429 1430 /* 1431 * Search the dentry child list of the specified parent, 1432 * and move any unused dentries to the end of the unused 1433 * list for prune_dcache(). We descend to the next level 1434 * whenever the d_subdirs list is non-empty and continue 1435 * searching. 1436 * 1437 * It returns zero iff there are no unused children, 1438 * otherwise it returns the number of children moved to 1439 * the end of the unused list. This may not be the total 1440 * number of unused children, because select_parent can 1441 * drop the lock and return early due to latency 1442 * constraints. 1443 */ 1444 1445 struct select_data { 1446 struct dentry *start; 1447 struct list_head dispose; 1448 int found; 1449 }; 1450 1451 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1452 { 1453 struct select_data *data = _data; 1454 enum d_walk_ret ret = D_WALK_CONTINUE; 1455 1456 if (data->start == dentry) 1457 goto out; 1458 1459 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1460 data->found++; 1461 } else { 1462 if (dentry->d_flags & DCACHE_LRU_LIST) 1463 d_lru_del(dentry); 1464 if (!dentry->d_lockref.count) { 1465 d_shrink_add(dentry, &data->dispose); 1466 data->found++; 1467 } 1468 } 1469 /* 1470 * We can return to the caller if we have found some (this 1471 * ensures forward progress). We'll be coming back to find 1472 * the rest. 1473 */ 1474 if (!list_empty(&data->dispose)) 1475 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1476 out: 1477 return ret; 1478 } 1479 1480 /** 1481 * shrink_dcache_parent - prune dcache 1482 * @parent: parent of entries to prune 1483 * 1484 * Prune the dcache to remove unused children of the parent dentry. 1485 */ 1486 void shrink_dcache_parent(struct dentry *parent) 1487 { 1488 for (;;) { 1489 struct select_data data; 1490 1491 INIT_LIST_HEAD(&data.dispose); 1492 data.start = parent; 1493 data.found = 0; 1494 1495 d_walk(parent, &data, select_collect); 1496 1497 if (!list_empty(&data.dispose)) { 1498 shrink_dentry_list(&data.dispose); 1499 continue; 1500 } 1501 1502 cond_resched(); 1503 if (!data.found) 1504 break; 1505 } 1506 } 1507 EXPORT_SYMBOL(shrink_dcache_parent); 1508 1509 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1510 { 1511 /* it has busy descendents; complain about those instead */ 1512 if (!list_empty(&dentry->d_subdirs)) 1513 return D_WALK_CONTINUE; 1514 1515 /* root with refcount 1 is fine */ 1516 if (dentry == _data && dentry->d_lockref.count == 1) 1517 return D_WALK_CONTINUE; 1518 1519 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1520 " still in use (%d) [unmount of %s %s]\n", 1521 dentry, 1522 dentry->d_inode ? 1523 dentry->d_inode->i_ino : 0UL, 1524 dentry, 1525 dentry->d_lockref.count, 1526 dentry->d_sb->s_type->name, 1527 dentry->d_sb->s_id); 1528 WARN_ON(1); 1529 return D_WALK_CONTINUE; 1530 } 1531 1532 static void do_one_tree(struct dentry *dentry) 1533 { 1534 shrink_dcache_parent(dentry); 1535 d_walk(dentry, dentry, umount_check); 1536 d_drop(dentry); 1537 dput(dentry); 1538 } 1539 1540 /* 1541 * destroy the dentries attached to a superblock on unmounting 1542 */ 1543 void shrink_dcache_for_umount(struct super_block *sb) 1544 { 1545 struct dentry *dentry; 1546 1547 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1548 1549 dentry = sb->s_root; 1550 sb->s_root = NULL; 1551 do_one_tree(dentry); 1552 1553 while (!hlist_bl_empty(&sb->s_roots)) { 1554 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1555 do_one_tree(dentry); 1556 } 1557 } 1558 1559 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1560 { 1561 struct dentry **victim = _data; 1562 if (d_mountpoint(dentry)) { 1563 __dget_dlock(dentry); 1564 *victim = dentry; 1565 return D_WALK_QUIT; 1566 } 1567 return D_WALK_CONTINUE; 1568 } 1569 1570 /** 1571 * d_invalidate - detach submounts, prune dcache, and drop 1572 * @dentry: dentry to invalidate (aka detach, prune and drop) 1573 */ 1574 void d_invalidate(struct dentry *dentry) 1575 { 1576 bool had_submounts = false; 1577 spin_lock(&dentry->d_lock); 1578 if (d_unhashed(dentry)) { 1579 spin_unlock(&dentry->d_lock); 1580 return; 1581 } 1582 __d_drop(dentry); 1583 spin_unlock(&dentry->d_lock); 1584 1585 /* Negative dentries can be dropped without further checks */ 1586 if (!dentry->d_inode) 1587 return; 1588 1589 shrink_dcache_parent(dentry); 1590 for (;;) { 1591 struct dentry *victim = NULL; 1592 d_walk(dentry, &victim, find_submount); 1593 if (!victim) { 1594 if (had_submounts) 1595 shrink_dcache_parent(dentry); 1596 return; 1597 } 1598 had_submounts = true; 1599 detach_mounts(victim); 1600 dput(victim); 1601 } 1602 } 1603 EXPORT_SYMBOL(d_invalidate); 1604 1605 /** 1606 * __d_alloc - allocate a dcache entry 1607 * @sb: filesystem it will belong to 1608 * @name: qstr of the name 1609 * 1610 * Allocates a dentry. It returns %NULL if there is insufficient memory 1611 * available. On a success the dentry is returned. The name passed in is 1612 * copied and the copy passed in may be reused after this call. 1613 */ 1614 1615 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1616 { 1617 struct dentry *dentry; 1618 char *dname; 1619 int err; 1620 1621 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1622 if (!dentry) 1623 return NULL; 1624 1625 /* 1626 * We guarantee that the inline name is always NUL-terminated. 1627 * This way the memcpy() done by the name switching in rename 1628 * will still always have a NUL at the end, even if we might 1629 * be overwriting an internal NUL character 1630 */ 1631 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1632 if (unlikely(!name)) { 1633 name = &slash_name; 1634 dname = dentry->d_iname; 1635 } else if (name->len > DNAME_INLINE_LEN-1) { 1636 size_t size = offsetof(struct external_name, name[1]); 1637 struct external_name *p = kmalloc(size + name->len, 1638 GFP_KERNEL_ACCOUNT | 1639 __GFP_RECLAIMABLE); 1640 if (!p) { 1641 kmem_cache_free(dentry_cache, dentry); 1642 return NULL; 1643 } 1644 atomic_set(&p->u.count, 1); 1645 dname = p->name; 1646 } else { 1647 dname = dentry->d_iname; 1648 } 1649 1650 dentry->d_name.len = name->len; 1651 dentry->d_name.hash = name->hash; 1652 memcpy(dname, name->name, name->len); 1653 dname[name->len] = 0; 1654 1655 /* Make sure we always see the terminating NUL character */ 1656 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1657 1658 dentry->d_lockref.count = 1; 1659 dentry->d_flags = 0; 1660 