xref: /openbmc/linux/fs/dcache.c (revision 3e26a691)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 static inline void __d_set_inode_and_type(struct dentry *dentry,
273 					  struct inode *inode,
274 					  unsigned type_flags)
275 {
276 	unsigned flags;
277 
278 	dentry->d_inode = inode;
279 	flags = READ_ONCE(dentry->d_flags);
280 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
281 	flags |= type_flags;
282 	WRITE_ONCE(dentry->d_flags, flags);
283 }
284 
285 static inline void __d_clear_type_and_inode(struct dentry *dentry)
286 {
287 	unsigned flags = READ_ONCE(dentry->d_flags);
288 
289 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 	WRITE_ONCE(dentry->d_flags, flags);
291 	dentry->d_inode = NULL;
292 }
293 
294 static void dentry_free(struct dentry *dentry)
295 {
296 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
297 	if (unlikely(dname_external(dentry))) {
298 		struct external_name *p = external_name(dentry);
299 		if (likely(atomic_dec_and_test(&p->u.count))) {
300 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
301 			return;
302 		}
303 	}
304 	/* if dentry was never visible to RCU, immediate free is OK */
305 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
306 		__d_free(&dentry->d_u.d_rcu);
307 	else
308 		call_rcu(&dentry->d_u.d_rcu, __d_free);
309 }
310 
311 /**
312  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313  * @dentry: the target dentry
314  * After this call, in-progress rcu-walk path lookup will fail. This
315  * should be called after unhashing, and after changing d_inode (if
316  * the dentry has not already been unhashed).
317  */
318 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
319 {
320 	lockdep_assert_held(&dentry->d_lock);
321 	/* Go through am invalidation barrier */
322 	write_seqcount_invalidate(&dentry->d_seq);
323 }
324 
325 /*
326  * Release the dentry's inode, using the filesystem
327  * d_iput() operation if defined. Dentry has no refcount
328  * and is unhashed.
329  */
330 static void dentry_iput(struct dentry * dentry)
331 	__releases(dentry->d_lock)
332 	__releases(dentry->d_inode->i_lock)
333 {
334 	struct inode *inode = dentry->d_inode;
335 	if (inode) {
336 		__d_clear_type_and_inode(dentry);
337 		hlist_del_init(&dentry->d_u.d_alias);
338 		spin_unlock(&dentry->d_lock);
339 		spin_unlock(&inode->i_lock);
340 		if (!inode->i_nlink)
341 			fsnotify_inoderemove(inode);
342 		if (dentry->d_op && dentry->d_op->d_iput)
343 			dentry->d_op->d_iput(dentry, inode);
344 		else
345 			iput(inode);
346 	} else {
347 		spin_unlock(&dentry->d_lock);
348 	}
349 }
350 
351 /*
352  * Release the dentry's inode, using the filesystem
353  * d_iput() operation if defined. dentry remains in-use.
354  */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 	__releases(dentry->d_lock)
357 	__releases(dentry->d_inode->i_lock)
358 {
359 	struct inode *inode = dentry->d_inode;
360 
361 	raw_write_seqcount_begin(&dentry->d_seq);
362 	__d_clear_type_and_inode(dentry);
363 	hlist_del_init(&dentry->d_u.d_alias);
364 	raw_write_seqcount_end(&dentry->d_seq);
365 	spin_unlock(&dentry->d_lock);
366 	spin_unlock(&inode->i_lock);
367 	if (!inode->i_nlink)
368 		fsnotify_inoderemove(inode);
369 	if (dentry->d_op && dentry->d_op->d_iput)
370 		dentry->d_op->d_iput(dentry, inode);
371 	else
372 		iput(inode);
373 }
374 
375 /*
376  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377  * is in use - which includes both the "real" per-superblock
378  * LRU list _and_ the DCACHE_SHRINK_LIST use.
379  *
380  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381  * on the shrink list (ie not on the superblock LRU list).
382  *
383  * The per-cpu "nr_dentry_unused" counters are updated with
384  * the DCACHE_LRU_LIST bit.
385  *
386  * These helper functions make sure we always follow the
387  * rules. d_lock must be held by the caller.
388  */
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390 static void d_lru_add(struct dentry *dentry)
391 {
392 	D_FLAG_VERIFY(dentry, 0);
393 	dentry->d_flags |= DCACHE_LRU_LIST;
394 	this_cpu_inc(nr_dentry_unused);
395 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396 }
397 
398 static void d_lru_del(struct dentry *dentry)
399 {
400 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 	dentry->d_flags &= ~DCACHE_LRU_LIST;
402 	this_cpu_dec(nr_dentry_unused);
403 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405 
406 static void d_shrink_del(struct dentry *dentry)
407 {
408 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 	list_del_init(&dentry->d_lru);
410 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 	this_cpu_dec(nr_dentry_unused);
412 }
413 
414 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 {
416 	D_FLAG_VERIFY(dentry, 0);
417 	list_add(&dentry->d_lru, list);
418 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 	this_cpu_inc(nr_dentry_unused);
420 }
421 
422 /*
423  * These can only be called under the global LRU lock, ie during the
424  * callback for freeing the LRU list. "isolate" removes it from the
425  * LRU lists entirely, while shrink_move moves it to the indicated
426  * private list.
427  */
428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 {
430 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 	dentry->d_flags &= ~DCACHE_LRU_LIST;
432 	this_cpu_dec(nr_dentry_unused);
433 	list_lru_isolate(lru, &dentry->d_lru);
434 }
435 
436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 			      struct list_head *list)
438 {
439 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 	dentry->d_flags |= DCACHE_SHRINK_LIST;
441 	list_lru_isolate_move(lru, &dentry->d_lru, list);
442 }
443 
444 /*
445  * dentry_lru_(add|del)_list) must be called with d_lock held.
446  */
447 static void dentry_lru_add(struct dentry *dentry)
448 {
449 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 		d_lru_add(dentry);
451 }
452 
453 /**
454  * d_drop - drop a dentry
455  * @dentry: dentry to drop
456  *
457  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458  * be found through a VFS lookup any more. Note that this is different from
459  * deleting the dentry - d_delete will try to mark the dentry negative if
460  * possible, giving a successful _negative_ lookup, while d_drop will
461  * just make the cache lookup fail.
462  *
463  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464  * reason (NFS timeouts or autofs deletes).
465  *
466  * __d_drop requires dentry->d_lock.
467  */
468 void __d_drop(struct dentry *dentry)
469 {
470 	if (!d_unhashed(dentry)) {
471 		struct hlist_bl_head *b;
472 		/*
473 		 * Hashed dentries are normally on the dentry hashtable,
474 		 * with the exception of those newly allocated by
475 		 * d_obtain_alias, which are always IS_ROOT:
476 		 */
477 		if (unlikely(IS_ROOT(dentry)))
478 			b = &dentry->d_sb->s_anon;
479 		else
480 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
481 
482 		hlist_bl_lock(b);
483 		__hlist_bl_del(&dentry->d_hash);
484 		dentry->d_hash.pprev = NULL;
485 		hlist_bl_unlock(b);
486 		dentry_rcuwalk_invalidate(dentry);
487 	}
488 }
489 EXPORT_SYMBOL(__d_drop);
490 
491 void d_drop(struct dentry *dentry)
492 {
493 	spin_lock(&dentry->d_lock);
494 	__d_drop(dentry);
495 	spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498 
499 static void __dentry_kill(struct dentry *dentry)
500 {
501 	struct dentry *parent = NULL;
502 	bool can_free = true;
503 	if (!IS_ROOT(dentry))
504 		parent = dentry->d_parent;
505 
506 	/*
507 	 * The dentry is now unrecoverably dead to the world.
508 	 */
509 	lockref_mark_dead(&dentry->d_lockref);
510 
511 	/*
512 	 * inform the fs via d_prune that this dentry is about to be
513 	 * unhashed and destroyed.
514 	 */
515 	if (dentry->d_flags & DCACHE_OP_PRUNE)
516 		dentry->d_op->d_prune(dentry);
517 
518 	if (dentry->d_flags & DCACHE_LRU_LIST) {
519 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
520 			d_lru_del(dentry);
521 	}
522 	/* if it was on the hash then remove it */
523 	__d_drop(dentry);
524 	__list_del_entry(&dentry->d_child);
525 	/*
526 	 * Inform d_walk() that we are no longer attached to the
527 	 * dentry tree
528 	 */
529 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
530 	if (parent)
531 		spin_unlock(&parent->d_lock);
532 	dentry_iput(dentry);
533 	/*
534 	 * dentry_iput drops the locks, at which point nobody (except
535 	 * transient RCU lookups) can reach this dentry.
536 	 */
537 	BUG_ON(dentry->d_lockref.count > 0);
538 	this_cpu_dec(nr_dentry);
539 	if (dentry->d_op && dentry->d_op->d_release)
540 		dentry->d_op->d_release(dentry);
541 
542 	spin_lock(&dentry->d_lock);
543 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
544 		dentry->d_flags |= DCACHE_MAY_FREE;
545 		can_free = false;
546 	}
547 	spin_unlock(&dentry->d_lock);
548 	if (likely(can_free))
549 		dentry_free(dentry);
550 }
551 
552 /*
553  * Finish off a dentry we've decided to kill.
554  * dentry->d_lock must be held, returns with it unlocked.
555  * If ref is non-zero, then decrement the refcount too.
556  * Returns dentry requiring refcount drop, or NULL if we're done.
