xref: /openbmc/linux/fs/dcache.c (revision 40867d74c374b235e14d839f3a77f26684feefe5)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/dcache.c
4   *
5   * Complete reimplementation
6   * (C) 1997 Thomas Schoebel-Theuer,
7   * with heavy changes by Linus Torvalds
8   */
9  
10  /*
11   * Notes on the allocation strategy:
12   *
13   * The dcache is a master of the icache - whenever a dcache entry
14   * exists, the inode will always exist. "iput()" is done either when
15   * the dcache entry is deleted or garbage collected.
16   */
17  
18  #include <linux/ratelimit.h>
19  #include <linux/string.h>
20  #include <linux/mm.h>
21  #include <linux/fs.h>
22  #include <linux/fscrypt.h>
23  #include <linux/fsnotify.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/hash.h>
27  #include <linux/cache.h>
28  #include <linux/export.h>
29  #include <linux/security.h>
30  #include <linux/seqlock.h>
31  #include <linux/memblock.h>
32  #include <linux/bit_spinlock.h>
33  #include <linux/rculist_bl.h>
34  #include <linux/list_lru.h>
35  #include "internal.h"
36  #include "mount.h"
37  
38  /*
39   * Usage:
40   * dcache->d_inode->i_lock protects:
41   *   - i_dentry, d_u.d_alias, d_inode of aliases
42   * dcache_hash_bucket lock protects:
43   *   - the dcache hash table
44   * s_roots bl list spinlock protects:
45   *   - the s_roots list (see __d_drop)
46   * dentry->d_sb->s_dentry_lru_lock protects:
47   *   - the dcache lru lists and counters
48   * d_lock protects:
49   *   - d_flags
50   *   - d_name
51   *   - d_lru
52   *   - d_count
53   *   - d_unhashed()
54   *   - d_parent and d_subdirs
55   *   - childrens' d_child and d_parent
56   *   - d_u.d_alias, d_inode
57   *
58   * Ordering:
59   * dentry->d_inode->i_lock
60   *   dentry->d_lock
61   *     dentry->d_sb->s_dentry_lru_lock
62   *     dcache_hash_bucket lock
63   *     s_roots lock
64   *
65   * If there is an ancestor relationship:
66   * dentry->d_parent->...->d_parent->d_lock
67   *   ...
68   *     dentry->d_parent->d_lock
69   *       dentry->d_lock
70   *
71   * If no ancestor relationship:
72   * arbitrary, since it's serialized on rename_lock
73   */
74  int sysctl_vfs_cache_pressure __read_mostly = 100;
75  EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76  
77  __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78  
79  EXPORT_SYMBOL(rename_lock);
80  
81  static struct kmem_cache *dentry_cache __read_mostly;
82  
83  const struct qstr empty_name = QSTR_INIT("", 0);
84  EXPORT_SYMBOL(empty_name);
85  const struct qstr slash_name = QSTR_INIT("/", 1);
86  EXPORT_SYMBOL(slash_name);
87  const struct qstr dotdot_name = QSTR_INIT("..", 2);
88  EXPORT_SYMBOL(dotdot_name);
89  
90  /*
91   * This is the single most critical data structure when it comes
92   * to the dcache: the hashtable for lookups. Somebody should try
93   * to make this good - I've just made it work.
94   *
95   * This hash-function tries to avoid losing too many bits of hash
96   * information, yet avoid using a prime hash-size or similar.
97   */
98  
99  static unsigned int d_hash_shift __read_mostly;
100  
101  static struct hlist_bl_head *dentry_hashtable __read_mostly;
102  
103  static inline struct hlist_bl_head *d_hash(unsigned int hash)
104  {
105  	return dentry_hashtable + (hash >> d_hash_shift);
106  }
107  
108  #define IN_LOOKUP_SHIFT 10
109  static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110  
111  static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112  					unsigned int hash)
113  {
114  	hash += (unsigned long) parent / L1_CACHE_BYTES;
115  	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116  }
117  
118  struct dentry_stat_t {
119  	long nr_dentry;
120  	long nr_unused;
121  	long age_limit;		/* age in seconds */
122  	long want_pages;	/* pages requested by system */
123  	long nr_negative;	/* # of unused negative dentries */
124  	long dummy;		/* Reserved for future use */
125  };
126  
127  static DEFINE_PER_CPU(long, nr_dentry);
128  static DEFINE_PER_CPU(long, nr_dentry_unused);
129  static DEFINE_PER_CPU(long, nr_dentry_negative);
130  
131  #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132  /* Statistics gathering. */
133  static struct dentry_stat_t dentry_stat = {
134  	.age_limit = 45,
135  };
136  
137  /*
138   * Here we resort to our own counters instead of using generic per-cpu counters
139   * for consistency with what the vfs inode code does. We are expected to harvest
140   * better code and performance by having our own specialized counters.
141   *
142   * Please note that the loop is done over all possible CPUs, not over all online
143   * CPUs. The reason for this is that we don't want to play games with CPUs going
144   * on and off. If one of them goes off, we will just keep their counters.
145   *
146   * glommer: See cffbc8a for details, and if you ever intend to change this,
147   * please update all vfs counters to match.
148   */
149  static long get_nr_dentry(void)
150  {
151  	int i;
152  	long sum = 0;
153  	for_each_possible_cpu(i)
154  		sum += per_cpu(nr_dentry, i);
155  	return sum < 0 ? 0 : sum;
156  }
157  
158  static long get_nr_dentry_unused(void)
159  {
160  	int i;
161  	long sum = 0;
162  	for_each_possible_cpu(i)
163  		sum += per_cpu(nr_dentry_unused, i);
164  	return sum < 0 ? 0 : sum;
165  }
166  
167  static long get_nr_dentry_negative(void)
168  {
169  	int i;
170  	long sum = 0;
171  
172  	for_each_possible_cpu(i)
173  		sum += per_cpu(nr_dentry_negative, i);
174  	return sum < 0 ? 0 : sum;
175  }
176  
177  static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178  			  size_t *lenp, loff_t *ppos)
179  {
180  	dentry_stat.nr_dentry = get_nr_dentry();
181  	dentry_stat.nr_unused = get_nr_dentry_unused();
182  	dentry_stat.nr_negative = get_nr_dentry_negative();
183  	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184  }
185  
186  static struct ctl_table fs_dcache_sysctls[] = {
187  	{
188  		.procname	= "dentry-state",
189  		.data		= &dentry_stat,
190  		.maxlen		= 6*sizeof(long),
191  		.mode		= 0444,
192  		.proc_handler	= proc_nr_dentry,
193  	},
194  	{ }
195  };
196  
197  static int __init init_fs_dcache_sysctls(void)
198  {
199  	register_sysctl_init("fs", fs_dcache_sysctls);
200  	return 0;
201  }
202  fs_initcall(init_fs_dcache_sysctls);
203  #endif
204  
205  /*
206   * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207   * The strings are both count bytes long, and count is non-zero.
208   */
209  #ifdef CONFIG_DCACHE_WORD_ACCESS
210  
211  #include <asm/word-at-a-time.h>
212  /*
213   * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214   * aligned allocation for this particular component. We don't
215   * strictly need the load_unaligned_zeropad() safety, but it
216   * doesn't hurt either.
217   *
218   * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219   * need the careful unaligned handling.
220   */
221  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222  {
223  	unsigned long a,b,mask;
224  
225  	for (;;) {
226  		a = read_word_at_a_time(cs);
227  		b = load_unaligned_zeropad(ct);
228  		if (tcount < sizeof(unsigned long))
229  			break;
230  		if (unlikely(a != b))
231  			return 1;
232  		cs += sizeof(unsigned long);
233  		ct += sizeof(unsigned long);
234  		tcount -= sizeof(unsigned long);
235  		if (!tcount)
236  			return 0;
237  	}
238  	mask = bytemask_from_count(tcount);
239  	return unlikely(!!((a ^ b) & mask));
240  }
241  
242  #else
243  
244  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245  {
246  	do {
247  		if (*cs != *ct)
248  			return 1;
249  		cs++;
250  		ct++;
251  		tcount--;
252  	} while (tcount);
253  	return 0;
254  }
255  
256  #endif
257  
258  static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259  {
260  	/*
261  	 * Be careful about RCU walk racing with rename:
262  	 * use 'READ_ONCE' to fetch the name pointer.
263  	 *
264  	 * NOTE! Even if a rename will mean that the length
265  	 * was not loaded atomically, we don't care. The
266  	 * RCU walk will check the sequence count eventually,
267  	 * and catch it. And we won't overrun the buffer,
268  	 * because we're reading the name pointer atomically,
269  	 * and a dentry name is guaranteed to be properly
270  	 * terminated with a NUL byte.
271  	 *
272  	 * End result: even if 'len' is wrong, we'll exit
273  	 * early because the data cannot match (there can
274  	 * be no NUL in the ct/tcount data)
275  	 */
276  	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277  
278  	return dentry_string_cmp(cs, ct, tcount);
279  }
280  
281  struct external_name {
282  	union {
283  		atomic_t count;
284  		struct rcu_head head;
285  	} u;
286  	unsigned char name[];
287  };
288  
289  static inline struct external_name *external_name(struct dentry *dentry)
290  {
291  	return container_of(dentry->d_name.name, struct external_name, name[0]);
292  }
293  
294  static void __d_free(struct rcu_head *head)
295  {
296  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297  
298  	kmem_cache_free(dentry_cache, dentry);
299  }
300  
301  static void __d_free_external(struct rcu_head *head)
302  {
303  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304  	kfree(external_name(dentry));
305  	kmem_cache_free(dentry_cache, dentry);
306  }
307  
308  static inline int dname_external(const struct dentry *dentry)
309  {
310  	return dentry->d_name.name != dentry->d_iname;
311  }
312  
313  void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314  {
315  	spin_lock(&dentry->d_lock);
316  	name->name = dentry->d_name;
317  	if (unlikely(dname_external(dentry))) {
318  		atomic_inc(&external_name(dentry)->u.count);
319  	} else {
320  		memcpy(name->inline_name, dentry->d_iname,
321  		       dentry->d_name.len + 1);
322  		name->name.name = name->inline_name;
323  	}
324  	spin_unlock(&dentry->d_lock);
325  }
326  EXPORT_SYMBOL(take_dentry_name_snapshot);
327  
328  void release_dentry_name_snapshot(struct name_snapshot *name)
329  {
330  	if (unlikely(name->name.name != name->inline_name)) {
331  		struct external_name *p;
332  		p = container_of(name->name.name, struct external_name, name[0]);
333  		if (unlikely(atomic_dec_and_test(&p->u.count)))
334  			kfree_rcu(p, u.head);
335  	}
336  }
337  EXPORT_SYMBOL(release_dentry_name_snapshot);
338  
339  static inline void __d_set_inode_and_type(struct dentry *dentry,
340  					  struct inode *inode,
341  					  unsigned type_flags)
342  {
343  	unsigned flags;
344  
345  	dentry->d_inode = inode;
346  	flags = READ_ONCE(dentry->d_flags);
347  	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348  	flags |= type_flags;
349  	smp_store_release(&dentry->d_flags, flags);
350  }
351  
352  static inline void __d_clear_type_and_inode(struct dentry *dentry)
353  {
354  	unsigned flags = READ_ONCE(dentry->d_flags);
355  
356  	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357  	WRITE_ONCE(dentry->d_flags, flags);
358  	dentry->d_inode = NULL;
359  	if (dentry->d_flags & DCACHE_LRU_LIST)
360  		this_cpu_inc(nr_dentry_negative);
361  }
362  
363  static void dentry_free(struct dentry *dentry)
364  {
365  	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366  	if (unlikely(dname_external(dentry))) {
367  		struct external_name *p = external_name(dentry);
368  		if (likely(atomic_dec_and_test(&p->u.count))) {
369  			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370  			return;
371  		}
372  	}
373  	/* if dentry was never visible to RCU, immediate free is OK */
374  	if (dentry->d_flags & DCACHE_NORCU)
375  		__d_free(&dentry->d_u.d_rcu);
376  	else
377  		call_rcu(&dentry->d_u.d_rcu, __d_free);
378  }
379  
380  /*
381   * Release the dentry's inode, using the filesystem
382   * d_iput() operation if defined.
383   */
384  static void dentry_unlink_inode(struct dentry * dentry)
385  	__releases(dentry->d_lock)
386  	__releases(dentry->d_inode->i_lock)
387  {
388  	struct inode *inode = dentry->d_inode;
389  
390  	raw_write_seqcount_begin(&dentry->d_seq);
391  	__d_clear_type_and_inode(dentry);
392  	hlist_del_init(&dentry->d_u.d_alias);
393  	raw_write_seqcount_end(&dentry->d_seq);
394  	spin_unlock(&dentry->d_lock);
395  	spin_unlock(&inode->i_lock);
396  	if (!inode->i_nlink)
397  		fsnotify_inoderemove(inode);
398  	if (dentry->d_op && dentry->d_op->d_iput)
399  		dentry->d_op->d_iput(dentry, inode);
400  	else
401  		iput(inode);
402  }
403  
404  /*
405   * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406   * is in use - which includes both the "real" per-superblock
407   * LRU list _and_ the DCACHE_SHRINK_LIST use.
408   *
409   * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410   * on the shrink list (ie not on the superblock LRU list).
411   *
412   * The per-cpu "nr_dentry_unused" counters are updated with
413   * the DCACHE_LRU_LIST bit.
414   *
415   * The per-cpu "nr_dentry_negative" counters are only updated
416   * when deleted from or added to the per-superblock LRU list, not
417   * from/to the shrink list. That is to avoid an unneeded dec/inc
418   * pair when moving from LRU to shrink list in select_collect().
419   *
420   * These helper functions make sure we always follow the
421   * rules. d_lock must be held by the caller.