spin_lock_init(&dentry->d_lock); 1661 seqcount_init(&dentry->d_seq); 1662 dentry->d_inode = NULL; 1663 dentry->d_parent = dentry; 1664 dentry->d_sb = sb; 1665 dentry->d_op = NULL; 1666 dentry->d_fsdata = NULL; 1667 INIT_HLIST_BL_NODE(&dentry->d_hash); 1668 INIT_LIST_HEAD(&dentry->d_lru); 1669 INIT_LIST_HEAD(&dentry->d_subdirs); 1670 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1671 INIT_LIST_HEAD(&dentry->d_child); 1672 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1673 1674 if (dentry->d_op && dentry->d_op->d_init) { 1675 err = dentry->d_op->d_init(dentry); 1676 if (err) { 1677 if (dname_external(dentry)) 1678 kfree(external_name(dentry)); 1679 kmem_cache_free(dentry_cache, dentry); 1680 return NULL; 1681 } 1682 } 1683 1684 this_cpu_inc(nr_dentry); 1685 1686 return dentry; 1687 } 1688 1689 /** 1690 * d_alloc - allocate a dcache entry 1691 * @parent: parent of entry to allocate 1692 * @name: qstr of the name 1693 * 1694 * Allocates a dentry. It returns %NULL if there is insufficient memory 1695 * available. On a success the dentry is returned. The name passed in is 1696 * copied and the copy passed in may be reused after this call. 1697 */ 1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1699 { 1700 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1701 if (!dentry) 1702 return NULL; 1703 spin_lock(&parent->d_lock); 1704 /* 1705 * don't need child lock because it is not subject 1706 * to concurrency here 1707 */ 1708 __dget_dlock(parent); 1709 dentry->d_parent = parent; 1710 list_add(&dentry->d_child, &parent->d_subdirs); 1711 spin_unlock(&parent->d_lock); 1712 1713 return dentry; 1714 } 1715 EXPORT_SYMBOL(d_alloc); 1716 1717 struct dentry *d_alloc_anon(struct super_block *sb) 1718 { 1719 return __d_alloc(sb, NULL); 1720 } 1721 EXPORT_SYMBOL(d_alloc_anon); 1722 1723 struct dentry *d_alloc_cursor(struct dentry * parent) 1724 { 1725 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1726 if (dentry) { 1727 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1728 dentry->d_parent = dget(parent); 1729 } 1730 return dentry; 1731 } 1732 1733 /** 1734 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1735 * @sb: the superblock 1736 * @name: qstr of the name 1737 * 1738 * For a filesystem that just pins its dentries in memory and never 1739 * performs lookups at all, return an unhashed IS_ROOT dentry. 1740 * This is used for pipes, sockets et.al. - the stuff that should 1741 * never be anyone's children or parents. Unlike all other 1742 * dentries, these will not have RCU delay between dropping the 1743 * last reference and freeing them. 1744 * 1745 * The only user is alloc_file_pseudo() and that's what should 1746 * be considered a public interface. Don't use directly. 1747 */ 1748 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1749 { 1750 struct dentry *dentry = __d_alloc(sb, name); 1751 if (likely(dentry)) 1752 dentry->d_flags |= DCACHE_NORCU; 1753 return dentry; 1754 } 1755 1756 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1757 { 1758 struct qstr q; 1759 1760 q.name = name; 1761 q.hash_len = hashlen_string(parent, name); 1762 return d_alloc(parent, &q); 1763 } 1764 EXPORT_SYMBOL(d_alloc_name); 1765 1766 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1767 { 1768 WARN_ON_ONCE(dentry->d_op); 1769 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1770 DCACHE_OP_COMPARE | 1771 DCACHE_OP_REVALIDATE | 1772 DCACHE_OP_WEAK_REVALIDATE | 1773 DCACHE_OP_DELETE | 1774 DCACHE_OP_REAL)); 1775 dentry->d_op = op; 1776 if (!op) 1777 return; 1778 if (op->d_hash) 1779 dentry->d_flags |= DCACHE_OP_HASH; 1780 if (op->d_compare) 1781 dentry->d_flags |= DCACHE_OP_COMPARE; 1782 if (op->d_revalidate) 1783 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1784 if (op->d_weak_revalidate) 1785 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1786 if (op->d_delete) 1787 dentry->d_flags |= DCACHE_OP_DELETE; 1788 if (op->d_prune) 1789 dentry->d_flags |= DCACHE_OP_PRUNE; 1790 if (op->d_real) 1791 dentry->d_flags |= DCACHE_OP_REAL; 1792 1793 } 1794 EXPORT_SYMBOL(d_set_d_op); 1795 1796 1797 /* 1798 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1799 * @dentry - The dentry to mark 1800 * 1801 * Mark a dentry as falling through to the lower layer (as set with 1802 * d_pin_lower()). This flag may be recorded on the medium. 1803 */ 1804 void d_set_fallthru(struct dentry *dentry) 1805 { 1806 spin_lock(&dentry->d_lock); 1807 dentry->d_flags |= DCACHE_FALLTHRU; 1808 spin_unlock(&dentry->d_lock); 1809 } 1810 EXPORT_SYMBOL(d_set_fallthru); 1811 1812 static unsigned d_flags_for_inode(struct inode *inode) 1813 { 1814 unsigned add_flags = DCACHE_REGULAR_TYPE; 1815 1816 if (!inode) 1817 return DCACHE_MISS_TYPE; 1818 1819 if (S_ISDIR(inode->i_mode)) { 1820 add_flags = DCACHE_DIRECTORY_TYPE; 1821 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1822 if (unlikely(!inode->i_op->lookup)) 1823 add_flags = DCACHE_AUTODIR_TYPE; 1824 else 1825 inode->i_opflags |= IOP_LOOKUP; 1826 } 1827 goto type_determined; 1828 } 1829 1830 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1831 if (unlikely(inode->i_op->get_link)) { 1832 add_flags = DCACHE_SYMLINK_TYPE; 1833 goto type_determined; 1834 } 1835 inode->i_opflags |= IOP_NOFOLLOW; 1836 } 1837 1838 if (unlikely(!S_ISREG(inode->i_mode))) 1839 add_flags = DCACHE_SPECIAL_TYPE; 1840 1841 type_determined: 1842 if (unlikely(IS_AUTOMOUNT(inode))) 1843 add_flags |= DCACHE_NEED_AUTOMOUNT; 1844 return add_flags; 1845 } 1846 1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1848 { 1849 unsigned add_flags = d_flags_for_inode(inode); 1850 WARN_ON(d_in_lookup(dentry)); 1851 1852 spin_lock(&dentry->d_lock); 1853 /* 1854 * Decrement negative dentry count if it was in the LRU list. 1855 */ 1856 if (dentry->d_flags & DCACHE_LRU_LIST) 1857 this_cpu_dec(nr_dentry_negative); 1858 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1859 raw_write_seqcount_begin(&dentry->d_seq); 1860 __d_set_inode_and_type(dentry, inode, add_flags); 1861 raw_write_seqcount_end(&dentry->d_seq); 1862 fsnotify_update_flags(dentry); 1863 spin_unlock(&dentry->d_lock); 1864 } 1865 1866 /** 1867 * d_instantiate - fill in inode information for a dentry 1868 * @entry: dentry to complete 1869 * @inode: inode to attach to this dentry 1870 * 1871 * Fill in inode information in the entry. 1872 * 1873 * This turns negative dentries into productive full members 1874 * of society. 