557  */
558 static struct dentry *dentry_kill(struct dentry *dentry)
559 	__releases(dentry->d_lock)
560 {
561 	struct inode *inode = dentry->d_inode;
562 	struct dentry *parent = NULL;
563 
564 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
565 		goto failed;
566 
567 	if (!IS_ROOT(dentry)) {
568 		parent = dentry->d_parent;
569 		if (unlikely(!spin_trylock(&parent->d_lock))) {
570 			if (inode)
571 				spin_unlock(&inode->i_lock);
572 			goto failed;
573 		}
574 	}
575 
576 	__dentry_kill(dentry);
577 	return parent;
578 
579 failed:
580 	spin_unlock(&dentry->d_lock);
581 	cpu_relax();
582 	return dentry; /* try again with same dentry */
583 }
584 
585 static inline struct dentry *lock_parent(struct dentry *dentry)
586 {
587 	struct dentry *parent = dentry->d_parent;
588 	if (IS_ROOT(dentry))
589 		return NULL;
590 	if (unlikely(dentry->d_lockref.count < 0))
591 		return NULL;
592 	if (likely(spin_trylock(&parent->d_lock)))
593 		return parent;
594 	rcu_read_lock();
595 	spin_unlock(&dentry->d_lock);
596 again:
597 	parent = ACCESS_ONCE(dentry->d_parent);
598 	spin_lock(&parent->d_lock);
599 	/*
600 	 * We can't blindly lock dentry until we are sure
601 	 * that we won't violate the locking order.
602 	 * Any changes of dentry->d_parent must have
603 	 * been done with parent->d_lock held, so
604 	 * spin_lock() above is enough of a barrier
605 	 * for checking if it's still our child.
606 	 */
607 	if (unlikely(parent != dentry->d_parent)) {
608 		spin_unlock(&parent->d_lock);
609 		goto again;
610 	}
611 	rcu_read_unlock();
612 	if (parent != dentry)
613 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
614 	else
615 		parent = NULL;
616 	return parent;
617 }
618 
619 /*
620  * Try to do a lockless dput(), and return whether that was successful.
621  *
622  * If unsuccessful, we return false, having already taken the dentry lock.
623  *
624  * The caller needs to hold the RCU read lock, so that the dentry is
625  * guaranteed to stay around even if the refcount goes down to zero!
626  */
627 static inline bool fast_dput(struct dentry *dentry)
628 {
629 	int ret;
630 	unsigned int d_flags;
631 
632 	/*
633 	 * If we have a d_op->d_delete() operation, we sould not
634 	 * let the dentry count go to zero, so use "put_or_lock".
635 	 */
636 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
637 		return lockref_put_or_lock(&dentry->d_lockref);
638 
639 	/*
640 	 * .. otherwise, we can try to just decrement the
641 	 * lockref optimistically.
642 	 */
643 	ret = lockref_put_return(&dentry->d_lockref);
644 
645 	/*
646 	 * If the lockref_put_return() failed due to the lock being held
647 	 * by somebody else, the fast path has failed. We will need to
648 	 * get the lock, and then check the count again.
649 	 */
650 	if (unlikely(ret < 0)) {
651 		spin_lock(&dentry->d_lock);
652 		if (dentry->d_lockref.count > 1) {
653 			dentry->d_lockref.count--;
654 			spin_unlock(&dentry->d_lock);
655 			return 1;
656 		}
657 		return 0;
658 	}
659 
660 	/*
661 	 * If we weren't the last ref, we're done.
662 	 */
663 	if (ret)
664 		return 1;
665 
666 	/*
667 	 * Careful, careful. The reference count went down
668 	 * to zero, but we don't hold the dentry lock, so
669 	 * somebody else could get it again, and do another
670 	 * dput(), and we need to not race with that.
671 	 *
672 	 * However, there is a very special and common case
673 	 * where we don't care, because there is nothing to
674 	 * do: the dentry is still hashed, it does not have
675 	 * a 'delete' op, and it's referenced and already on
676 	 * the LRU list.
677 	 *
678 	 * NOTE! Since we aren't locked, these values are
679 	 * not "stable". However, it is sufficient that at
680 	 * some point after we dropped the reference the
681 	 * dentry was hashed and the flags had the proper
682 	 * value. Other dentry users may have re-gotten
683 	 * a reference to the dentry and change that, but
684 	 * our work is done - we can leave the dentry
685 	 * around with a zero refcount.
686 	 */
687 	smp_rmb();
688 	d_flags = ACCESS_ONCE(dentry->d_flags);
689 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
690 
691 	/* Nothing to do? Dropping the reference was all we needed? */
692 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
693 		return 1;
694 
695 	/*
696 	 * Not the fast normal case? Get the lock. We've already decremented
697 	 * the refcount, but we'll need to re-check the situation after
698 	 * getting the lock.
699 	 */
700 	spin_lock(&dentry->d_lock);
701 
702 	/*
703 	 * Did somebody else grab a reference to it in the meantime, and
704 	 * we're no longer the last user after all? Alternatively, somebody
705 	 * else could have killed it and marked it dead. Either way, we
706 	 * don't need to do anything else.
707 	 */
708 	if (dentry->d_lockref.count) {
709 		spin_unlock(&dentry->d_lock);
710 		return 1;
711 	}
712 
713 	/*
714 	 * Re-get the reference we optimistically dropped. We hold the
715 	 * lock, and we just tested that it was zero, so we can just
716 	 * set it to 1.
717 	 */
718 	dentry->d_lockref.count = 1;
719 	return 0;
720 }
721 
722 
723 /*
724  * This is dput
725  *
726  * This is complicated by the fact that we do not want to put
727  * dentries that are no longer on any hash chain on the unused
728  * list: we'd much rather just get rid of them immediately.
729  *
730  * However, that implies that we have to traverse the dentry
731  * tree upwards to the parents which might _also_ now be
732  * scheduled for deletion (it may have been only waiting for
733  * its last child to go away).
734  *
735  * This tail recursion is done by hand as we don't want to depend
736  * on the compiler to always get this right (gcc generally doesn't).
737  * Real recursion would eat up our stack space.
738  */
739 
740 /*
741  * dput - release a dentry
742  * @dentry: dentry to release
743  *
744  * Release a dentry. This will drop the usage count and if appropriate
745  * call the dentry unlink method as well as removing it from the queues and
746  * releasing its resources. If the parent dentries were scheduled for release
747  * they too may now get deleted.
748  */
749 void dput(struct dentry *dentry)
750 {
751 	if (unlikely(!dentry))
752 		return;
753 
754 repeat:
755 	rcu_read_lock();
756 	if (likely(fast_dput(dentry))) {
757 		rcu_read_unlock();
758 		return;
759 	}
760 
761 	/* Slow case: now with the dentry lock held */
762 	rcu_read_unlock();
763 
764 	/* Unreachable? Get rid of it */
765 	if (unlikely(d_unhashed(dentry)))
766 		goto kill_it;
767 
768 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
769 		goto kill_it;
770 
771 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
772 		if (dentry->d_op->d_delete(dentry))
773 			goto kill_it;
774 	}
775 
776 	if (!(dentry->d_flags & DCACHE_REFERENCED))
777 		dentry->d_flags |= DCACHE_REFERENCED;
778 	dentry_lru_add(dentry);
779 
780 	dentry->d_lockref.count--;
781 	spin_unlock(&dentry->d_lock);
782 	return;
783 
784 kill_it:
785 	dentry = dentry_kill(dentry);
786 	if (dentry)
787 		goto repeat;
788 }
789 EXPORT_SYMBOL(dput);
790 
791 
792 /* This must be called with d_lock held */
793 static inline void __dget_dlock(struct dentry *dentry)
794 {
795 	dentry->d_lockref.count++;
796 }
797 
798 static inline void __dget(struct dentry *dentry)
799 {
800 	lockref_get(&dentry->d_lockref);
801 }
802 
803 struct dentry *dget_parent(struct dentry *dentry)
804 {
805 	int gotref;
806 	struct dentry *ret;
807 
808 	/*
809 	 * Do optimistic parent lookup without any
810 	 * locking.
811 	 */
812 	rcu_read_lock();
813 	ret = ACCESS_ONCE(dentry->d_parent);
814 	gotref = lockref_get_not_zero(&ret->d_lockref);
815 	rcu_read_unlock();
816 	if (likely(gotref)) {
817 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
818 			return ret;
819 		dput(ret);
820 	}
821 
822 repeat:
823 	/*
824 	 * Don't need rcu_dereference because we re-check it was correct under
825 	 * the lock.
826 	 */
827 	rcu_read_lock();
828 	ret = dentry->d_parent;
829 	spin_lock(&ret->d_lock);
830 	if (unlikely(ret != dentry->d_parent)) {
831 		spin_unlock(&ret->d_lock);
832 		rcu_read_unlock();
833 		goto repeat;
834 	}
835 	rcu_read_unlock();
836 	BUG_ON(!ret->d_lockref.count);
837 	ret->d_lockref.count++;
838 	spin_unlock(&ret->d_lock);
839 	return ret;
840 }
841 EXPORT_SYMBOL(dget_parent);
842 
843 /**
844  * d_find_alias - grab a hashed alias of inode
845  * @inode: inode in question
846  *
847  * If inode has a hashed alias, or is a directory and has any alias,
848  * acquire the reference to alias and return it. Otherwise return NULL.
849  * Notice that if inode is a directory there can be only one alias and
850  * it can be unhashed only if it has no children, or if it is the root
851  * of a filesystem, or if the directory was renamed and d_revalidate
852  * was the first vfs operation to notice.
