1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_u.d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_u.d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 100 static unsigned int d_hash_mask __read_mostly; 101 static unsigned int d_hash_shift __read_mostly; 102 103 static struct hlist_bl_head *dentry_hashtable __read_mostly; 104 105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 106 unsigned int hash) 107 { 108 hash += (unsigned long) parent / L1_CACHE_BYTES; 109 return dentry_hashtable + hash_32(hash, d_hash_shift); 110 } 111 112 /* Statistics gathering. */ 113 struct dentry_stat_t dentry_stat = { 114 .age_limit = 45, 115 }; 116 117 static DEFINE_PER_CPU(long, nr_dentry); 118 static DEFINE_PER_CPU(long, nr_dentry_unused); 119 120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 121 122 /* 123 * Here we resort to our own counters instead of using generic per-cpu counters 124 * for consistency with what the vfs inode code does. We are expected to harvest 125 * better code and performance by having our own specialized counters. 126 * 127 * Please note that the loop is done over all possible CPUs, not over all online 128 * CPUs. The reason for this is that we don't want to play games with CPUs going 129 * on and off. If one of them goes off, we will just keep their counters. 130 * 131 * glommer: See cffbc8a for details, and if you ever intend to change this, 132 * please update all vfs counters to match. 133 */ 134 static long get_nr_dentry(void) 135 { 136 int i; 137 long sum = 0; 138 for_each_possible_cpu(i) 139 sum += per_cpu(nr_dentry, i); 140 return sum < 0 ? 0 : sum; 141 } 142 143 static long get_nr_dentry_unused(void) 144 { 145 int i; 146 long sum = 0; 147 for_each_possible_cpu(i) 148 sum += per_cpu(nr_dentry_unused, i); 149 return sum < 0 ? 0 : sum; 150 } 151 152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 153 size_t *lenp, loff_t *ppos) 154 { 155 dentry_stat.nr_dentry = get_nr_dentry(); 156 dentry_stat.nr_unused = get_nr_dentry_unused(); 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 158 } 159 #endif 160 161 /* 162 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 163 * The strings are both count bytes long, and count is non-zero. 164 */ 165 #ifdef CONFIG_DCACHE_WORD_ACCESS 166 167 #include <asm/word-at-a-time.h> 168 /* 169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 170 * aligned allocation for this particular component. We don't 171 * strictly need the load_unaligned_zeropad() safety, but it 172 * doesn't hurt either. 173 * 174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 175 * need the careful unaligned handling. 176 */ 177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 178 { 179 unsigned long a,b,mask; 180 181 for (;;) { 182 a = *(unsigned long *)cs; 183 b = load_unaligned_zeropad(ct); 184 if (tcount < sizeof(unsigned long)) 185 break; 186 if (unlikely(a != b)) 187 return 1; 188 cs += sizeof(unsigned long); 189 ct += sizeof(unsigned long); 190 tcount -= sizeof(unsigned long); 191 if (!tcount) 192 return 0; 193 } 194 mask = bytemask_from_count(tcount); 195 return unlikely(!!((a ^ b) & mask)); 196 } 197 198 #else 199 200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 201 { 202 do { 203 if (*cs != *ct) 204 return 1; 205 cs++; 206 ct++; 207 tcount--; 208 } while (tcount); 209 return 0; 210 } 211 212 #endif 213 214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 215 { 216 const unsigned char *cs; 217 /* 218 * Be careful about RCU walk racing with rename: 219 * use ACCESS_ONCE to fetch the name pointer. 220 * 221 * NOTE! Even if a rename will mean that the length 222 * was not loaded atomically, we don't care. The 223 * RCU walk will check the sequence count eventually, 224 * and catch it. And we won't overrun the buffer, 225 * because we're reading the name pointer atomically, 226 * and a dentry name is guaranteed to be properly 227 * terminated with a NUL byte. 228 * 229 * End result: even if 'len' is wrong, we'll exit 230 * early because the data cannot match (there can 231 * be no NUL in the ct/tcount data) 232 */ 233 cs = ACCESS_ONCE(dentry->d_name.name); 234 smp_read_barrier_depends(); 235 return dentry_string_cmp(cs, ct, tcount); 236 } 237 238 struct external_name { 239 union { 240 atomic_t count; 241 struct rcu_head head; 242 } u; 243 unsigned char name[]; 244 }; 245 246 static inline struct external_name *external_name(struct dentry *dentry) 247 { 248 return container_of(dentry->d_name.name, struct external_name, name[0]); 249 } 250 251 static void __d_free(struct rcu_head *head) 252 { 253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 254 255 kmem_cache_free(dentry_cache, dentry); 256 } 257 258 static void __d_free_external(struct rcu_head *head) 259 { 260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 261 kfree(external_name(dentry)); 262 kmem_cache_free(dentry_cache, dentry); 263 } 264 265 static inline int dname_external(const struct dentry *dentry) 266 { 267 return dentry->d_name.name != dentry->d_iname; 268 } 269 270 static void dentry_free(struct dentry *dentry) 271 { 272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 273 if (unlikely(dname_external(dentry))) { 274 struct external_name *p = external_name(dentry); 275 if (likely(atomic_dec_and_test(&p->u.count))) { 276 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 277 return; 278 } 279 } 280 /* if dentry was never visible to RCU, immediate free is OK */ 281 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 282 __d_free(&dentry->d_u.d_rcu); 283 else 284 call_rcu(&dentry->d_u.d_rcu, __d_free); 285 } 286 287 /** 288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 289 * @dentry: the target dentry 290 * After this call, in-progress rcu-walk path lookup will fail. This 291 * should be called after unhashing, and after changing d_inode (if 292 * the dentry has not already been unhashed). 293 */ 294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 295 { 296 assert_spin_locked(&dentry->d_lock); 297 /* Go through a barrier */ 298 write_seqcount_barrier(&dentry->d_seq); 299 } 300 301 /* 302 * Release the dentry's inode, using the filesystem 303 * d_iput() operation if defined. Dentry has no refcount 304 * and is unhashed. 305 */ 306 static void dentry_iput(struct dentry * dentry) 307 __releases(dentry->d_lock) 308 __releases(dentry->d_inode->i_lock) 309 { 310 struct inode *inode = dentry->d_inode; 311 if (inode) { 312 dentry->d_inode = NULL; 313 hlist_del_init(&dentry->d_u.d_alias); 314 spin_unlock(&dentry->d_lock); 315 spin_unlock(&inode->i_lock); 316 if (!inode->i_nlink) 317 fsnotify_inoderemove(inode); 318 if (dentry->d_op && dentry->d_op->d_iput) 319 dentry->d_op->d_iput(dentry, inode); 320 else 321 iput(inode); 322 } else { 323 spin_unlock(&dentry->d_lock); 324 } 325 } 326 327 /* 328 * Release the dentry's inode, using the filesystem 329 * d_iput() operation if defined. dentry remains in-use. 330 */ 331 static void dentry_unlink_inode(struct dentry * dentry) 332 __releases(dentry->d_lock) 333 __releases(dentry->d_inode->i_lock) 334 { 335 struct inode *inode = dentry->d_inode; 336 __d_clear_type(dentry); 337 dentry->d_inode = NULL; 338 hlist_del_init(&dentry->d_u.d_alias); 339 dentry_rcuwalk_barrier(dentry); 340 spin_unlock(&dentry->d_lock); 341 spin_unlock(&inode->i_lock); 342 if (!inode->i_nlink) 343 fsnotify_inoderemove(inode); 344 if (dentry->d_op && dentry->d_op->d_iput) 345 dentry->d_op->d_iput(dentry, inode); 346 else 347 iput(inode); 348 } 349 350 /* 351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 352 * is in use - which includes both the "real" per-superblock 353 * LRU list _and_ the DCACHE_SHRINK_LIST use. 354 * 355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 356 * on the shrink list (ie not on the superblock LRU list). 357 * 358 * The per-cpu "nr_dentry_unused" counters are updated with 359 * the DCACHE_LRU_LIST bit. 360 * 361 * These helper functions make sure we always follow the 362 * rules. d_lock must be held by the caller. 363 */ 364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 365 static void d_lru_add(struct dentry *dentry) 366 { 367 D_FLAG_VERIFY(dentry, 0); 368 dentry->d_flags |= DCACHE_LRU_LIST; 369 this_cpu_inc(nr_dentry_unused); 370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 371 } 372 373 static void d_lru_del(struct dentry *dentry) 374 { 375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 376 dentry->d_flags &= ~DCACHE_LRU_LIST; 377 this_cpu_dec(nr_dentry_unused); 378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 379 } 380 381 static void d_shrink_del(struct dentry *dentry) 382 { 383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 384 list_del_init(&dentry->d_lru); 385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 386 this_cpu_dec(nr_dentry_unused); 387 } 388 389 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 390 { 391 D_FLAG_VERIFY(dentry, 0); 392 list_add(&dentry->d_lru, list); 393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 394 this_cpu_inc(nr_dentry_unused); 395 } 396 397 /* 398 * These can only be called under the global LRU lock, ie during the 399 * callback for freeing the LRU list. "isolate" removes it from the 400 * LRU lists entirely, while shrink_move moves it to the indicated 401 * private list. 402 */ 403 static void d_lru_isolate(struct dentry *dentry) 404 { 405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 406 dentry->d_flags &= ~DCACHE_LRU_LIST; 407 this_cpu_dec(nr_dentry_unused); 408 list_del_init(&dentry->d_lru); 409 } 410 411 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 412 { 413 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 414 dentry->d_flags |= DCACHE_SHRINK_LIST; 415 list_move_tail(&dentry->d_lru, list); 416 } 417 418 /* 419 * dentry_lru_(add|del)_list) must be called with d_lock held. 420 */ 421 static void dentry_lru_add(struct dentry *dentry) 422 { 423 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 424 d_lru_add(dentry); 425 } 426 427 /** 428 * d_drop - drop a dentry 429 * @dentry: dentry to drop 430 * 431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 432 * be found through a VFS lookup any more. Note that this is different from 433 * deleting the dentry - d_delete will try to mark the dentry negative if 434 * possible, giving a successful _negative_ lookup, while d_drop will 435 * just make the cache lookup fail. 436 * 437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 438 * reason (NFS timeouts or autofs deletes). 439 * 440 * __d_drop requires dentry->d_lock. 441 */ 442 void __d_drop(struct dentry *dentry) 443 { 444 if (!d_unhashed(dentry)) { 445 struct hlist_bl_head *b; 446 /* 447 * Hashed dentries are normally on the dentry hashtable, 448 * with the exception of those newly allocated by 449 * d_obtain_alias, which are always IS_ROOT: 450 */ 451 if (unlikely(IS_ROOT(dentry))) 452 b = &dentry->d_sb->s_anon; 453 else 454 b = d_hash(dentry->d_parent, dentry->d_name.hash); 455 456 hlist_bl_lock(b); 457 __hlist_bl_del(&dentry->d_hash); 458 dentry->d_hash.pprev = NULL; 459 hlist_bl_unlock(b); 460 dentry_rcuwalk_barrier(dentry); 461 } 462 } 463 EXPORT_SYMBOL(__d_drop); 464 465 void d_drop(struct dentry *dentry) 466 { 467 spin_lock(&dentry->d_lock); 468 __d_drop(dentry); 469 spin_unlock(&dentry->d_lock); 470 } 471 EXPORT_SYMBOL(d_drop); 472 473 static void __dentry_kill(struct dentry *dentry) 474 { 475 struct dentry *parent = NULL; 476 bool can_free = true; 477 if (!IS_ROOT(dentry)) 478 parent = dentry->d_parent; 479 480 /* 481 * The dentry is now unrecoverably dead to the world. 482 */ 483 lockref_mark_dead(&dentry->d_lockref); 484 485 /* 486 * inform the fs via d_prune that this dentry is about to be 487 * unhashed and destroyed. 