422   */
423  #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424  static void d_lru_add(struct dentry *dentry)
425  {
426  	D_FLAG_VERIFY(dentry, 0);
427  	dentry->d_flags |= DCACHE_LRU_LIST;
428  	this_cpu_inc(nr_dentry_unused);
429  	if (d_is_negative(dentry))
430  		this_cpu_inc(nr_dentry_negative);
431  	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432  }
433  
434  static void d_lru_del(struct dentry *dentry)
435  {
436  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437  	dentry->d_flags &= ~DCACHE_LRU_LIST;
438  	this_cpu_dec(nr_dentry_unused);
439  	if (d_is_negative(dentry))
440  		this_cpu_dec(nr_dentry_negative);
441  	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442  }
443  
444  static void d_shrink_del(struct dentry *dentry)
445  {
446  	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447  	list_del_init(&dentry->d_lru);
448  	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449  	this_cpu_dec(nr_dentry_unused);
450  }
451  
452  static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453  {
454  	D_FLAG_VERIFY(dentry, 0);
455  	list_add(&dentry->d_lru, list);
456  	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457  	this_cpu_inc(nr_dentry_unused);
458  }
459  
460  /*
461   * These can only be called under the global LRU lock, ie during the
462   * callback for freeing the LRU list. "isolate" removes it from the
463   * LRU lists entirely, while shrink_move moves it to the indicated
464   * private list.
465   */
466  static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467  {
468  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469  	dentry->d_flags &= ~DCACHE_LRU_LIST;
470  	this_cpu_dec(nr_dentry_unused);
471  	if (d_is_negative(dentry))
472  		this_cpu_dec(nr_dentry_negative);
473  	list_lru_isolate(lru, &dentry->d_lru);
474  }
475  
476  static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477  			      struct list_head *list)
478  {
479  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480  	dentry->d_flags |= DCACHE_SHRINK_LIST;
481  	if (d_is_negative(dentry))
482  		this_cpu_dec(nr_dentry_negative);
483  	list_lru_isolate_move(lru, &dentry->d_lru, list);
484  }
485  
486  static void ___d_drop(struct dentry *dentry)
487  {
488  	struct hlist_bl_head *b;
489  	/*
490  	 * Hashed dentries are normally on the dentry hashtable,
491  	 * with the exception of those newly allocated by
492  	 * d_obtain_root, which are always IS_ROOT:
493  	 */
494  	if (unlikely(IS_ROOT(dentry)))
495  		b = &dentry->d_sb->s_roots;
496  	else
497  		b = d_hash(dentry->d_name.hash);
498  
499  	hlist_bl_lock(b);
500  	__hlist_bl_del(&dentry->d_hash);
501  	hlist_bl_unlock(b);
502  }
503  
504  void __d_drop(struct dentry *dentry)
505  {
506  	if (!d_unhashed(dentry)) {
507  		___d_drop(dentry);
508  		dentry->d_hash.pprev = NULL;
509  		write_seqcount_invalidate(&dentry->d_seq);
510  	}
511  }
512  EXPORT_SYMBOL(__d_drop);
513  
514  /**
515   * d_drop - drop a dentry
516   * @dentry: dentry to drop
517   *
518   * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519   * be found through a VFS lookup any more. Note that this is different from
520   * deleting the dentry - d_delete will try to mark the dentry negative if
521   * possible, giving a successful _negative_ lookup, while d_drop will
522   * just make the cache lookup fail.
523   *
524   * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525   * reason (NFS timeouts or autofs deletes).
526   *
527   * __d_drop requires dentry->d_lock
528   *
529   * ___d_drop doesn't mark dentry as "unhashed"
530   * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531   */
532  void d_drop(struct dentry *dentry)
533  {
534  	spin_lock(&dentry->d_lock);
535  	__d_drop(dentry);
536  	spin_unlock(&dentry->d_lock);
537  }
538  EXPORT_SYMBOL(d_drop);
539  
540  static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541  {
542  	struct dentry *next;
543  	/*
544  	 * Inform d_walk() and shrink_dentry_list() that we are no longer
545  	 * attached to the dentry tree
546  	 */
547  	dentry->d_flags |= DCACHE_DENTRY_KILLED;
548  	if (unlikely(list_empty(&dentry->d_child)))
549  		return;
550  	__list_del_entry(&dentry->d_child);
551  	/*
552  	 * Cursors can move around the list of children.  While we'd been
553  	 * a normal list member, it didn't matter - ->d_child.next would've
554  	 * been updated.  However, from now on it won't be and for the
555  	 * things like d_walk() it might end up with a nasty surprise.
556  	 * Normally d_walk() doesn't care about cursors moving around -
557  	 * ->d_lock on parent prevents that and since a cursor has no children
558  	 * of its own, we get through it without ever unlocking the parent.
559  	 * There is one exception, though - if we ascend from a child that
560  	 * gets killed as soon as we unlock it, the next sibling is found
561  	 * using the value left in its ->d_child.next.  And if _that_
562  	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563  	 * before d_walk() regains parent->d_lock, we'll end up skipping
564  	 * everything the cursor had been moved past.
565  	 *
566  	 * Solution: make sure that the pointer left behind in ->d_child.next
567  	 * points to something that won't be moving around.  I.e. skip the
568  	 * cursors.
569  	 */
570  	while (dentry->d_child.next != &parent->d_subdirs) {
571  		next = list_entry(dentry->d_child.next, struct dentry, d_child);
572  		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573  			break;
574  		dentry->d_child.next = next->d_child.next;
575  	}
576  }
577  
578  static void __dentry_kill(struct dentry *dentry)
579  {
580  	struct dentry *parent = NULL;
581  	bool can_free = true;
582  	if (!IS_ROOT(dentry))
583  		parent = dentry->d_parent;
584  
585  	/*
586  	 * The dentry is now unrecoverably dead to the world.
587  	 */
588  	lockref_mark_dead(&dentry->d_lockref);
589  
590  	/*
591  	 * inform the fs via d_prune that this dentry is about to be
592  	 * unhashed and destroyed.
593  	 */
594  	if (dentry->d_flags & DCACHE_OP_PRUNE)
595  		dentry->d_op->d_prune(dentry);
596  
597  	if (dentry->d_flags & DCACHE_LRU_LIST) {
598  		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599  			d_lru_del(dentry);
600  	}
601  	/* if it was on the hash then remove it */
602  	__d_drop(dentry);
603  	dentry_unlist(dentry, parent);
604  	if (parent)
605  		spin_unlock(&parent->d_lock);
606  	if (dentry->d_inode)
607  		dentry_unlink_inode(dentry);
608  	else
609  		spin_unlock(&dentry->d_lock);
610  	this_cpu_dec(nr_dentry);
611  	if (dentry->d_op && dentry->d_op->d_release)
612  		dentry->d_op->d_release(dentry);
613  
614  	spin_lock(&dentry->d_lock);
615  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616  		dentry->d_flags |= DCACHE_MAY_FREE;
617  		can_free = false;
618  	}
619  	spin_unlock(&dentry->d_lock);
620  	if (likely(can_free))
621  		dentry_free(dentry);
622  	cond_resched();
623  }
624  
625  static struct dentry *__lock_parent(struct dentry *dentry)
626  {
627  	struct dentry *parent;
628  	rcu_read_lock();
629  	spin_unlock(&dentry->d_lock);
630  again:
631  	parent = READ_ONCE(dentry->d_parent);
632  	spin_lock(&parent->d_lock);
633  	/*
634  	 * We can't blindly lock dentry until we are sure
635  	 * that we won't violate the locking order.
636  	 * Any changes of dentry->d_parent must have
637  	 * been done with parent->d_lock held, so
638  	 * spin_lock() above is enough of a barrier
639  	 * for checking if it's still our child.
640  	 */
641  	if (unlikely(parent != dentry->d_parent)) {
642  		spin_unlock(&parent->d_lock);
643  		goto again;
644  	}
645  	rcu_read_unlock();
646  	if (parent != dentry)
647  		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648  	else
649  		parent = NULL;
650  	return parent;
651  }
652  
653  static inline struct dentry *lock_parent(struct dentry *dentry)
654  {
655  	struct dentry *parent = dentry->d_parent;
656  	if (IS_ROOT(dentry))
657  		return NULL;
658  	if (likely(spin_trylock(&parent->d_lock)))
659  		return parent;
660  	return __lock_parent(dentry);
661  }
662  
663  static inline bool retain_dentry(struct dentry *dentry)
664  {
665  	WARN_ON(d_in_lookup(dentry));
666  
667  	/* Unreachable? Get rid of it */
668  	if (unlikely(d_unhashed(dentry)))
669  		return false;
670  
671  	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672  		return false;
673  
674  	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675  		if (dentry->d_op->d_delete(dentry))
676  			return false;
677  	}
678  
679  	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680  		return false;
681  
682  	/* retain; LRU fodder */
683  	dentry->d_lockref.count--;
684  	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685  		d_lru_add(dentry);
686  	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687  		dentry->d_flags |= DCACHE_REFERENCED;
688  	return true;
689  }
690  
691  void d_mark_dontcache(struct inode *inode)
692  {
693  	struct dentry *de;
694  
695  	spin_lock(&inode->i_lock);
696  	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697  		spin_lock(&de->d_lock);
698  		de->d_flags |= DCACHE_DONTCACHE;
699  		spin_unlock(&de->d_lock);
700  	}
701  	inode->i_state |= I_DONTCACHE;
702  	spin_unlock(&inode->i_lock);
703  }
704  EXPORT_SYMBOL(d_mark_dontcache);
705  
706  /*
707   * Finish off a dentry we've decided to kill.
708   * dentry->d_lock must be held, returns with it unlocked.
709   * Returns dentry requiring refcount drop, or NULL if we're done.
710   */
711  static struct dentry *dentry_kill(struct dentry *dentry)
712  	__releases(dentry->d_lock)
713  {
714  	struct inode *inode = dentry->d_inode;
715  	struct dentry *parent = NULL;
716  
717  	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718  		goto slow_positive;
719  
720  	if (!IS_ROOT(dentry)) {
721  		parent = dentry->d_parent;
722  		if (unlikely(!spin_trylock(&parent->d_lock))) {
723  			parent = __lock_parent(dentry);
724  			if (likely(inode || !dentry->d_inode))
725  				goto got_locks;
726  			/* negative that became positive */
727  			if (parent)
728  				spin_unlock(&parent->d_lock);
729  			inode = dentry->d_inode;
730  			goto slow_positive;
731  		}
732  	}
733  	__dentry_kill(dentry);
734  	return parent;
735  
736  slow_positive:
737  	spin_unlock(&dentry->d_lock);
738  	spin_lock(&inode->i_lock);
739  	spin_lock(&dentry->d_lock);
740  	parent = lock_parent(dentry);
741  got_locks:
742  	if (unlikely(dentry->d_lockref.count != 1)) {
743  		dentry->d_lockref.count--;
744  	} else if (likely(!retain_dentry(dentry))) {
745  		__dentry_kill(dentry);
746  		return parent;
747  	}
748  	/* we are keeping it, after all */
749  	if (inode)
750  		spin_unlock(&inode->i_lock);
751  	if (parent)
752  		spin_unlock(&parent->d_lock);
753  	spin_unlock(&dentry->d_lock);
754  	return NULL;
755  }
756  
757  /*
758   * Try to do a lockless dput(), and return whether that was successful.
759   *
760   * If unsuccessful, we return false, having already taken the dentry lock.
761   *
762   * The caller needs to hold the RCU read lock, so that the dentry is
763   * guaranteed to stay around even if the refcount goes down to zero!
764   */
765  static inline bool fast_dput(struct dentry *dentry)
766  {
767  	int ret;
768  	unsigned int d_flags;
769  
770  	/*
771  	 * If we have a d_op->d_delete() operation, we sould not
772  	 * let the dentry count go to zero, so use "put_or_lock".
773  	 */
774  	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775  		return lockref_put_or_lock(&dentry->d_lockref);
776  
777  	/*
778  	 * .. otherwise, we can try to just decrement the
779  	 * lockref optimistically.
780  	 */
781  	ret = lockref_put_return(&dentry->d_lockref);
782  
783  	/*
784  	 * If the lockref_put_return() failed due to the lock being held
785  	 * by somebody else, the fast path has failed. We will need to
786  	 * get the lock, and then check the count again.
787  	 */
788  	if (unlikely(ret < 0)) {
789  		spin_lock(&dentry->d_lock);
790  		if (dentry->d_lockref.count > 1) {
791  			dentry->d_lockref.count--;
792  			spin_unlock(&dentry->d_lock);
793  			return true;
794  		}
795  		return false;
796  	}
797  
798  	/*
799  	 * If we weren't the last ref, we're done.
800  	 */
801  	if (ret)
802  		return true;
803  
804  	/*
805  	 * Careful, careful. The reference count went down
806  	 * to zero, but we don't hold the dentry lock, so
807  	 * somebody else could get it again, and do another
808  	 * dput(), and we need to not race with that.
809  	 *
810  	 * However, there is a very special and common case
811  	 * where we don't care, because there is nothing to
812  	 * do: the dentry is still hashed, it does not have
813  	 * a 'delete' op, and it's referenced and already on
814  	 * the LRU list.
815  	 *
816  	 * NOTE! Since we aren't locked, these values are
817  	 * not "stable". However, it is sufficient that at
818  	 * some point after we dropped the reference the
819  	 * dentry was hashed and the flags had the proper
820  	 * value. Other dentry users may have re-gotten
821  	 * a reference to the dentry and change that, but
822  	 * our work is done - we can leave the dentry
823  	 * around with a zero refcount.
824  	 *
825  	 * Nevertheless, there are two cases that we should kill
826  	 * the dentry anyway.
827  	 * 1. free disconnected dentries as soon as their refcount
828  	 *    reached zero.
829  	 * 2. free dentries if they should not be cached.
830  	 */
831  	smp_rmb();
832  	d_flags = READ_ONCE(dentry->d_flags);
833  	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834  			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835  
836  	/* Nothing to do? Dropping the reference was all we needed? */
837  	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838  		return true;
839  
840  	/*
841  	 * Not the fast normal case? Get the lock. We've already decremented
842  	 * the refcount, but we'll need to re-check the situation after
843  	 * getting the lock.