853  *
854  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
855  * any other hashed alias over that one.
856  */
857 static struct dentry *__d_find_alias(struct inode *inode)
858 {
859 	struct dentry *alias, *discon_alias;
860 
861 again:
862 	discon_alias = NULL;
863 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
864 		spin_lock(&alias->d_lock);
865  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
866 			if (IS_ROOT(alias) &&
867 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
868 				discon_alias = alias;
869 			} else {
870 				__dget_dlock(alias);
871 				spin_unlock(&alias->d_lock);
872 				return alias;
873 			}
874 		}
875 		spin_unlock(&alias->d_lock);
876 	}
877 	if (discon_alias) {
878 		alias = discon_alias;
879 		spin_lock(&alias->d_lock);
880 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
881 			__dget_dlock(alias);
882 			spin_unlock(&alias->d_lock);
883 			return alias;
884 		}
885 		spin_unlock(&alias->d_lock);
886 		goto again;
887 	}
888 	return NULL;
889 }
890 
891 struct dentry *d_find_alias(struct inode *inode)
892 {
893 	struct dentry *de = NULL;
894 
895 	if (!hlist_empty(&inode->i_dentry)) {
896 		spin_lock(&inode->i_lock);
897 		de = __d_find_alias(inode);
898 		spin_unlock(&inode->i_lock);
899 	}
900 	return de;
901 }
902 EXPORT_SYMBOL(d_find_alias);
903 
904 /*
905  *	Try to kill dentries associated with this inode.
906  * WARNING: you must own a reference to inode.
907  */
908 void d_prune_aliases(struct inode *inode)
909 {
910 	struct dentry *dentry;
911 restart:
912 	spin_lock(&inode->i_lock);
913 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
914 		spin_lock(&dentry->d_lock);
915 		if (!dentry->d_lockref.count) {
916 			struct dentry *parent = lock_parent(dentry);
917 			if (likely(!dentry->d_lockref.count)) {
918 				__dentry_kill(dentry);
919 				dput(parent);
920 				goto restart;
921 			}
922 			if (parent)
923 				spin_unlock(&parent->d_lock);
924 		}
925 		spin_unlock(&dentry->d_lock);
926 	}
927 	spin_unlock(&inode->i_lock);
928 }
929 EXPORT_SYMBOL(d_prune_aliases);
930 
931 static void shrink_dentry_list(struct list_head *list)
932 {
933 	struct dentry *dentry, *parent;
934 
935 	while (!list_empty(list)) {
936 		struct inode *inode;
937 		dentry = list_entry(list->prev, struct dentry, d_lru);
938 		spin_lock(&dentry->d_lock);
939 		parent = lock_parent(dentry);
940 
941 		/*
942 		 * The dispose list is isolated and dentries are not accounted
943 		 * to the LRU here, so we can simply remove it from the list
944 		 * here regardless of whether it is referenced or not.
945 		 */
946 		d_shrink_del(dentry);
947 
948 		/*
949 		 * We found an inuse dentry which was not removed from
950 		 * the LRU because of laziness during lookup. Do not free it.
951 		 */
952 		if (dentry->d_lockref.count > 0) {
953 			spin_unlock(&dentry->d_lock);
954 			if (parent)
955 				spin_unlock(&parent->d_lock);
956 			continue;
957 		}
958 
959 
960 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
961 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
962 			spin_unlock(&dentry->d_lock);
963 			if (parent)
964 				spin_unlock(&parent->d_lock);
965 			if (can_free)
966 				dentry_free(dentry);
967 			continue;
968 		}
969 
970 		inode = dentry->d_inode;
971 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
972 			d_shrink_add(dentry, list);
973 			spin_unlock(&dentry->d_lock);
974 			if (parent)
975 				spin_unlock(&parent->d_lock);
976 			continue;
977 		}
978 
979 		__dentry_kill(dentry);
980 
981 		/*
982 		 * We need to prune ancestors too. This is necessary to prevent
983 		 * quadratic behavior of shrink_dcache_parent(), but is also
984 		 * expected to be beneficial in reducing dentry cache
985 		 * fragmentation.
986 		 */
987 		dentry = parent;
988 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
989 			parent = lock_parent(dentry);
990 			if (dentry->d_lockref.count != 1) {
991 				dentry->d_lockref.count--;
992 				spin_unlock(&dentry->d_lock);
993 				if (parent)
994 					spin_unlock(&parent->d_lock);
995 				break;
996 			}
997 			inode = dentry->d_inode;	/* can't be NULL */
998 			if (unlikely(!spin_trylock(&inode->i_lock))) {
999 				spin_unlock(&dentry->d_lock);
1000 				if (parent)
1001 					spin_unlock(&parent->d_lock);
1002 				cpu_relax();
1003 				continue;
1004 			}
1005 			__dentry_kill(dentry);
1006 			dentry = parent;
1007 		}
1008 	}
1009 }
1010 
1011 static enum lru_status dentry_lru_isolate(struct list_head *item,
1012 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013 {
1014 	struct list_head *freeable = arg;
1015 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1016 
1017 
1018 	/*
1019 	 * we are inverting the lru lock/dentry->d_lock here,
1020 	 * so use a trylock. If we fail to get the lock, just skip
1021 	 * it
1022 	 */
1023 	if (!spin_trylock(&dentry->d_lock))
1024 		return LRU_SKIP;
1025 
1026 	/*
1027 	 * Referenced dentries are still in use. If they have active
1028 	 * counts, just remove them from the LRU. Otherwise give them
1029 	 * another pass through the LRU.
1030 	 */
1031 	if (dentry->d_lockref.count) {
1032 		d_lru_isolate(lru, dentry);
1033 		spin_unlock(&dentry->d_lock);
1034 		return LRU_REMOVED;
1035 	}
1036 
1037 	if (dentry->d_flags & DCACHE_REFERENCED) {
1038 		dentry->d_flags &= ~DCACHE_REFERENCED;
1039 		spin_unlock(&dentry->d_lock);
1040 
1041 		/*
1042 		 * The list move itself will be made by the common LRU code. At
1043 		 * this point, we've dropped the dentry->d_lock but keep the
1044 		 * lru lock. This is safe to do, since every list movement is
1045 		 * protected by the lru lock even if both locks are held.
1046 		 *
1047 		 * This is guaranteed by the fact that all LRU management
1048 		 * functions are intermediated by the LRU API calls like
1049 		 * list_lru_add and list_lru_del. List movement in this file
1050 		 * only ever occur through this functions or through callbacks
1051 		 * like this one, that are called from the LRU API.
1052 		 *
1053 		 * The only exceptions to this are functions like
1054 		 * shrink_dentry_list, and code that first checks for the
1055 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056 		 * operating only with stack provided lists after they are
1057 		 * properly isolated from the main list.  It is thus, always a
1058 		 * local access.
1059 		 */
1060 		return LRU_ROTATE;
1061 	}
1062 
1063 	d_lru_shrink_move(lru, dentry, freeable);
1064 	spin_unlock(&dentry->d_lock);
1065 
1066 	return LRU_REMOVED;
1067 }
1068 
1069 /**
1070  * prune_dcache_sb - shrink the dcache
1071  * @sb: superblock
1072  * @sc: shrink control, passed to list_lru_shrink_walk()
1073  *
1074  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075  * is done when we need more memory and called from the superblock shrinker
1076  * function.
1077  *
1078  * This function may fail to free any resources if all the dentries are in
1079  * use.
1080  */
1081 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082 {
1083 	LIST_HEAD(dispose);
1084 	long freed;
1085 
1086 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087 				     dentry_lru_isolate, &dispose);
1088 	shrink_dentry_list(&dispose);
1089 	return freed;
1090 }
1091 
1092 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094 {
1095 	struct list_head *freeable = arg;
1096 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1097 
1098 	/*
1099 	 * we are inverting the lru lock/dentry->d_lock here,
1100 	 * so use a trylock. If we fail to get the lock, just skip
1101 	 * it
1102 	 */
1103 	if (!spin_trylock(&dentry->d_lock))
1104 		return LRU_SKIP;
1105 
1106 	d_lru_shrink_move(lru, dentry, freeable);
1107 	spin_unlock(&dentry->d_lock);
1108 
1109 	return LRU_REMOVED;
1110 }
1111 
1112 
1113 /**
1114  * shrink_dcache_sb - shrink dcache for a superblock
1115  * @sb: superblock
1116  *
1117  * Shrink the dcache for the specified super block. This is used to free
1118  * the dcache before unmounting a file system.
1119  */
1120 void shrink_dcache_sb(struct super_block *sb)
1121 {
1122 	long freed;
1123 
1124 	do {
1125 		LIST_HEAD(dispose);
1126 
1127 		freed = list_lru_walk(&sb->s_dentry_lru,
1128 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129 
1130 		this_cpu_sub(nr_dentry_unused, freed);
1131 		shrink_dentry_list(&dispose);
1132 	} while (freed > 0);
1133 }
1134 EXPORT_SYMBOL(shrink_dcache_sb);
1135 
1136 /**
1137  * enum d_walk_ret - action to talke during tree walk
1138  * @D_WALK_CONTINUE:	contrinue walk
1139  * @D_WALK_QUIT:	quit walk
1140  * @D_WALK_NORETRY:	quit when retry is needed
1141  * @D_WALK_SKIP:	skip this dentry and its children
1142  */
1143 enum d_walk_ret {
1144 	D_WALK_CONTINUE,
1145 	D_WALK_QUIT,
1146 	D_WALK_NORETRY,
1147 	D_WALK_SKIP,
1148 };
1149 
1150 /**
1151  * d_walk - walk the dentry tree
1152  * @parent:	start of walk
1153  * @data:	data passed to @enter() and @finish()
1154  * @enter:	callback when first entering the dentry
1155  * @finish:	callback when successfully finished the walk
1156  *
1157  * The @enter() and @finish() callbacks are called with d_lock held.