488 */ 489 if (dentry->d_flags & DCACHE_OP_PRUNE) 490 dentry->d_op->d_prune(dentry); 491 492 if (dentry->d_flags & DCACHE_LRU_LIST) { 493 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 494 d_lru_del(dentry); 495 } 496 /* if it was on the hash then remove it */ 497 __d_drop(dentry); 498 __list_del_entry(&dentry->d_child); 499 /* 500 * Inform d_walk() that we are no longer attached to the 501 * dentry tree 502 */ 503 dentry->d_flags |= DCACHE_DENTRY_KILLED; 504 if (parent) 505 spin_unlock(&parent->d_lock); 506 dentry_iput(dentry); 507 /* 508 * dentry_iput drops the locks, at which point nobody (except 509 * transient RCU lookups) can reach this dentry. 510 */ 511 BUG_ON((int)dentry->d_lockref.count > 0); 512 this_cpu_dec(nr_dentry); 513 if (dentry->d_op && dentry->d_op->d_release) 514 dentry->d_op->d_release(dentry); 515 516 spin_lock(&dentry->d_lock); 517 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 518 dentry->d_flags |= DCACHE_MAY_FREE; 519 can_free = false; 520 } 521 spin_unlock(&dentry->d_lock); 522 if (likely(can_free)) 523 dentry_free(dentry); 524 } 525 526 /* 527 * Finish off a dentry we've decided to kill. 528 * dentry->d_lock must be held, returns with it unlocked. 529 * If ref is non-zero, then decrement the refcount too. 530 * Returns dentry requiring refcount drop, or NULL if we're done. 531 */ 532 static struct dentry *dentry_kill(struct dentry *dentry) 533 __releases(dentry->d_lock) 534 { 535 struct inode *inode = dentry->d_inode; 536 struct dentry *parent = NULL; 537 538 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 539 goto failed; 540 541 if (!IS_ROOT(dentry)) { 542 parent = dentry->d_parent; 543 if (unlikely(!spin_trylock(&parent->d_lock))) { 544 if (inode) 545 spin_unlock(&inode->i_lock); 546 goto failed; 547 } 548 } 549 550 __dentry_kill(dentry); 551 return parent; 552 553 failed: 554 spin_unlock(&dentry->d_lock); 555 cpu_relax(); 556 return dentry; /* try again with same dentry */ 557 } 558 559 static inline struct dentry *lock_parent(struct dentry *dentry) 560 { 561 struct dentry *parent = dentry->d_parent; 562 if (IS_ROOT(dentry)) 563 return NULL; 564 if (unlikely((int)dentry->d_lockref.count < 0)) 565 return NULL; 566 if (likely(spin_trylock(&parent->d_lock))) 567 return parent; 568 rcu_read_lock(); 569 spin_unlock(&dentry->d_lock); 570 again: 571 parent = ACCESS_ONCE(dentry->d_parent); 572 spin_lock(&parent->d_lock); 573 /* 574 * We can't blindly lock dentry until we are sure 575 * that we won't violate the locking order. 576 * Any changes of dentry->d_parent must have 577 * been done with parent->d_lock held, so 578 * spin_lock() above is enough of a barrier 579 * for checking if it's still our child. 580 */ 581 if (unlikely(parent != dentry->d_parent)) { 582 spin_unlock(&parent->d_lock); 583 goto again; 584 } 585 rcu_read_unlock(); 586 if (parent != dentry) 587 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 588 else 589 parent = NULL; 590 return parent; 591 } 592 593 /* 594 * This is dput 595 * 596 * This is complicated by the fact that we do not want to put 597 * dentries that are no longer on any hash chain on the unused 598 * list: we'd much rather just get rid of them immediately. 599 * 600 * However, that implies that we have to traverse the dentry 601 * tree upwards to the parents which might _also_ now be 602 * scheduled for deletion (it may have been only waiting for 603 * its last child to go away). 604 * 605 * This tail recursion is done by hand as we don't want to depend 606 * on the compiler to always get this right (gcc generally doesn't). 607 * Real recursion would eat up our stack space. 608 */ 609 610 /* 611 * dput - release a dentry 612 * @dentry: dentry to release 613 * 614 * Release a dentry. This will drop the usage count and if appropriate 615 * call the dentry unlink method as well as removing it from the queues and 616 * releasing its resources. If the parent dentries were scheduled for release 617 * they too may now get deleted. 618 */ 619 void dput(struct dentry *dentry) 620 { 621 if (unlikely(!dentry)) 622 return; 623 624 repeat: 625 if (lockref_put_or_lock(&dentry->d_lockref)) 626 return; 627 628 /* Unreachable? Get rid of it */ 629 if (unlikely(d_unhashed(dentry))) 630 goto kill_it; 631 632 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 633 if (dentry->d_op->d_delete(dentry)) 634 goto kill_it; 635 } 636 637 if (!(dentry->d_flags & DCACHE_REFERENCED)) 638 dentry->d_flags |= DCACHE_REFERENCED; 639 dentry_lru_add(dentry); 640 641 dentry->d_lockref.count--; 642 spin_unlock(&dentry->d_lock); 643 return; 644 645 kill_it: 646 dentry = dentry_kill(dentry); 647 if (dentry) 648 goto repeat; 649 } 650 EXPORT_SYMBOL(dput); 651 652 653 /* This must be called with d_lock held */ 654 static inline void __dget_dlock(struct dentry *dentry) 655 { 656 dentry->d_lockref.count++; 657 } 658 659 static inline void __dget(struct dentry *dentry) 660 { 661 lockref_get(&dentry->d_lockref); 662 } 663 664 struct dentry *dget_parent(struct dentry *dentry) 665 { 666 int gotref; 667 struct dentry *ret; 668 669 /* 670 * Do optimistic parent lookup without any 671 * locking. 672 */ 673 rcu_read_lock(); 674 ret = ACCESS_ONCE(dentry->d_parent); 675 gotref = lockref_get_not_zero(&ret->d_lockref); 676 rcu_read_unlock(); 677 if (likely(gotref)) { 678 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 679 return ret; 680 dput(ret); 681 } 682 683 repeat: 684 /* 685 * Don't need rcu_dereference because we re-check it was correct under 686 * the lock. 687 */ 688 rcu_read_lock(); 689 ret = dentry->d_parent; 690 spin_lock(&ret->d_lock); 691 if (unlikely(ret != dentry->d_parent)) { 692 spin_unlock(&ret->d_lock); 693 rcu_read_unlock(); 694 goto repeat; 695 } 696 rcu_read_unlock(); 697 BUG_ON(!ret->d_lockref.count); 698 ret->d_lockref.count++; 699 spin_unlock(&ret->d_lock); 700 return ret; 701 } 702 EXPORT_SYMBOL(dget_parent); 703 704 /** 705 * d_find_alias - grab a hashed alias of inode 706 * @inode: inode in question 707 * 708 * If inode has a hashed alias, or is a directory and has any alias, 709 * acquire the reference to alias and return it. Otherwise return NULL. 710 * Notice that if inode is a directory there can be only one alias and 711 * it can be unhashed only if it has no children, or if it is the root 712 * of a filesystem, or if the directory was renamed and d_revalidate 713 * was the first vfs operation to notice. 714 * 715 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 716 * any other hashed alias over that one. 717 */ 718 static struct dentry *__d_find_alias(struct inode *inode) 719 { 720 struct dentry *alias, *discon_alias; 721 722 again: 723 discon_alias = NULL; 724 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 725 spin_lock(&alias->d_lock); 726 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 727 if (IS_ROOT(alias) && 728 (alias->d_flags & DCACHE_DISCONNECTED)) { 729 discon_alias = alias; 730 } else { 731 __dget_dlock(alias); 732 spin_unlock(&alias->d_lock); 733 return alias; 734 } 735 } 736 spin_unlock(&alias->d_lock); 737 } 738 if (discon_alias) { 739 alias = discon_alias; 740 spin_lock(&alias->d_lock); 741 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 742 __dget_dlock(alias); 743 spin_unlock(&alias->d_lock); 744 return alias; 745 } 746 spin_unlock(&alias->d_lock); 747 goto again; 748 } 749 return NULL; 750 } 751 752 struct dentry *d_find_alias(struct inode *inode) 753 { 754 struct dentry *de = NULL; 755 756 if (!hlist_empty(&inode->i_dentry)) { 757 spin_lock(&inode->i_lock); 758 de = __d_find_alias(inode); 759 spin_unlock(&inode->i_lock); 760 } 761 return de; 762 } 763 EXPORT_SYMBOL(d_find_alias); 764 765 /* 766 * Try to kill dentries associated with this inode. 767 * WARNING: you must own a reference to inode. 768 */ 769 void d_prune_aliases(struct inode *inode) 770 { 771 struct dentry *dentry; 772 restart: 773 spin_lock(&inode->i_lock); 774 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 775 spin_lock(&dentry->d_lock); 776 if (!dentry->d_lockref.count) { 777 struct dentry *parent = lock_parent(dentry); 778 if (likely(!dentry->d_lockref.count)) { 779 __dentry_kill(dentry); 780 dput(parent); 781 goto restart; 782 } 783 if (parent) 784 spin_unlock(&parent->d_lock); 785 } 786 spin_unlock(&dentry->d_lock); 787 } 788 spin_unlock(&inode->i_lock); 789 } 790 EXPORT_SYMBOL(d_prune_aliases); 791 792 static void shrink_dentry_list(struct list_head *list) 793 { 794 struct dentry *dentry, *parent; 795 796 while (!list_empty(list)) { 797 struct inode *inode; 798 dentry = list_entry(list->prev, struct dentry, d_lru); 799 spin_lock(&dentry->d_lock); 800 parent = lock_parent(dentry); 801 802 /* 803 * The dispose list is isolated and dentries are not accounted 804 * to the LRU here, so we can simply remove it from the list 805 * here regardless of whether it is referenced or not. 806 */ 807 d_shrink_del(dentry); 808 809 /* 810 * We found an inuse dentry which was not removed from 811 * the LRU because of laziness during lookup. Do not free it. 812 */ 813 if ((int)dentry->d_lockref.count > 0) { 814 spin_unlock(&dentry->d_lock); 815 if (parent) 816 spin_unlock(&parent->d_lock); 817 continue; 818 } 819 820 821 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 822 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 823 spin_unlock(&dentry->d_lock); 824 if (parent) 825 spin_unlock(&parent->d_lock); 826 if (can_free) 827 dentry_free(dentry); 828 continue; 829 } 830 831 inode = dentry->d_inode; 832 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 833 d_shrink_add(dentry, list); 834 spin_unlock(&dentry->d_lock); 835 if (parent) 836 spin_unlock(&parent->d_lock); 837 continue; 838 } 839 840 __dentry_kill(dentry); 841 842 /* 843 * We need to prune ancestors too. This is necessary to prevent 844 * quadratic behavior of shrink_dcache_parent(), but is also 845 * expected to be beneficial in reducing dentry cache 846 * fragmentation. 847 */ 848 dentry = parent; 849 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 850 parent = lock_parent(dentry); 851 if (dentry->d_lockref.count != 1) { 852 dentry->d_lockref.count--; 853 spin_unlock(&dentry->d_lock); 854 if (parent) 855 spin_unlock(&parent->d_lock); 856 break; 857 } 858 inode = dentry->d_inode; /* can't be NULL */ 859 if (unlikely(!spin_trylock(&inode->i_lock))) { 860 spin_unlock(&dentry->d_lock); 861 if (parent) 862 spin_unlock(&parent->d_lock); 863 cpu_relax(); 864 continue; 865 } 866 __dentry_kill(dentry); 867 dentry = parent; 868 } 869 } 870 } 871 872 static enum lru_status 873 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 874 { 875 struct list_head *freeable = arg; 876 struct dentry *dentry = container_of(item, struct dentry, d_lru); 877 878 879 /* 880 * we are inverting the lru lock/dentry->d_lock here, 881 * so use a trylock. If we fail to get the lock, just skip 882 * it 883 */ 884 if (!spin_trylock(&dentry->d_lock)) 885 return LRU_SKIP; 886 887 /* 888 * Referenced dentries are still in use. If they have active 889 * counts, just remove them from the LRU. Otherwise give them 890 * another pass through the LRU. 891 */ 892 if (dentry->d_lockref.count) { 893 d_lru_isolate(dentry); 894 spin_unlock(&dentry->d_lock); 895 return LRU_REMOVED; 896 } 897 898 if (dentry->d_flags & DCACHE_REFERENCED) { 899 dentry->d_flags &= ~DCACHE_REFERENCED; 900 spin_unlock(&dentry->d_lock); 901 902 /* 903 * The list move itself will be made by the common LRU code. At 904 * this point, we've dropped the dentry->d_lock but keep the 905 * lru lock. This is safe to do, since every list movement is 906 * protected by the lru lock even if both locks are held. 907 * 908 * This is guaranteed by the fact that all LRU management 909 * functions are intermediated by the LRU API calls like 910 * list_lru_add and list_lru_del. List movement in this file 911 * only ever occur through this functions or through callbacks 912 * like this one, that are called from the LRU API. 913 * 914 * The only exceptions to this are functions like 915 * shrink_dentry_list, and code that first checks for the 916 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 917 * operating only with stack provided lists after they are 918 * properly isolated from the main list. It is thus, always a 919 * local access. 