844  	 */
845  	spin_lock(&dentry->d_lock);
846  
847  	/*
848  	 * Did somebody else grab a reference to it in the meantime, and
849  	 * we're no longer the last user after all? Alternatively, somebody
850  	 * else could have killed it and marked it dead. Either way, we
851  	 * don't need to do anything else.
852  	 */
853  	if (dentry->d_lockref.count) {
854  		spin_unlock(&dentry->d_lock);
855  		return true;
856  	}
857  
858  	/*
859  	 * Re-get the reference we optimistically dropped. We hold the
860  	 * lock, and we just tested that it was zero, so we can just
861  	 * set it to 1.
862  	 */
863  	dentry->d_lockref.count = 1;
864  	return false;
865  }
866  
867  
868  /*
869   * This is dput
870   *
871   * This is complicated by the fact that we do not want to put
872   * dentries that are no longer on any hash chain on the unused
873   * list: we'd much rather just get rid of them immediately.
874   *
875   * However, that implies that we have to traverse the dentry
876   * tree upwards to the parents which might _also_ now be
877   * scheduled for deletion (it may have been only waiting for
878   * its last child to go away).
879   *
880   * This tail recursion is done by hand as we don't want to depend
881   * on the compiler to always get this right (gcc generally doesn't).
882   * Real recursion would eat up our stack space.
883   */
884  
885  /*
886   * dput - release a dentry
887   * @dentry: dentry to release
888   *
889   * Release a dentry. This will drop the usage count and if appropriate
890   * call the dentry unlink method as well as removing it from the queues and
891   * releasing its resources. If the parent dentries were scheduled for release
892   * they too may now get deleted.
893   */
894  void dput(struct dentry *dentry)
895  {
896  	while (dentry) {
897  		might_sleep();
898  
899  		rcu_read_lock();
900  		if (likely(fast_dput(dentry))) {
901  			rcu_read_unlock();
902  			return;
903  		}
904  
905  		/* Slow case: now with the dentry lock held */
906  		rcu_read_unlock();
907  
908  		if (likely(retain_dentry(dentry))) {
909  			spin_unlock(&dentry->d_lock);
910  			return;
911  		}
912  
913  		dentry = dentry_kill(dentry);
914  	}
915  }
916  EXPORT_SYMBOL(dput);
917  
918  static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919  __must_hold(&dentry->d_lock)
920  {
921  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922  		/* let the owner of the list it's on deal with it */
923  		--dentry->d_lockref.count;
924  	} else {
925  		if (dentry->d_flags & DCACHE_LRU_LIST)
926  			d_lru_del(dentry);
927  		if (!--dentry->d_lockref.count)
928  			d_shrink_add(dentry, list);
929  	}
930  }
931  
932  void dput_to_list(struct dentry *dentry, struct list_head *list)
933  {
934  	rcu_read_lock();
935  	if (likely(fast_dput(dentry))) {
936  		rcu_read_unlock();
937  		return;
938  	}
939  	rcu_read_unlock();
940  	if (!retain_dentry(dentry))
941  		__dput_to_list(dentry, list);
942  	spin_unlock(&dentry->d_lock);
943  }
944  
945  /* This must be called with d_lock held */
946  static inline void __dget_dlock(struct dentry *dentry)
947  {
948  	dentry->d_lockref.count++;
949  }
950  
951  static inline void __dget(struct dentry *dentry)
952  {
953  	lockref_get(&dentry->d_lockref);
954  }
955  
956  struct dentry *dget_parent(struct dentry *dentry)
957  {
958  	int gotref;
959  	struct dentry *ret;
960  	unsigned seq;
961  
962  	/*
963  	 * Do optimistic parent lookup without any
964  	 * locking.
965  	 */
966  	rcu_read_lock();
967  	seq = raw_seqcount_begin(&dentry->d_seq);
968  	ret = READ_ONCE(dentry->d_parent);
969  	gotref = lockref_get_not_zero(&ret->d_lockref);
970  	rcu_read_unlock();
971  	if (likely(gotref)) {
972  		if (!read_seqcount_retry(&dentry->d_seq, seq))
973  			return ret;
974  		dput(ret);
975  	}
976  
977  repeat:
978  	/*
979  	 * Don't need rcu_dereference because we re-check it was correct under
980  	 * the lock.
981  	 */
982  	rcu_read_lock();
983  	ret = dentry->d_parent;
984  	spin_lock(&ret->d_lock);
985  	if (unlikely(ret != dentry->d_parent)) {
986  		spin_unlock(&ret->d_lock);
987  		rcu_read_unlock();
988  		goto repeat;
989  	}
990  	rcu_read_unlock();
991  	BUG_ON(!ret->d_lockref.count);
992  	ret->d_lockref.count++;
993  	spin_unlock(&ret->d_lock);
994  	return ret;
995  }
996  EXPORT_SYMBOL(dget_parent);
997  
998  static struct dentry * __d_find_any_alias(struct inode *inode)
999  {
1000  	struct dentry *alias;
1001  
1002  	if (hlist_empty(&inode->i_dentry))
1003  		return NULL;
1004  	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005  	__dget(alias);
1006  	return alias;
1007  }
1008  
1009  /**
1010   * d_find_any_alias - find any alias for a given inode
1011   * @inode: inode to find an alias for
1012   *
1013   * If any aliases exist for the given inode, take and return a
1014   * reference for one of them.  If no aliases exist, return %NULL.
1015   */
1016  struct dentry *d_find_any_alias(struct inode *inode)
1017  {
1018  	struct dentry *de;
1019  
1020  	spin_lock(&inode->i_lock);
1021  	de = __d_find_any_alias(inode);
1022  	spin_unlock(&inode->i_lock);
1023  	return de;
1024  }
1025  EXPORT_SYMBOL(d_find_any_alias);
1026  
1027  static struct dentry *__d_find_alias(struct inode *inode)
1028  {
1029  	struct dentry *alias;
1030  
1031  	if (S_ISDIR(inode->i_mode))
1032  		return __d_find_any_alias(inode);
1033  
1034  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035  		spin_lock(&alias->d_lock);
1036   		if (!d_unhashed(alias)) {
1037  			__dget_dlock(alias);
1038  			spin_unlock(&alias->d_lock);
1039  			return alias;
1040  		}
1041  		spin_unlock(&alias->d_lock);
1042  	}
1043  	return NULL;
1044  }
1045  
1046  /**
1047   * d_find_alias - grab a hashed alias of inode
1048   * @inode: inode in question
1049   *
1050   * If inode has a hashed alias, or is a directory and has any alias,
1051   * acquire the reference to alias and return it. Otherwise return NULL.
1052   * Notice that if inode is a directory there can be only one alias and
1053   * it can be unhashed only if it has no children, or if it is the root
1054   * of a filesystem, or if the directory was renamed and d_revalidate
1055   * was the first vfs operation to notice.
1056   *
1057   * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058   * any other hashed alias over that one.
1059   */
1060  struct dentry *d_find_alias(struct inode *inode)
1061  {
1062  	struct dentry *de = NULL;
1063  
1064  	if (!hlist_empty(&inode->i_dentry)) {
1065  		spin_lock(&inode->i_lock);
1066  		de = __d_find_alias(inode);
1067  		spin_unlock(&inode->i_lock);
1068  	}
1069  	return de;
1070  }
1071  EXPORT_SYMBOL(d_find_alias);
1072  
1073  /*
1074   *  Caller MUST be holding rcu_read_lock() and be guaranteed
1075   *  that inode won't get freed until rcu_read_unlock().
1076   */
1077  struct dentry *d_find_alias_rcu(struct inode *inode)
1078  {
1079  	struct hlist_head *l = &inode->i_dentry;
1080  	struct dentry *de = NULL;
1081  
1082  	spin_lock(&inode->i_lock);
1083  	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084  	// used without having I_FREEING set, which means no aliases left
1085  	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086  		if (S_ISDIR(inode->i_mode)) {
1087  			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088  		} else {
1089  			hlist_for_each_entry(de, l, d_u.d_alias)
1090  				if (!d_unhashed(de))
1091  					break;
1092  		}
1093  	}
1094  	spin_unlock(&inode->i_lock);
1095  	return de;
1096  }
1097  
1098  /*
1099   *	Try to kill dentries associated with this inode.
1100   * WARNING: you must own a reference to inode.
1101   */
1102  void d_prune_aliases(struct inode *inode)
1103  {
1104  	struct dentry *dentry;
1105  restart:
1106  	spin_lock(&inode->i_lock);
1107  	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108  		spin_lock(&dentry->d_lock);
1109  		if (!dentry->d_lockref.count) {
1110  			struct dentry *parent = lock_parent(dentry);
1111  			if (likely(!dentry->d_lockref.count)) {
1112  				__dentry_kill(dentry);
1113  				dput(parent);
1114  				goto restart;
1115  			}
1116  			if (parent)
1117  				spin_unlock(&parent->d_lock);
1118  		}
1119  		spin_unlock(&dentry->d_lock);
1120  	}
1121  	spin_unlock(&inode->i_lock);
1122  }
1123  EXPORT_SYMBOL(d_prune_aliases);
1124  
1125  /*
1126   * Lock a dentry from shrink list.
1127   * Called under rcu_read_lock() and dentry->d_lock; the former
1128   * guarantees that nothing we access will be freed under us.
1129   * Note that dentry is *not* protected from concurrent dentry_kill(),
1130   * d_delete(), etc.
1131   *
1132   * Return false if dentry has been disrupted or grabbed, leaving
1133   * the caller to kick it off-list.  Otherwise, return true and have
1134   * that dentry's inode and parent both locked.
1135   */
1136  static bool shrink_lock_dentry(struct dentry *dentry)
1137  {
1138  	struct inode *inode;
1139  	struct dentry *parent;
1140  
1141  	if (dentry->d_lockref.count)
1142  		return false;
1143  
1144  	inode = dentry->d_inode;
1145  	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146  		spin_unlock(&dentry->d_lock);
1147  		spin_lock(&inode->i_lock);
1148  		spin_lock(&dentry->d_lock);
1149  		if (unlikely(dentry->d_lockref.count))
1150  			goto out;
1151  		/* changed inode means that somebody had grabbed it */
1152  		if (unlikely(inode != dentry->d_inode))
1153  			goto out;
1154  	}
1155  
1156  	parent = dentry->d_parent;
1157  	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158  		return true;
1159  
1160  	spin_unlock(&dentry->d_lock);
1161  	spin_lock(&parent->d_lock);
1162  	if (unlikely(parent != dentry->d_parent)) {
1163  		spin_unlock(&parent->d_lock);
1164  		spin_lock(&dentry->d_lock);
1165  		goto out;
1166  	}
1167  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168  	if (likely(!dentry->d_lockref.count))
1169  		return true;
1170  	spin_unlock(&parent->d_lock);
1171  out:
1172  	if (inode)
1173  		spin_unlock(&inode->i_lock);
1174  	return false;
1175  }
1176  
1177  void shrink_dentry_list(struct list_head *list)
1178  {
1179  	while (!list_empty(list)) {
1180  		struct dentry *dentry, *parent;
1181  
1182  		dentry = list_entry(list->prev, struct dentry, d_lru);
1183  		spin_lock(&dentry->d_lock);
1184  		rcu_read_lock();
1185  		if (!shrink_lock_dentry(dentry)) {
1186  			bool can_free = false;
1187  			rcu_read_unlock();
1188  			d_shrink_del(dentry);
1189  			if (dentry->d_lockref.count < 0)
1190  				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191  			spin_unlock(&dentry->d_lock);
1192  			if (can_free)
1193  				dentry_free(dentry);
1194  			continue;
1195  		}
1196  		rcu_read_unlock();
1197  		d_shrink_del(dentry);
1198  		parent = dentry->d_parent;
1199  		if (parent != dentry)
1200  			__dput_to_list(parent, list);
1201  		__dentry_kill(dentry);
1202  	}
1203  }
1204  
1205  static enum lru_status dentry_lru_isolate(struct list_head *item,
1206  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207  {
1208  	struct list_head *freeable = arg;
1209  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1210  
1211  
1212  	/*
1213  	 * we are inverting the lru lock/dentry->d_lock here,
1214  	 * so use a trylock. If we fail to get the lock, just skip
1215  	 * it
1216  	 */
1217  	if (!spin_trylock(&dentry->d_lock))
1218  		return LRU_SKIP;
1219  
1220  	/*
1221  	 * Referenced dentries are still in use. If they have active
1222  	 * counts, just remove them from the LRU. Otherwise give them
1223  	 * another pass through the LRU.
1224  	 */
1225  	if (dentry->d_lockref.count) {
1226  		d_lru_isolate(lru, dentry);
1227  		spin_unlock(&dentry->d_lock);
1228  		return LRU_REMOVED;
1229  	}
1230  
1231  	if (dentry->d_flags & DCACHE_REFERENCED) {
1232  		dentry->d_flags &= ~DCACHE_REFERENCED;
1233  		spin_unlock(&dentry->d_lock);
1234  
1235  		/*
1236  		 * The list move itself will be made by the common LRU code. At
1237  		 * this point, we've dropped the dentry->d_lock but keep the
1238  		 * lru lock. This is safe to do, since every list movement is
1239  		 * protected by the lru lock even if both locks are held.
1240  		 *
1241  		 * This is guaranteed by the fact that all LRU management
1242  		 * functions are intermediated by the LRU API calls like
1243  		 * list_lru_add and list_lru_del. List movement in this file
1244  		 * only ever occur through this functions or through callbacks
1245  		 * like this one, that are called from the LRU API.
1246  		 *
1247  		 * The only exceptions to this are functions like
1248  		 * shrink_dentry_list, and code that first checks for the
1249  		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1250  		 * operating only with stack provided lists after they are
1251  		 * properly isolated from the main list.  It is thus, always a
1252  		 * local access.