1158  */
1159 static void d_walk(struct dentry *parent, void *data,
1160 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1161 		   void (*finish)(void *))
1162 {
1163 	struct dentry *this_parent;
1164 	struct list_head *next;
1165 	unsigned seq = 0;
1166 	enum d_walk_ret ret;
1167 	bool retry = true;
1168 
1169 again:
1170 	read_seqbegin_or_lock(&rename_lock, &seq);
1171 	this_parent = parent;
1172 	spin_lock(&this_parent->d_lock);
1173 
1174 	ret = enter(data, this_parent);
1175 	switch (ret) {
1176 	case D_WALK_CONTINUE:
1177 		break;
1178 	case D_WALK_QUIT:
1179 	case D_WALK_SKIP:
1180 		goto out_unlock;
1181 	case D_WALK_NORETRY:
1182 		retry = false;
1183 		break;
1184 	}
1185 repeat:
1186 	next = this_parent->d_subdirs.next;
1187 resume:
1188 	while (next != &this_parent->d_subdirs) {
1189 		struct list_head *tmp = next;
1190 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191 		next = tmp->next;
1192 
1193 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194 
1195 		ret = enter(data, dentry);
1196 		switch (ret) {
1197 		case D_WALK_CONTINUE:
1198 			break;
1199 		case D_WALK_QUIT:
1200 			spin_unlock(&dentry->d_lock);
1201 			goto out_unlock;
1202 		case D_WALK_NORETRY:
1203 			retry = false;
1204 			break;
1205 		case D_WALK_SKIP:
1206 			spin_unlock(&dentry->d_lock);
1207 			continue;
1208 		}
1209 
1210 		if (!list_empty(&dentry->d_subdirs)) {
1211 			spin_unlock(&this_parent->d_lock);
1212 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213 			this_parent = dentry;
1214 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215 			goto repeat;
1216 		}
1217 		spin_unlock(&dentry->d_lock);
1218 	}
1219 	/*
1220 	 * All done at this level ... ascend and resume the search.
1221 	 */
1222 	rcu_read_lock();
1223 ascend:
1224 	if (this_parent != parent) {
1225 		struct dentry *child = this_parent;
1226 		this_parent = child->d_parent;
1227 
1228 		spin_unlock(&child->d_lock);
1229 		spin_lock(&this_parent->d_lock);
1230 
1231 		/* might go back up the wrong parent if we have had a rename. */
1232 		if (need_seqretry(&rename_lock, seq))
1233 			goto rename_retry;
1234 		/* go into the first sibling still alive */
1235 		do {
1236 			next = child->d_child.next;
1237 			if (next == &this_parent->d_subdirs)
1238 				goto ascend;
1239 			child = list_entry(next, struct dentry, d_child);
1240 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241 		rcu_read_unlock();
1242 		goto resume;
1243 	}
1244 	if (need_seqretry(&rename_lock, seq))
1245 		goto rename_retry;
1246 	rcu_read_unlock();
1247 	if (finish)
1248 		finish(data);
1249 
1250 out_unlock:
1251 	spin_unlock(&this_parent->d_lock);
1252 	done_seqretry(&rename_lock, seq);
1253 	return;
1254 
1255 rename_retry:
1256 	spin_unlock(&this_parent->d_lock);
1257 	rcu_read_unlock();
1258 	BUG_ON(seq & 1);
1259 	if (!retry)
1260 		return;
1261 	seq = 1;
1262 	goto again;
1263 }
1264 
1265 /*
1266  * Search for at least 1 mount point in the dentry's subdirs.
1267  * We descend to the next level whenever the d_subdirs
1268  * list is non-empty and continue searching.
1269  */
1270 
1271 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272 {
1273 	int *ret = data;
1274 	if (d_mountpoint(dentry)) {
1275 		*ret = 1;
1276 		return D_WALK_QUIT;
1277 	}
1278 	return D_WALK_CONTINUE;
1279 }
1280 
1281 /**
1282  * have_submounts - check for mounts over a dentry
1283  * @parent: dentry to check.
1284  *
1285  * Return true if the parent or its subdirectories contain
1286  * a mount point
1287  */
1288 int have_submounts(struct dentry *parent)
1289 {
1290 	int ret = 0;
1291 
1292 	d_walk(parent, &ret, check_mount, NULL);
1293 
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(have_submounts);
1297 
1298 /*
1299  * Called by mount code to set a mountpoint and check if the mountpoint is
1300  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301  * subtree can become unreachable).
1302  *
1303  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304  * this reason take rename_lock and d_lock on dentry and ancestors.
1305  */
1306 int d_set_mounted(struct dentry *dentry)
1307 {
1308 	struct dentry *p;
1309 	int ret = -ENOENT;
1310 	write_seqlock(&rename_lock);
1311 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312 		/* Need exclusion wrt. d_invalidate() */
1313 		spin_lock(&p->d_lock);
1314 		if (unlikely(d_unhashed(p))) {
1315 			spin_unlock(&p->d_lock);
1316 			goto out;
1317 		}
1318 		spin_unlock(&p->d_lock);
1319 	}
1320 	spin_lock(&dentry->d_lock);
1321 	if (!d_unlinked(dentry)) {
1322 		dentry->d_flags |= DCACHE_MOUNTED;
1323 		ret = 0;
1324 	}
1325  	spin_unlock(&dentry->d_lock);
1326 out:
1327 	write_sequnlock(&rename_lock);
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Search the dentry child list of the specified parent,
1333  * and move any unused dentries to the end of the unused
1334  * list for prune_dcache(). We descend to the next level
1335  * whenever the d_subdirs list is non-empty and continue
1336  * searching.
1337  *
1338  * It returns zero iff there are no unused children,
1339  * otherwise  it returns the number of children moved to
1340  * the end of the unused list. This may not be the total
1341  * number of unused children, because select_parent can
1342  * drop the lock and return early due to latency
1343  * constraints.
1344  */
1345 
1346 struct select_data {
1347 	struct dentry *start;
1348 	struct list_head dispose;
1349 	int found;
1350 };
1351 
1352 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353 {
1354 	struct select_data *data = _data;
1355 	enum d_walk_ret ret = D_WALK_CONTINUE;
1356 
1357 	if (data->start == dentry)
1358 		goto out;
1359 
1360 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361 		data->found++;
1362 	} else {
1363 		if (dentry->d_flags & DCACHE_LRU_LIST)
1364 			d_lru_del(dentry);
1365 		if (!dentry->d_lockref.count) {
1366 			d_shrink_add(dentry, &data->dispose);
1367 			data->found++;
1368 		}
1369 	}
1370 	/*
1371 	 * We can return to the caller if we have found some (this
1372 	 * ensures forward progress). We'll be coming back to find
1373 	 * the rest.
1374 	 */
1375 	if (!list_empty(&data->dispose))
1376 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377 out:
1378 	return ret;
1379 }
1380 
1381 /**
1382  * shrink_dcache_parent - prune dcache
1383  * @parent: parent of entries to prune
1384  *
1385  * Prune the dcache to remove unused children of the parent dentry.
1386  */
1387 void shrink_dcache_parent(struct dentry *parent)
1388 {
1389 	for (;;) {
1390 		struct select_data data;
1391 
1392 		INIT_LIST_HEAD(&data.dispose);
1393 		data.start = parent;
1394 		data.found = 0;
1395 
1396 		d_walk(parent, &data, select_collect, NULL);
1397 		if (!data.found)
1398 			break;
1399 
1400 		shrink_dentry_list(&data.dispose);
1401 		cond_resched();
1402 	}
1403 }
1404 EXPORT_SYMBOL(shrink_dcache_parent);
1405 
1406 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407 {
1408 	/* it has busy descendents; complain about those instead */
1409 	if (!list_empty(&dentry->d_subdirs))
1410 		return D_WALK_CONTINUE;
1411 
1412 	/* root with refcount 1 is fine */
1413 	if (dentry == _data && dentry->d_lockref.count == 1)
1414 		return D_WALK_CONTINUE;
1415 
1416 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417 			" still in use (%d) [unmount of %s %s]\n",
1418 		       dentry,
1419 		       dentry->d_inode ?