920 */ 921 return LRU_ROTATE; 922 } 923 924 d_lru_shrink_move(dentry, freeable); 925 spin_unlock(&dentry->d_lock); 926 927 return LRU_REMOVED; 928 } 929 930 /** 931 * prune_dcache_sb - shrink the dcache 932 * @sb: superblock 933 * @nr_to_scan : number of entries to try to free 934 * @nid: which node to scan for freeable entities 935 * 936 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 937 * done when we need more memory an called from the superblock shrinker 938 * function. 939 * 940 * This function may fail to free any resources if all the dentries are in 941 * use. 942 */ 943 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 944 int nid) 945 { 946 LIST_HEAD(dispose); 947 long freed; 948 949 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 950 &dispose, &nr_to_scan); 951 shrink_dentry_list(&dispose); 952 return freed; 953 } 954 955 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 956 spinlock_t *lru_lock, void *arg) 957 { 958 struct list_head *freeable = arg; 959 struct dentry *dentry = container_of(item, struct dentry, d_lru); 960 961 /* 962 * we are inverting the lru lock/dentry->d_lock here, 963 * so use a trylock. If we fail to get the lock, just skip 964 * it 965 */ 966 if (!spin_trylock(&dentry->d_lock)) 967 return LRU_SKIP; 968 969 d_lru_shrink_move(dentry, freeable); 970 spin_unlock(&dentry->d_lock); 971 972 return LRU_REMOVED; 973 } 974 975 976 /** 977 * shrink_dcache_sb - shrink dcache for a superblock 978 * @sb: superblock 979 * 980 * Shrink the dcache for the specified super block. This is used to free 981 * the dcache before unmounting a file system. 982 */ 983 void shrink_dcache_sb(struct super_block *sb) 984 { 985 long freed; 986 987 do { 988 LIST_HEAD(dispose); 989 990 freed = list_lru_walk(&sb->s_dentry_lru, 991 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 992 993 this_cpu_sub(nr_dentry_unused, freed); 994 shrink_dentry_list(&dispose); 995 } while (freed > 0); 996 } 997 EXPORT_SYMBOL(shrink_dcache_sb); 998 999 /** 1000 * enum d_walk_ret - action to talke during tree walk 1001 * @D_WALK_CONTINUE: contrinue walk 1002 * @D_WALK_QUIT: quit walk 1003 * @D_WALK_NORETRY: quit when retry is needed 1004 * @D_WALK_SKIP: skip this dentry and its children 1005 */ 1006 enum d_walk_ret { 1007 D_WALK_CONTINUE, 1008 D_WALK_QUIT, 1009 D_WALK_NORETRY, 1010 D_WALK_SKIP, 1011 }; 1012 1013 /** 1014 * d_walk - walk the dentry tree 1015 * @parent: start of walk 1016 * @data: data passed to @enter() and @finish() 1017 * @enter: callback when first entering the dentry 1018 * @finish: callback when successfully finished the walk 1019 * 1020 * The @enter() and @finish() callbacks are called with d_lock held. 1021 */ 1022 static void d_walk(struct dentry *parent, void *data, 1023 enum d_walk_ret (*enter)(void *, struct dentry *), 1024 void (*finish)(void *)) 1025 { 1026 struct dentry *this_parent; 1027 struct list_head *next; 1028 unsigned seq = 0; 1029 enum d_walk_ret ret; 1030 bool retry = true; 1031 1032 again: 1033 read_seqbegin_or_lock(&rename_lock, &seq); 1034 this_parent = parent; 1035 spin_lock(&this_parent->d_lock); 1036 1037 ret = enter(data, this_parent); 1038 switch (ret) { 1039 case D_WALK_CONTINUE: 1040 break; 1041 case D_WALK_QUIT: 1042 case D_WALK_SKIP: 1043 goto out_unlock; 1044 case D_WALK_NORETRY: 1045 retry = false; 1046 break; 1047 } 1048 repeat: 1049 next = this_parent->d_subdirs.next; 1050 resume: 1051 while (next != &this_parent->d_subdirs) { 1052 struct list_head *tmp = next; 1053 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1054 next = tmp->next; 1055 1056 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1057 1058 ret = enter(data, dentry); 1059 switch (ret) { 1060 case D_WALK_CONTINUE: 1061 break; 1062 case D_WALK_QUIT: 1063 spin_unlock(&dentry->d_lock); 1064 goto out_unlock; 1065 case D_WALK_NORETRY: 1066 retry = false; 1067 break; 1068 case D_WALK_SKIP: 1069 spin_unlock(&dentry->d_lock); 1070 continue; 1071 } 1072 1073 if (!list_empty(&dentry->d_subdirs)) { 1074 spin_unlock(&this_parent->d_lock); 1075 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1076 this_parent = dentry; 1077 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1078 goto repeat; 1079 } 1080 spin_unlock(&dentry->d_lock); 1081 } 1082 /* 1083 * All done at this level ... ascend and resume the search. 1084 */ 1085 rcu_read_lock(); 1086 ascend: 1087 if (this_parent != parent) { 1088 struct dentry *child = this_parent; 1089 this_parent = child->d_parent; 1090 1091 spin_unlock(&child->d_lock); 1092 spin_lock(&this_parent->d_lock); 1093 1094 /* might go back up the wrong parent if we have had a rename. */ 1095 if (need_seqretry(&rename_lock, seq)) 1096 goto rename_retry; 1097 next = child->d_child.next; 1098 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) { 1099 if (next == &this_parent->d_subdirs) 1100 goto ascend; 1101 child = list_entry(next, struct dentry, d_child); 1102 next = next->next; 1103 } 1104 rcu_read_unlock(); 1105 goto resume; 1106 } 1107 if (need_seqretry(&rename_lock, seq)) 1108 goto rename_retry; 1109 rcu_read_unlock(); 1110 if (finish) 1111 finish(data); 1112 1113 out_unlock: 1114 spin_unlock(&this_parent->d_lock); 1115 done_seqretry(&rename_lock, seq); 1116 return; 1117 1118 rename_retry: 1119 spin_unlock(&this_parent->d_lock); 1120 rcu_read_unlock(); 1121 BUG_ON(seq & 1); 1122 if (!retry) 1123 return; 1124 seq = 1; 1125 goto again; 1126 } 1127 1128 /* 1129 * Search for at least 1 mount point in the dentry's subdirs. 1130 * We descend to the next level whenever the d_subdirs 1131 * list is non-empty and continue searching. 1132 */ 1133 1134 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1135 { 1136 int *ret = data; 1137 if (d_mountpoint(dentry)) { 1138 *ret = 1; 1139 return D_WALK_QUIT; 1140 } 1141 return D_WALK_CONTINUE; 1142 } 1143 1144 /** 1145 * have_submounts - check for mounts over a dentry 1146 * @parent: dentry to check. 1147 * 1148 * Return true if the parent or its subdirectories contain 1149 * a mount point 1150 */ 1151 int have_submounts(struct dentry *parent) 1152 { 1153 int ret = 0; 1154 1155 d_walk(parent, &ret, check_mount, NULL); 1156 1157 return ret; 1158 } 1159 EXPORT_SYMBOL(have_submounts); 1160 1161 /* 1162 * Called by mount code to set a mountpoint and check if the mountpoint is 1163 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1164 * subtree can become unreachable). 1165 * 1166 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1167 * this reason take rename_lock and d_lock on dentry and ancestors. 1168 */ 1169 int d_set_mounted(struct dentry *dentry) 1170 { 1171 struct dentry *p; 1172 int ret = -ENOENT; 1173 write_seqlock(&rename_lock); 1174 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1175 /* Need exclusion wrt. d_invalidate() */ 1176 spin_lock(&p->d_lock); 1177 if (unlikely(d_unhashed(p))) { 1178 spin_unlock(&p->d_lock); 1179 goto out; 1180 } 1181 spin_unlock(&p->d_lock); 1182 } 1183 spin_lock(&dentry->d_lock); 1184 if (!d_unlinked(dentry)) { 1185 dentry->d_flags |= DCACHE_MOUNTED; 1186 ret = 0; 1187 } 1188 spin_unlock(&dentry->d_lock); 1189 out: 1190 write_sequnlock(&rename_lock); 1191 return ret; 1192 } 1193 1194 /* 1195 * Search the dentry child list of the specified parent, 1196 * and move any unused dentries to the end of the unused 1197 * list for prune_dcache(). We descend to the next level 1198 * whenever the d_subdirs list is non-empty and continue 1199 * searching. 1200 * 1201 * It returns zero iff there are no unused children, 1202 * otherwise it returns the number of children moved to 1203 * the end of the unused list. This may not be the total 1204 * number of unused children, because select_parent can 1205 * drop the lock and return early due to latency 1206 * constraints. 1207 */ 1208 1209 struct select_data { 1210 struct dentry *start; 1211 struct list_head dispose; 1212 int found; 1213 }; 1214 1215 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1216 { 1217 struct select_data *data = _data; 1218 enum d_walk_ret ret = D_WALK_CONTINUE; 1219 1220 if (data->start == dentry) 1221 goto out; 1222 1223 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1224 data->found++; 1225 } else { 1226 if (dentry->d_flags & DCACHE_LRU_LIST) 1227 d_lru_del(dentry); 1228 if (!dentry->d_lockref.count) { 1229 d_shrink_add(dentry, &data->dispose); 1230 data->found++; 1231 } 1232 } 1233 /* 1234 * We can return to the caller if we have found some (this 1235 * ensures forward progress). We'll be coming back to find 1236 * the rest. 1237 */ 1238 if (!list_empty(&data->dispose)) 1239 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1240 out: 1241 return ret; 1242 } 1243 1244 /** 1245 * shrink_dcache_parent - prune dcache 1246 * @parent: parent of entries to prune 1247 * 1248 * Prune the dcache to remove unused children of the parent dentry. 1249 */ 1250 void shrink_dcache_parent(struct dentry *parent) 1251 { 1252 for (;;) { 1253 struct select_data data; 1254 1255 INIT_LIST_HEAD(&data.dispose); 1256 data.start = parent; 1257 data.found = 0; 1258 1259 d_walk(parent, &data, select_collect, NULL); 1260 if (!data.found) 1261 break; 1262 1263 shrink_dentry_list(&data.dispose); 1264 cond_resched(); 1265 } 1266 } 1267 EXPORT_SYMBOL(shrink_dcache_parent); 1268 1269 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1270 { 1271 /* it has busy descendents; complain about those instead */ 1272 if (!list_empty(&dentry->d_subdirs)) 1273 return D_WALK_CONTINUE; 1274 1275 /* root with refcount 1 is fine */ 1276 if (dentry == _data && dentry->d_lockref.count == 1) 1277 return D_WALK_CONTINUE; 1278 1279 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1280 " still in use (%d) [unmount of %s %s]\n", 1281 dentry, 1282 dentry->d_inode ? 1283 dentry->d_inode->i_ino : 0UL, 1284 dentry, 1285 dentry->d_lockref.count, 1286 dentry->d_sb->s_type->name, 1287 dentry->d_sb->s_id); 1288 WARN_ON(1); 1289 return D_WALK_CONTINUE; 1290 } 1291 1292 static void do_one_tree(struct dentry *dentry) 1293 { 1294 shrink_dcache_parent(dentry); 1295 d_walk(dentry, dentry, umount_check, NULL); 1296 d_drop(dentry); 1297 dput(dentry); 1298 } 1299 1300 /* 1301 * destroy the dentries attached to a superblock on unmounting 1302 */ 1303 void shrink_dcache_for_umount(struct super_block *sb) 1304 { 1305 struct dentry *dentry; 1306 1307 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1308 1309 dentry = sb->s_root; 1310 sb->s_root = NULL; 1311 do_one_tree(dentry); 1312 1313 while (!hlist_bl_empty(&sb->s_anon)) { 1314 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1315 do_one_tree(dentry); 1316 } 1317 } 1318 1319 struct detach_data { 1320 struct select_data select; 1321 struct dentry *mountpoint; 1322 }; 1323 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1324 { 1325 struct detach_data *data = _data; 1326 1327 if (d_mountpoint(dentry)) { 1328 __dget_dlock(dentry); 1329 data->mountpoint = dentry; 1330 return D_WALK_QUIT; 1331 } 1332 1333 return select_collect(&data->select, dentry); 1334 } 1335 1336 static void check_and_drop(void *_data) 1337 { 1338 struct detach_data *data = _data; 1339 1340 if (!data->mountpoint && !data->select.found) 1341 __d_drop(data->select.start); 1342 } 1343 1344 /** 1345 * d_invalidate - detach submounts, prune dcache, and drop 1346 * @dentry: dentry to invalidate (aka detach, prune and drop) 1347 * 1348 * no dcache lock. 1349 * 1350 * The final d_drop is done as an atomic operation relative to 1351 * rename_lock ensuring there are no races with d_set_mounted. This 1352 * ensures there are no unhashed dentries on the path to a mountpoint. 