1253  		 */
1254  		return LRU_ROTATE;
1255  	}
1256  
1257  	d_lru_shrink_move(lru, dentry, freeable);
1258  	spin_unlock(&dentry->d_lock);
1259  
1260  	return LRU_REMOVED;
1261  }
1262  
1263  /**
1264   * prune_dcache_sb - shrink the dcache
1265   * @sb: superblock
1266   * @sc: shrink control, passed to list_lru_shrink_walk()
1267   *
1268   * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269   * is done when we need more memory and called from the superblock shrinker
1270   * function.
1271   *
1272   * This function may fail to free any resources if all the dentries are in
1273   * use.
1274   */
1275  long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276  {
1277  	LIST_HEAD(dispose);
1278  	long freed;
1279  
1280  	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281  				     dentry_lru_isolate, &dispose);
1282  	shrink_dentry_list(&dispose);
1283  	return freed;
1284  }
1285  
1286  static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288  {
1289  	struct list_head *freeable = arg;
1290  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1291  
1292  	/*
1293  	 * we are inverting the lru lock/dentry->d_lock here,
1294  	 * so use a trylock. If we fail to get the lock, just skip
1295  	 * it
1296  	 */
1297  	if (!spin_trylock(&dentry->d_lock))
1298  		return LRU_SKIP;
1299  
1300  	d_lru_shrink_move(lru, dentry, freeable);
1301  	spin_unlock(&dentry->d_lock);
1302  
1303  	return LRU_REMOVED;
1304  }
1305  
1306  
1307  /**
1308   * shrink_dcache_sb - shrink dcache for a superblock
1309   * @sb: superblock
1310   *
1311   * Shrink the dcache for the specified super block. This is used to free
1312   * the dcache before unmounting a file system.
1313   */
1314  void shrink_dcache_sb(struct super_block *sb)
1315  {
1316  	do {
1317  		LIST_HEAD(dispose);
1318  
1319  		list_lru_walk(&sb->s_dentry_lru,
1320  			dentry_lru_isolate_shrink, &dispose, 1024);
1321  		shrink_dentry_list(&dispose);
1322  	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1323  }
1324  EXPORT_SYMBOL(shrink_dcache_sb);
1325  
1326  /**
1327   * enum d_walk_ret - action to talke during tree walk
1328   * @D_WALK_CONTINUE:	contrinue walk
1329   * @D_WALK_QUIT:	quit walk
1330   * @D_WALK_NORETRY:	quit when retry is needed
1331   * @D_WALK_SKIP:	skip this dentry and its children
1332   */
1333  enum d_walk_ret {
1334  	D_WALK_CONTINUE,
1335  	D_WALK_QUIT,
1336  	D_WALK_NORETRY,
1337  	D_WALK_SKIP,
1338  };
1339  
1340  /**
1341   * d_walk - walk the dentry tree
1342   * @parent:	start of walk
1343   * @data:	data passed to @enter() and @finish()
1344   * @enter:	callback when first entering the dentry
1345   *
1346   * The @enter() callbacks are called with d_lock held.
1347   */
1348  static void d_walk(struct dentry *parent, void *data,
1349  		   enum d_walk_ret (*enter)(void *, struct dentry *))
1350  {
1351  	struct dentry *this_parent;
1352  	struct list_head *next;
1353  	unsigned seq = 0;
1354  	enum d_walk_ret ret;
1355  	bool retry = true;
1356  
1357  again:
1358  	read_seqbegin_or_lock(&rename_lock, &seq);
1359  	this_parent = parent;
1360  	spin_lock(&this_parent->d_lock);
1361  
1362  	ret = enter(data, this_parent);
1363  	switch (ret) {
1364  	case D_WALK_CONTINUE:
1365  		break;
1366  	case D_WALK_QUIT:
1367  	case D_WALK_SKIP:
1368  		goto out_unlock;
1369  	case D_WALK_NORETRY:
1370  		retry = false;
1371  		break;
1372  	}
1373  repeat:
1374  	next = this_parent->d_subdirs.next;
1375  resume:
1376  	while (next != &this_parent->d_subdirs) {
1377  		struct list_head *tmp = next;
1378  		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379  		next = tmp->next;
1380  
1381  		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382  			continue;
1383  
1384  		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385  
1386  		ret = enter(data, dentry);
1387  		switch (ret) {
1388  		case D_WALK_CONTINUE:
1389  			break;
1390  		case D_WALK_QUIT:
1391  			spin_unlock(&dentry->d_lock);
1392  			goto out_unlock;
1393  		case D_WALK_NORETRY:
1394  			retry = false;
1395  			break;
1396  		case D_WALK_SKIP:
1397  			spin_unlock(&dentry->d_lock);
1398  			continue;
1399  		}
1400  
1401  		if (!list_empty(&dentry->d_subdirs)) {
1402  			spin_unlock(&this_parent->d_lock);
1403  			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404  			this_parent = dentry;
1405  			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406  			goto repeat;
1407  		}
1408  		spin_unlock(&dentry->d_lock);
1409  	}
1410  	/*
1411  	 * All done at this level ... ascend and resume the search.
1412  	 */
1413  	rcu_read_lock();
1414  ascend:
1415  	if (this_parent != parent) {
1416  		struct dentry *child = this_parent;
1417  		this_parent = child->d_parent;
1418  
1419  		spin_unlock(&child->d_lock);
1420  		spin_lock(&this_parent->d_lock);
1421  
1422  		/* might go back up the wrong parent if we have had a rename. */
1423  		if (need_seqretry(&rename_lock, seq))
1424  			goto rename_retry;
1425  		/* go into the first sibling still alive */
1426  		do {
1427  			next = child->d_child.next;
1428  			if (next == &this_parent->d_subdirs)
1429  				goto ascend;
1430  			child = list_entry(next, struct dentry, d_child);
1431  		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432  		rcu_read_unlock();
1433  		goto resume;
1434  	}
1435  	if (need_seqretry(&rename_lock, seq))
1436  		goto rename_retry;
1437  	rcu_read_unlock();
1438  
1439  out_unlock:
1440  	spin_unlock(&this_parent->d_lock);
1441  	done_seqretry(&rename_lock, seq);
1442  	return;
1443  
1444  rename_retry:
1445  	spin_unlock(&this_parent->d_lock);
1446  	rcu_read_unlock();
1447  	BUG_ON(seq & 1);
1448  	if (!retry)
1449  		return;
1450  	seq = 1;
1451  	goto again;
1452  }
1453  
1454  struct check_mount {
1455  	struct vfsmount *mnt;
1456  	unsigned int mounted;
1457  };
1458  
1459  static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460  {
1461  	struct check_mount *info = data;
1462  	struct path path = { .mnt = info->mnt, .dentry = dentry };
1463  
1464  	if (likely(!d_mountpoint(dentry)))
1465  		return D_WALK_CONTINUE;
1466  	if (__path_is_mountpoint(&path)) {
1467  		info->mounted = 1;
1468  		return D_WALK_QUIT;
1469  	}
1470  	return D_WALK_CONTINUE;
1471  }
1472  
1473  /**
1474   * path_has_submounts - check for mounts over a dentry in the
1475   *                      current namespace.
1476   * @parent: path to check.
1477   *
1478   * Return true if the parent or its subdirectories contain
1479   * a mount point in the current namespace.
1480   */
1481  int path_has_submounts(const struct path *parent)
1482  {
1483  	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484  
1485  	read_seqlock_excl(&mount_lock);
1486  	d_walk(parent->dentry, &data, path_check_mount);
1487  	read_sequnlock_excl(&mount_lock);
1488  
1489  	return data.mounted;
1490  }
1491  EXPORT_SYMBOL(path_has_submounts);
1492  
1493  /*
1494   * Called by mount code to set a mountpoint and check if the mountpoint is
1495   * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496   * subtree can become unreachable).
1497   *
1498   * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1499   * this reason take rename_lock and d_lock on dentry and ancestors.
1500   */
1501  int d_set_mounted(struct dentry *dentry)
1502  {
1503  	struct dentry *p;
1504  	int ret = -ENOENT;
1505  	write_seqlock(&rename_lock);
1506  	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507  		/* Need exclusion wrt. d_invalidate() */
1508  		spin_lock(&p->d_lock);
1509  		if (unlikely(d_unhashed(p))) {
1510  			spin_unlock(&p->d_lock);
1511  			goto out;
1512  		}
1513  		spin_unlock(&p->d_lock);
1514  	}
1515  	spin_lock(&dentry->d_lock);
1516  	if (!d_unlinked(dentry)) {
1517  		ret = -EBUSY;
1518  		if (!d_mountpoint(dentry)) {
1519  			dentry->d_flags |= DCACHE_MOUNTED;
1520  			ret = 0;
1521  		}
1522  	}
1523   	spin_unlock(&dentry->d_lock);
1524  out:
1525  	write_sequnlock(&rename_lock);
1526  	return ret;
1527  }
1528  
1529  /*
1530   * Search the dentry child list of the specified parent,
1531   * and move any unused dentries to the end of the unused
1532   * list for prune_dcache(). We descend to the next level
1533   * whenever the d_subdirs list is non-empty and continue
1534   * searching.
1535   *
1536   * It returns zero iff there are no unused children,
1537   * otherwise  it returns the number of children moved to
1538   * the end of the unused list. This may not be the total
1539   * number of unused children, because select_parent can
1540   * drop the lock and return early due to latency
1541   * constraints.
1542   */
1543  
1544  struct select_data {
1545  	struct dentry *start;
1546  	union {
1547  		long found;
1548  		struct dentry *victim;
1549  	};
1550  	struct list_head dispose;
1551  };
1552  
1553  static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554  {
1555  	struct select_data *data = _data;
1556  	enum d_walk_ret ret = D_WALK_CONTINUE;
1557  
1558  	if (data->start == dentry)
1559  		goto out;
1560  
1561  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562  		data->found++;
1563  	} else {
1564  		if (dentry->d_flags & DCACHE_LRU_LIST)
1565  			d_lru_del(dentry);
1566  		if (!dentry->d_lockref.count) {
1567  			d_shrink_add(dentry, &data->dispose);
1568  			data->found++;
1569  		}
1570  	}
1571  	/*
1572  	 * We can return to the caller if we have found some (this
1573  	 * ensures forward progress). We'll be coming back to find
1574  	 * the rest.
1575  	 */
1576  	if (!list_empty(&data->dispose))
1577  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578  out:
1579  	return ret;
1580  }
1581  
1582  static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583  {
1584  	struct select_data *data = _data;
1585  	enum d_walk_ret ret = D_WALK_CONTINUE;
1586  
1587  	if (data->start == dentry)
1588  		goto out;
1589  
1590  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591  		if (!dentry->d_lockref.count) {
1592  			rcu_read_lock();
1593  			data->victim = dentry;
1594  			return D_WALK_QUIT;
1595  		}
1596  	} else {
1597  		if (dentry->d_flags & DCACHE_LRU_LIST)
1598  			d_lru_del(dentry);
1599  		if (!dentry->d_lockref.count)
1600  			d_shrink_add(dentry, &data->dispose);
1601  	}
1602  	/*
1603  	 * We can return to the caller if we have found some (this
1604  	 * ensures forward progress). We'll be coming back to find
1605  	 * the rest.
1606  	 */
1607  	if (!list_empty(&data->dispose))
1608  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609  out:
1610  	return ret;
1611  }
1612  
1613  /**
1614   * shrink_dcache_parent - prune dcache
1615   * @parent: parent of entries to prune
1616   *
1617   * Prune the dcache to remove unused children of the parent dentry.
1618   */
1619  void shrink_dcache_parent(struct dentry *parent)
1620  {
1621  	for (;;) {
1622  		struct select_data data = {.start = parent};
1623  
1624  		INIT_LIST_HEAD(&data.dispose);
1625  		d_walk(parent, &data, select_collect);
1626  
1627  		if (!list_empty(&data.dispose)) {
1628  			shrink_dentry_list(&data.dispose);
1629  			continue;
1630  		}
1631  
1632  		cond_resched();
1633  		if (!data.found)
1634  			break;
1635  		data.victim = NULL;
1636  		d_walk(parent, &data, select_collect2);
1637  		if (data.victim) {
1638  			struct dentry *parent;
1639  			spin_lock(&data.victim->d_lock);
1640  			if (!shrink_lock_dentry(data.victim)) {
1641  				spin_unlock(&data.victim->d_lock);
1642  				rcu_read_unlock();
1643  			} else {
1644  				rcu_read_unlock();
1645  				parent = data.victim->d_parent;
1646  				if (parent != data.victim)
1647  					__dput_to_list(parent, &data.dispose);
1648  				__dentry_kill(data.victim);
1649  			}
1650  		}
1651  		if (!list_empty(&data.dispose))
1652  			shrink_dentry_list(&data.dispose);
1653  	}
1654  }
1655  EXPORT_SYMBOL(shrink_dcache_parent);
1656  
1657  static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658  {
1659  	/* it has busy descendents; complain about those instead */
1660  	if (!list_empty(&dentry->d_subdirs))
1661  		return D_WALK_CONTINUE;
1662  
1663  	/* root with refcount 1 is fine */
1664  	if (dentry == _data && dentry->d_lockref.count == 1)
1665  		return D_WALK_CONTINUE;
1666  
1667  	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1668  			" still in use (%d) [unmount of %s %s]\n",
1669  		       dentry,
1670  		       dentry->d_inode ?