1420 		       dentry->d_inode->i_ino : 0UL,
1421 		       dentry,
1422 		       dentry->d_lockref.count,
1423 		       dentry->d_sb->s_type->name,
1424 		       dentry->d_sb->s_id);
1425 	WARN_ON(1);
1426 	return D_WALK_CONTINUE;
1427 }
1428 
1429 static void do_one_tree(struct dentry *dentry)
1430 {
1431 	shrink_dcache_parent(dentry);
1432 	d_walk(dentry, dentry, umount_check, NULL);
1433 	d_drop(dentry);
1434 	dput(dentry);
1435 }
1436 
1437 /*
1438  * destroy the dentries attached to a superblock on unmounting
1439  */
1440 void shrink_dcache_for_umount(struct super_block *sb)
1441 {
1442 	struct dentry *dentry;
1443 
1444 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445 
1446 	dentry = sb->s_root;
1447 	sb->s_root = NULL;
1448 	do_one_tree(dentry);
1449 
1450 	while (!hlist_bl_empty(&sb->s_anon)) {
1451 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452 		do_one_tree(dentry);
1453 	}
1454 }
1455 
1456 struct detach_data {
1457 	struct select_data select;
1458 	struct dentry *mountpoint;
1459 };
1460 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461 {
1462 	struct detach_data *data = _data;
1463 
1464 	if (d_mountpoint(dentry)) {
1465 		__dget_dlock(dentry);
1466 		data->mountpoint = dentry;
1467 		return D_WALK_QUIT;
1468 	}
1469 
1470 	return select_collect(&data->select, dentry);
1471 }
1472 
1473 static void check_and_drop(void *_data)
1474 {
1475 	struct detach_data *data = _data;
1476 
1477 	if (!data->mountpoint && !data->select.found)
1478 		__d_drop(data->select.start);
1479 }
1480 
1481 /**
1482  * d_invalidate - detach submounts, prune dcache, and drop
1483  * @dentry: dentry to invalidate (aka detach, prune and drop)
1484  *
1485  * no dcache lock.
1486  *
1487  * The final d_drop is done as an atomic operation relative to
1488  * rename_lock ensuring there are no races with d_set_mounted.  This
1489  * ensures there are no unhashed dentries on the path to a mountpoint.
1490  */
1491 void d_invalidate(struct dentry *dentry)
1492 {
1493 	/*
1494 	 * If it's already been dropped, return OK.
1495 	 */
1496 	spin_lock(&dentry->d_lock);
1497 	if (d_unhashed(dentry)) {
1498 		spin_unlock(&dentry->d_lock);
1499 		return;
1500 	}
1501 	spin_unlock(&dentry->d_lock);
1502 
1503 	/* Negative dentries can be dropped without further checks */
1504 	if (!dentry->d_inode) {
1505 		d_drop(dentry);
1506 		return;
1507 	}
1508 
1509 	for (;;) {
1510 		struct detach_data data;
1511 
1512 		data.mountpoint = NULL;
1513 		INIT_LIST_HEAD(&data.select.dispose);
1514 		data.select.start = dentry;
1515 		data.select.found = 0;
1516 
1517 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518 
1519 		if (data.select.found)
1520 			shrink_dentry_list(&data.select.dispose);
1521 
1522 		if (data.mountpoint) {
1523 			detach_mounts(data.mountpoint);
1524 			dput(data.mountpoint);
1525 		}
1526 
1527 		if (!data.mountpoint && !data.select.found)
1528 			break;
1529 
1530 		cond_resched();
1531 	}
1532 }
1533 EXPORT_SYMBOL(d_invalidate);
1534 
1535 /**
1536  * __d_alloc	-	allocate a dcache entry
1537  * @sb: filesystem it will belong to
1538  * @name: qstr of the name
1539  *
1540  * Allocates a dentry. It returns %NULL if there is insufficient memory
1541  * available. On a success the dentry is returned. The name passed in is
1542  * copied and the copy passed in may be reused after this call.
1543  */
1544 
1545 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546 {
1547 	struct dentry *dentry;
1548 	char *dname;
1549 
1550 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551 	if (!dentry)
1552 		return NULL;
1553 
1554 	/*
1555 	 * We guarantee that the inline name is always NUL-terminated.
1556 	 * This way the memcpy() done by the name switching in rename
1557 	 * will still always have a NUL at the end, even if we might
1558 	 * be overwriting an internal NUL character
1559 	 */
1560 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561 	if (name->len > DNAME_INLINE_LEN-1) {
1562 		size_t size = offsetof(struct external_name, name[1]);
1563 		struct external_name *p = kmalloc(size + name->len,
1564 						  GFP_KERNEL_ACCOUNT);
1565 		if (!p) {
1566 			kmem_cache_free(dentry_cache, dentry);
1567 			return NULL;
1568 		}
1569 		atomic_set(&p->u.count, 1);
1570 		dname = p->name;
1571 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1572 			kasan_unpoison_shadow(dname,
1573 				round_up(name->len + 1,	sizeof(unsigned long)));
1574 	} else  {
1575 		dname = dentry->d_iname;
1576 	}
1577 
1578 	dentry->d_name.len = name->len;
1579 	dentry->d_name.hash = name->hash;
1580 	memcpy(dname, name->name, name->len);
1581 	dname[name->len] = 0;
1582 
1583 	/* Make sure we always see the terminating NUL character */
1584 	smp_wmb();
1585 	dentry->d_name.name = dname;
1586 
1587 	dentry->d_lockref.count = 1;
1588 	dentry->d_flags = 0;
1589 	spin_lock_init(&dentry->d_lock);
1590 	seqcount_init(&dentry->d_seq);
1591 	dentry->d_inode = NULL;
1592 	dentry->d_parent = dentry;
1593 	dentry->d_sb = sb;
1594 	dentry->d_op = NULL;
1595 	dentry->d_fsdata = NULL;
1596 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1597 	INIT_LIST_HEAD(&dentry->d_lru);
1598 	INIT_LIST_HEAD(&dentry->d_subdirs);
1599 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1600 	INIT_LIST_HEAD(&dentry->d_child);
1601 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1602 
1603 	this_cpu_inc(nr_dentry);
1604 
1605 	return dentry;
1606 }
1607 
1608 /**
1609  * d_alloc	-	allocate a dcache entry
1610  * @parent: parent of entry to allocate
1611  * @name: qstr of the name
1612  *
1613  * Allocates a dentry. It returns %NULL if there is insufficient memory
1614  * available. On a success the dentry is returned. The name passed in is
1615  * copied and the copy passed in may be reused after this call.
1616  */
1617 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1618 {
1619 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1620 	if (!dentry)
1621 		return NULL;
1622 
1623 	spin_lock(&parent->d_lock);
1624 	/*
1625 	 * don't need child lock because it is not subject
1626 	 * to concurrency here
1627 	 */
1628 	__dget_dlock(parent);
1629 	dentry->d_parent = parent;
1630 	list_add(&dentry->d_child, &parent->d_subdirs);
1631 	spin_unlock(&parent->d_lock);
1632 
1633 	return dentry;
1634 }
1635 EXPORT_SYMBOL(d_alloc);
1636 
1637 /**
1638  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1639  * @sb: the superblock
1640  * @name: qstr of the name
1641  *
1642  * For a filesystem that just pins its dentries in memory and never
1643  * performs lookups at all, return an unhashed IS_ROOT dentry.
1644  */
1645 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1646 {
1647 	return __d_alloc(sb, name);
1648 }
1649 EXPORT_SYMBOL(d_alloc_pseudo);
1650 
1651 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1652 {
1653 	struct qstr q;
1654 
1655 	q.name = name;
1656 	q.len = strlen(name);
1657 	q.hash = full_name_hash(q.name, q.len);
1658 	return d_alloc(parent, &q);
1659 }
1660 EXPORT_SYMBOL(d_alloc_name);
1661 
1662 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1663 {
1664 	WARN_ON_ONCE(dentry->d_op);
1665 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1666 				DCACHE_OP_COMPARE	|
1667 				DCACHE_OP_REVALIDATE	|
1668 				DCACHE_OP_WEAK_REVALIDATE	|
1669 				DCACHE_OP_DELETE	|
1670 				DCACHE_OP_SELECT_INODE));
1671 	dentry->d_op = op;
1672 	if (!op)
1673 		return;
1674 	if (op->d_hash)
1675 		dentry->d_flags |= DCACHE_OP_HASH;
1676 	if (op->d_compare)
1677 		dentry->d_flags |= DCACHE_OP_COMPARE;
1678 	if (op->d_revalidate)
1679 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1680 	if (op->d_weak_revalidate)
1681 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1682 	if (op->d_delete)
1683 		dentry->d_flags |= DCACHE_OP_DELETE;
1684 	if (op->d_prune)
1685 		dentry->d_flags |= DCACHE_OP_PRUNE;
1686 	if (op->d_select_inode)
1687 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1688 
1689 }
1690 EXPORT_SYMBOL(d_set_d_op);
1691 
1692 
1693 /*
1694  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1695  * @dentry - The dentry to mark
1696  *
1697  * Mark a dentry as falling through to the lower layer (as set with
1698  * d_pin_lower()).  This flag may be recorded on the medium.