1353 */ 1354 void d_invalidate(struct dentry *dentry) 1355 { 1356 /* 1357 * If it's already been dropped, return OK. 1358 */ 1359 spin_lock(&dentry->d_lock); 1360 if (d_unhashed(dentry)) { 1361 spin_unlock(&dentry->d_lock); 1362 return; 1363 } 1364 spin_unlock(&dentry->d_lock); 1365 1366 /* Negative dentries can be dropped without further checks */ 1367 if (!dentry->d_inode) { 1368 d_drop(dentry); 1369 return; 1370 } 1371 1372 for (;;) { 1373 struct detach_data data; 1374 1375 data.mountpoint = NULL; 1376 INIT_LIST_HEAD(&data.select.dispose); 1377 data.select.start = dentry; 1378 data.select.found = 0; 1379 1380 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1381 1382 if (data.select.found) 1383 shrink_dentry_list(&data.select.dispose); 1384 1385 if (data.mountpoint) { 1386 detach_mounts(data.mountpoint); 1387 dput(data.mountpoint); 1388 } 1389 1390 if (!data.mountpoint && !data.select.found) 1391 break; 1392 1393 cond_resched(); 1394 } 1395 } 1396 EXPORT_SYMBOL(d_invalidate); 1397 1398 /** 1399 * __d_alloc - allocate a dcache entry 1400 * @sb: filesystem it will belong to 1401 * @name: qstr of the name 1402 * 1403 * Allocates a dentry. It returns %NULL if there is insufficient memory 1404 * available. On a success the dentry is returned. The name passed in is 1405 * copied and the copy passed in may be reused after this call. 1406 */ 1407 1408 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1409 { 1410 struct dentry *dentry; 1411 char *dname; 1412 1413 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1414 if (!dentry) 1415 return NULL; 1416 1417 /* 1418 * We guarantee that the inline name is always NUL-terminated. 1419 * This way the memcpy() done by the name switching in rename 1420 * will still always have a NUL at the end, even if we might 1421 * be overwriting an internal NUL character 1422 */ 1423 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1424 if (name->len > DNAME_INLINE_LEN-1) { 1425 size_t size = offsetof(struct external_name, name[1]); 1426 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1427 if (!p) { 1428 kmem_cache_free(dentry_cache, dentry); 1429 return NULL; 1430 } 1431 atomic_set(&p->u.count, 1); 1432 dname = p->name; 1433 } else { 1434 dname = dentry->d_iname; 1435 } 1436 1437 dentry->d_name.len = name->len; 1438 dentry->d_name.hash = name->hash; 1439 memcpy(dname, name->name, name->len); 1440 dname[name->len] = 0; 1441 1442 /* Make sure we always see the terminating NUL character */ 1443 smp_wmb(); 1444 dentry->d_name.name = dname; 1445 1446 dentry->d_lockref.count = 1; 1447 dentry->d_flags = 0; 1448 spin_lock_init(&dentry->d_lock); 1449 seqcount_init(&dentry->d_seq); 1450 dentry->d_inode = NULL; 1451 dentry->d_parent = dentry; 1452 dentry->d_sb = sb; 1453 dentry->d_op = NULL; 1454 dentry->d_fsdata = NULL; 1455 INIT_HLIST_BL_NODE(&dentry->d_hash); 1456 INIT_LIST_HEAD(&dentry->d_lru); 1457 INIT_LIST_HEAD(&dentry->d_subdirs); 1458 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1459 INIT_LIST_HEAD(&dentry->d_child); 1460 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1461 1462 this_cpu_inc(nr_dentry); 1463 1464 return dentry; 1465 } 1466 1467 /** 1468 * d_alloc - allocate a dcache entry 1469 * @parent: parent of entry to allocate 1470 * @name: qstr of the name 1471 * 1472 * Allocates a dentry. It returns %NULL if there is insufficient memory 1473 * available. On a success the dentry is returned. The name passed in is 1474 * copied and the copy passed in may be reused after this call. 1475 */ 1476 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1477 { 1478 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1479 if (!dentry) 1480 return NULL; 1481 1482 spin_lock(&parent->d_lock); 1483 /* 1484 * don't need child lock because it is not subject 1485 * to concurrency here 1486 */ 1487 __dget_dlock(parent); 1488 dentry->d_parent = parent; 1489 list_add(&dentry->d_child, &parent->d_subdirs); 1490 spin_unlock(&parent->d_lock); 1491 1492 return dentry; 1493 } 1494 EXPORT_SYMBOL(d_alloc); 1495 1496 /** 1497 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1498 * @sb: the superblock 1499 * @name: qstr of the name 1500 * 1501 * For a filesystem that just pins its dentries in memory and never 1502 * performs lookups at all, return an unhashed IS_ROOT dentry. 1503 */ 1504 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1505 { 1506 return __d_alloc(sb, name); 1507 } 1508 EXPORT_SYMBOL(d_alloc_pseudo); 1509 1510 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1511 { 1512 struct qstr q; 1513 1514 q.name = name; 1515 q.len = strlen(name); 1516 q.hash = full_name_hash(q.name, q.len); 1517 return d_alloc(parent, &q); 1518 } 1519 EXPORT_SYMBOL(d_alloc_name); 1520 1521 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1522 { 1523 WARN_ON_ONCE(dentry->d_op); 1524 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1525 DCACHE_OP_COMPARE | 1526 DCACHE_OP_REVALIDATE | 1527 DCACHE_OP_WEAK_REVALIDATE | 1528 DCACHE_OP_DELETE )); 1529 dentry->d_op = op; 1530 if (!op) 1531 return; 1532 if (op->d_hash) 1533 dentry->d_flags |= DCACHE_OP_HASH; 1534 if (op->d_compare) 1535 dentry->d_flags |= DCACHE_OP_COMPARE; 1536 if (op->d_revalidate) 1537 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1538 if (op->d_weak_revalidate) 1539 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1540 if (op->d_delete) 1541 dentry->d_flags |= DCACHE_OP_DELETE; 1542 if (op->d_prune) 1543 dentry->d_flags |= DCACHE_OP_PRUNE; 1544 1545 } 1546 EXPORT_SYMBOL(d_set_d_op); 1547 1548 static unsigned d_flags_for_inode(struct inode *inode) 1549 { 1550 unsigned add_flags = DCACHE_FILE_TYPE; 1551 1552 if (!inode) 1553 return DCACHE_MISS_TYPE; 1554 1555 if (S_ISDIR(inode->i_mode)) { 1556 add_flags = DCACHE_DIRECTORY_TYPE; 1557 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1558 if (unlikely(!inode->i_op->lookup)) 1559 add_flags = DCACHE_AUTODIR_TYPE; 1560 else 1561 inode->i_opflags |= IOP_LOOKUP; 1562 } 1563 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1564 if (unlikely(inode->i_op->follow_link)) 1565 add_flags = DCACHE_SYMLINK_TYPE; 1566 else 1567 inode->i_opflags |= IOP_NOFOLLOW; 1568 } 1569 1570 if (unlikely(IS_AUTOMOUNT(inode))) 1571 add_flags |= DCACHE_NEED_AUTOMOUNT; 1572 return add_flags; 1573 } 1574 1575 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1576 { 1577 unsigned add_flags = d_flags_for_inode(inode); 1578 1579 spin_lock(&dentry->d_lock); 1580 __d_set_type(dentry, add_flags); 1581 if (inode) 1582 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1583 dentry->d_inode = inode; 1584 dentry_rcuwalk_barrier(dentry); 1585 spin_unlock(&dentry->d_lock); 1586 fsnotify_d_instantiate(dentry, inode); 1587 } 1588 1589 /** 1590 * d_instantiate - fill in inode information for a dentry 1591 * @entry: dentry to complete 1592 * @inode: inode to attach to this dentry 1593 * 1594 * Fill in inode information in the entry. 1595 * 1596 * This turns negative dentries into productive full members 1597 * of society. 1598 * 1599 * NOTE! This assumes that the inode count has been incremented 1600 * (or otherwise set) by the caller to indicate that it is now 1601 * in use by the dcache. 1602 */ 1603 1604 void d_instantiate(struct dentry *entry, struct inode * inode) 1605 { 1606 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1607 if (inode) 1608 spin_lock(&inode->i_lock); 1609 __d_instantiate(entry, inode); 1610 if (inode) 1611 spin_unlock(&inode->i_lock); 1612 security_d_instantiate(entry, inode); 1613 } 1614 EXPORT_SYMBOL(d_instantiate); 1615 1616 /** 1617 * d_instantiate_unique - instantiate a non-aliased dentry 1618 * @entry: dentry to instantiate 1619 * @inode: inode to attach to this dentry 1620 * 1621 * Fill in inode information in the entry. On success, it returns NULL. 1622 * If an unhashed alias of "entry" already exists, then we return the 1623 * aliased dentry instead and drop one reference to inode. 1624 * 1625 * Note that in order to avoid conflicts with rename() etc, the caller 1626 * had better be holding the parent directory semaphore. 1627 * 1628 * This also assumes that the inode count has been incremented 1629 * (or otherwise set) by the caller to indicate that it is now 1630 * in use by the dcache. 1631 */ 1632 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1633 struct inode *inode) 1634 { 1635 struct dentry *alias; 1636 int len = entry->d_name.len; 1637 const char *name = entry->d_name.name; 1638 unsigned int hash = entry->d_name.hash; 1639 1640 if (!inode) { 1641 __d_instantiate(entry, NULL); 1642 return NULL; 1643 } 1644 1645 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1646 /* 1647 * Don't need alias->d_lock here, because aliases with 1648 * d_parent == entry->d_parent are not subject to name or 1649 * parent changes, because the parent inode i_mutex is held. 1650 */ 1651 if (alias->d_name.hash != hash) 1652 continue; 1653 if (alias->d_parent != entry->d_parent) 1654 continue; 1655 if (alias->d_name.len != len) 1656 continue; 1657 if (dentry_cmp(alias, name, len)) 1658 continue; 1659 __dget(alias); 1660 return alias; 1661 } 1662 1663 __d_instantiate(entry, inode); 1664 return NULL; 1665 } 1666 1667 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1668 { 1669 struct dentry *result; 1670 1671 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1672 1673 if (inode) 1674 spin_lock(&inode->i_lock); 1675 result = __d_instantiate_unique(entry, inode); 1676 if (inode) 1677 spin_unlock(&inode->i_lock); 1678 1679 if (!result) { 1680 security_d_instantiate(entry, inode); 1681 return NULL; 1682 } 1683 1684 BUG_ON(!d_unhashed(result)); 1685 iput(inode); 1686 return result; 1687 } 1688 1689 EXPORT_SYMBOL(d_instantiate_unique); 1690 1691 /** 1692 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1693 * @entry: dentry to complete 1694 * @inode: inode to attach to this dentry 1695 * 1696 * Fill in inode information in the entry. If a directory alias is found, then 1697 * return an error (and drop inode). Together with d_materialise_unique() this 1698 * guarantees that a directory inode may never have more than one alias. 