1875 * 1876 * NOTE! This assumes that the inode count has been incremented 1877 * (or otherwise set) by the caller to indicate that it is now 1878 * in use by the dcache. 1879 */ 1880 1881 void d_instantiate(struct dentry *entry, struct inode * inode) 1882 { 1883 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1884 if (inode) { 1885 security_d_instantiate(entry, inode); 1886 spin_lock(&inode->i_lock); 1887 __d_instantiate(entry, inode); 1888 spin_unlock(&inode->i_lock); 1889 } 1890 } 1891 EXPORT_SYMBOL(d_instantiate); 1892 1893 /* 1894 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1895 * with lockdep-related part of unlock_new_inode() done before 1896 * anything else. Use that instead of open-coding d_instantiate()/ 1897 * unlock_new_inode() combinations. 1898 */ 1899 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1900 { 1901 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1902 BUG_ON(!inode); 1903 lockdep_annotate_inode_mutex_key(inode); 1904 security_d_instantiate(entry, inode); 1905 spin_lock(&inode->i_lock); 1906 __d_instantiate(entry, inode); 1907 WARN_ON(!(inode->i_state & I_NEW)); 1908 inode->i_state &= ~I_NEW & ~I_CREATING; 1909 smp_mb(); 1910 wake_up_bit(&inode->i_state, __I_NEW); 1911 spin_unlock(&inode->i_lock); 1912 } 1913 EXPORT_SYMBOL(d_instantiate_new); 1914 1915 struct dentry *d_make_root(struct inode *root_inode) 1916 { 1917 struct dentry *res = NULL; 1918 1919 if (root_inode) { 1920 res = d_alloc_anon(root_inode->i_sb); 1921 if (res) 1922 d_instantiate(res, root_inode); 1923 else 1924 iput(root_inode); 1925 } 1926 return res; 1927 } 1928 EXPORT_SYMBOL(d_make_root); 1929 1930 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1931 struct inode *inode, 1932 bool disconnected) 1933 { 1934 struct dentry *res; 1935 unsigned add_flags; 1936 1937 security_d_instantiate(dentry, inode); 1938 spin_lock(&inode->i_lock); 1939 res = __d_find_any_alias(inode); 1940 if (res) { 1941 spin_unlock(&inode->i_lock); 1942 dput(dentry); 1943 goto out_iput; 1944 } 1945 1946 /* attach a disconnected dentry */ 1947 add_flags = d_flags_for_inode(inode); 1948 1949 if (disconnected) 1950 add_flags |= DCACHE_DISCONNECTED; 1951 1952 spin_lock(&dentry->d_lock); 1953 __d_set_inode_and_type(dentry, inode, add_flags); 1954 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1955 if (!disconnected) { 1956 hlist_bl_lock(&dentry->d_sb->s_roots); 1957 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1958 hlist_bl_unlock(&dentry->d_sb->s_roots); 1959 } 1960 spin_unlock(&dentry->d_lock); 1961 spin_unlock(&inode->i_lock); 1962 1963 return dentry; 1964 1965 out_iput: 1966 iput(inode); 1967 return res; 1968 } 1969 1970 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1971 { 1972 return __d_instantiate_anon(dentry, inode, true); 1973 } 1974 EXPORT_SYMBOL(d_instantiate_anon); 1975 1976 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1977 { 1978 struct dentry *tmp; 1979 struct dentry *res; 1980 1981 if (!inode) 1982 return ERR_PTR(-ESTALE); 1983 if (IS_ERR(inode)) 1984 return ERR_CAST(inode); 1985 1986 res = d_find_any_alias(inode); 1987 if (res) 1988 goto out_iput; 1989 1990 tmp = d_alloc_anon(inode->i_sb); 1991 if (!tmp) { 1992 res = ERR_PTR(-ENOMEM); 1993 goto out_iput; 1994 } 1995 1996 return __d_instantiate_anon(tmp, inode, disconnected); 1997 1998 out_iput: 1999 iput(inode); 2000 return res; 2001 } 2002 2003 /** 2004 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2005 * @inode: inode to allocate the dentry for 2006 * 2007 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2008 * similar open by handle operations. The returned dentry may be anonymous, 2009 * or may have a full name (if the inode was already in the cache). 2010 * 2011 * When called on a directory inode, we must ensure that the inode only ever 2012 * has one dentry. If a dentry is found, that is returned instead of 2013 * allocating a new one. 2014 * 2015 * On successful return, the reference to the inode has been transferred 2016 * to the dentry. In case of an error the reference on the inode is released. 2017 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2018 * be passed in and the error will be propagated to the return value, 2019 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2020 */ 2021 struct dentry *d_obtain_alias(struct inode *inode) 2022 { 2023 return __d_obtain_alias(inode, true); 2024 } 2025 EXPORT_SYMBOL(d_obtain_alias); 2026 2027 /** 2028 * d_obtain_root - find or allocate a dentry for a given inode 2029 * @inode: inode to allocate the dentry for 2030 * 2031 * Obtain an IS_ROOT dentry for the root of a filesystem. 2032 * 2033 * We must ensure that directory inodes only ever have one dentry. If a 2034 * dentry is found, that is returned instead of allocating a new one. 2035 * 2036 * On successful return, the reference to the inode has been transferred 2037 * to the dentry. In case of an error the reference on the inode is 2038 * released. A %NULL or IS_ERR inode may be passed in and will be the 2039 * error will be propagate to the return value, with a %NULL @inode 2040 * replaced by ERR_PTR(-ESTALE). 2041 */ 2042 struct dentry *d_obtain_root(struct inode *inode) 2043 { 2044 return __d_obtain_alias(inode, false); 2045 } 2046 EXPORT_SYMBOL(d_obtain_root); 2047 2048 /** 2049 * d_add_ci - lookup or allocate new dentry with case-exact name 2050 * @inode: the inode case-insensitive lookup has found 2051 * @dentry: the negative dentry that was passed to the parent's lookup func 2052 * @name: the case-exact name to be associated with the returned dentry 2053 * 2054 * This is to avoid filling the dcache with case-insensitive names to the 2055 * same inode, only the actual correct case is stored in the dcache for 2056 * case-insensitive filesystems. 2057 * 2058 * For a case-insensitive lookup match and if the the case-exact dentry 2059 * already exists in in the dcache, use it and return it. 2060 * 2061 * If no entry exists with the exact case name, allocate new dentry with 2062 * the exact case, and return the spliced entry. 