1699  */
1700 void d_set_fallthru(struct dentry *dentry)
1701 {
1702 	spin_lock(&dentry->d_lock);
1703 	dentry->d_flags |= DCACHE_FALLTHRU;
1704 	spin_unlock(&dentry->d_lock);
1705 }
1706 EXPORT_SYMBOL(d_set_fallthru);
1707 
1708 static unsigned d_flags_for_inode(struct inode *inode)
1709 {
1710 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1711 
1712 	if (!inode)
1713 		return DCACHE_MISS_TYPE;
1714 
1715 	if (S_ISDIR(inode->i_mode)) {
1716 		add_flags = DCACHE_DIRECTORY_TYPE;
1717 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1718 			if (unlikely(!inode->i_op->lookup))
1719 				add_flags = DCACHE_AUTODIR_TYPE;
1720 			else
1721 				inode->i_opflags |= IOP_LOOKUP;
1722 		}
1723 		goto type_determined;
1724 	}
1725 
1726 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1727 		if (unlikely(inode->i_op->get_link)) {
1728 			add_flags = DCACHE_SYMLINK_TYPE;
1729 			goto type_determined;
1730 		}
1731 		inode->i_opflags |= IOP_NOFOLLOW;
1732 	}
1733 
1734 	if (unlikely(!S_ISREG(inode->i_mode)))
1735 		add_flags = DCACHE_SPECIAL_TYPE;
1736 
1737 type_determined:
1738 	if (unlikely(IS_AUTOMOUNT(inode)))
1739 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1740 	return add_flags;
1741 }
1742 
1743 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1744 {
1745 	unsigned add_flags = d_flags_for_inode(inode);
1746 
1747 	spin_lock(&dentry->d_lock);
1748 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1749 	raw_write_seqcount_begin(&dentry->d_seq);
1750 	__d_set_inode_and_type(dentry, inode, add_flags);
1751 	raw_write_seqcount_end(&dentry->d_seq);
1752 	__fsnotify_d_instantiate(dentry);
1753 	spin_unlock(&dentry->d_lock);
1754 }
1755 
1756 /**
1757  * d_instantiate - fill in inode information for a dentry
1758  * @entry: dentry to complete
1759  * @inode: inode to attach to this dentry
1760  *
1761  * Fill in inode information in the entry.
1762  *
1763  * This turns negative dentries into productive full members
1764  * of society.
1765  *
1766  * NOTE! This assumes that the inode count has been incremented
1767  * (or otherwise set) by the caller to indicate that it is now
1768  * in use by the dcache.
1769  */
1770 
1771 void d_instantiate(struct dentry *entry, struct inode * inode)
1772 {
1773 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1774 	if (inode) {
1775 		spin_lock(&inode->i_lock);
1776 		__d_instantiate(entry, inode);
1777 		spin_unlock(&inode->i_lock);
1778 	}
1779 	security_d_instantiate(entry, inode);
1780 }
1781 EXPORT_SYMBOL(d_instantiate);
1782 
1783 /**
1784  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1785  * @entry: dentry to complete
1786  * @inode: inode to attach to this dentry
1787  *
1788  * Fill in inode information in the entry.  If a directory alias is found, then
1789  * return an error (and drop inode).  Together with d_materialise_unique() this
1790  * guarantees that a directory inode may never have more than one alias.
1791  */
1792 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1793 {
1794 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1795 
1796 	spin_lock(&inode->i_lock);
1797 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1798 		spin_unlock(&inode->i_lock);
1799 		iput(inode);
1800 		return -EBUSY;
1801 	}
1802 	__d_instantiate(entry, inode);
1803 	spin_unlock(&inode->i_lock);
1804 	security_d_instantiate(entry, inode);
1805 
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL(d_instantiate_no_diralias);
1809 
1810 struct dentry *d_make_root(struct inode *root_inode)
1811 {
1812 	struct dentry *res = NULL;
1813 
1814 	if (root_inode) {
1815 		static const struct qstr name = QSTR_INIT("/", 1);
1816 
1817 		res = __d_alloc(root_inode->i_sb, &name);
1818 		if (res)
1819 			d_instantiate(res, root_inode);
1820 		else
1821 			iput(root_inode);
1822 	}
1823 	return res;
1824 }
1825 EXPORT_SYMBOL(d_make_root);
1826 
1827 static struct dentry * __d_find_any_alias(struct inode *inode)
1828 {
1829 	struct dentry *alias;
1830 
1831 	if (hlist_empty(&inode->i_dentry))
1832 		return NULL;
1833 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1834 	__dget(alias);
1835 	return alias;
1836 }
1837 
1838 /**
1839  * d_find_any_alias - find any alias for a given inode
1840  * @inode: inode to find an alias for
1841  *
1842  * If any aliases exist for the given inode, take and return a
1843  * reference for one of them.  If no aliases exist, return %NULL.
1844  */
1845 struct dentry *d_find_any_alias(struct inode *inode)
1846 {
1847 	struct dentry *de;
1848 
1849 	spin_lock(&inode->i_lock);
1850 	de = __d_find_any_alias(inode);
1851 	spin_unlock(&inode->i_lock);
1852 	return de;
1853 }
1854 EXPORT_SYMBOL(d_find_any_alias);
1855 
1856 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1857 {
1858 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1859 	struct dentry *tmp;
1860 	struct dentry *res;
1861 	unsigned add_flags;
1862 
1863 	if (!inode)
1864 		return ERR_PTR(-ESTALE);
1865 	if (IS_ERR(inode))
1866 		return ERR_CAST(inode);
1867 
1868 	res = d_find_any_alias(inode);
1869 	if (res)
1870 		goto out_iput;
1871 
1872 	tmp = __d_alloc(inode->i_sb, &anonstring);
1873 	if (!tmp) {
1874 		res = ERR_PTR(-ENOMEM);
1875 		goto out_iput;
1876 	}
1877 
1878 	spin_lock(&inode->i_lock);
1879 	res = __d_find_any_alias(inode);
1880 	if (res) {
1881 		spin_unlock(&inode->i_lock);
1882 		dput(tmp);
1883 		goto out_iput;
1884 	}
1885 
1886 	/* attach a disconnected dentry */
1887 	add_flags = d_flags_for_inode(inode);
1888 
1889 	if (disconnected)
1890 		add_flags |= DCACHE_DISCONNECTED;
1891 
1892 	spin_lock(&tmp->d_lock);
1893 	__d_set_inode_and_type(tmp, inode, add_flags);
1894 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1895 	hlist_bl_lock(&tmp->d_sb->s_anon);
1896 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1897 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1898 	spin_unlock(&tmp->d_lock);
1899 	spin_unlock(&inode->i_lock);
1900 	security_d_instantiate(tmp, inode);
1901 
1902 	return tmp;
1903 
1904  out_iput:
1905 	if (res && !IS_ERR(res))
1906 		security_d_instantiate(res, inode);
1907 	iput(inode);
1908 	return res;
1909 }
1910 
1911 /**
1912  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1913  * @inode: inode to allocate the dentry for
1914  *
1915  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1916  * similar open by handle operations.  The returned dentry may be anonymous,
1917  * or may have a full name (if the inode was already in the cache).
1918  *
1919  * When called on a directory inode, we must ensure that the inode only ever
1920  * has one dentry.  If a dentry is found, that is returned instead of
1921  * allocating a new one.
1922  *
1923  * On successful return, the reference to the inode has been transferred
1924  * to the dentry.  In case of an error the reference on the inode is released.
1925  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1926  * be passed in and the error will be propagated to the return value,
1927  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1928  */
1929 struct dentry *d_obtain_alias(struct inode *inode)
1930 {
1931 	return __d_obtain_alias(inode, 1);
1932 }
1933 EXPORT_SYMBOL(d_obtain_alias);
1934 
1935 /**
1936  * d_obtain_root - find or allocate a dentry for a given inode
1937  * @inode: inode to allocate the dentry for
1938  *
1939  * Obtain an IS_ROOT dentry for the root of a filesystem.
1940  *
1941  * We must ensure that directory inodes only ever have one dentry.  If a
1942  * dentry is found, that is returned instead of allocating a new one.
1943  *
1944  * On successful return, the reference to the inode has been transferred
1945  * to the dentry.  In case of an error the reference on the inode is
1946  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1947  * error will be propagate to the return value, with a %NULL @inode
1948  * replaced by ERR_PTR(-ESTALE).
1949  */
1950 struct dentry *d_obtain_root(struct inode *inode)
1951 {
1952 	return __d_obtain_alias(inode, 0);
1953 }
1954 EXPORT_SYMBOL(d_obtain_root);
1955 
1956 /**
1957  * d_add_ci - lookup or allocate new dentry with case-exact name
1958  * @inode:  the inode case-insensitive lookup has found
1959  * @dentry: the negative dentry that was passed to the parent's lookup func
1960  * @name:   the case-exact name to be associated with the returned dentry
1961  *
1962  * This is to avoid filling the dcache with case-insensitive names to the
1963  * same inode, only the actual correct case is stored in the dcache for
1964  * case-insensitive filesystems.
1965  *
1966  * For a case-insensitive lookup match and if the the case-exact dentry
1967  * already exists in in the dcache, use it and return it.
1968  *
1969  * If no entry exists with the exact case name, allocate new dentry with
1970  * the exact case, and return the spliced entry.
1971  */
1972 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1973 			struct qstr *name)
1974 {
1975 	struct dentry *found;
1976 	struct dentry *new;
1977 
1978 	/*
1979 	 * First check if a dentry matching the name already exists,
1980 	 * if not go ahead and create it now.
1981 	 */
1982 	found = d_hash_and_lookup(dentry->d_parent, name);
1983 	if (!found) {
1984 		new = d_alloc(dentry->d_parent, name);
1985 		if (!new) {
1986 			found = ERR_PTR(-ENOMEM);
1987 		} else {
1988 			found = d_splice_alias(inode, new);
1989 			if (found) {
1990 				dput(new);
1991 				return found;
1992 			}
1993 			return new;
1994 		}
1995 	}
1996 	iput(inode);
1997 	return found;
1998 }
1999 EXPORT_SYMBOL(d_add_ci);
2000 
2001 /*
2002  * Do the slow-case of the dentry name compare.
2003  *
2004  * Unlike the dentry_cmp() function, we need to atomically
2005  * load the name and length information, so that the
2006  * filesystem can rely on them, and can use the 'name' and
2007  * 'len' information without worrying about walking off the
2008  * end of memory etc.