1699 */ 1700 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1701 { 1702 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1703 1704 spin_lock(&inode->i_lock); 1705 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1706 spin_unlock(&inode->i_lock); 1707 iput(inode); 1708 return -EBUSY; 1709 } 1710 __d_instantiate(entry, inode); 1711 spin_unlock(&inode->i_lock); 1712 security_d_instantiate(entry, inode); 1713 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(d_instantiate_no_diralias); 1717 1718 struct dentry *d_make_root(struct inode *root_inode) 1719 { 1720 struct dentry *res = NULL; 1721 1722 if (root_inode) { 1723 static const struct qstr name = QSTR_INIT("/", 1); 1724 1725 res = __d_alloc(root_inode->i_sb, &name); 1726 if (res) 1727 d_instantiate(res, root_inode); 1728 else 1729 iput(root_inode); 1730 } 1731 return res; 1732 } 1733 EXPORT_SYMBOL(d_make_root); 1734 1735 static struct dentry * __d_find_any_alias(struct inode *inode) 1736 { 1737 struct dentry *alias; 1738 1739 if (hlist_empty(&inode->i_dentry)) 1740 return NULL; 1741 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1742 __dget(alias); 1743 return alias; 1744 } 1745 1746 /** 1747 * d_find_any_alias - find any alias for a given inode 1748 * @inode: inode to find an alias for 1749 * 1750 * If any aliases exist for the given inode, take and return a 1751 * reference for one of them. If no aliases exist, return %NULL. 1752 */ 1753 struct dentry *d_find_any_alias(struct inode *inode) 1754 { 1755 struct dentry *de; 1756 1757 spin_lock(&inode->i_lock); 1758 de = __d_find_any_alias(inode); 1759 spin_unlock(&inode->i_lock); 1760 return de; 1761 } 1762 EXPORT_SYMBOL(d_find_any_alias); 1763 1764 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1765 { 1766 static const struct qstr anonstring = QSTR_INIT("/", 1); 1767 struct dentry *tmp; 1768 struct dentry *res; 1769 unsigned add_flags; 1770 1771 if (!inode) 1772 return ERR_PTR(-ESTALE); 1773 if (IS_ERR(inode)) 1774 return ERR_CAST(inode); 1775 1776 res = d_find_any_alias(inode); 1777 if (res) 1778 goto out_iput; 1779 1780 tmp = __d_alloc(inode->i_sb, &anonstring); 1781 if (!tmp) { 1782 res = ERR_PTR(-ENOMEM); 1783 goto out_iput; 1784 } 1785 1786 spin_lock(&inode->i_lock); 1787 res = __d_find_any_alias(inode); 1788 if (res) { 1789 spin_unlock(&inode->i_lock); 1790 dput(tmp); 1791 goto out_iput; 1792 } 1793 1794 /* attach a disconnected dentry */ 1795 add_flags = d_flags_for_inode(inode); 1796 1797 if (disconnected) 1798 add_flags |= DCACHE_DISCONNECTED; 1799 1800 spin_lock(&tmp->d_lock); 1801 tmp->d_inode = inode; 1802 tmp->d_flags |= add_flags; 1803 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1804 hlist_bl_lock(&tmp->d_sb->s_anon); 1805 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1806 hlist_bl_unlock(&tmp->d_sb->s_anon); 1807 spin_unlock(&tmp->d_lock); 1808 spin_unlock(&inode->i_lock); 1809 security_d_instantiate(tmp, inode); 1810 1811 return tmp; 1812 1813 out_iput: 1814 if (res && !IS_ERR(res)) 1815 security_d_instantiate(res, inode); 1816 iput(inode); 1817 return res; 1818 } 1819 1820 /** 1821 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1822 * @inode: inode to allocate the dentry for 1823 * 1824 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1825 * similar open by handle operations. The returned dentry may be anonymous, 1826 * or may have a full name (if the inode was already in the cache). 1827 * 1828 * When called on a directory inode, we must ensure that the inode only ever 1829 * has one dentry. If a dentry is found, that is returned instead of 1830 * allocating a new one. 1831 * 1832 * On successful return, the reference to the inode has been transferred 1833 * to the dentry. In case of an error the reference on the inode is released. 1834 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1835 * be passed in and the error will be propagated to the return value, 1836 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1837 */ 1838 struct dentry *d_obtain_alias(struct inode *inode) 1839 { 1840 return __d_obtain_alias(inode, 1); 1841 } 1842 EXPORT_SYMBOL(d_obtain_alias); 1843 1844 /** 1845 * d_obtain_root - find or allocate a dentry for a given inode 1846 * @inode: inode to allocate the dentry for 1847 * 1848 * Obtain an IS_ROOT dentry for the root of a filesystem. 1849 * 1850 * We must ensure that directory inodes only ever have one dentry. If a 1851 * dentry is found, that is returned instead of allocating a new one. 1852 * 1853 * On successful return, the reference to the inode has been transferred 1854 * to the dentry. In case of an error the reference on the inode is 1855 * released. A %NULL or IS_ERR inode may be passed in and will be the 1856 * error will be propagate to the return value, with a %NULL @inode 1857 * replaced by ERR_PTR(-ESTALE). 1858 */ 1859 struct dentry *d_obtain_root(struct inode *inode) 1860 { 1861 return __d_obtain_alias(inode, 0); 1862 } 1863 EXPORT_SYMBOL(d_obtain_root); 1864 1865 /** 1866 * d_add_ci - lookup or allocate new dentry with case-exact name 1867 * @inode: the inode case-insensitive lookup has found 1868 * @dentry: the negative dentry that was passed to the parent's lookup func 1869 * @name: the case-exact name to be associated with the returned dentry 1870 * 1871 * This is to avoid filling the dcache with case-insensitive names to the 1872 * same inode, only the actual correct case is stored in the dcache for 1873 * case-insensitive filesystems. 1874 * 1875 * For a case-insensitive lookup match and if the the case-exact dentry 1876 * already exists in in the dcache, use it and return it. 1877 * 1878 * If no entry exists with the exact case name, allocate new dentry with 1879 * the exact case, and return the spliced entry. 1880 */ 1881 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1882 struct qstr *name) 1883 { 1884 struct dentry *found; 1885 struct dentry *new; 1886 1887 /* 1888 * First check if a dentry matching the name already exists, 1889 * if not go ahead and create it now. 1890 */ 1891 found = d_hash_and_lookup(dentry->d_parent, name); 1892 if (!found) { 1893 new = d_alloc(dentry->d_parent, name); 1894 if (!new) { 1895 found = ERR_PTR(-ENOMEM); 1896 } else { 1897 found = d_splice_alias(inode, new); 1898 if (found) { 1899 dput(new); 1900 return found; 1901 } 1902 return new; 1903 } 1904 } 1905 iput(inode); 1906 return found; 1907 } 1908 EXPORT_SYMBOL(d_add_ci); 1909 1910 /* 1911 * Do the slow-case of the dentry name compare. 1912 * 1913 * Unlike the dentry_cmp() function, we need to atomically 1914 * load the name and length information, so that the 1915 * filesystem can rely on them, and can use the 'name' and 1916 * 'len' information without worrying about walking off the 1917 * end of memory etc. 1918 * 1919 * Thus the read_seqcount_retry() and the "duplicate" info 1920 * in arguments (the low-level filesystem should not look 1921 * at the dentry inode or name contents directly, since 1922 * rename can change them while we're in RCU mode). 1923 */ 1924 enum slow_d_compare { 1925 D_COMP_OK, 1926 D_COMP_NOMATCH, 1927 D_COMP_SEQRETRY, 1928 }; 1929 1930 static noinline enum slow_d_compare slow_dentry_cmp( 1931 const struct dentry *parent, 1932 struct dentry *dentry, 1933 unsigned int seq, 1934 const struct qstr *name) 1935 { 1936 int tlen = dentry->d_name.len; 1937 const char *tname = dentry->d_name.name; 1938 1939 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1940 cpu_relax(); 1941 return D_COMP_SEQRETRY; 1942 } 1943 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 1944 return D_COMP_NOMATCH; 1945 return D_COMP_OK; 1946 } 1947 1948 /** 1949 * __d_lookup_rcu - search for a dentry (racy, store-free) 1950 * @parent: parent dentry 1951 * @name: qstr of name we wish to find 1952 * @seqp: returns d_seq value at the point where the dentry was found 1953 * Returns: dentry, or NULL 1954 * 1955 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1956 * resolution (store-free path walking) design described in 1957 * Documentation/filesystems/path-lookup.txt. 1958 * 1959 * This is not to be used outside core vfs. 1960 * 1961 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1962 * held, and rcu_read_lock held. The returned dentry must not be stored into 1963 * without taking d_lock and checking d_seq sequence count against @seq 1964 * returned here. 1965 * 1966 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 1967 * function. 1968 * 1969 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1970 * the returned dentry, so long as its parent's seqlock is checked after the 1971 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1972 * is formed, giving integrity down the path walk. 1973 * 1974 * NOTE! The caller *has* to check the resulting dentry against the sequence 1975 * number we've returned before using any of the resulting dentry state! 1976 */ 1977 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1978 const struct qstr *name, 1979 unsigned *seqp) 1980 { 1981 u64 hashlen = name->hash_len; 1982 const unsigned char *str = name->name; 1983 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 1984 struct hlist_bl_node *node; 1985 struct dentry *dentry; 1986 1987 /* 1988 * Note: There is significant duplication with __d_lookup_rcu which is 1989 * required to prevent single threaded performance regressions 1990 * especially on architectures where smp_rmb (in seqcounts) are costly. 1991 * Keep the two functions in sync. 1992 */ 1993 1994 /* 1995 * The hash list is protected using RCU. 1996 * 1997 * Carefully use d_seq when comparing a candidate dentry, to avoid 1998 * races with d_move(). 1999 * 2000 * It is possible that concurrent renames can mess up our list 2001 * walk here and result in missing our dentry, resulting in the 2002 * false-negative result. d_lookup() protects against concurrent 2003 * renames using rename_lock seqlock. 2004 * 2005 * See Documentation/filesystems/path-lookup.txt for more details. 2006 */ 2007 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2008 unsigned seq; 2009 2010 seqretry: 2011 /* 2012 * The dentry sequence count protects us from concurrent 2013 * renames, and thus protects parent and name fields. 2014 * 2015 * The caller must perform a seqcount check in order 2016 * to do anything useful with the returned dentry. 2017 * 2018 * NOTE! We do a "raw" seqcount_begin here. That means that 2019 * we don't wait for the sequence count to stabilize if it 2020 * is in the middle of a sequence change. If we do the slow 2021 * dentry compare, we will do seqretries until it is stable, 2022 * and if we end up with a successful lookup, we actually 2023 * want to exit RCU lookup anyway. 2024 */ 2025 seq = raw_seqcount_begin(&dentry->d_seq); 2026 if (dentry->d_parent != parent) 2027 continue; 2028 if (d_unhashed(dentry)) 2029 continue; 2030 2031 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2032 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2033 continue; 2034 *seqp = seq; 2035 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2036 case D_COMP_OK: 2037 return dentry; 2038 case D_COMP_NOMATCH: 2039 continue; 2040 default: 2041 goto seqretry; 2042 } 2043 } 2044 2045 if (dentry->d_name.hash_len != hashlen) 2046 continue; 2047 *seqp = seq; 2048 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2049 return dentry; 2050 } 2051 return NULL; 2052 } 2053 2054 /** 2055 * d_lookup - search for a dentry 2056 * @parent: parent dentry 2057 * @name: qstr of name we wish to find 2058 * Returns: dentry, or NULL 2059 * 2060 * d_lookup searches the children of the parent dentry for the name in 2061 * question. If the dentry is found its reference count is incremented and the 2062 * dentry is returned. The caller must use dput to free the entry when it has 2063 * finished using it. %NULL is returned if the dentry does not exist. 2064 */ 2065 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2066 { 2067 struct dentry *dentry; 2068 unsigned seq; 2069 2070 do { 2071 seq = read_seqbegin(&rename_lock); 2072 dentry = __d_lookup(parent, name); 2073 if (dentry) 2074 break; 2075 } while (read_seqretry(&rename_lock, seq)); 2076 return dentry; 2077 } 2078 EXPORT_SYMBOL(d_lookup); 2079 2080 /** 2081 * __d_lookup - search for a dentry (racy) 2082 * @parent: parent dentry 2083 * @name: qstr of name we wish to find 2084 * Returns: dentry, or NULL 2085 * 2086 * __d_lookup is like d_lookup, however it may (rarely) return a 2087 * false-negative result due to unrelated rename activity. 2088 * 2089 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2090 * however it must be used carefully, eg. with a following d_lookup in 2091 * the case of failure. 2092 * 2093 * __d_lookup callers must be commented. 2094 */ 2095 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2096 { 2097 unsigned int len = name->len; 2098 unsigned int hash = name->hash; 2099 const unsigned char *str = name->name; 2100 struct hlist_bl_head *b = d_hash(parent, hash); 2101 struct hlist_bl_node *node; 2102 struct dentry *found = NULL; 2103 struct dentry *dentry; 2104 2105 /* 2106 * Note: There is significant duplication with __d_lookup_rcu which is 2107 * required to prevent single threaded performance regressions 2108 * especially on architectures where smp_rmb (in seqcounts) are costly. 2109 * Keep the two functions in sync. 2110 */ 2111 2112 /* 2113 * The hash list is protected using RCU. 2114 * 2115 * Take d_lock when comparing a candidate dentry, to avoid races 2116 * with d_move(). 