1671  		       dentry->d_inode->i_ino : 0UL,
1672  		       dentry,
1673  		       dentry->d_lockref.count,
1674  		       dentry->d_sb->s_type->name,
1675  		       dentry->d_sb->s_id);
1676  	WARN_ON(1);
1677  	return D_WALK_CONTINUE;
1678  }
1679  
1680  static void do_one_tree(struct dentry *dentry)
1681  {
1682  	shrink_dcache_parent(dentry);
1683  	d_walk(dentry, dentry, umount_check);
1684  	d_drop(dentry);
1685  	dput(dentry);
1686  }
1687  
1688  /*
1689   * destroy the dentries attached to a superblock on unmounting
1690   */
1691  void shrink_dcache_for_umount(struct super_block *sb)
1692  {
1693  	struct dentry *dentry;
1694  
1695  	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1696  
1697  	dentry = sb->s_root;
1698  	sb->s_root = NULL;
1699  	do_one_tree(dentry);
1700  
1701  	while (!hlist_bl_empty(&sb->s_roots)) {
1702  		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1703  		do_one_tree(dentry);
1704  	}
1705  }
1706  
1707  static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1708  {
1709  	struct dentry **victim = _data;
1710  	if (d_mountpoint(dentry)) {
1711  		__dget_dlock(dentry);
1712  		*victim = dentry;
1713  		return D_WALK_QUIT;
1714  	}
1715  	return D_WALK_CONTINUE;
1716  }
1717  
1718  /**
1719   * d_invalidate - detach submounts, prune dcache, and drop
1720   * @dentry: dentry to invalidate (aka detach, prune and drop)
1721   */
1722  void d_invalidate(struct dentry *dentry)
1723  {
1724  	bool had_submounts = false;
1725  	spin_lock(&dentry->d_lock);
1726  	if (d_unhashed(dentry)) {
1727  		spin_unlock(&dentry->d_lock);
1728  		return;
1729  	}
1730  	__d_drop(dentry);
1731  	spin_unlock(&dentry->d_lock);
1732  
1733  	/* Negative dentries can be dropped without further checks */
1734  	if (!dentry->d_inode)
1735  		return;
1736  
1737  	shrink_dcache_parent(dentry);
1738  	for (;;) {
1739  		struct dentry *victim = NULL;
1740  		d_walk(dentry, &victim, find_submount);
1741  		if (!victim) {
1742  			if (had_submounts)
1743  				shrink_dcache_parent(dentry);
1744  			return;
1745  		}
1746  		had_submounts = true;
1747  		detach_mounts(victim);
1748  		dput(victim);
1749  	}
1750  }
1751  EXPORT_SYMBOL(d_invalidate);
1752  
1753  /**
1754   * __d_alloc	-	allocate a dcache entry
1755   * @sb: filesystem it will belong to
1756   * @name: qstr of the name
1757   *
1758   * Allocates a dentry. It returns %NULL if there is insufficient memory
1759   * available. On a success the dentry is returned. The name passed in is
1760   * copied and the copy passed in may be reused after this call.
1761   */
1762  
1763  static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1764  {
1765  	struct dentry *dentry;
1766  	char *dname;
1767  	int err;
1768  
1769  	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1770  	if (!dentry)
1771  		return NULL;
1772  
1773  	/*
1774  	 * We guarantee that the inline name is always NUL-terminated.
1775  	 * This way the memcpy() done by the name switching in rename
1776  	 * will still always have a NUL at the end, even if we might
1777  	 * be overwriting an internal NUL character
1778  	 */
1779  	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1780  	if (unlikely(!name)) {
1781  		name = &slash_name;
1782  		dname = dentry->d_iname;
1783  	} else if (name->len > DNAME_INLINE_LEN-1) {
1784  		size_t size = offsetof(struct external_name, name[1]);
1785  		struct external_name *p = kmalloc(size + name->len,
1786  						  GFP_KERNEL_ACCOUNT |
1787  						  __GFP_RECLAIMABLE);
1788  		if (!p) {
1789  			kmem_cache_free(dentry_cache, dentry);
1790  			return NULL;
1791  		}
1792  		atomic_set(&p->u.count, 1);
1793  		dname = p->name;
1794  	} else  {
1795  		dname = dentry->d_iname;
1796  	}
1797  
1798  	dentry->d_name.len = name->len;
1799  	dentry->d_name.hash = name->hash;
1800  	memcpy(dname, name->name, name->len);
1801  	dname[name->len] = 0;
1802  
1803  	/* Make sure we always see the terminating NUL character */
1804  	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1805  
1806  	dentry->d_lockref.count = 1;
1807  	dentry->d_flags = 0;
1808  	spin_lock_init(&dentry->d_lock);
1809  	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1810  	dentry->d_inode = NULL;
1811  	dentry->d_parent = dentry;
1812  	dentry->d_sb = sb;
1813  	dentry->d_op = NULL;
1814  	dentry->d_fsdata = NULL;
1815  	INIT_HLIST_BL_NODE(&dentry->d_hash);
1816  	INIT_LIST_HEAD(&dentry->d_lru);
1817  	INIT_LIST_HEAD(&dentry->d_subdirs);
1818  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1819  	INIT_LIST_HEAD(&dentry->d_child);
1820  	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1821  
1822  	if (dentry->d_op && dentry->d_op->d_init) {
1823  		err = dentry->d_op->d_init(dentry);
1824  		if (err) {
1825  			if (dname_external(dentry))
1826  				kfree(external_name(dentry));
1827  			kmem_cache_free(dentry_cache, dentry);
1828  			return NULL;
1829  		}
1830  	}
1831  
1832  	this_cpu_inc(nr_dentry);
1833  
1834  	return dentry;
1835  }
1836  
1837  /**
1838   * d_alloc	-	allocate a dcache entry
1839   * @parent: parent of entry to allocate
1840   * @name: qstr of the name
1841   *
1842   * Allocates a dentry. It returns %NULL if there is insufficient memory
1843   * available. On a success the dentry is returned. The name passed in is
1844   * copied and the copy passed in may be reused after this call.
1845   */
1846  struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1847  {
1848  	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1849  	if (!dentry)
1850  		return NULL;
1851  	spin_lock(&parent->d_lock);
1852  	/*
1853  	 * don't need child lock because it is not subject
1854  	 * to concurrency here
1855  	 */
1856  	__dget_dlock(parent);
1857  	dentry->d_parent = parent;
1858  	list_add(&dentry->d_child, &parent->d_subdirs);
1859  	spin_unlock(&parent->d_lock);
1860  
1861  	return dentry;
1862  }
1863  EXPORT_SYMBOL(d_alloc);
1864  
1865  struct dentry *d_alloc_anon(struct super_block *sb)
1866  {
1867  	return __d_alloc(sb, NULL);
1868  }
1869  EXPORT_SYMBOL(d_alloc_anon);
1870  
1871  struct dentry *d_alloc_cursor(struct dentry * parent)
1872  {
1873  	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1874  	if (dentry) {
1875  		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1876  		dentry->d_parent = dget(parent);
1877  	}
1878  	return dentry;
1879  }
1880  
1881  /**
1882   * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1883   * @sb: the superblock
1884   * @name: qstr of the name
1885   *
1886   * For a filesystem that just pins its dentries in memory and never
1887   * performs lookups at all, return an unhashed IS_ROOT dentry.
1888   * This is used for pipes, sockets et.al. - the stuff that should
1889   * never be anyone's children or parents.  Unlike all other
1890   * dentries, these will not have RCU delay between dropping the
1891   * last reference and freeing them.
1892   *
1893   * The only user is alloc_file_pseudo() and that's what should
1894   * be considered a public interface.  Don't use directly.
1895   */
1896  struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1897  {
1898  	struct dentry *dentry = __d_alloc(sb, name);
1899  	if (likely(dentry))
1900  		dentry->d_flags |= DCACHE_NORCU;
1901  	return dentry;
1902  }
1903  
1904  struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1905  {
1906  	struct qstr q;
1907  
1908  	q.name = name;
1909  	q.hash_len = hashlen_string(parent, name);
1910  	return d_alloc(parent, &q);
1911  }
1912  EXPORT_SYMBOL(d_alloc_name);
1913  
1914  void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1915  {
1916  	WARN_ON_ONCE(dentry->d_op);
1917  	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1918  				DCACHE_OP_COMPARE	|
1919  				DCACHE_OP_REVALIDATE	|
1920  				DCACHE_OP_WEAK_REVALIDATE	|
1921  				DCACHE_OP_DELETE	|
1922  				DCACHE_OP_REAL));
1923  	dentry->d_op = op;
1924  	if (!op)
1925  		return;
1926  	if (op->d_hash)
1927  		dentry->d_flags |= DCACHE_OP_HASH;
1928  	if (op->d_compare)
1929  		dentry->d_flags |= DCACHE_OP_COMPARE;
1930  	if (op->d_revalidate)
1931  		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1932  	if (op->d_weak_revalidate)
1933  		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1934  	if (op->d_delete)
1935  		dentry->d_flags |= DCACHE_OP_DELETE;
1936  	if (op->d_prune)
1937  		dentry->d_flags |= DCACHE_OP_PRUNE;
1938  	if (op->d_real)
1939  		dentry->d_flags |= DCACHE_OP_REAL;
1940  
1941  }
1942  EXPORT_SYMBOL(d_set_d_op);
1943  
1944  
1945  /*
1946   * d_set_fallthru - Mark a dentry as falling through to a lower layer
1947   * @dentry - The dentry to mark
1948   *
1949   * Mark a dentry as falling through to the lower layer (as set with
1950   * d_pin_lower()).  This flag may be recorded on the medium.
1951   */
1952  void d_set_fallthru(struct dentry *dentry)
1953  {
1954  	spin_lock(&dentry->d_lock);
1955  	dentry->d_flags |= DCACHE_FALLTHRU;
1956  	spin_unlock(&dentry->d_lock);
1957  }
1958  EXPORT_SYMBOL(d_set_fallthru);
1959  
1960  static unsigned d_flags_for_inode(struct inode *inode)
1961  {
1962  	unsigned add_flags = DCACHE_REGULAR_TYPE;
1963  
1964  	if (!inode)
1965  		return DCACHE_MISS_TYPE;
1966  
1967  	if (S_ISDIR(inode->i_mode)) {
1968  		add_flags = DCACHE_DIRECTORY_TYPE;
1969  		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1970  			if (unlikely(!inode->i_op->lookup))
1971  				add_flags = DCACHE_AUTODIR_TYPE;
1972  			else
1973  				inode->i_opflags |= IOP_LOOKUP;
1974  		}
1975  		goto type_determined;
1976  	}
1977  
1978  	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1979  		if (unlikely(inode->i_op->get_link)) {
1980  			add_flags = DCACHE_SYMLINK_TYPE;
1981  			goto type_determined;
1982  		}
1983  		inode->i_opflags |= IOP_NOFOLLOW;
1984  	}
1985  
1986  	if (unlikely(!S_ISREG(inode->i_mode)))
1987  		add_flags = DCACHE_SPECIAL_TYPE;
1988  
1989  type_determined:
1990  	if (unlikely(IS_AUTOMOUNT(inode)))
1991  		add_flags |= DCACHE_NEED_AUTOMOUNT;
1992  	return add_flags;
1993  }
1994  
1995  static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1996  {
1997  	unsigned add_flags = d_flags_for_inode(inode);
1998  	WARN_ON(d_in_lookup(dentry));
1999  
2000  	spin_lock(&dentry->d_lock);
2001  	/*
2002  	 * Decrement negative dentry count if it was in the LRU list.
2003  	 */
2004  	if (dentry->d_flags & DCACHE_LRU_LIST)
2005  		this_cpu_dec(nr_dentry_negative);
2006  	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2007  	raw_write_seqcount_begin(&dentry->d_seq);
2008  	__d_set_inode_and_type(dentry, inode, add_flags);
2009  	raw_write_seqcount_end(&dentry->d_seq);
2010  	fsnotify_update_flags(dentry);
2011  	spin_unlock(&dentry->d_lock);
2012  }
2013  
2014  /**
2015   * d_instantiate - fill in inode information for a dentry
2016   * @entry: dentry to complete
2017   * @inode: inode to attach to this dentry
2018   *
2019   * Fill in inode information in the entry.
2020   *
2021   * This turns negative dentries into productive full members
2022   * of society.
2023   *
2024   * NOTE! This assumes that the inode count has been incremented
2025   * (or otherwise set) by the caller to indicate that it is now
2026   * in use by the dcache.
2027   */
2028  
2029  void d_instantiate(struct dentry *entry, struct inode * inode)
2030  {
2031  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2032  	if (inode) {
2033  		security_d_instantiate(entry, inode);
2034  		spin_lock(&inode->i_lock);
2035  		__d_instantiate(entry, inode);
2036  		spin_unlock(&inode->i_lock);
2037  	}
2038  }
2039  EXPORT_SYMBOL(d_instantiate);
2040  
2041  /*
2042   * This should be equivalent to d_instantiate() + unlock_new_inode(),
2043   * with lockdep-related part of unlock_new_inode() done before
2044   * anything else.  Use that instead of open-coding d_instantiate()/
2045   * unlock_new_inode() combinations.