2009  *
2010  * Thus the read_seqcount_retry() and the "duplicate" info
2011  * in arguments (the low-level filesystem should not look
2012  * at the dentry inode or name contents directly, since
2013  * rename can change them while we're in RCU mode).
2014  */
2015 enum slow_d_compare {
2016 	D_COMP_OK,
2017 	D_COMP_NOMATCH,
2018 	D_COMP_SEQRETRY,
2019 };
2020 
2021 static noinline enum slow_d_compare slow_dentry_cmp(
2022 		const struct dentry *parent,
2023 		struct dentry *dentry,
2024 		unsigned int seq,
2025 		const struct qstr *name)
2026 {
2027 	int tlen = dentry->d_name.len;
2028 	const char *tname = dentry->d_name.name;
2029 
2030 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2031 		cpu_relax();
2032 		return D_COMP_SEQRETRY;
2033 	}
2034 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2035 		return D_COMP_NOMATCH;
2036 	return D_COMP_OK;
2037 }
2038 
2039 /**
2040  * __d_lookup_rcu - search for a dentry (racy, store-free)
2041  * @parent: parent dentry
2042  * @name: qstr of name we wish to find
2043  * @seqp: returns d_seq value at the point where the dentry was found
2044  * Returns: dentry, or NULL
2045  *
2046  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2047  * resolution (store-free path walking) design described in
2048  * Documentation/filesystems/path-lookup.txt.
2049  *
2050  * This is not to be used outside core vfs.
2051  *
2052  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2053  * held, and rcu_read_lock held. The returned dentry must not be stored into
2054  * without taking d_lock and checking d_seq sequence count against @seq
2055  * returned here.
2056  *
2057  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2058  * function.
2059  *
2060  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2061  * the returned dentry, so long as its parent's seqlock is checked after the
2062  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2063  * is formed, giving integrity down the path walk.
2064  *
2065  * NOTE! The caller *has* to check the resulting dentry against the sequence
2066  * number we've returned before using any of the resulting dentry state!
2067  */
2068 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2069 				const struct qstr *name,
2070 				unsigned *seqp)
2071 {
2072 	u64 hashlen = name->hash_len;
2073 	const unsigned char *str = name->name;
2074 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2075 	struct hlist_bl_node *node;
2076 	struct dentry *dentry;
2077 
2078 	/*
2079 	 * Note: There is significant duplication with __d_lookup_rcu which is
2080 	 * required to prevent single threaded performance regressions
2081 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2082 	 * Keep the two functions in sync.
2083 	 */
2084 
2085 	/*
2086 	 * The hash list is protected using RCU.
2087 	 *
2088 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2089 	 * races with d_move().
2090 	 *
2091 	 * It is possible that concurrent renames can mess up our list
2092 	 * walk here and result in missing our dentry, resulting in the
2093 	 * false-negative result. d_lookup() protects against concurrent
2094 	 * renames using rename_lock seqlock.
2095 	 *
2096 	 * See Documentation/filesystems/path-lookup.txt for more details.
2097 	 */
2098 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2099 		unsigned seq;
2100 
2101 seqretry:
2102 		/*
2103 		 * The dentry sequence count protects us from concurrent
2104 		 * renames, and thus protects parent and name fields.
2105 		 *
2106 		 * The caller must perform a seqcount check in order
2107 		 * to do anything useful with the returned dentry.
2108 		 *
2109 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2110 		 * we don't wait for the sequence count to stabilize if it
2111 		 * is in the middle of a sequence change. If we do the slow
2112 		 * dentry compare, we will do seqretries until it is stable,
2113 		 * and if we end up with a successful lookup, we actually
2114 		 * want to exit RCU lookup anyway.
2115 		 */
2116 		seq = raw_seqcount_begin(&dentry->d_seq);
2117 		if (dentry->d_parent != parent)
2118 			continue;
2119 		if (d_unhashed(dentry))
2120 			continue;
2121 
2122 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2123 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2124 				continue;
2125 			*seqp = seq;
2126 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2127 			case D_COMP_OK:
2128 				return dentry;
2129 			case D_COMP_NOMATCH:
2130 				continue;
2131 			default:
2132 				goto seqretry;
2133 			}
2134 		}
2135 
2136 		if (dentry->d_name.hash_len != hashlen)
2137 			continue;
2138 		*seqp = seq;
2139 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2140 			return dentry;
2141 	}
2142 	return NULL;
2143 }
2144 
2145 /**
2146  * d_lookup - search for a dentry
2147  * @parent: parent dentry
2148  * @name: qstr of name we wish to find
2149  * Returns: dentry, or NULL
2150  *
2151  * d_lookup searches the children of the parent dentry for the name in
2152  * question. If the dentry is found its reference count is incremented and the
2153  * dentry is returned. The caller must use dput to free the entry when it has
2154  * finished using it. %NULL is returned if the dentry does not exist.
2155  */
2156 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2157 {
2158 	struct dentry *dentry;
2159 	unsigned seq;
2160 
2161 	do {
2162 		seq = read_seqbegin(&rename_lock);
2163 		dentry = __d_lookup(parent, name);
2164 		if (dentry)
2165 			break;
2166 	} while (read_seqretry(&rename_lock, seq));
2167 	return dentry;
2168 }
2169 EXPORT_SYMBOL(d_lookup);
2170 
2171 /**
2172  * __d_lookup - search for a dentry (racy)
2173  * @parent: parent dentry
2174  * @name: qstr of name we wish to find
2175  * Returns: dentry, or NULL
2176  *
2177  * __d_lookup is like d_lookup, however it may (rarely) return a
2178  * false-negative result due to unrelated rename activity.
2179  *
2180  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2181  * however it must be used carefully, eg. with a following d_lookup in
2182  * the case of failure.
2183  *
2184  * __d_lookup callers must be commented.
2185  */
2186 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2187 {
2188 	unsigned int len = name->len;
2189 	unsigned int hash = name->hash;
2190 	const unsigned char *str = name->name;
2191 	struct hlist_bl_head *b = d_hash(parent, hash);
2192 	struct hlist_bl_node *node;
2193 	struct dentry *found = NULL;
2194 	struct dentry *dentry;
2195 
2196 	/*
2197 	 * Note: There is significant duplication with __d_lookup_rcu which is
2198 	 * required to prevent single threaded performance regressions
2199 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2200 	 * Keep the two functions in sync.
2201 	 */
2202 
2203 	/*
2204 	 * The hash list is protected using RCU.
2205 	 *
2206 	 * Take d_lock when comparing a candidate dentry, to avoid races
2207 	 * with d_move().
2208 	 *
2209 	 * It is possible that concurrent renames can mess up our list
2210 	 * walk here and result in missing our dentry, resulting in the
2211 	 * false-negative result. d_lookup() protects against concurrent
2212 	 * renames using rename_lock seqlock.
2213 	 *
2214 	 * See Documentation/filesystems/path-lookup.txt for more details.
2215 	 */
2216 	rcu_read_lock();
2217 
2218 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2219 
2220 		if (dentry->d_name.hash != hash)
2221 			continue;
2222 
2223 		spin_lock(&dentry->d_lock);
2224 		if (dentry->d_parent != parent)
2225 			goto next;
2226 		if (d_unhashed(dentry))
2227 			goto next;
2228 
2229 		/*
2230 		 * It is safe to compare names since d_move() cannot
2231 		 * change the qstr (protected by d_lock).
2232 		 */
2233 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2234 			int tlen = dentry->d_name.len;
2235 			const char *tname = dentry->d_name.name;
2236 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2237 				goto next;
2238 		} else {
2239 			if (dentry->d_name.len != len)
2240 				goto next;
2241 			if (dentry_cmp(dentry, str, len))
2242 				goto next;
2243 		}
2244 
2245 		dentry->d_lockref.count++;
2246 		found = dentry;
2247 		spin_unlock(&dentry->d_lock);
2248 		break;
2249 next:
2250 		spin_unlock(&dentry->d_lock);
2251  	}
2252  	rcu_read_unlock();
2253 
2254  	return found;
2255 }
2256 
2257 /**
2258  * d_hash_and_lookup - hash the qstr then search for a dentry
2259  * @dir: Directory to search in
2260  * @name: qstr of name we wish to find
2261  *
2262  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2263  */
2264 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2265 {
2266 	/*
2267 	 * Check for a fs-specific hash function. Note that we must
2268 	 * calculate the standard hash first, as the d_op->d_hash()
2269 	 * routine may choose to leave the hash value unchanged.
2270 	 */
2271 	name->hash = full_name_hash(name->name, name->len);
2272 	if (dir->d_flags & DCACHE_OP_HASH) {
2273 		int err = dir->d_op->d_hash(dir, name);
2274 		if (unlikely(err < 0))
2275 			return ERR_PTR(err);
2276 	}
2277 	return d_lookup(dir, name);
2278 }
2279 EXPORT_SYMBOL(d_hash_and_lookup);
2280 
2281 /*
2282  * When a file is deleted, we have two options:
2283  * - turn this dentry into a negative dentry
2284  * - unhash this dentry and free it.
2285  *
2286  * Usually, we want to just turn this into
2287  * a negative dentry, but if anybody else is
2288  * currently using the dentry or the inode
2289  * we can't do that and we fall back on removing
2290  * it from the hash queues and waiting for
2291  * it to be deleted later when it has no users
2292  */
2293 
2294 /**
2295  * d_delete - delete a dentry
2296  * @dentry: The dentry to delete
2297  *
2298  * Turn the dentry into a negative dentry if possible, otherwise
2299  * remove it from the hash queues so it can be deleted later
2300  */
2301 
2302 void d_delete(struct dentry * dentry)
2303 {
2304 	struct inode *inode;
2305 	int isdir = 0;
2306 	/*
2307 	 * Are we the only user?