2063 */ 2064 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2065 struct qstr *name) 2066 { 2067 struct dentry *found, *res; 2068 2069 /* 2070 * First check if a dentry matching the name already exists, 2071 * if not go ahead and create it now. 2072 */ 2073 found = d_hash_and_lookup(dentry->d_parent, name); 2074 if (found) { 2075 iput(inode); 2076 return found; 2077 } 2078 if (d_in_lookup(dentry)) { 2079 found = d_alloc_parallel(dentry->d_parent, name, 2080 dentry->d_wait); 2081 if (IS_ERR(found) || !d_in_lookup(found)) { 2082 iput(inode); 2083 return found; 2084 } 2085 } else { 2086 found = d_alloc(dentry->d_parent, name); 2087 if (!found) { 2088 iput(inode); 2089 return ERR_PTR(-ENOMEM); 2090 } 2091 } 2092 res = d_splice_alias(inode, found); 2093 if (res) { 2094 dput(found); 2095 return res; 2096 } 2097 return found; 2098 } 2099 EXPORT_SYMBOL(d_add_ci); 2100 2101 2102 static inline bool d_same_name(const struct dentry *dentry, 2103 const struct dentry *parent, 2104 const struct qstr *name) 2105 { 2106 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2107 if (dentry->d_name.len != name->len) 2108 return false; 2109 return dentry_cmp(dentry, name->name, name->len) == 0; 2110 } 2111 return parent->d_op->d_compare(dentry, 2112 dentry->d_name.len, dentry->d_name.name, 2113 name) == 0; 2114 } 2115 2116 /** 2117 * __d_lookup_rcu - search for a dentry (racy, store-free) 2118 * @parent: parent dentry 2119 * @name: qstr of name we wish to find 2120 * @seqp: returns d_seq value at the point where the dentry was found 2121 * Returns: dentry, or NULL 2122 * 2123 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2124 * resolution (store-free path walking) design described in 2125 * Documentation/filesystems/path-lookup.txt. 2126 * 2127 * This is not to be used outside core vfs. 2128 * 2129 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2130 * held, and rcu_read_lock held. The returned dentry must not be stored into 2131 * without taking d_lock and checking d_seq sequence count against @seq 2132 * returned here. 2133 * 2134 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2135 * function. 2136 * 2137 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2138 * the returned dentry, so long as its parent's seqlock is checked after the 2139 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2140 * is formed, giving integrity down the path walk. 2141 * 2142 * NOTE! The caller *has* to check the resulting dentry against the sequence 2143 * number we've returned before using any of the resulting dentry state! 2144 */ 2145 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2146 const struct qstr *name, 2147 unsigned *seqp) 2148 { 2149 u64 hashlen = name->hash_len; 2150 const unsigned char *str = name->name; 2151 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2152 struct hlist_bl_node *node; 2153 struct dentry *dentry; 2154 2155 /* 2156 * Note: There is significant duplication with __d_lookup_rcu which is 2157 * required to prevent single threaded performance regressions 2158 * especially on architectures where smp_rmb (in seqcounts) are costly. 2159 * Keep the two functions in sync. 2160 */ 2161 2162 /* 2163 * The hash list is protected using RCU. 2164 * 2165 * Carefully use d_seq when comparing a candidate dentry, to avoid 2166 * races with d_move(). 2167 * 2168 * It is possible that concurrent renames can mess up our list 2169 * walk here and result in missing our dentry, resulting in the 2170 * false-negative result. d_lookup() protects against concurrent 2171 * renames using rename_lock seqlock. 2172 * 2173 * See Documentation/filesystems/path-lookup.txt for more details. 2174 */ 2175 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2176 unsigned seq; 2177 2178 seqretry: 2179 /* 2180 * The dentry sequence count protects us from concurrent 2181 * renames, and thus protects parent and name fields. 2182 * 2183 * The caller must perform a seqcount check in order 2184 * to do anything useful with the returned dentry. 2185 * 2186 * NOTE! We do a "raw" seqcount_begin here. That means that 2187 * we don't wait for the sequence count to stabilize if it 2188 * is in the middle of a sequence change. If we do the slow 2189 * dentry compare, we will do seqretries until it is stable, 2190 * and if we end up with a successful lookup, we actually 2191 * want to exit RCU lookup anyway. 2192 * 2193 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2194 * we are still guaranteed NUL-termination of ->d_name.name. 2195 */ 2196 seq = raw_seqcount_begin(&dentry->d_seq); 2197 if (dentry->d_parent != parent) 2198 continue; 2199 if (d_unhashed(dentry)) 2200 continue; 2201 2202 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2203 int tlen; 2204 const char *tname; 2205 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2206 continue; 2207 tlen = dentry->d_name.len; 2208 tname = dentry->d_name.name; 2209 /* we want a consistent (name,len) pair */ 2210 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2211 cpu_relax(); 2212 goto seqretry; 2213 } 2214 if (parent->d_op->d_compare(dentry, 2215 tlen, tname, name) != 0) 2216 continue; 2217 } else { 2218 if (dentry->d_name.hash_len != hashlen) 2219 continue; 2220 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2221 continue; 2222 } 2223 *seqp = seq; 2224 return dentry; 2225 } 2226 return NULL; 2227 } 2228 2229 /** 2230 * d_lookup - search for a dentry 2231 * @parent: parent dentry 2232 * @name: qstr of name we wish to find 2233 * Returns: dentry, or NULL 2234 * 2235 * d_lookup searches the children of the parent dentry for the name in 2236 * question. If the dentry is found its reference count is incremented and the 2237 * dentry is returned. The caller must use dput to free the entry when it has 2238 * finished using it. %NULL is returned if the dentry does not exist. 2239 */ 2240 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2241 { 2242 struct dentry *dentry; 2243 unsigned seq; 2244 2245 do { 2246 seq = read_seqbegin(&rename_lock); 2247 dentry = __d_lookup(parent, name); 2248 if (dentry) 2249 break; 2250 } while (read_seqretry(&rename_lock, seq)); 2251 return dentry; 2252 } 2253 EXPORT_SYMBOL(d_lookup); 2254 2255 /** 2256 * __d_lookup - search for a dentry (racy) 2257 * @parent: parent dentry 2258 * @name: qstr of name we wish to find 2259 * Returns: dentry, or NULL 2260 * 2261 * __d_lookup is like d_lookup, however it may (rarely) return a 2262 * false-negative result due to unrelated rename activity. 2263 * 2264 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2265 * however it must be used carefully, eg. with a following d_lookup in 2266 * the case of failure. 2267 * 2268 * __d_lookup callers must be commented. 