2117 * 2118 * It is possible that concurrent renames can mess up our list 2119 * walk here and result in missing our dentry, resulting in the 2120 * false-negative result. d_lookup() protects against concurrent 2121 * renames using rename_lock seqlock. 2122 * 2123 * See Documentation/filesystems/path-lookup.txt for more details. 2124 */ 2125 rcu_read_lock(); 2126 2127 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2128 2129 if (dentry->d_name.hash != hash) 2130 continue; 2131 2132 spin_lock(&dentry->d_lock); 2133 if (dentry->d_parent != parent) 2134 goto next; 2135 if (d_unhashed(dentry)) 2136 goto next; 2137 2138 /* 2139 * It is safe to compare names since d_move() cannot 2140 * change the qstr (protected by d_lock). 2141 */ 2142 if (parent->d_flags & DCACHE_OP_COMPARE) { 2143 int tlen = dentry->d_name.len; 2144 const char *tname = dentry->d_name.name; 2145 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2146 goto next; 2147 } else { 2148 if (dentry->d_name.len != len) 2149 goto next; 2150 if (dentry_cmp(dentry, str, len)) 2151 goto next; 2152 } 2153 2154 dentry->d_lockref.count++; 2155 found = dentry; 2156 spin_unlock(&dentry->d_lock); 2157 break; 2158 next: 2159 spin_unlock(&dentry->d_lock); 2160 } 2161 rcu_read_unlock(); 2162 2163 return found; 2164 } 2165 2166 /** 2167 * d_hash_and_lookup - hash the qstr then search for a dentry 2168 * @dir: Directory to search in 2169 * @name: qstr of name we wish to find 2170 * 2171 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2172 */ 2173 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2174 { 2175 /* 2176 * Check for a fs-specific hash function. Note that we must 2177 * calculate the standard hash first, as the d_op->d_hash() 2178 * routine may choose to leave the hash value unchanged. 2179 */ 2180 name->hash = full_name_hash(name->name, name->len); 2181 if (dir->d_flags & DCACHE_OP_HASH) { 2182 int err = dir->d_op->d_hash(dir, name); 2183 if (unlikely(err < 0)) 2184 return ERR_PTR(err); 2185 } 2186 return d_lookup(dir, name); 2187 } 2188 EXPORT_SYMBOL(d_hash_and_lookup); 2189 2190 /** 2191 * d_validate - verify dentry provided from insecure source (deprecated) 2192 * @dentry: The dentry alleged to be valid child of @dparent 2193 * @dparent: The parent dentry (known to be valid) 2194 * 2195 * An insecure source has sent us a dentry, here we verify it and dget() it. 2196 * This is used by ncpfs in its readdir implementation. 2197 * Zero is returned in the dentry is invalid. 2198 * 2199 * This function is slow for big directories, and deprecated, do not use it. 2200 */ 2201 int d_validate(struct dentry *dentry, struct dentry *dparent) 2202 { 2203 struct dentry *child; 2204 2205 spin_lock(&dparent->d_lock); 2206 list_for_each_entry(child, &dparent->d_subdirs, d_child) { 2207 if (dentry == child) { 2208 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2209 __dget_dlock(dentry); 2210 spin_unlock(&dentry->d_lock); 2211 spin_unlock(&dparent->d_lock); 2212 return 1; 2213 } 2214 } 2215 spin_unlock(&dparent->d_lock); 2216 2217 return 0; 2218 } 2219 EXPORT_SYMBOL(d_validate); 2220 2221 /* 2222 * When a file is deleted, we have two options: 2223 * - turn this dentry into a negative dentry 2224 * - unhash this dentry and free it. 2225 * 2226 * Usually, we want to just turn this into 2227 * a negative dentry, but if anybody else is 2228 * currently using the dentry or the inode 2229 * we can't do that and we fall back on removing 2230 * it from the hash queues and waiting for 2231 * it to be deleted later when it has no users 2232 */ 2233 2234 /** 2235 * d_delete - delete a dentry 2236 * @dentry: The dentry to delete 2237 * 2238 * Turn the dentry into a negative dentry if possible, otherwise 2239 * remove it from the hash queues so it can be deleted later 2240 */ 2241 2242 void d_delete(struct dentry * dentry) 2243 { 2244 struct inode *inode; 2245 int isdir = 0; 2246 /* 2247 * Are we the only user? 2248 */ 2249 again: 2250 spin_lock(&dentry->d_lock); 2251 inode = dentry->d_inode; 2252 isdir = S_ISDIR(inode->i_mode); 2253 if (dentry->d_lockref.count == 1) { 2254 if (!spin_trylock(&inode->i_lock)) { 2255 spin_unlock(&dentry->d_lock); 2256 cpu_relax(); 2257 goto again; 2258 } 2259 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2260 dentry_unlink_inode(dentry); 2261 fsnotify_nameremove(dentry, isdir); 2262 return; 2263 } 2264 2265 if (!d_unhashed(dentry)) 2266 __d_drop(dentry); 2267 2268 spin_unlock(&dentry->d_lock); 2269 2270 fsnotify_nameremove(dentry, isdir); 2271 } 2272 EXPORT_SYMBOL(d_delete); 2273 2274 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2275 { 2276 BUG_ON(!d_unhashed(entry)); 2277 hlist_bl_lock(b); 2278 entry->d_flags |= DCACHE_RCUACCESS; 2279 hlist_bl_add_head_rcu(&entry->d_hash, b); 2280 hlist_bl_unlock(b); 2281 } 2282 2283 static void _d_rehash(struct dentry * entry) 2284 { 2285 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2286 } 2287 2288 /** 2289 * d_rehash - add an entry back to the hash 2290 * @entry: dentry to add to the hash 2291 * 2292 * Adds a dentry to the hash according to its name. 2293 */ 2294 2295 void d_rehash(struct dentry * entry) 2296 { 2297 spin_lock(&entry->d_lock); 2298 _d_rehash(entry); 2299 spin_unlock(&entry->d_lock); 2300 } 2301 EXPORT_SYMBOL(d_rehash); 2302 2303 /** 2304 * dentry_update_name_case - update case insensitive dentry with a new name 2305 * @dentry: dentry to be updated 2306 * @name: new name 2307 * 2308 * Update a case insensitive dentry with new case of name. 2309 * 2310 * dentry must have been returned by d_lookup with name @name. Old and new 2311 * name lengths must match (ie. no d_compare which allows mismatched name 2312 * lengths). 2313 * 2314 * Parent inode i_mutex must be held over d_lookup and into this call (to 2315 * keep renames and concurrent inserts, and readdir(2) away). 2316 */ 2317 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2318 { 2319 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2320 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2321 2322 spin_lock(&dentry->d_lock); 2323 write_seqcount_begin(&dentry->d_seq); 2324 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2325 write_seqcount_end(&dentry->d_seq); 2326 spin_unlock(&dentry->d_lock); 2327 } 2328 EXPORT_SYMBOL(dentry_update_name_case); 2329 2330 static void swap_names(struct dentry *dentry, struct dentry *target) 2331 { 2332 if (unlikely(dname_external(target))) { 2333 if (unlikely(dname_external(dentry))) { 2334 /* 2335 * Both external: swap the pointers 2336 */ 2337 swap(target->d_name.name, dentry->d_name.name); 2338 } else { 2339 /* 2340 * dentry:internal, target:external. Steal target's 2341 * storage and make target internal. 2342 */ 2343 memcpy(target->d_iname, dentry->d_name.name, 2344 dentry->d_name.len + 1); 2345 dentry->d_name.name = target->d_name.name; 2346 target->d_name.name = target->d_iname; 2347 } 2348 } else { 2349 if (unlikely(dname_external(dentry))) { 2350 /* 2351 * dentry:external, target:internal. Give dentry's 2352 * storage to target and make dentry internal 2353 */ 2354 memcpy(dentry->d_iname, target->d_name.name, 2355 target->d_name.len + 1); 2356 target->d_name.name = dentry->d_name.name; 2357 dentry->d_name.name = dentry->d_iname; 2358 } else { 2359 /* 2360 * Both are internal. 2361 */ 2362 unsigned int i; 2363 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2364 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2365 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2366 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2367 swap(((long *) &dentry->d_iname)[i], 2368 ((long *) &target->d_iname)[i]); 2369 } 2370 } 2371 } 2372 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2373 } 2374 2375 static void copy_name(struct dentry *dentry, struct dentry *target) 2376 { 2377 struct external_name *old_name = NULL; 2378 if (unlikely(dname_external(dentry))) 2379 old_name = external_name(dentry); 2380 if (unlikely(dname_external(target))) { 2381 atomic_inc(&external_name(target)->u.count); 2382 dentry->d_name = target->d_name; 2383 } else { 2384 memcpy(dentry->d_iname, target->d_name.name, 2385 target->d_name.len + 1); 2386 dentry->d_name.name = dentry->d_iname; 2387 dentry->d_name.hash_len = target->d_name.hash_len; 2388 } 2389 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2390 kfree_rcu(old_name, u.head); 2391 } 2392 2393 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2394 { 2395 /* 2396 * XXXX: do we really need to take target->d_lock? 2397 */ 2398 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2399 spin_lock(&target->d_parent->d_lock); 2400 else { 2401 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2402 spin_lock(&dentry->d_parent->d_lock); 2403 spin_lock_nested(&target->d_parent->d_lock, 2404 DENTRY_D_LOCK_NESTED); 2405 } else { 2406 spin_lock(&target->d_parent->d_lock); 2407 spin_lock_nested(&dentry->d_parent->d_lock, 2408 DENTRY_D_LOCK_NESTED); 2409 } 2410 } 2411 if (target < dentry) { 2412 spin_lock_nested(&target->d_lock, 2); 2413 spin_lock_nested(&dentry->d_lock, 3); 2414 } else { 2415 spin_lock_nested(&dentry->d_lock, 2); 2416 spin_lock_nested(&target->d_lock, 3); 2417 } 2418 } 2419 2420 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2421 { 2422 if (target->d_parent != dentry->d_parent) 2423 spin_unlock(&dentry->d_parent->d_lock); 2424 if (target->d_parent != target) 2425 spin_unlock(&target->d_parent->d_lock); 2426 spin_unlock(&target->d_lock); 2427 spin_unlock(&dentry->d_lock); 2428 } 2429 2430 /* 2431 * When switching names, the actual string doesn't strictly have to 2432 * be preserved in the target - because we're dropping the target 2433 * anyway. As such, we can just do a simple memcpy() to copy over 2434 * the new name before we switch, unless we are going to rehash 2435 * it. Note that if we *do* unhash the target, we are not allowed 2436 * to rehash it without giving it a new name/hash key - whether 2437 * we swap or overwrite the names here, resulting name won't match 2438 * the reality in filesystem; it's only there for d_path() purposes. 2439 * Note that all of this is happening under rename_lock, so the 2440 * any hash lookup seeing it in the middle of manipulations will 2441 * be discarded anyway. So we do not care what happens to the hash 2442 * key in that case. 2443 */ 2444 /* 2445 * __d_move - move a dentry 2446 * @dentry: entry to move 2447 * @target: new dentry 2448 * @exchange: exchange the two dentries 2449 * 2450 * Update the dcache to reflect the move of a file name. Negative 2451 * dcache entries should not be moved in this way. Caller must hold 2452 * rename_lock, the i_mutex of the source and target directories, 2453 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2454 */ 2455 static void __d_move(struct dentry *dentry, struct dentry *target, 2456 bool exchange) 2457 { 2458 if (!dentry->d_inode) 2459 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2460 2461 BUG_ON(d_ancestor(dentry, target)); 2462 BUG_ON(d_ancestor(target, dentry)); 2463 2464 dentry_lock_for_move(dentry, target); 2465 2466 write_seqcount_begin(&dentry->d_seq); 2467 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2468 2469 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2470 2471 /* 2472 * Move the dentry to the target hash queue. Don't bother checking 2473 * for the same hash queue because of how unlikely it is. 2474 */ 2475 __d_drop(dentry); 2476 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2477 2478 /* 2479 * Unhash the target (d_delete() is not usable here). If exchanging 2480 * the two dentries, then rehash onto the other's hash queue. 