2046   */
2047  void d_instantiate_new(struct dentry *entry, struct inode *inode)
2048  {
2049  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2050  	BUG_ON(!inode);
2051  	lockdep_annotate_inode_mutex_key(inode);
2052  	security_d_instantiate(entry, inode);
2053  	spin_lock(&inode->i_lock);
2054  	__d_instantiate(entry, inode);
2055  	WARN_ON(!(inode->i_state & I_NEW));
2056  	inode->i_state &= ~I_NEW & ~I_CREATING;
2057  	smp_mb();
2058  	wake_up_bit(&inode->i_state, __I_NEW);
2059  	spin_unlock(&inode->i_lock);
2060  }
2061  EXPORT_SYMBOL(d_instantiate_new);
2062  
2063  struct dentry *d_make_root(struct inode *root_inode)
2064  {
2065  	struct dentry *res = NULL;
2066  
2067  	if (root_inode) {
2068  		res = d_alloc_anon(root_inode->i_sb);
2069  		if (res)
2070  			d_instantiate(res, root_inode);
2071  		else
2072  			iput(root_inode);
2073  	}
2074  	return res;
2075  }
2076  EXPORT_SYMBOL(d_make_root);
2077  
2078  static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2079  					   struct inode *inode,
2080  					   bool disconnected)
2081  {
2082  	struct dentry *res;
2083  	unsigned add_flags;
2084  
2085  	security_d_instantiate(dentry, inode);
2086  	spin_lock(&inode->i_lock);
2087  	res = __d_find_any_alias(inode);
2088  	if (res) {
2089  		spin_unlock(&inode->i_lock);
2090  		dput(dentry);
2091  		goto out_iput;
2092  	}
2093  
2094  	/* attach a disconnected dentry */
2095  	add_flags = d_flags_for_inode(inode);
2096  
2097  	if (disconnected)
2098  		add_flags |= DCACHE_DISCONNECTED;
2099  
2100  	spin_lock(&dentry->d_lock);
2101  	__d_set_inode_and_type(dentry, inode, add_flags);
2102  	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2103  	if (!disconnected) {
2104  		hlist_bl_lock(&dentry->d_sb->s_roots);
2105  		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2106  		hlist_bl_unlock(&dentry->d_sb->s_roots);
2107  	}
2108  	spin_unlock(&dentry->d_lock);
2109  	spin_unlock(&inode->i_lock);
2110  
2111  	return dentry;
2112  
2113   out_iput:
2114  	iput(inode);
2115  	return res;
2116  }
2117  
2118  struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2119  {
2120  	return __d_instantiate_anon(dentry, inode, true);
2121  }
2122  EXPORT_SYMBOL(d_instantiate_anon);
2123  
2124  static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2125  {
2126  	struct dentry *tmp;
2127  	struct dentry *res;
2128  
2129  	if (!inode)
2130  		return ERR_PTR(-ESTALE);
2131  	if (IS_ERR(inode))
2132  		return ERR_CAST(inode);
2133  
2134  	res = d_find_any_alias(inode);
2135  	if (res)
2136  		goto out_iput;
2137  
2138  	tmp = d_alloc_anon(inode->i_sb);
2139  	if (!tmp) {
2140  		res = ERR_PTR(-ENOMEM);
2141  		goto out_iput;
2142  	}
2143  
2144  	return __d_instantiate_anon(tmp, inode, disconnected);
2145  
2146  out_iput:
2147  	iput(inode);
2148  	return res;
2149  }
2150  
2151  /**
2152   * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2153   * @inode: inode to allocate the dentry for
2154   *
2155   * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2156   * similar open by handle operations.  The returned dentry may be anonymous,
2157   * or may have a full name (if the inode was already in the cache).
2158   *
2159   * When called on a directory inode, we must ensure that the inode only ever
2160   * has one dentry.  If a dentry is found, that is returned instead of
2161   * allocating a new one.
2162   *
2163   * On successful return, the reference to the inode has been transferred
2164   * to the dentry.  In case of an error the reference on the inode is released.
2165   * To make it easier to use in export operations a %NULL or IS_ERR inode may
2166   * be passed in and the error will be propagated to the return value,
2167   * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2168   */
2169  struct dentry *d_obtain_alias(struct inode *inode)
2170  {
2171  	return __d_obtain_alias(inode, true);
2172  }
2173  EXPORT_SYMBOL(d_obtain_alias);
2174  
2175  /**
2176   * d_obtain_root - find or allocate a dentry for a given inode
2177   * @inode: inode to allocate the dentry for
2178   *
2179   * Obtain an IS_ROOT dentry for the root of a filesystem.
2180   *
2181   * We must ensure that directory inodes only ever have one dentry.  If a
2182   * dentry is found, that is returned instead of allocating a new one.
2183   *
2184   * On successful return, the reference to the inode has been transferred
2185   * to the dentry.  In case of an error the reference on the inode is
2186   * released.  A %NULL or IS_ERR inode may be passed in and will be the
2187   * error will be propagate to the return value, with a %NULL @inode
2188   * replaced by ERR_PTR(-ESTALE).
2189   */
2190  struct dentry *d_obtain_root(struct inode *inode)
2191  {
2192  	return __d_obtain_alias(inode, false);
2193  }
2194  EXPORT_SYMBOL(d_obtain_root);
2195  
2196  /**
2197   * d_add_ci - lookup or allocate new dentry with case-exact name
2198   * @inode:  the inode case-insensitive lookup has found
2199   * @dentry: the negative dentry that was passed to the parent's lookup func
2200   * @name:   the case-exact name to be associated with the returned dentry
2201   *
2202   * This is to avoid filling the dcache with case-insensitive names to the
2203   * same inode, only the actual correct case is stored in the dcache for
2204   * case-insensitive filesystems.
2205   *
2206   * For a case-insensitive lookup match and if the case-exact dentry
2207   * already exists in the dcache, use it and return it.
2208   *
2209   * If no entry exists with the exact case name, allocate new dentry with
2210   * the exact case, and return the spliced entry.
2211   */
2212  struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2213  			struct qstr *name)
2214  {
2215  	struct dentry *found, *res;
2216  
2217  	/*
2218  	 * First check if a dentry matching the name already exists,
2219  	 * if not go ahead and create it now.
2220  	 */
2221  	found = d_hash_and_lookup(dentry->d_parent, name);
2222  	if (found) {
2223  		iput(inode);
2224  		return found;
2225  	}
2226  	if (d_in_lookup(dentry)) {
2227  		found = d_alloc_parallel(dentry->d_parent, name,
2228  					dentry->d_wait);
2229  		if (IS_ERR(found) || !d_in_lookup(found)) {
2230  			iput(inode);
2231  			return found;
2232  		}
2233  	} else {
2234  		found = d_alloc(dentry->d_parent, name);
2235  		if (!found) {
2236  			iput(inode);
2237  			return ERR_PTR(-ENOMEM);
2238  		}
2239  	}
2240  	res = d_splice_alias(inode, found);
2241  	if (res) {
2242  		dput(found);
2243  		return res;
2244  	}
2245  	return found;
2246  }
2247  EXPORT_SYMBOL(d_add_ci);
2248  
2249  
2250  static inline bool d_same_name(const struct dentry *dentry,
2251  				const struct dentry *parent,
2252  				const struct qstr *name)
2253  {
2254  	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2255  		if (dentry->d_name.len != name->len)
2256  			return false;
2257  		return dentry_cmp(dentry, name->name, name->len) == 0;
2258  	}
2259  	return parent->d_op->d_compare(dentry,
2260  				       dentry->d_name.len, dentry->d_name.name,
2261  				       name) == 0;
2262  }
2263  
2264  /**
2265   * __d_lookup_rcu - search for a dentry (racy, store-free)
2266   * @parent: parent dentry
2267   * @name: qstr of name we wish to find
2268   * @seqp: returns d_seq value at the point where the dentry was found
2269   * Returns: dentry, or NULL
2270   *
2271   * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2272   * resolution (store-free path walking) design described in
2273   * Documentation/filesystems/path-lookup.txt.
2274   *
2275   * This is not to be used outside core vfs.
2276   *
2277   * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2278   * held, and rcu_read_lock held. The returned dentry must not be stored into
2279   * without taking d_lock and checking d_seq sequence count against @seq
2280   * returned here.
2281   *
2282   * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2283   * function.
2284   *
2285   * Alternatively, __d_lookup_rcu may be called again to look up the child of
2286   * the returned dentry, so long as its parent's seqlock is checked after the
2287   * child is looked up. Thus, an interlocking stepping of sequence lock checks
2288   * is formed, giving integrity down the path walk.
2289   *
2290   * NOTE! The caller *has* to check the resulting dentry against the sequence
2291   * number we've returned before using any of the resulting dentry state!
2292   */
2293  struct dentry *__d_lookup_rcu(const struct dentry *parent,
2294  				const struct qstr *name,
2295  				unsigned *seqp)
2296  {
2297  	u64 hashlen = name->hash_len;
2298  	const unsigned char *str = name->name;
2299  	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2300  	struct hlist_bl_node *node;
2301  	struct dentry *dentry;
2302  
2303  	/*
2304  	 * Note: There is significant duplication with __d_lookup_rcu which is
2305  	 * required to prevent single threaded performance regressions
2306  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2307  	 * Keep the two functions in sync.
2308  	 */
2309  
2310  	/*
2311  	 * The hash list is protected using RCU.
2312  	 *
2313  	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2314  	 * races with d_move().
2315  	 *
2316  	 * It is possible that concurrent renames can mess up our list
2317  	 * walk here and result in missing our dentry, resulting in the
2318  	 * false-negative result. d_lookup() protects against concurrent
2319  	 * renames using rename_lock seqlock.
2320  	 *
2321  	 * See Documentation/filesystems/path-lookup.txt for more details.
2322  	 */
2323  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2324  		unsigned seq;
2325  
2326  seqretry:
2327  		/*
2328  		 * The dentry sequence count protects us from concurrent
2329  		 * renames, and thus protects parent and name fields.
2330  		 *
2331  		 * The caller must perform a seqcount check in order
2332  		 * to do anything useful with the returned dentry.
2333  		 *
2334  		 * NOTE! We do a "raw" seqcount_begin here. That means that
2335  		 * we don't wait for the sequence count to stabilize if it
2336  		 * is in the middle of a sequence change. If we do the slow
2337  		 * dentry compare, we will do seqretries until it is stable,
2338  		 * and if we end up with a successful lookup, we actually
2339  		 * want to exit RCU lookup anyway.
2340  		 *
2341  		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2342  		 * we are still guaranteed NUL-termination of ->d_name.name.
2343  		 */
2344  		seq = raw_seqcount_begin(&dentry->d_seq);
2345  		if (dentry->d_parent != parent)
2346  			continue;
2347  		if (d_unhashed(dentry))
2348  			continue;
2349  
2350  		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2351  			int tlen;
2352  			const char *tname;
2353  			if (dentry->d_name.hash != hashlen_hash(hashlen))
2354  				continue;
2355  			tlen = dentry->d_name.len;
2356  			tname = dentry->d_name.name;
2357  			/* we want a consistent (name,len) pair */
2358  			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2359  				cpu_relax();
2360  				goto seqretry;
2361  			}
2362  			if (parent->d_op->d_compare(dentry,
2363  						    tlen, tname, name) != 0)
2364  				continue;
2365  		} else {
2366  			if (dentry->d_name.hash_len != hashlen)
2367  				continue;
2368  			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2369  				continue;
2370  		}
2371  		*seqp = seq;
2372  		return dentry;
2373  	}
2374  	return NULL;
2375  }
2376  
2377  /**
2378   * d_lookup - search for a dentry
2379   * @parent: parent dentry
2380   * @name: qstr of name we wish to find
2381   * Returns: dentry, or NULL
2382   *
2383   * d_lookup searches the children of the parent dentry for the name in
2384   * question. If the dentry is found its reference count is incremented and the
2385   * dentry is returned. The caller must use dput to free the entry when it has
2386   * finished using it. %NULL is returned if the dentry does not exist.
2387   */
2388  struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2389  {
2390  	struct dentry *dentry;
2391  	unsigned seq;
2392  
2393  	do {
2394  		seq = read_seqbegin(&rename_lock);
2395  		dentry = __d_lookup(parent, name);
2396  		if (dentry)
2397  			break;
2398  	} while (read_seqretry(&rename_lock, seq));
2399  	return dentry;
2400  }
2401  EXPORT_SYMBOL(d_lookup);
2402  
2403  /**
2404   * __d_lookup - search for a dentry (racy)
2405   * @parent: parent dentry
2406   * @name: qstr of name we wish to find
2407   * Returns: dentry, or NULL
2408   *
2409   * __d_lookup is like d_lookup, however it may (rarely) return a
2410   * false-negative result due to unrelated rename activity.
2411   *
2412   * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2413   * however it must be used carefully, eg. with a following d_lookup in
2414   * the case of failure.
2415   *
2416   * __d_lookup callers must be commented.
2417   */
2418  struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2419  {
2420  	unsigned int hash = name->hash;
2421  	struct hlist_bl_head *b = d_hash(hash);
2422  	struct hlist_bl_node *node;
2423  	struct dentry *found = NULL;
2424  	struct dentry *dentry;
2425  
2426  	/*
2427  	 * Note: There is significant duplication with __d_lookup_rcu which is
2428  	 * required to prevent single threaded performance regressions
2429  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2430  	 * Keep the two functions in sync.
2431  	 */
2432  
2433  	/*
2434  	 * The hash list is protected using RCU.
2435  	 *
2436  	 * Take d_lock when comparing a candidate dentry, to avoid races
2437  	 * with d_move().
2438  	 *
2439  	 * It is possible that concurrent renames can mess up our list
2440  	 * walk here and result in missing our dentry, resulting in the
2441  	 * false-negative result. d_lookup() protects against concurrent
2442  	 * renames using rename_lock seqlock.
2443  	 *
2444  	 * See Documentation/filesystems/path-lookup.txt for more details.
2445  	 */
2446  	rcu_read_lock();
2447  
2448  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2449  
2450  		if (dentry->d_name.hash != hash)
2451  			continue;
2452  
2453  		spin_lock(&dentry->d_lock);
2454  		if (dentry->d_parent != parent)
2455  			goto next;
2456  		if (d_unhashed(dentry))
2457  			goto next;
2458  
2459  		if (!d_same_name(dentry, parent, name))
2460  			goto next;
2461  
2462  		dentry->d_lockref.count++;
2463  		found = dentry;
2464  		spin_unlock(&dentry->d_lock);
2465  		break;
2466  next:
2467  		spin_unlock(&dentry->d_lock);
2468   	}
2469   	rcu_read_unlock();
2470  
2471   	return found;
2472  }
2473  
2474  /**
2475   * d_hash_and_lookup - hash the qstr then search for a dentry
2476   * @dir: Directory to search in
2477   * @name: qstr of name we wish to find
2478   *
2479   * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2480   */
2481  struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2482  {
2483  	/*
2484  	 * Check for a fs-specific hash function. Note that we must
2485  	 * calculate the standard hash first, as the d_op->d_hash()
2486  	 * routine may choose to leave the hash value unchanged.