2269 */ 2270 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2271 { 2272 unsigned int hash = name->hash; 2273 struct hlist_bl_head *b = d_hash(hash); 2274 struct hlist_bl_node *node; 2275 struct dentry *found = NULL; 2276 struct dentry *dentry; 2277 2278 /* 2279 * Note: There is significant duplication with __d_lookup_rcu which is 2280 * required to prevent single threaded performance regressions 2281 * especially on architectures where smp_rmb (in seqcounts) are costly. 2282 * Keep the two functions in sync. 2283 */ 2284 2285 /* 2286 * The hash list is protected using RCU. 2287 * 2288 * Take d_lock when comparing a candidate dentry, to avoid races 2289 * with d_move(). 2290 * 2291 * It is possible that concurrent renames can mess up our list 2292 * walk here and result in missing our dentry, resulting in the 2293 * false-negative result. d_lookup() protects against concurrent 2294 * renames using rename_lock seqlock. 2295 * 2296 * See Documentation/filesystems/path-lookup.txt for more details. 2297 */ 2298 rcu_read_lock(); 2299 2300 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2301 2302 if (dentry->d_name.hash != hash) 2303 continue; 2304 2305 spin_lock(&dentry->d_lock); 2306 if (dentry->d_parent != parent) 2307 goto next; 2308 if (d_unhashed(dentry)) 2309 goto next; 2310 2311 if (!d_same_name(dentry, parent, name)) 2312 goto next; 2313 2314 dentry->d_lockref.count++; 2315 found = dentry; 2316 spin_unlock(&dentry->d_lock); 2317 break; 2318 next: 2319 spin_unlock(&dentry->d_lock); 2320 } 2321 rcu_read_unlock(); 2322 2323 return found; 2324 } 2325 2326 /** 2327 * d_hash_and_lookup - hash the qstr then search for a dentry 2328 * @dir: Directory to search in 2329 * @name: qstr of name we wish to find 2330 * 2331 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2332 */ 2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2334 { 2335 /* 2336 * Check for a fs-specific hash function. Note that we must 2337 * calculate the standard hash first, as the d_op->d_hash() 2338 * routine may choose to leave the hash value unchanged. 2339 */ 2340 name->hash = full_name_hash(dir, name->name, name->len); 2341 if (dir->d_flags & DCACHE_OP_HASH) { 2342 int err = dir->d_op->d_hash(dir, name); 2343 if (unlikely(err < 0)) 2344 return ERR_PTR(err); 2345 } 2346 return d_lookup(dir, name); 2347 } 2348 EXPORT_SYMBOL(d_hash_and_lookup); 2349 2350 /* 2351 * When a file is deleted, we have two options: 2352 * - turn this dentry into a negative dentry 2353 * - unhash this dentry and free it. 2354 * 2355 * Usually, we want to just turn this into 2356 * a negative dentry, but if anybody else is 2357 * currently using the dentry or the inode 2358 * we can't do that and we fall back on removing 2359 * it from the hash queues and waiting for 2360 * it to be deleted later when it has no users 2361 */ 2362 2363 /** 2364 * d_delete - delete a dentry 2365 * @dentry: The dentry to delete 2366 * 2367 * Turn the dentry into a negative dentry if possible, otherwise 2368 * remove it from the hash queues so it can be deleted later 2369 */ 2370 2371 void d_delete(struct dentry * dentry) 2372 { 2373 struct inode *inode = dentry->d_inode; 2374 int isdir = d_is_dir(dentry); 2375 2376 spin_lock(&inode->i_lock); 2377 spin_lock(&dentry->d_lock); 2378 /* 2379 * Are we the only user? 2380 */ 2381 if (dentry->d_lockref.count == 1) { 2382 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2383 dentry_unlink_inode(dentry); 2384 } else { 2385 __d_drop(dentry); 2386 spin_unlock(&dentry->d_lock); 2387 spin_unlock(&inode->i_lock); 2388 } 2389 fsnotify_nameremove(dentry, isdir); 2390 } 2391 EXPORT_SYMBOL(d_delete); 2392 2393 static void __d_rehash(struct dentry *entry) 2394 { 2395 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2396 2397 hlist_bl_lock(b); 2398 hlist_bl_add_head_rcu(&entry->d_hash, b); 2399 hlist_bl_unlock(b); 2400 } 2401 2402 /** 2403 * d_rehash - add an entry back to the hash 2404 * @entry: dentry to add to the hash 2405 * 2406 * Adds a dentry to the hash according to its name. 2407 */ 2408 2409 void d_rehash(struct dentry * entry) 2410 { 2411 spin_lock(&entry->d_lock); 2412 __d_rehash(entry); 2413 spin_unlock(&entry->d_lock); 2414 } 2415 EXPORT_SYMBOL(d_rehash); 2416 2417 static inline unsigned start_dir_add(struct inode *dir) 2418 { 2419 2420 for (;;) { 2421 unsigned n = dir->i_dir_seq; 2422 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2423 return n; 2424 cpu_relax(); 2425 } 2426 } 2427 2428 static inline void end_dir_add(struct inode *dir, unsigned n) 2429 { 2430 smp_store_release(&dir->i_dir_seq, n + 2); 2431 } 2432 2433 static void d_wait_lookup(struct dentry *dentry) 2434 { 2435 if (d_in_lookup(dentry)) { 2436 DECLARE_WAITQUEUE(wait, current); 2437 add_wait_queue(dentry->d_wait, &wait); 2438 do { 2439 set_current_state(TASK_UNINTERRUPTIBLE); 2440 spin_unlock(&dentry->d_lock); 2441 schedule(); 2442 spin_lock(&dentry->d_lock); 2443 } while (d_in_lookup(dentry)); 2444 } 2445 } 2446 2447 struct dentry *d_alloc_parallel(struct dentry *parent, 2448 const struct qstr *name, 2449 wait_queue_head_t *wq) 2450 { 2451 unsigned int hash = name->hash; 2452 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2453 struct hlist_bl_node *node; 2454 struct dentry *new = d_alloc(parent, name); 2455 struct dentry *dentry; 2456 unsigned seq, r_seq, d_seq; 2457 2458 if (unlikely(!new)) 2459 return ERR_PTR(-ENOMEM); 2460 2461 retry: 2462 rcu_read_lock(); 2463 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2464 r_seq = read_seqbegin(&rename_lock); 2465 dentry = __d_lookup_rcu(parent, name, &d_seq); 2466 if (unlikely(dentry)) { 2467 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2468 rcu_read_unlock(); 2469 goto retry; 2470 } 2471 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2472 rcu_read_unlock(); 2473 dput(dentry); 2474 goto retry; 2475 } 2476 rcu_read_unlock(); 2477 dput(new); 2478 return dentry; 2479 } 2480 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2481 rcu_read_unlock(); 2482 goto retry; 2483 } 2484 2485 if (unlikely(seq & 1)) { 2486 rcu_read_unlock(); 2487 goto retry; 2488 } 2489 2490 hlist_bl_lock(b); 2491 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2492 hlist_bl_unlock(b); 2493 rcu_read_unlock(); 2494 goto retry; 2495 } 2496 /* 2497 * No changes for the parent since the beginning of d_lookup(). 