2481 */ 2482 __d_drop(target); 2483 if (exchange) { 2484 __d_rehash(target, 2485 d_hash(dentry->d_parent, dentry->d_name.hash)); 2486 } 2487 2488 /* Switch the names.. */ 2489 if (exchange) 2490 swap_names(dentry, target); 2491 else 2492 copy_name(dentry, target); 2493 2494 /* ... and switch them in the tree */ 2495 if (IS_ROOT(dentry)) { 2496 /* splicing a tree */ 2497 dentry->d_parent = target->d_parent; 2498 target->d_parent = target; 2499 list_del_init(&target->d_child); 2500 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2501 } else { 2502 /* swapping two dentries */ 2503 swap(dentry->d_parent, target->d_parent); 2504 list_move(&target->d_child, &target->d_parent->d_subdirs); 2505 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2506 if (exchange) 2507 fsnotify_d_move(target); 2508 fsnotify_d_move(dentry); 2509 } 2510 2511 write_seqcount_end(&target->d_seq); 2512 write_seqcount_end(&dentry->d_seq); 2513 2514 dentry_unlock_for_move(dentry, target); 2515 } 2516 2517 /* 2518 * d_move - move a dentry 2519 * @dentry: entry to move 2520 * @target: new dentry 2521 * 2522 * Update the dcache to reflect the move of a file name. Negative 2523 * dcache entries should not be moved in this way. See the locking 2524 * requirements for __d_move. 2525 */ 2526 void d_move(struct dentry *dentry, struct dentry *target) 2527 { 2528 write_seqlock(&rename_lock); 2529 __d_move(dentry, target, false); 2530 write_sequnlock(&rename_lock); 2531 } 2532 EXPORT_SYMBOL(d_move); 2533 2534 /* 2535 * d_exchange - exchange two dentries 2536 * @dentry1: first dentry 2537 * @dentry2: second dentry 2538 */ 2539 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2540 { 2541 write_seqlock(&rename_lock); 2542 2543 WARN_ON(!dentry1->d_inode); 2544 WARN_ON(!dentry2->d_inode); 2545 WARN_ON(IS_ROOT(dentry1)); 2546 WARN_ON(IS_ROOT(dentry2)); 2547 2548 __d_move(dentry1, dentry2, true); 2549 2550 write_sequnlock(&rename_lock); 2551 } 2552 2553 /** 2554 * d_ancestor - search for an ancestor 2555 * @p1: ancestor dentry 2556 * @p2: child dentry 2557 * 2558 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2559 * an ancestor of p2, else NULL. 2560 */ 2561 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2562 { 2563 struct dentry *p; 2564 2565 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2566 if (p->d_parent == p1) 2567 return p; 2568 } 2569 return NULL; 2570 } 2571 2572 /* 2573 * This helper attempts to cope with remotely renamed directories 2574 * 2575 * It assumes that the caller is already holding 2576 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2577 * 2578 * Note: If ever the locking in lock_rename() changes, then please 2579 * remember to update this too... 2580 */ 2581 static int __d_unalias(struct inode *inode, 2582 struct dentry *dentry, struct dentry *alias) 2583 { 2584 struct mutex *m1 = NULL, *m2 = NULL; 2585 int ret = -EBUSY; 2586 2587 /* If alias and dentry share a parent, then no extra locks required */ 2588 if (alias->d_parent == dentry->d_parent) 2589 goto out_unalias; 2590 2591 /* See lock_rename() */ 2592 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2593 goto out_err; 2594 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2595 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2596 goto out_err; 2597 m2 = &alias->d_parent->d_inode->i_mutex; 2598 out_unalias: 2599 __d_move(alias, dentry, false); 2600 ret = 0; 2601 out_err: 2602 spin_unlock(&inode->i_lock); 2603 if (m2) 2604 mutex_unlock(m2); 2605 if (m1) 2606 mutex_unlock(m1); 2607 return ret; 2608 } 2609 2610 /** 2611 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2612 * @inode: the inode which may have a disconnected dentry 2613 * @dentry: a negative dentry which we want to point to the inode. 2614 * 2615 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2616 * place of the given dentry and return it, else simply d_add the inode 2617 * to the dentry and return NULL. 2618 * 2619 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2620 * we should error out: directories can't have multiple aliases. 2621 * 2622 * This is needed in the lookup routine of any filesystem that is exportable 2623 * (via knfsd) so that we can build dcache paths to directories effectively. 2624 * 2625 * If a dentry was found and moved, then it is returned. Otherwise NULL 2626 * is returned. This matches the expected return value of ->lookup. 2627 * 2628 * Cluster filesystems may call this function with a negative, hashed dentry. 2629 * In that case, we know that the inode will be a regular file, and also this 2630 * will only occur during atomic_open. So we need to check for the dentry 2631 * being already hashed only in the final case. 2632 */ 2633 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2634 { 2635 if (IS_ERR(inode)) 2636 return ERR_CAST(inode); 2637 2638 BUG_ON(!d_unhashed(dentry)); 2639 2640 if (!inode) { 2641 __d_instantiate(dentry, NULL); 2642 goto out; 2643 } 2644 spin_lock(&inode->i_lock); 2645 if (S_ISDIR(inode->i_mode)) { 2646 struct dentry *new = __d_find_any_alias(inode); 2647 if (unlikely(new)) { 2648 write_seqlock(&rename_lock); 2649 if (unlikely(d_ancestor(new, dentry))) { 2650 write_sequnlock(&rename_lock); 2651 spin_unlock(&inode->i_lock); 2652 dput(new); 2653 new = ERR_PTR(-ELOOP); 2654 pr_warn_ratelimited( 2655 "VFS: Lookup of '%s' in %s %s" 2656 " would have caused loop\n", 2657 dentry->d_name.name, 2658 inode->i_sb->s_type->name, 2659 inode->i_sb->s_id); 2660 } else if (!IS_ROOT(new)) { 2661 int err = __d_unalias(inode, dentry, new); 2662 write_sequnlock(&rename_lock); 2663 if (err) { 2664 dput(new); 2665 new = ERR_PTR(err); 2666 } 2667 } else { 2668 __d_move(new, dentry, false); 2669 write_sequnlock(&rename_lock); 2670 spin_unlock(&inode->i_lock); 2671 security_d_instantiate(new, inode); 2672 } 2673 iput(inode); 2674 return new; 2675 } 2676 } 2677 /* already taking inode->i_lock, so d_add() by hand */ 2678 __d_instantiate(dentry, inode); 2679 spin_unlock(&inode->i_lock); 2680 out: 2681 security_d_instantiate(dentry, inode); 2682 d_rehash(dentry); 2683 return NULL; 2684 } 2685 EXPORT_SYMBOL(d_splice_alias); 2686 2687 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2688 { 2689 *buflen -= namelen; 2690 if (*buflen < 0) 2691 return -ENAMETOOLONG; 2692 *buffer -= namelen; 2693 memcpy(*buffer, str, namelen); 2694 return 0; 2695 } 2696 2697 /** 2698 * prepend_name - prepend a pathname in front of current buffer pointer 2699 * @buffer: buffer pointer 2700 * @buflen: allocated length of the buffer 2701 * @name: name string and length qstr structure 2702 * 2703 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2704 * make sure that either the old or the new name pointer and length are 2705 * fetched. However, there may be mismatch between length and pointer. 2706 * The length cannot be trusted, we need to copy it byte-by-byte until 2707 * the length is reached or a null byte is found. It also prepends "/" at 2708 * the beginning of the name. The sequence number check at the caller will 2709 * retry it again when a d_move() does happen. So any garbage in the buffer 2710 * due to mismatched pointer and length will be discarded. 2711 * 2712 * Data dependency barrier is needed to make sure that we see that terminating 2713 * NUL. Alpha strikes again, film at 11... 2714 */ 2715 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2716 { 2717 const char *dname = ACCESS_ONCE(name->name); 2718 u32 dlen = ACCESS_ONCE(name->len); 2719 char *p; 2720 2721 smp_read_barrier_depends(); 2722 2723 *buflen -= dlen + 1; 2724 if (*buflen < 0) 2725 return -ENAMETOOLONG; 2726 p = *buffer -= dlen + 1; 2727 *p++ = '/'; 2728 while (dlen--) { 2729 char c = *dname++; 2730 if (!c) 2731 break; 2732 *p++ = c; 2733 } 2734 return 0; 2735 } 2736 2737 /** 2738 * prepend_path - Prepend path string to a buffer 2739 * @path: the dentry/vfsmount to report 2740 * @root: root vfsmnt/dentry 2741 * @buffer: pointer to the end of the buffer 2742 * @buflen: pointer to buffer length 2743 * 2744 * The function will first try to write out the pathname without taking any 2745 * lock other than the RCU read lock to make sure that dentries won't go away. 2746 * It only checks the sequence number of the global rename_lock as any change 2747 * in the dentry's d_seq will be preceded by changes in the rename_lock 2748 * sequence number. If the sequence number had been changed, it will restart 2749 * the whole pathname back-tracing sequence again by taking the rename_lock. 2750 * In this case, there is no need to take the RCU read lock as the recursive 2751 * parent pointer references will keep the dentry chain alive as long as no 2752 * rename operation is performed. 2753 */ 2754 static int prepend_path(const struct path *path, 2755 const struct path *root, 2756 char **buffer, int *buflen) 2757 { 2758 struct dentry *dentry; 2759 struct vfsmount *vfsmnt; 2760 struct mount *mnt; 2761 int error = 0; 2762 unsigned seq, m_seq = 0; 2763 char *bptr; 2764 int blen; 2765 2766 rcu_read_lock(); 2767 restart_mnt: 2768 read_seqbegin_or_lock(&mount_lock, &m_seq); 2769 seq = 0; 2770 rcu_read_lock(); 2771 restart: 2772 bptr = *buffer; 2773 blen = *buflen; 2774 error = 0; 2775 dentry = path->dentry; 2776 vfsmnt = path->mnt; 2777 mnt = real_mount(vfsmnt); 2778 read_seqbegin_or_lock(&rename_lock, &seq); 2779 while (dentry != root->dentry || vfsmnt != root->mnt) { 2780 struct dentry * parent; 2781 2782 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2783 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2784 /* Global root? */ 2785 if (mnt != parent) { 2786 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2787 mnt = parent; 2788 vfsmnt = &mnt->mnt; 2789 continue; 2790 } 2791 /* 2792 * Filesystems needing to implement special "root names" 2793 * should do so with ->d_dname() 2794 */ 2795 if (IS_ROOT(dentry) && 2796 (dentry->d_name.len != 1 || 2797 dentry->d_name.name[0] != '/')) { 2798 WARN(1, "Root dentry has weird name <%.*s>\n", 2799 (int) dentry->d_name.len, 2800 dentry->d_name.name); 2801 } 2802 if (!error) 2803 error = is_mounted(vfsmnt) ? 1 : 2; 2804 break; 2805 } 2806 parent = dentry->d_parent; 2807 prefetch(parent); 2808 error = prepend_name(&bptr, &blen, &dentry->d_name); 2809 if (error) 2810 break; 2811 2812 dentry = parent; 2813 } 2814 if (!(seq & 1)) 2815 rcu_read_unlock(); 2816 if (need_seqretry(&rename_lock, seq)) { 2817 seq = 1; 2818 goto restart; 2819 } 2820 done_seqretry(&rename_lock, seq); 2821 2822 if (!(m_seq & 1)) 2823 rcu_read_unlock(); 2824 if (need_seqretry(&mount_lock, m_seq)) { 2825 m_seq = 1; 2826 goto restart_mnt; 2827 } 2828 done_seqretry(&mount_lock, m_seq); 2829 2830 if (error >= 0 && bptr == *buffer) { 2831 if (--blen < 0) 2832 error = -ENAMETOOLONG; 2833 else 2834 *--bptr = '/'; 2835 } 2836 *buffer = bptr; 2837 *buflen = blen; 2838 return error; 2839 } 2840 2841 /** 2842 * __d_path - return the path of a dentry 2843 * @path: the dentry/vfsmount to report 2844 * @root: root vfsmnt/dentry 2845 * @buf: buffer to return value in 2846 * @buflen: buffer length 2847 * 2848 * Convert a dentry into an ASCII path name. 2849 * 2850 * Returns a pointer into the buffer or an error code if the 2851 * path was too long. 2852 * 2853 * "buflen" should be positive. 2854 * 2855 * If the path is not reachable from the supplied root, return %NULL. 2856 */ 2857 char *__d_path(const struct path *path, 2858 const struct path *root, 2859 char *buf, int buflen) 2860 { 2861 char *res = buf + buflen; 2862 int error; 2863 2864 prepend(&res, &buflen, "\0", 1); 2865 error = prepend_path(path, root, &res, &buflen); 2866 2867 if (error < 0) 2868 return ERR_PTR(error); 2869 if (error > 0) 2870 return NULL; 2871 return res; 2872 } 2873 2874 char *d_absolute_path(const struct path *path, 2875 char *buf, int buflen) 2876 { 2877 struct path root = {}; 2878 char *res = buf + buflen; 2879 int error; 2880 2881 prepend(&res, &buflen, "\0", 1); 2882 error = prepend_path(path, &root, &res, &buflen); 2883 2884 if (error > 1) 2885 error = -EINVAL; 2886 if (error < 0) 2887 return ERR_PTR(error); 2888 return res; 2889 } 2890 2891 /* 2892 * same as __d_path but appends "(deleted)" for unlinked files. 