2487  	 */
2488  	name->hash = full_name_hash(dir, name->name, name->len);
2489  	if (dir->d_flags & DCACHE_OP_HASH) {
2490  		int err = dir->d_op->d_hash(dir, name);
2491  		if (unlikely(err < 0))
2492  			return ERR_PTR(err);
2493  	}
2494  	return d_lookup(dir, name);
2495  }
2496  EXPORT_SYMBOL(d_hash_and_lookup);
2497  
2498  /*
2499   * When a file is deleted, we have two options:
2500   * - turn this dentry into a negative dentry
2501   * - unhash this dentry and free it.
2502   *
2503   * Usually, we want to just turn this into
2504   * a negative dentry, but if anybody else is
2505   * currently using the dentry or the inode
2506   * we can't do that and we fall back on removing
2507   * it from the hash queues and waiting for
2508   * it to be deleted later when it has no users
2509   */
2510  
2511  /**
2512   * d_delete - delete a dentry
2513   * @dentry: The dentry to delete
2514   *
2515   * Turn the dentry into a negative dentry if possible, otherwise
2516   * remove it from the hash queues so it can be deleted later
2517   */
2518  
2519  void d_delete(struct dentry * dentry)
2520  {
2521  	struct inode *inode = dentry->d_inode;
2522  
2523  	spin_lock(&inode->i_lock);
2524  	spin_lock(&dentry->d_lock);
2525  	/*
2526  	 * Are we the only user?
2527  	 */
2528  	if (dentry->d_lockref.count == 1) {
2529  		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2530  		dentry_unlink_inode(dentry);
2531  	} else {
2532  		__d_drop(dentry);
2533  		spin_unlock(&dentry->d_lock);
2534  		spin_unlock(&inode->i_lock);
2535  	}
2536  }
2537  EXPORT_SYMBOL(d_delete);
2538  
2539  static void __d_rehash(struct dentry *entry)
2540  {
2541  	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2542  
2543  	hlist_bl_lock(b);
2544  	hlist_bl_add_head_rcu(&entry->d_hash, b);
2545  	hlist_bl_unlock(b);
2546  }
2547  
2548  /**
2549   * d_rehash	- add an entry back to the hash
2550   * @entry: dentry to add to the hash
2551   *
2552   * Adds a dentry to the hash according to its name.
2553   */
2554  
2555  void d_rehash(struct dentry * entry)
2556  {
2557  	spin_lock(&entry->d_lock);
2558  	__d_rehash(entry);
2559  	spin_unlock(&entry->d_lock);
2560  }
2561  EXPORT_SYMBOL(d_rehash);
2562  
2563  static inline unsigned start_dir_add(struct inode *dir)
2564  {
2565  
2566  	for (;;) {
2567  		unsigned n = dir->i_dir_seq;
2568  		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2569  			return n;
2570  		cpu_relax();
2571  	}
2572  }
2573  
2574  static inline void end_dir_add(struct inode *dir, unsigned n)
2575  {
2576  	smp_store_release(&dir->i_dir_seq, n + 2);
2577  }
2578  
2579  static void d_wait_lookup(struct dentry *dentry)
2580  {
2581  	if (d_in_lookup(dentry)) {
2582  		DECLARE_WAITQUEUE(wait, current);
2583  		add_wait_queue(dentry->d_wait, &wait);
2584  		do {
2585  			set_current_state(TASK_UNINTERRUPTIBLE);
2586  			spin_unlock(&dentry->d_lock);
2587  			schedule();
2588  			spin_lock(&dentry->d_lock);
2589  		} while (d_in_lookup(dentry));
2590  	}
2591  }
2592  
2593  struct dentry *d_alloc_parallel(struct dentry *parent,
2594  				const struct qstr *name,
2595  				wait_queue_head_t *wq)
2596  {
2597  	unsigned int hash = name->hash;
2598  	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2599  	struct hlist_bl_node *node;
2600  	struct dentry *new = d_alloc(parent, name);
2601  	struct dentry *dentry;
2602  	unsigned seq, r_seq, d_seq;
2603  
2604  	if (unlikely(!new))
2605  		return ERR_PTR(-ENOMEM);
2606  
2607  retry:
2608  	rcu_read_lock();
2609  	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2610  	r_seq = read_seqbegin(&rename_lock);
2611  	dentry = __d_lookup_rcu(parent, name, &d_seq);
2612  	if (unlikely(dentry)) {
2613  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2614  			rcu_read_unlock();
2615  			goto retry;
2616  		}
2617  		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2618  			rcu_read_unlock();
2619  			dput(dentry);
2620  			goto retry;
2621  		}
2622  		rcu_read_unlock();
2623  		dput(new);
2624  		return dentry;
2625  	}
2626  	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2627  		rcu_read_unlock();
2628  		goto retry;
2629  	}
2630  
2631  	if (unlikely(seq & 1)) {
2632  		rcu_read_unlock();
2633  		goto retry;
2634  	}
2635  
2636  	hlist_bl_lock(b);
2637  	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2638  		hlist_bl_unlock(b);
2639  		rcu_read_unlock();
2640  		goto retry;
2641  	}
2642  	/*
2643  	 * No changes for the parent since the beginning of d_lookup().
2644  	 * Since all removals from the chain happen with hlist_bl_lock(),
2645  	 * any potential in-lookup matches are going to stay here until
2646  	 * we unlock the chain.  All fields are stable in everything
2647  	 * we encounter.
2648  	 */
2649  	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2650  		if (dentry->d_name.hash != hash)
2651  			continue;
2652  		if (dentry->d_parent != parent)
2653  			continue;
2654  		if (!d_same_name(dentry, parent, name))
2655  			continue;
2656  		hlist_bl_unlock(b);
2657  		/* now we can try to grab a reference */
2658  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2659  			rcu_read_unlock();
2660  			goto retry;
2661  		}
2662  
2663  		rcu_read_unlock();
2664  		/*
2665  		 * somebody is likely to be still doing lookup for it;
2666  		 * wait for them to finish
2667  		 */
2668  		spin_lock(&dentry->d_lock);
2669  		d_wait_lookup(dentry);
2670  		/*
2671  		 * it's not in-lookup anymore; in principle we should repeat
2672  		 * everything from dcache lookup, but it's likely to be what
2673  		 * d_lookup() would've found anyway.  If it is, just return it;
2674  		 * otherwise we really have to repeat the whole thing.
2675  		 */
2676  		if (unlikely(dentry->d_name.hash != hash))
2677  			goto mismatch;
2678  		if (unlikely(dentry->d_parent != parent))
2679  			goto mismatch;
2680  		if (unlikely(d_unhashed(dentry)))
2681  			goto mismatch;
2682  		if (unlikely(!d_same_name(dentry, parent, name)))
2683  			goto mismatch;
2684  		/* OK, it *is* a hashed match; return it */
2685  		spin_unlock(&dentry->d_lock);
2686  		dput(new);
2687  		return dentry;
2688  	}
2689  	rcu_read_unlock();
2690  	/* we can't take ->d_lock here; it's OK, though. */
2691  	new->d_flags |= DCACHE_PAR_LOOKUP;
2692  	new->d_wait = wq;
2693  	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2694  	hlist_bl_unlock(b);
2695  	return new;
2696  mismatch:
2697  	spin_unlock(&dentry->d_lock);
2698  	dput(dentry);
2699  	goto retry;
2700  }
2701  EXPORT_SYMBOL(d_alloc_parallel);
2702  
2703  void __d_lookup_done(struct dentry *dentry)
2704  {
2705  	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2706  						 dentry->d_name.hash);
2707  	hlist_bl_lock(b);
2708  	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2709  	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2710  	wake_up_all(dentry->d_wait);
2711  	dentry->d_wait = NULL;
2712  	hlist_bl_unlock(b);
2713  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2714  	INIT_LIST_HEAD(&dentry->d_lru);
2715  }
2716  EXPORT_SYMBOL(__d_lookup_done);
2717  
2718  /* inode->i_lock held if inode is non-NULL */
2719  
2720  static inline void __d_add(struct dentry *dentry, struct inode *inode)
2721  {
2722  	struct inode *dir = NULL;
2723  	unsigned n;
2724  	spin_lock(&dentry->d_lock);
2725  	if (unlikely(d_in_lookup(dentry))) {
2726  		dir = dentry->d_parent->d_inode;
2727  		n = start_dir_add(dir);
2728  		__d_lookup_done(dentry);
2729  	}
2730  	if (inode) {
2731  		unsigned add_flags = d_flags_for_inode(inode);
2732  		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2733  		raw_write_seqcount_begin(&dentry->d_seq);
2734  		__d_set_inode_and_type(dentry, inode, add_flags);
2735  		raw_write_seqcount_end(&dentry->d_seq);
2736  		fsnotify_update_flags(dentry);
2737  	}
2738  	__d_rehash(dentry);
2739  	if (dir)
2740  		end_dir_add(dir, n);
2741  	spin_unlock(&dentry->d_lock);
2742  	if (inode)
2743  		spin_unlock(&inode->i_lock);
2744  }
2745  
2746  /**
2747   * d_add - add dentry to hash queues
2748   * @entry: dentry to add
2749   * @inode: The inode to attach to this dentry
2750   *
2751   * This adds the entry to the hash queues and initializes @inode.
2752   * The entry was actually filled in earlier during d_alloc().
2753   */
2754  
2755  void d_add(struct dentry *entry, struct inode *inode)
2756  {
2757  	if (inode) {
2758  		security_d_instantiate(entry, inode);
2759  		spin_lock(&inode->i_lock);
2760  	}
2761  	__d_add(entry, inode);
2762  }
2763  EXPORT_SYMBOL(d_add);
2764  
2765  /**
2766   * d_exact_alias - find and hash an exact unhashed alias
2767   * @entry: dentry to add
2768   * @inode: The inode to go with this dentry
2769   *
2770   * If an unhashed dentry with the same name/parent and desired
2771   * inode already exists, hash and return it.  Otherwise, return
2772   * NULL.
2773   *
2774   * Parent directory should be locked.
2775   */
2776  struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2777  {
2778  	struct dentry *alias;
2779  	unsigned int hash = entry->d_name.hash;
2780  
2781  	spin_lock(&inode->i_lock);
2782  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2783  		/*
2784  		 * Don't need alias->d_lock here, because aliases with
2785  		 * d_parent == entry->d_parent are not subject to name or
2786  		 * parent changes, because the parent inode i_mutex is held.
2787  		 */
2788  		if (alias->d_name.hash != hash)
2789  			continue;
2790  		if (alias->d_parent != entry->d_parent)
2791  			continue;
2792  		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2793  			continue;
2794  		spin_lock(&alias->d_lock);
2795  		if (!d_unhashed(alias)) {
2796  			spin_unlock(&alias->d_lock);
2797  			alias = NULL;
2798  		} else {
2799  			__dget_dlock(alias);
2800  			__d_rehash(alias);
2801  			spin_unlock(&alias->d_lock);
2802  		}
2803  		spin_unlock(&inode->i_lock);
2804  		return alias;
2805  	}
2806  	spin_unlock(&inode->i_lock);
2807  	return NULL;
2808  }
2809  EXPORT_SYMBOL(d_exact_alias);
2810  
2811  static void swap_names(struct dentry *dentry, struct dentry *target)
2812  {
2813  	if (unlikely(dname_external(target))) {
2814  		if (unlikely(dname_external(dentry))) {
2815  			/*
2816  			 * Both external: swap the pointers
2817  			 */
2818  			swap(target->d_name.name, dentry->d_name.name);
2819  		} else {
2820  			/*
2821  			 * dentry:internal, target:external.  Steal target's
2822  			 * storage and make target internal.
2823  			 */
2824  			memcpy(target->d_iname, dentry->d_name.name,
2825  					dentry->d_name.len + 1);
2826  			dentry->d_name.name = target->d_name.name;
2827  			target->d_name.name = target->d_iname;
2828  		}
2829  	} else {
2830  		if (unlikely(dname_external(dentry))) {
2831  			/*
2832  			 * dentry:external, target:internal.  Give dentry's
2833  			 * storage to target and make dentry internal
2834  			 */
2835  			memcpy(dentry->d_iname, target->d_name.name,
2836  					target->d_name.len + 1);
2837  			target->d_name.name = dentry->d_name.name;
2838  			dentry->d_name.name = dentry->d_iname;
2839  		} else {
2840  			/*
2841  			 * Both are internal.