2498 * Since all removals from the chain happen with hlist_bl_lock(), 2499 * any potential in-lookup matches are going to stay here until 2500 * we unlock the chain. All fields are stable in everything 2501 * we encounter. 2502 */ 2503 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2504 if (dentry->d_name.hash != hash) 2505 continue; 2506 if (dentry->d_parent != parent) 2507 continue; 2508 if (!d_same_name(dentry, parent, name)) 2509 continue; 2510 hlist_bl_unlock(b); 2511 /* now we can try to grab a reference */ 2512 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2513 rcu_read_unlock(); 2514 goto retry; 2515 } 2516 2517 rcu_read_unlock(); 2518 /* 2519 * somebody is likely to be still doing lookup for it; 2520 * wait for them to finish 2521 */ 2522 spin_lock(&dentry->d_lock); 2523 d_wait_lookup(dentry); 2524 /* 2525 * it's not in-lookup anymore; in principle we should repeat 2526 * everything from dcache lookup, but it's likely to be what 2527 * d_lookup() would've found anyway. If it is, just return it; 2528 * otherwise we really have to repeat the whole thing. 2529 */ 2530 if (unlikely(dentry->d_name.hash != hash)) 2531 goto mismatch; 2532 if (unlikely(dentry->d_parent != parent)) 2533 goto mismatch; 2534 if (unlikely(d_unhashed(dentry))) 2535 goto mismatch; 2536 if (unlikely(!d_same_name(dentry, parent, name))) 2537 goto mismatch; 2538 /* OK, it *is* a hashed match; return it */ 2539 spin_unlock(&dentry->d_lock); 2540 dput(new); 2541 return dentry; 2542 } 2543 rcu_read_unlock(); 2544 /* we can't take ->d_lock here; it's OK, though. */ 2545 new->d_flags |= DCACHE_PAR_LOOKUP; 2546 new->d_wait = wq; 2547 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2548 hlist_bl_unlock(b); 2549 return new; 2550 mismatch: 2551 spin_unlock(&dentry->d_lock); 2552 dput(dentry); 2553 goto retry; 2554 } 2555 EXPORT_SYMBOL(d_alloc_parallel); 2556 2557 void __d_lookup_done(struct dentry *dentry) 2558 { 2559 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2560 dentry->d_name.hash); 2561 hlist_bl_lock(b); 2562 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2563 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2564 wake_up_all(dentry->d_wait); 2565 dentry->d_wait = NULL; 2566 hlist_bl_unlock(b); 2567 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2568 INIT_LIST_HEAD(&dentry->d_lru); 2569 } 2570 EXPORT_SYMBOL(__d_lookup_done); 2571 2572 /* inode->i_lock held if inode is non-NULL */ 2573 2574 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2575 { 2576 struct inode *dir = NULL; 2577 unsigned n; 2578 spin_lock(&dentry->d_lock); 2579 if (unlikely(d_in_lookup(dentry))) { 2580 dir = dentry->d_parent->d_inode; 2581 n = start_dir_add(dir); 2582 __d_lookup_done(dentry); 2583 } 2584 if (inode) { 2585 unsigned add_flags = d_flags_for_inode(inode); 2586 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2587 raw_write_seqcount_begin(&dentry->d_seq); 2588 __d_set_inode_and_type(dentry, inode, add_flags); 2589 raw_write_seqcount_end(&dentry->d_seq); 2590 fsnotify_update_flags(dentry); 2591 } 2592 __d_rehash(dentry); 2593 if (dir) 2594 end_dir_add(dir, n); 2595 spin_unlock(&dentry->d_lock); 2596 if (inode) 2597 spin_unlock(&inode->i_lock); 2598 } 2599 2600 /** 2601 * d_add - add dentry to hash queues 2602 * @entry: dentry to add 2603 * @inode: The inode to attach to this dentry 2604 * 2605 * This adds the entry to the hash queues and initializes @inode. 2606 * The entry was actually filled in earlier during d_alloc(). 2607 */ 2608 2609 void d_add(struct dentry *entry, struct inode *inode) 2610 { 2611 if (inode) { 2612 security_d_instantiate(entry, inode); 2613 spin_lock(&inode->i_lock); 2614 } 2615 __d_add(entry, inode); 2616 } 2617 EXPORT_SYMBOL(d_add); 2618 2619 /** 2620 * d_exact_alias - find and hash an exact unhashed alias 2621 * @entry: dentry to add 2622 * @inode: The inode to go with this dentry 2623 * 2624 * If an unhashed dentry with the same name/parent and desired 2625 * inode already exists, hash and return it. Otherwise, return 2626 * NULL. 2627 * 2628 * Parent directory should be locked. 2629 */ 2630 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2631 { 2632 struct dentry *alias; 2633 unsigned int hash = entry->d_name.hash; 2634 2635 spin_lock(&inode->i_lock); 2636 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2637 /* 2638 * Don't need alias->d_lock here, because aliases with 2639 * d_parent == entry->d_parent are not subject to name or 2640 * parent changes, because the parent inode i_mutex is held. 2641 */ 2642 if (alias->d_name.hash != hash) 2643 continue; 2644 if (alias->d_parent != entry->d_parent) 2645 continue; 2646 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2647 continue; 2648 spin_lock(&alias->d_lock); 2649 if (!d_unhashed(alias)) { 2650 spin_unlock(&alias->d_lock); 2651 alias = NULL; 2652 } else { 2653 __dget_dlock(alias); 2654 __d_rehash(alias); 2655 spin_unlock(&alias->d_lock); 2656 } 2657 spin_unlock(&inode->i_lock); 2658 return alias; 2659 } 2660 spin_unlock(&inode->i_lock); 2661 return NULL; 2662 } 2663 EXPORT_SYMBOL(d_exact_alias); 2664 2665 static void swap_names(struct dentry *dentry, struct dentry *target) 2666 { 2667 if (unlikely(dname_external(target))) { 2668 if (unlikely(dname_external(dentry))) { 2669 /* 2670 * Both external: swap the pointers 2671 */ 2672 swap(target->d_name.name, dentry->d_name.name); 2673 } else { 2674 /* 2675 * dentry:internal, target:external. Steal target's 2676 * storage and make target internal. 2677 */ 2678 memcpy(target->d_iname, dentry->d_name.name, 2679 dentry->d_name.len + 1); 2680 dentry->d_name.name = target->d_name.name; 2681 target->d_name.name = target->d_iname; 2682 } 2683 } else { 2684 if (unlikely(dname_external(dentry))) { 2685 /* 2686 * dentry:external, target:internal. Give dentry's 2687 * storage to target and make dentry internal 2688 */ 2689 memcpy(dentry->d_iname, target->d_name.name, 2690 target->d_name.len + 1); 2691 target->d_name.name = dentry->d_name.name; 2692 dentry->d_name.name = dentry->d_iname; 2693 } else { 2694 /* 2695 * Both are internal. 