2893 */ 2894 static int path_with_deleted(const struct path *path, 2895 const struct path *root, 2896 char **buf, int *buflen) 2897 { 2898 prepend(buf, buflen, "\0", 1); 2899 if (d_unlinked(path->dentry)) { 2900 int error = prepend(buf, buflen, " (deleted)", 10); 2901 if (error) 2902 return error; 2903 } 2904 2905 return prepend_path(path, root, buf, buflen); 2906 } 2907 2908 static int prepend_unreachable(char **buffer, int *buflen) 2909 { 2910 return prepend(buffer, buflen, "(unreachable)", 13); 2911 } 2912 2913 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 2914 { 2915 unsigned seq; 2916 2917 do { 2918 seq = read_seqcount_begin(&fs->seq); 2919 *root = fs->root; 2920 } while (read_seqcount_retry(&fs->seq, seq)); 2921 } 2922 2923 /** 2924 * d_path - return the path of a dentry 2925 * @path: path to report 2926 * @buf: buffer to return value in 2927 * @buflen: buffer length 2928 * 2929 * Convert a dentry into an ASCII path name. If the entry has been deleted 2930 * the string " (deleted)" is appended. Note that this is ambiguous. 2931 * 2932 * Returns a pointer into the buffer or an error code if the path was 2933 * too long. Note: Callers should use the returned pointer, not the passed 2934 * in buffer, to use the name! The implementation often starts at an offset 2935 * into the buffer, and may leave 0 bytes at the start. 2936 * 2937 * "buflen" should be positive. 2938 */ 2939 char *d_path(const struct path *path, char *buf, int buflen) 2940 { 2941 char *res = buf + buflen; 2942 struct path root; 2943 int error; 2944 2945 /* 2946 * We have various synthetic filesystems that never get mounted. On 2947 * these filesystems dentries are never used for lookup purposes, and 2948 * thus don't need to be hashed. They also don't need a name until a 2949 * user wants to identify the object in /proc/pid/fd/. The little hack 2950 * below allows us to generate a name for these objects on demand: 2951 * 2952 * Some pseudo inodes are mountable. When they are mounted 2953 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 2954 * and instead have d_path return the mounted path. 2955 */ 2956 if (path->dentry->d_op && path->dentry->d_op->d_dname && 2957 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 2958 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2959 2960 rcu_read_lock(); 2961 get_fs_root_rcu(current->fs, &root); 2962 error = path_with_deleted(path, &root, &res, &buflen); 2963 rcu_read_unlock(); 2964 2965 if (error < 0) 2966 res = ERR_PTR(error); 2967 return res; 2968 } 2969 EXPORT_SYMBOL(d_path); 2970 2971 /* 2972 * Helper function for dentry_operations.d_dname() members 2973 */ 2974 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2975 const char *fmt, ...) 2976 { 2977 va_list args; 2978 char temp[64]; 2979 int sz; 2980 2981 va_start(args, fmt); 2982 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2983 va_end(args); 2984 2985 if (sz > sizeof(temp) || sz > buflen) 2986 return ERR_PTR(-ENAMETOOLONG); 2987 2988 buffer += buflen - sz; 2989 return memcpy(buffer, temp, sz); 2990 } 2991 2992 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 2993 { 2994 char *end = buffer + buflen; 2995 /* these dentries are never renamed, so d_lock is not needed */ 2996 if (prepend(&end, &buflen, " (deleted)", 11) || 2997 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 2998 prepend(&end, &buflen, "/", 1)) 2999 end = ERR_PTR(-ENAMETOOLONG); 3000 return end; 3001 } 3002 EXPORT_SYMBOL(simple_dname); 3003 3004 /* 3005 * Write full pathname from the root of the filesystem into the buffer. 3006 */ 3007 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3008 { 3009 struct dentry *dentry; 3010 char *end, *retval; 3011 int len, seq = 0; 3012 int error = 0; 3013 3014 if (buflen < 2) 3015 goto Elong; 3016 3017 rcu_read_lock(); 3018 restart: 3019 dentry = d; 3020 end = buf + buflen; 3021 len = buflen; 3022 prepend(&end, &len, "\0", 1); 3023 /* Get '/' right */ 3024 retval = end-1; 3025 *retval = '/'; 3026 read_seqbegin_or_lock(&rename_lock, &seq); 3027 while (!IS_ROOT(dentry)) { 3028 struct dentry *parent = dentry->d_parent; 3029 3030 prefetch(parent); 3031 error = prepend_name(&end, &len, &dentry->d_name); 3032 if (error) 3033 break; 3034 3035 retval = end; 3036 dentry = parent; 3037 } 3038 if (!(seq & 1)) 3039 rcu_read_unlock(); 3040 if (need_seqretry(&rename_lock, seq)) { 3041 seq = 1; 3042 goto restart; 3043 } 3044 done_seqretry(&rename_lock, seq); 3045 if (error) 3046 goto Elong; 3047 return retval; 3048 Elong: 3049 return ERR_PTR(-ENAMETOOLONG); 3050 } 3051 3052 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3053 { 3054 return __dentry_path(dentry, buf, buflen); 3055 } 3056 EXPORT_SYMBOL(dentry_path_raw); 3057 3058 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3059 { 3060 char *p = NULL; 3061 char *retval; 3062 3063 if (d_unlinked(dentry)) { 3064 p = buf + buflen; 3065 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3066 goto Elong; 3067 buflen++; 3068 } 3069 retval = __dentry_path(dentry, buf, buflen); 3070 if (!IS_ERR(retval) && p) 3071 *p = '/'; /* restore '/' overriden with '\0' */ 3072 return retval; 3073 Elong: 3074 return ERR_PTR(-ENAMETOOLONG); 3075 } 3076 3077 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3078 struct path *pwd) 3079 { 3080 unsigned seq; 3081 3082 do { 3083 seq = read_seqcount_begin(&fs->seq); 3084 *root = fs->root; 3085 *pwd = fs->pwd; 3086 } while (read_seqcount_retry(&fs->seq, seq)); 3087 } 3088 3089 /* 3090 * NOTE! The user-level library version returns a 3091 * character pointer. The kernel system call just 3092 * returns the length of the buffer filled (which 3093 * includes the ending '\0' character), or a negative 3094 * error value. So libc would do something like 3095 * 3096 * char *getcwd(char * buf, size_t size) 3097 * { 3098 * int retval; 3099 * 3100 * retval = sys_getcwd(buf, size); 3101 * if (retval >= 0) 3102 * return buf; 3103 * errno = -retval; 3104 * return NULL; 3105 * } 3106 */ 3107 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3108 { 3109 int error; 3110 struct path pwd, root; 3111 char *page = __getname(); 3112 3113 if (!page) 3114 return -ENOMEM; 3115 3116 rcu_read_lock(); 3117 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3118 3119 error = -ENOENT; 3120 if (!d_unlinked(pwd.dentry)) { 3121 unsigned long len; 3122 char *cwd = page + PATH_MAX; 3123 int buflen = PATH_MAX; 3124 3125 prepend(&cwd, &buflen, "\0", 1); 3126 error = prepend_path(&pwd, &root, &cwd, &buflen); 3127 rcu_read_unlock(); 3128 3129 if (error < 0) 3130 goto out; 3131 3132 /* Unreachable from current root */ 3133 if (error > 0) { 3134 error = prepend_unreachable(&cwd, &buflen); 3135 if (error) 3136 goto out; 3137 } 3138 3139 error = -ERANGE; 3140 len = PATH_MAX + page - cwd; 3141 if (len <= size) { 3142 error = len; 3143 if (copy_to_user(buf, cwd, len)) 3144 error = -EFAULT; 3145 } 3146 } else { 3147 rcu_read_unlock(); 3148 } 3149 3150 out: 3151 __putname(page); 3152 return error; 3153 } 3154 3155 /* 3156 * Test whether new_dentry is a subdirectory of old_dentry. 3157 * 3158 * Trivially implemented using the dcache structure 3159 */ 3160 3161 /** 3162 * is_subdir - is new dentry a subdirectory of old_dentry 3163 * @new_dentry: new dentry 3164 * @old_dentry: old dentry 3165 * 3166 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3167 * Returns 0 otherwise. 3168 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3169 */ 3170 3171 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3172 { 3173 int result; 3174 unsigned seq; 3175 3176 if (new_dentry == old_dentry) 3177 return 1; 3178 3179 do { 3180 /* for restarting inner loop in case of seq retry */ 3181 seq = read_seqbegin(&rename_lock); 3182 /* 3183 * Need rcu_readlock to protect against the d_parent trashing 3184 * due to d_move 3185 */ 3186 rcu_read_lock(); 3187 if (d_ancestor(old_dentry, new_dentry)) 3188 result = 1; 3189 else 3190 result = 0; 3191 rcu_read_unlock(); 3192 } while (read_seqretry(&rename_lock, seq)); 3193 3194 return result; 3195 } 3196 3197 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3198 { 3199 struct dentry *root = data; 3200 if (dentry != root) { 3201 if (d_unhashed(dentry) || !dentry->d_inode) 3202 return D_WALK_SKIP; 3203 3204 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3205 dentry->d_flags |= DCACHE_GENOCIDE; 3206 dentry->d_lockref.count--; 3207 } 3208 } 3209 return D_WALK_CONTINUE; 3210 } 3211 3212 void d_genocide(struct dentry *parent) 3213 { 3214 d_walk(parent, parent, d_genocide_kill, NULL); 3215 } 3216 3217 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3218 { 3219 inode_dec_link_count(inode); 3220 BUG_ON(dentry->d_name.name != dentry->d_iname || 3221 !hlist_unhashed(&dentry->d_u.d_alias) || 3222 !d_unlinked(dentry)); 3223 spin_lock(&dentry->d_parent->d_lock); 3224 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3225 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3226 (unsigned long long)inode->i_ino); 3227 spin_unlock(&dentry->d_lock); 3228 spin_unlock(&dentry->d_parent->d_lock); 3229 d_instantiate(dentry, inode); 3230 } 3231 EXPORT_SYMBOL(d_tmpfile); 3232 3233 static __initdata unsigned long dhash_entries; 3234 static int __init set_dhash_entries(char *str) 3235 { 3236 if (!str) 3237 return 0; 3238 dhash_entries = simple_strtoul(str, &str, 0); 3239 return 1; 3240 } 3241 __setup("dhash_entries=", set_dhash_entries); 3242 3243 static void __init dcache_init_early(void) 3244 { 3245 unsigned int loop; 3246 3247 /* If hashes are distributed across NUMA nodes, defer 3248 * hash allocation until vmalloc space is available. 3249 */ 3250 if (hashdist) 3251 return; 3252 3253 dentry_hashtable = 3254 alloc_large_system_hash("Dentry cache", 3255 sizeof(struct hlist_bl_head), 3256 dhash_entries, 3257 13, 3258 HASH_EARLY, 3259 &d_hash_shift, 3260 &d_hash_mask, 3261 0, 3262 0); 3263 3264 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3265 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3266 } 3267 3268 static void __init dcache_init(void) 3269 { 3270 unsigned int loop; 3271 3272 /* 3273 * A constructor could be added for stable state like the lists, 3274 * but it is probably not worth it because of the cache nature 3275 * of the dcache. 3276 */ 3277 dentry_cache = KMEM_CACHE(dentry, 3278 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3279 3280 /* Hash may have been set up in dcache_init_early */ 3281 if (!hashdist) 3282 return; 3283 3284 dentry_hashtable = 3285 alloc_large_system_hash("Dentry cache", 3286 sizeof(struct hlist_bl_head), 3287 dhash_entries, 3288 13, 3289 0, 3290 &d_hash_shift, 3291 &d_hash_mask, 3292 0, 3293 0); 3294 3295 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3296 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3297 } 3298 3299 /* SLAB cache for __getname() consumers */ 3300 struct kmem_cache *names_cachep __read_mostly; 3301 EXPORT_SYMBOL(names_cachep); 3302 3303 EXPORT_SYMBOL(d_genocide); 3304 3305 void __init vfs_caches_init_early(void) 3306 { 3307 dcache_init_early(); 3308 inode_init_early(); 3309 } 3310 3311 void __init vfs_caches_init(unsigned long mempages) 3312 { 3313 unsigned long reserve; 3314 3315 /* Base hash sizes on available memory, with a reserve equal to 3316 150% of current kernel size */ 3317 3318 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3319 mempages -= reserve; 3320 3321 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3322 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3323 3324 dcache_init(); 3325 inode_init(); 3326 files_init(mempages); 3327 mnt_init(); 3328 bdev_cache_init(); 3329 chrdev_init(); 3330 } 3331