2842  			 */
2843  			unsigned int i;
2844  			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2845  			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2846  				swap(((long *) &dentry->d_iname)[i],
2847  				     ((long *) &target->d_iname)[i]);
2848  			}
2849  		}
2850  	}
2851  	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2852  }
2853  
2854  static void copy_name(struct dentry *dentry, struct dentry *target)
2855  {
2856  	struct external_name *old_name = NULL;
2857  	if (unlikely(dname_external(dentry)))
2858  		old_name = external_name(dentry);
2859  	if (unlikely(dname_external(target))) {
2860  		atomic_inc(&external_name(target)->u.count);
2861  		dentry->d_name = target->d_name;
2862  	} else {
2863  		memcpy(dentry->d_iname, target->d_name.name,
2864  				target->d_name.len + 1);
2865  		dentry->d_name.name = dentry->d_iname;
2866  		dentry->d_name.hash_len = target->d_name.hash_len;
2867  	}
2868  	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2869  		kfree_rcu(old_name, u.head);
2870  }
2871  
2872  /*
2873   * __d_move - move a dentry
2874   * @dentry: entry to move
2875   * @target: new dentry
2876   * @exchange: exchange the two dentries
2877   *
2878   * Update the dcache to reflect the move of a file name. Negative
2879   * dcache entries should not be moved in this way. Caller must hold
2880   * rename_lock, the i_mutex of the source and target directories,
2881   * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2882   */
2883  static void __d_move(struct dentry *dentry, struct dentry *target,
2884  		     bool exchange)
2885  {
2886  	struct dentry *old_parent, *p;
2887  	struct inode *dir = NULL;
2888  	unsigned n;
2889  
2890  	WARN_ON(!dentry->d_inode);
2891  	if (WARN_ON(dentry == target))
2892  		return;
2893  
2894  	BUG_ON(d_ancestor(target, dentry));
2895  	old_parent = dentry->d_parent;
2896  	p = d_ancestor(old_parent, target);
2897  	if (IS_ROOT(dentry)) {
2898  		BUG_ON(p);
2899  		spin_lock(&target->d_parent->d_lock);
2900  	} else if (!p) {
2901  		/* target is not a descendent of dentry->d_parent */
2902  		spin_lock(&target->d_parent->d_lock);
2903  		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2904  	} else {
2905  		BUG_ON(p == dentry);
2906  		spin_lock(&old_parent->d_lock);
2907  		if (p != target)
2908  			spin_lock_nested(&target->d_parent->d_lock,
2909  					DENTRY_D_LOCK_NESTED);
2910  	}
2911  	spin_lock_nested(&dentry->d_lock, 2);
2912  	spin_lock_nested(&target->d_lock, 3);
2913  
2914  	if (unlikely(d_in_lookup(target))) {
2915  		dir = target->d_parent->d_inode;
2916  		n = start_dir_add(dir);
2917  		__d_lookup_done(target);
2918  	}
2919  
2920  	write_seqcount_begin(&dentry->d_seq);
2921  	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2922  
2923  	/* unhash both */
2924  	if (!d_unhashed(dentry))
2925  		___d_drop(dentry);
2926  	if (!d_unhashed(target))
2927  		___d_drop(target);
2928  
2929  	/* ... and switch them in the tree */
2930  	dentry->d_parent = target->d_parent;
2931  	if (!exchange) {
2932  		copy_name(dentry, target);
2933  		target->d_hash.pprev = NULL;
2934  		dentry->d_parent->d_lockref.count++;
2935  		if (dentry != old_parent) /* wasn't IS_ROOT */
2936  			WARN_ON(!--old_parent->d_lockref.count);
2937  	} else {
2938  		target->d_parent = old_parent;
2939  		swap_names(dentry, target);
2940  		list_move(&target->d_child, &target->d_parent->d_subdirs);
2941  		__d_rehash(target);
2942  		fsnotify_update_flags(target);
2943  	}
2944  	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2945  	__d_rehash(dentry);
2946  	fsnotify_update_flags(dentry);
2947  	fscrypt_handle_d_move(dentry);
2948  
2949  	write_seqcount_end(&target->d_seq);
2950  	write_seqcount_end(&dentry->d_seq);
2951  
2952  	if (dir)
2953  		end_dir_add(dir, n);
2954  
2955  	if (dentry->d_parent != old_parent)
2956  		spin_unlock(&dentry->d_parent->d_lock);
2957  	if (dentry != old_parent)
2958  		spin_unlock(&old_parent->d_lock);
2959  	spin_unlock(&target->d_lock);
2960  	spin_unlock(&dentry->d_lock);
2961  }
2962  
2963  /*
2964   * d_move - move a dentry
2965   * @dentry: entry to move
2966   * @target: new dentry
2967   *
2968   * Update the dcache to reflect the move of a file name. Negative
2969   * dcache entries should not be moved in this way. See the locking
2970   * requirements for __d_move.
2971   */
2972  void d_move(struct dentry *dentry, struct dentry *target)
2973  {
2974  	write_seqlock(&rename_lock);
2975  	__d_move(dentry, target, false);
2976  	write_sequnlock(&rename_lock);
2977  }
2978  EXPORT_SYMBOL(d_move);
2979  
2980  /*
2981   * d_exchange - exchange two dentries
2982   * @dentry1: first dentry
2983   * @dentry2: second dentry
2984   */
2985  void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2986  {
2987  	write_seqlock(&rename_lock);
2988  
2989  	WARN_ON(!dentry1->d_inode);
2990  	WARN_ON(!dentry2->d_inode);
2991  	WARN_ON(IS_ROOT(dentry1));
2992  	WARN_ON(IS_ROOT(dentry2));
2993  
2994  	__d_move(dentry1, dentry2, true);
2995  
2996  	write_sequnlock(&rename_lock);
2997  }
2998  
2999  /**
3000   * d_ancestor - search for an ancestor
3001   * @p1: ancestor dentry
3002   * @p2: child dentry
3003   *
3004   * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3005   * an ancestor of p2, else NULL.
3006   */
3007  struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3008  {
3009  	struct dentry *p;
3010  
3011  	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3012  		if (p->d_parent == p1)
3013  			return p;
3014  	}
3015  	return NULL;
3016  }
3017  
3018  /*
3019   * This helper attempts to cope with remotely renamed directories
3020   *
3021   * It assumes that the caller is already holding
3022   * dentry->d_parent->d_inode->i_mutex, and rename_lock
3023   *
3024   * Note: If ever the locking in lock_rename() changes, then please
3025   * remember to update this too...
3026   */
3027  static int __d_unalias(struct inode *inode,
3028  		struct dentry *dentry, struct dentry *alias)
3029  {
3030  	struct mutex *m1 = NULL;
3031  	struct rw_semaphore *m2 = NULL;
3032  	int ret = -ESTALE;
3033  
3034  	/* If alias and dentry share a parent, then no extra locks required */
3035  	if (alias->d_parent == dentry->d_parent)
3036  		goto out_unalias;
3037  
3038  	/* See lock_rename() */
3039  	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3040  		goto out_err;
3041  	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3042  	if (!inode_trylock_shared(alias->d_parent->d_inode))
3043  		goto out_err;
3044  	m2 = &alias->d_parent->d_inode->i_rwsem;
3045  out_unalias:
3046  	__d_move(alias, dentry, false);
3047  	ret = 0;
3048  out_err:
3049  	if (m2)
3050  		up_read(m2);
3051  	if (m1)
3052  		mutex_unlock(m1);
3053  	return ret;
3054  }
3055  
3056  /**
3057   * d_splice_alias - splice a disconnected dentry into the tree if one exists
3058   * @inode:  the inode which may have a disconnected dentry
3059   * @dentry: a negative dentry which we want to point to the inode.
3060   *
3061   * If inode is a directory and has an IS_ROOT alias, then d_move that in
3062   * place of the given dentry and return it, else simply d_add the inode
3063   * to the dentry and return NULL.
3064   *
3065   * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3066   * we should error out: directories can't have multiple aliases.
3067   *
3068   * This is needed in the lookup routine of any filesystem that is exportable
3069   * (via knfsd) so that we can build dcache paths to directories effectively.
3070   *
3071   * If a dentry was found and moved, then it is returned.  Otherwise NULL
3072   * is returned.  This matches the expected return value of ->lookup.
3073   *
3074   * Cluster filesystems may call this function with a negative, hashed dentry.
3075   * In that case, we know that the inode will be a regular file, and also this
3076   * will only occur during atomic_open. So we need to check for the dentry
3077   * being already hashed only in the final case.
3078   */
3079  struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3080  {
3081  	if (IS_ERR(inode))
3082  		return ERR_CAST(inode);
3083  
3084  	BUG_ON(!d_unhashed(dentry));
3085  
3086  	if (!inode)
3087  		goto out;
3088  
3089  	security_d_instantiate(dentry, inode);
3090  	spin_lock(&inode->i_lock);
3091  	if (S_ISDIR(inode->i_mode)) {
3092  		struct dentry *new = __d_find_any_alias(inode);
3093  		if (unlikely(new)) {
3094  			/* The reference to new ensures it remains an alias */
3095  			spin_unlock(&inode->i_lock);
3096  			write_seqlock(&rename_lock);
3097  			if (unlikely(d_ancestor(new, dentry))) {
3098  				write_sequnlock(&rename_lock);
3099  				dput(new);
3100  				new = ERR_PTR(-ELOOP);
3101  				pr_warn_ratelimited(
3102  					"VFS: Lookup of '%s' in %s %s"
3103  					" would have caused loop\n",
3104  					dentry->d_name.name,
3105  					inode->i_sb->s_type->name,
3106  					inode->i_sb->s_id);
3107  			} else if (!IS_ROOT(new)) {
3108  				struct dentry *old_parent = dget(new->d_parent);
3109  				int err = __d_unalias(inode, dentry, new);
3110  				write_sequnlock(&rename_lock);
3111  				if (err) {
3112  					dput(new);
3113  					new = ERR_PTR(err);
3114  				}
3115  				dput(old_parent);
3116  			} else {
3117  				__d_move(new, dentry, false);
3118  				write_sequnlock(&rename_lock);
3119  			}
3120  			iput(inode);
3121  			return new;
3122  		}
3123  	}
3124  out:
3125  	__d_add(dentry, inode);
3126  	return NULL;
3127  }
3128  EXPORT_SYMBOL(d_splice_alias);
3129  
3130  /*
3131   * Test whether new_dentry is a subdirectory of old_dentry.
3132   *
3133   * Trivially implemented using the dcache structure
3134   */
3135  
3136  /**
3137   * is_subdir - is new dentry a subdirectory of old_dentry
3138   * @new_dentry: new dentry
3139   * @old_dentry: old dentry
3140   *
3141   * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3142   * Returns false otherwise.
3143   * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3144   */
3145  
3146  bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3147  {
3148  	bool result;
3149  	unsigned seq;
3150  
3151  	if (new_dentry == old_dentry)
3152  		return true;
3153  
3154  	do {
3155  		/* for restarting inner loop in case of seq retry */
3156  		seq = read_seqbegin(&rename_lock);
3157  		/*
3158  		 * Need rcu_readlock to protect against the d_parent trashing
3159  		 * due to d_move
3160  		 */
3161  		rcu_read_lock();
3162  		if (d_ancestor(old_dentry, new_dentry))
3163  			result = true;
3164  		else
3165  			result = false;
3166  		rcu_read_unlock();
3167  	} while (read_seqretry(&rename_lock, seq));
3168  
3169  	return result;
3170  }
3171  EXPORT_SYMBOL(is_subdir);
3172  
3173  static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3174  {
3175  	struct dentry *root = data;
3176  	if (dentry != root) {
3177  		if (d_unhashed(dentry) || !dentry->d_inode)
3178  			return D_WALK_SKIP;
3179  
3180  		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3181  			dentry->d_flags |= DCACHE_GENOCIDE;
3182  			dentry->d_lockref.count--;
3183  		}
3184  	}
3185  	return D_WALK_CONTINUE;
3186  }
3187  
3188  void d_genocide(struct dentry *parent)
3189  {
3190  	d_walk(parent, parent, d_genocide_kill);
3191  }
3192  
3193  EXPORT_SYMBOL(d_genocide);
3194  
3195  void d_tmpfile(struct dentry *dentry, struct inode *inode)
3196  {
3197  	inode_dec_link_count(inode);
3198  	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3199  		!hlist_unhashed(&dentry->d_u.d_alias) ||
3200  		!d_unlinked(dentry));
3201  	spin_lock(&dentry->d_parent->d_lock);
3202  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3203  	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3204  				(unsigned long long)inode->i_ino);
3205  	spin_unlock(&dentry->d_lock);
3206  	spin_unlock(&dentry->d_parent->d_lock);
3207  	d_instantiate(dentry, inode);
3208  }
3209  EXPORT_SYMBOL(d_tmpfile);
3210  
3211  static __initdata unsigned long dhash_entries;
3212  static int __init set_dhash_entries(char *str)
3213  {
3214  	if (!str)
3215  		return 0;
3216  	dhash_entries = simple_strtoul(str, &str, 0);
3217  	return 1;
3218  }
3219  __setup("dhash_entries=", set_dhash_entries);
3220  
3221  static void __init dcache_init_early(void)
3222  {
3223  	/* If hashes are distributed across NUMA nodes, defer
3224  	 * hash allocation until vmalloc space is available.
3225  	 */
3226  	if (hashdist)
3227  		return;
3228  
3229  	dentry_hashtable =
3230  		alloc_large_system_hash("Dentry cache",
3231  					sizeof(struct hlist_bl_head),
3232  					dhash_entries,
3233  					13,
3234  					HASH_EARLY | HASH_ZERO,
3235  					&d_hash_shift,
3236  					NULL,
3237  					0,
3238  					0);
3239  	d_hash_shift = 32 - d_hash_shift;
3240  }
3241  
3242  static void __init dcache_init(void)
3243  {
3244  	/*
3245  	 * A constructor could be added for stable state like the lists,
3246  	 * but it is probably not worth it because of the cache nature
3247  	 * of the dcache.
3248  	 */
3249  	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3250  		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3251  		d_iname);
3252  
3253  	/* Hash may have been set up in dcache_init_early */
3254  	if (!hashdist)
3255  		return;
3256  
3257  	dentry_hashtable =
3258  		alloc_large_system_hash("Dentry cache",
3259  					sizeof(struct hlist_bl_head),
3260  					dhash_entries,
3261  					13,
3262  					HASH_ZERO,
3263  					&d_hash_shift,
3264  					NULL,
3265  					0,
3266  					0);
3267  	d_hash_shift = 32 - d_hash_shift;
3268  }
3269  
3270  /* SLAB cache for __getname() consumers */
3271  struct kmem_cache *names_cachep __read_mostly;
3272  EXPORT_SYMBOL(names_cachep);
3273  
3274  void __init vfs_caches_init_early(void)
3275  {
3276  	int i;
3277  
3278  	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3279  		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3280  
3281  	dcache_init_early();
3282  	inode_init_early();
3283  }
3284  
3285  void __init vfs_caches_init(void)
3286  {
3287  	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3288  			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3289  
3290  	dcache_init();
3291  	inode_init();
3292  	files_init();
3293  	files_maxfiles_init();
3294  	mnt_init();
3295  	bdev_cache_init();
3296  	chrdev_init();
3297  }
3298