2696 */ 2697 unsigned int i; 2698 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2699 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2700 swap(((long *) &dentry->d_iname)[i], 2701 ((long *) &target->d_iname)[i]); 2702 } 2703 } 2704 } 2705 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2706 } 2707 2708 static void copy_name(struct dentry *dentry, struct dentry *target) 2709 { 2710 struct external_name *old_name = NULL; 2711 if (unlikely(dname_external(dentry))) 2712 old_name = external_name(dentry); 2713 if (unlikely(dname_external(target))) { 2714 atomic_inc(&external_name(target)->u.count); 2715 dentry->d_name = target->d_name; 2716 } else { 2717 memcpy(dentry->d_iname, target->d_name.name, 2718 target->d_name.len + 1); 2719 dentry->d_name.name = dentry->d_iname; 2720 dentry->d_name.hash_len = target->d_name.hash_len; 2721 } 2722 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2723 kfree_rcu(old_name, u.head); 2724 } 2725 2726 /* 2727 * __d_move - move a dentry 2728 * @dentry: entry to move 2729 * @target: new dentry 2730 * @exchange: exchange the two dentries 2731 * 2732 * Update the dcache to reflect the move of a file name. Negative 2733 * dcache entries should not be moved in this way. Caller must hold 2734 * rename_lock, the i_mutex of the source and target directories, 2735 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2736 */ 2737 static void __d_move(struct dentry *dentry, struct dentry *target, 2738 bool exchange) 2739 { 2740 struct dentry *old_parent, *p; 2741 struct inode *dir = NULL; 2742 unsigned n; 2743 2744 WARN_ON(!dentry->d_inode); 2745 if (WARN_ON(dentry == target)) 2746 return; 2747 2748 BUG_ON(d_ancestor(target, dentry)); 2749 old_parent = dentry->d_parent; 2750 p = d_ancestor(old_parent, target); 2751 if (IS_ROOT(dentry)) { 2752 BUG_ON(p); 2753 spin_lock(&target->d_parent->d_lock); 2754 } else if (!p) { 2755 /* target is not a descendent of dentry->d_parent */ 2756 spin_lock(&target->d_parent->d_lock); 2757 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2758 } else { 2759 BUG_ON(p == dentry); 2760 spin_lock(&old_parent->d_lock); 2761 if (p != target) 2762 spin_lock_nested(&target->d_parent->d_lock, 2763 DENTRY_D_LOCK_NESTED); 2764 } 2765 spin_lock_nested(&dentry->d_lock, 2); 2766 spin_lock_nested(&target->d_lock, 3); 2767 2768 if (unlikely(d_in_lookup(target))) { 2769 dir = target->d_parent->d_inode; 2770 n = start_dir_add(dir); 2771 __d_lookup_done(target); 2772 } 2773 2774 write_seqcount_begin(&dentry->d_seq); 2775 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2776 2777 /* unhash both */ 2778 if (!d_unhashed(dentry)) 2779 ___d_drop(dentry); 2780 if (!d_unhashed(target)) 2781 ___d_drop(target); 2782 2783 /* ... and switch them in the tree */ 2784 dentry->d_parent = target->d_parent; 2785 if (!exchange) { 2786 copy_name(dentry, target); 2787 target->d_hash.pprev = NULL; 2788 dentry->d_parent->d_lockref.count++; 2789 if (dentry != old_parent) /* wasn't IS_ROOT */ 2790 WARN_ON(!--old_parent->d_lockref.count); 2791 } else { 2792 target->d_parent = old_parent; 2793 swap_names(dentry, target); 2794 list_move(&target->d_child, &target->d_parent->d_subdirs); 2795 __d_rehash(target); 2796 fsnotify_update_flags(target); 2797 } 2798 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2799 __d_rehash(dentry); 2800 fsnotify_update_flags(dentry); 2801 fscrypt_handle_d_move(dentry); 2802 2803 write_seqcount_end(&target->d_seq); 2804 write_seqcount_end(&dentry->d_seq); 2805 2806 if (dir) 2807 end_dir_add(dir, n); 2808 2809 if (dentry->d_parent != old_parent) 2810 spin_unlock(&dentry->d_parent->d_lock); 2811 if (dentry != old_parent) 2812 spin_unlock(&old_parent->d_lock); 2813 spin_unlock(&target->d_lock); 2814 spin_unlock(&dentry->d_lock); 2815 } 2816 2817 /* 2818 * d_move - move a dentry 2819 * @dentry: entry to move 2820 * @target: new dentry 2821 * 2822 * Update the dcache to reflect the move of a file name. Negative 2823 * dcache entries should not be moved in this way. See the locking 2824 * requirements for __d_move. 2825 */ 2826 void d_move(struct dentry *dentry, struct dentry *target) 2827 { 2828 write_seqlock(&rename_lock); 2829 __d_move(dentry, target, false); 2830 write_sequnlock(&rename_lock); 2831 } 2832 EXPORT_SYMBOL(d_move); 2833 2834 /* 2835 * d_exchange - exchange two dentries 2836 * @dentry1: first dentry 2837 * @dentry2: second dentry 2838 */ 2839 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2840 { 2841 write_seqlock(&rename_lock); 2842 2843 WARN_ON(!dentry1->d_inode); 2844 WARN_ON(!dentry2->d_inode); 2845 WARN_ON(IS_ROOT(dentry1)); 2846 WARN_ON(IS_ROOT(dentry2)); 2847 2848 __d_move(dentry1, dentry2, true); 2849 2850 write_sequnlock(&rename_lock); 2851 } 2852 2853 /** 2854 * d_ancestor - search for an ancestor 2855 * @p1: ancestor dentry 2856 * @p2: child dentry 2857 * 2858 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2859 * an ancestor of p2, else NULL. 2860 */ 2861 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2862 { 2863 struct dentry *p; 2864 2865 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2866 if (p->d_parent == p1) 2867 return p; 2868 } 2869 return NULL; 2870 } 2871 2872 /* 2873 * This helper attempts to cope with remotely renamed directories 2874 * 2875 * It assumes that the caller is already holding 2876 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2877 * 2878 * Note: If ever the locking in lock_rename() changes, then please 2879 * remember to update this too... 2880 */ 2881 static int __d_unalias(struct inode *inode, 2882 struct dentry *dentry, struct dentry *alias) 2883 { 2884 struct mutex *m1 = NULL; 2885 struct rw_semaphore *m2 = NULL; 2886 int ret = -ESTALE; 2887 2888 /* If alias and dentry share a parent, then no extra locks required */ 2889 if (alias->d_parent == dentry->d_parent) 2890 goto out_unalias; 2891 2892 /* See lock_rename() */ 2893 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2894 goto out_err; 2895 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2896 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2897 goto out_err; 2898 m2 = &alias->d_parent->d_inode->i_rwsem; 2899 out_unalias: 2900 __d_move(alias, dentry, false); 2901 ret = 0; 2902 out_err: 2903 if (m2) 2904 up_read(m2); 2905 if (m1) 2906 mutex_unlock(m1); 2907 return ret; 2908 } 2909 2910 /** 2911 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2912 * @inode: the inode which may have a disconnected dentry 2913 * @dentry: a negative dentry which we want to point to the inode. 2914 * 2915 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2916 * place of the given dentry and return it, else simply d_add the inode 2917 * to the dentry and return NULL. 2918 * 2919 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2920 * we should error out: directories can't have multiple aliases. 2921 * 2922 * This is needed in the lookup routine of any filesystem that is exportable 2923 * (via knfsd) so that we can build dcache paths to directories effectively. 2924 * 2925 * If a dentry was found and moved, then it is returned. Otherwise NULL 2926 * is returned. This matches the expected return value of ->lookup. 2927 * 2928 * Cluster filesystems may call this function with a negative, hashed dentry. 2929 * In that case, we know that the inode will be a regular file, and also this 2930 * will only occur during atomic_open. So we need to check for the dentry 2931 * being already hashed only in the final case. 2932 */ 2933 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2934 { 2935 if (IS_ERR(inode)) 2936 return ERR_CAST(inode); 2937 2938 BUG_ON(!d_unhashed(dentry)); 2939 2940 if (!inode) 2941 goto out; 2942 2943 security_d_instantiate(dentry, inode); 2944 spin_lock(&inode->i_lock); 2945 if (S_ISDIR(inode->i_mode)) { 2946 struct dentry *new = __d_find_any_alias(inode); 2947 if (unlikely(new)) { 2948 /* The reference to new ensures it remains an alias */ 2949 spin_unlock(&inode->i_lock); 2950 write_seqlock(&rename_lock); 2951 if (unlikely(d_ancestor(new, dentry))) { 2952 write_sequnlock(&rename_lock); 2953 dput(new); 2954 new = ERR_PTR(-ELOOP); 2955 pr_warn_ratelimited( 2956 "VFS: Lookup of '%s' in %s %s" 2957 " would have caused loop\n", 2958 dentry->d_name.name, 2959 inode->i_sb->s_type->name, 2960 inode->i_sb->s_id); 2961 } else if (!IS_ROOT(new)) { 2962 struct dentry *old_parent = dget(new->d_parent); 2963 int err = __d_unalias(inode, dentry, new); 2964 write_sequnlock(&rename_lock); 2965 if (err) { 2966 dput(new); 2967 new = ERR_PTR(err); 2968 } 2969 dput(old_parent); 2970 } else { 2971 __d_move(new, dentry, false); 2972 write_sequnlock(&rename_lock); 2973 } 2974 iput(inode); 2975 return new; 2976 } 2977 } 2978 out: 2979 __d_add(dentry, inode); 2980 return NULL; 2981 } 2982 EXPORT_SYMBOL(d_splice_alias); 2983 2984 /* 2985 * Test whether new_dentry is a subdirectory of old_dentry. 2986 * 2987 * Trivially implemented using the dcache structure 2988 */ 2989 2990 /** 2991 * is_subdir - is new dentry a subdirectory of old_dentry 2992 * @new_dentry: new dentry 2993 * @old_dentry: old dentry 2994 * 2995 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2996 * Returns false otherwise. 2997 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2998 */ 2999 3000 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3001 { 3002 bool result; 3003 unsigned seq; 3004 3005 if (new_dentry == old_dentry) 3006 return true; 3007 3008 do { 3009 /* for restarting inner loop in case of seq retry */ 3010 seq = read_seqbegin(&rename_lock); 3011 /* 3012 * Need rcu_readlock to protect against the d_parent trashing 3013 * due to d_move 3014 */ 3015 rcu_read_lock(); 3016 if (d_ancestor(old_dentry, new_dentry)) 3017 result = true; 3018 else 3019 result = false; 3020 rcu_read_unlock(); 3021 } while (read_seqretry(&rename_lock, seq)); 3022 3023 return result; 3024 } 3025 EXPORT_SYMBOL(is_subdir); 3026 3027 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3028 { 3029 struct dentry *root = data; 3030 if (dentry != root) { 3031 if (d_unhashed(dentry) || !dentry->d_inode) 3032 return D_WALK_SKIP; 3033 3034 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3035 dentry->d_flags |= DCACHE_GENOCIDE; 3036 dentry->d_lockref.count--; 3037 } 3038 } 3039 return D_WALK_CONTINUE; 3040 } 3041 3042 void d_genocide(struct dentry *parent) 3043 { 3044 d_walk(parent, parent, d_genocide_kill); 3045 } 3046 3047 EXPORT_SYMBOL(d_genocide); 3048 3049 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3050 { 3051 inode_dec_link_count(inode); 3052 BUG_ON(dentry->d_name.name != dentry->d_iname || 3053 !hlist_unhashed(&dentry->d_u.d_alias) || 3054 !d_unlinked(dentry)); 3055 spin_lock(&dentry->d_parent->d_lock); 3056 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3057 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3058 (unsigned long long)inode->i_ino); 3059 spin_unlock(&dentry->d_lock); 3060 spin_unlock(&dentry->d_parent->d_lock); 3061 d_instantiate(dentry, inode); 3062 } 3063 EXPORT_SYMBOL(d_tmpfile); 3064 3065 static __initdata unsigned long dhash_entries; 3066 static int __init set_dhash_entries(char *str) 3067 { 3068 if (!str) 3069 return 0; 3070 dhash_entries = simple_strtoul(str, &str, 0); 3071 return 1; 3072 } 3073 __setup("dhash_entries=", set_dhash_entries); 3074 3075 static void __init dcache_init_early(void) 3076 { 3077 /* If hashes are distributed across NUMA nodes, defer 3078 * hash allocation until vmalloc space is available. 3079 */ 3080 if (hashdist) 3081 return; 3082 3083 dentry_hashtable = 3084 alloc_large_system_hash("Dentry cache", 3085 sizeof(struct hlist_bl_head), 3086 dhash_entries, 3087 13, 3088 HASH_EARLY | HASH_ZERO, 3089 &d_hash_shift, 3090 NULL, 3091 0, 3092 0); 3093 d_hash_shift = 32 - d_hash_shift; 3094 } 3095 3096 static void __init dcache_init(void) 3097 { 3098 /* 3099 * A constructor could be added for stable state like the lists, 3100 * but it is probably not worth it because of the cache nature 3101 * of the dcache. 3102 */ 3103 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3104 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3105 d_iname); 3106 3107 /* Hash may have been set up in dcache_init_early */ 3108 if (!hashdist) 3109 return; 3110 3111 dentry_hashtable = 3112 alloc_large_system_hash("Dentry cache", 3113 sizeof(struct hlist_bl_head), 3114 dhash_entries, 3115 13, 3116 HASH_ZERO, 3117 &d_hash_shift, 3118 NULL, 3119 0, 3120 0); 3121 d_hash_shift = 32 - d_hash_shift; 3122 } 3123 3124 /* SLAB cache for __getname() consumers */ 3125 struct kmem_cache *names_cachep __read_mostly; 3126 EXPORT_SYMBOL(names_cachep); 3127 3128 void __init vfs_caches_init_early(void) 3129 { 3130 int i; 3131 3132 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3133 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3134 3135 dcache_init_early(); 3136 inode_init_early(); 3137 } 3138 3139 void __init vfs_caches_init(void) 3140 { 3141 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3142 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3143 3144 dcache_init(); 3145 inode_init(); 3146 files_init(); 3147 files_maxfiles_init(); 3148 mnt_init(); 3149 bdev_cache_init(); 3150 chrdev_init(); 3151 } 3152