2308 	 */
2309 again:
2310 	spin_lock(&dentry->d_lock);
2311 	inode = dentry->d_inode;
2312 	isdir = S_ISDIR(inode->i_mode);
2313 	if (dentry->d_lockref.count == 1) {
2314 		if (!spin_trylock(&inode->i_lock)) {
2315 			spin_unlock(&dentry->d_lock);
2316 			cpu_relax();
2317 			goto again;
2318 		}
2319 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2320 		dentry_unlink_inode(dentry);
2321 		fsnotify_nameremove(dentry, isdir);
2322 		return;
2323 	}
2324 
2325 	if (!d_unhashed(dentry))
2326 		__d_drop(dentry);
2327 
2328 	spin_unlock(&dentry->d_lock);
2329 
2330 	fsnotify_nameremove(dentry, isdir);
2331 }
2332 EXPORT_SYMBOL(d_delete);
2333 
2334 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2335 {
2336 	BUG_ON(!d_unhashed(entry));
2337 	hlist_bl_lock(b);
2338 	entry->d_flags |= DCACHE_RCUACCESS;
2339 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2340 	hlist_bl_unlock(b);
2341 }
2342 
2343 static void _d_rehash(struct dentry * entry)
2344 {
2345 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2346 }
2347 
2348 /**
2349  * d_rehash	- add an entry back to the hash
2350  * @entry: dentry to add to the hash
2351  *
2352  * Adds a dentry to the hash according to its name.
2353  */
2354 
2355 void d_rehash(struct dentry * entry)
2356 {
2357 	spin_lock(&entry->d_lock);
2358 	_d_rehash(entry);
2359 	spin_unlock(&entry->d_lock);
2360 }
2361 EXPORT_SYMBOL(d_rehash);
2362 
2363 
2364 /* inode->i_lock held if inode is non-NULL */
2365 
2366 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2367 {
2368 	if (inode) {
2369 		__d_instantiate(dentry, inode);
2370 		spin_unlock(&inode->i_lock);
2371 	}
2372 	security_d_instantiate(dentry, inode);
2373 	d_rehash(dentry);
2374 }
2375 
2376 /**
2377  * d_add - add dentry to hash queues
2378  * @entry: dentry to add
2379  * @inode: The inode to attach to this dentry
2380  *
2381  * This adds the entry to the hash queues and initializes @inode.
2382  * The entry was actually filled in earlier during d_alloc().
2383  */
2384 
2385 void d_add(struct dentry *entry, struct inode *inode)
2386 {
2387 	if (inode)
2388 		spin_lock(&inode->i_lock);
2389 	__d_add(entry, inode);
2390 }
2391 EXPORT_SYMBOL(d_add);
2392 
2393 /**
2394  * d_exact_alias - find and hash an exact unhashed alias
2395  * @entry: dentry to add
2396  * @inode: The inode to go with this dentry
2397  *
2398  * If an unhashed dentry with the same name/parent and desired
2399  * inode already exists, hash and return it.  Otherwise, return
2400  * NULL.
2401  *
2402  * Parent directory should be locked.
2403  */
2404 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2405 {
2406 	struct dentry *alias;
2407 	int len = entry->d_name.len;
2408 	const char *name = entry->d_name.name;
2409 	unsigned int hash = entry->d_name.hash;
2410 
2411 	spin_lock(&inode->i_lock);
2412 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2413 		/*
2414 		 * Don't need alias->d_lock here, because aliases with
2415 		 * d_parent == entry->d_parent are not subject to name or
2416 		 * parent changes, because the parent inode i_mutex is held.
2417 		 */
2418 		if (alias->d_name.hash != hash)
2419 			continue;
2420 		if (alias->d_parent != entry->d_parent)
2421 			continue;
2422 		if (alias->d_name.len != len)
2423 			continue;
2424 		if (dentry_cmp(alias, name, len))
2425 			continue;
2426 		spin_lock(&alias->d_lock);
2427 		if (!d_unhashed(alias)) {
2428 			spin_unlock(&alias->d_lock);
2429 			alias = NULL;
2430 		} else {
2431 			__dget_dlock(alias);
2432 			_d_rehash(alias);
2433 			spin_unlock(&alias->d_lock);
2434 		}
2435 		spin_unlock(&inode->i_lock);
2436 		return alias;
2437 	}
2438 	spin_unlock(&inode->i_lock);
2439 	return NULL;
2440 }
2441 EXPORT_SYMBOL(d_exact_alias);
2442 
2443 /**
2444  * dentry_update_name_case - update case insensitive dentry with a new name
2445  * @dentry: dentry to be updated
2446  * @name: new name
2447  *
2448  * Update a case insensitive dentry with new case of name.
2449  *
2450  * dentry must have been returned by d_lookup with name @name. Old and new
2451  * name lengths must match (ie. no d_compare which allows mismatched name
2452  * lengths).
2453  *
2454  * Parent inode i_mutex must be held over d_lookup and into this call (to
2455  * keep renames and concurrent inserts, and readdir(2) away).
2456  */
2457 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2458 {
2459 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2460 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2461 
2462 	spin_lock(&dentry->d_lock);
2463 	write_seqcount_begin(&dentry->d_seq);
2464 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2465 	write_seqcount_end(&dentry->d_seq);
2466 	spin_unlock(&dentry->d_lock);
2467 }
2468 EXPORT_SYMBOL(dentry_update_name_case);
2469 
2470 static void swap_names(struct dentry *dentry, struct dentry *target)
2471 {
2472 	if (unlikely(dname_external(target))) {
2473 		if (unlikely(dname_external(dentry))) {
2474 			/*
2475 			 * Both external: swap the pointers
2476 			 */
2477 			swap(target->d_name.name, dentry->d_name.name);
2478 		} else {
2479 			/*
2480 			 * dentry:internal, target:external.  Steal target's
2481 			 * storage and make target internal.
2482 			 */
2483 			memcpy(target->d_iname, dentry->d_name.name,
2484 					dentry->d_name.len + 1);
2485 			dentry->d_name.name = target->d_name.name;
2486 			target->d_name.name = target->d_iname;
2487 		}
2488 	} else {
2489 		if (unlikely(dname_external(dentry))) {
2490 			/*
2491 			 * dentry:external, target:internal.  Give dentry's
2492 			 * storage to target and make dentry internal
2493 			 */
2494 			memcpy(dentry->d_iname, target->d_name.name,
2495 					target->d_name.len + 1);
2496 			target->d_name.name = dentry->d_name.name;
2497 			dentry->d_name.name = dentry->d_iname;
2498 		} else {
2499 			/*
2500 			 * Both are internal.
2501 			 */
2502 			unsigned int i;
2503 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2504 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2505 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2506 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2507 				swap(((long *) &dentry->d_iname)[i],
2508 				     ((long *) &target->d_iname)[i]);
2509 			}
2510 		}
2511 	}
2512 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2513 }
2514 
2515 static void copy_name(struct dentry *dentry, struct dentry *target)
2516 {
2517 	struct external_name *old_name = NULL;
2518 	if (unlikely(dname_external(dentry)))
2519 		old_name = external_name(dentry);
2520 	if (unlikely(dname_external(target))) {
2521 		atomic_inc(&external_name(target)->u.count);
2522 		dentry->d_name = target->d_name;
2523 	} else {
2524 		memcpy(dentry->d_iname, target->d_name.name,
2525 				target->d_name.len + 1);
2526 		dentry->d_name.name = dentry->d_iname;
2527 		dentry->d_name.hash_len = target->d_name.hash_len;
2528 	}
2529 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2530 		kfree_rcu(old_name, u.head);
2531 }
2532 
2533 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2534 {
2535 	/*
2536 	 * XXXX: do we really need to take target->d_lock?
2537 	 */
2538 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2539 		spin_lock(&target->d_parent->d_lock);
2540 	else {
2541 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2542 			spin_lock(&dentry->d_parent->d_lock);
2543 			spin_lock_nested(&target->d_parent->d_lock,
2544 						DENTRY_D_LOCK_NESTED);
2545 		} else {
2546 			spin_lock(&target->d_parent->d_lock);
2547 			spin_lock_nested(&dentry->d_parent->d_lock,
2548 						DENTRY_D_LOCK_NESTED);
2549 		}
2550 	}
2551 	if (target < dentry) {
2552 		spin_lock_nested(&target->d_lock, 2);
2553 		spin_lock_nested(&dentry->d_lock, 3);
2554 	} else {
2555 		spin_lock_nested(&dentry->d_lock, 2);
2556 		spin_lock_nested(&target->d_lock, 3);
2557 	}
2558 }
2559 
2560 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2561 {
2562 	if (target->d_parent != dentry->d_parent)
2563 		spin_unlock(&dentry->d_parent->d_lock);
2564 	if (target->d_parent != target)
2565 		spin_unlock(&target->d_parent->d_lock);
2566 	spin_unlock(&target->d_lock);
2567 	spin_unlock(&dentry->d_lock);
2568 }
2569 
2570 /*
2571  * When switching names, the actual string doesn't strictly have to
2572  * be preserved in the target - because we're dropping the target
2573  * anyway. As such, we can just do a simple memcpy() to copy over
2574  * the new name before we switch, unless we are going to rehash
2575  * it.  Note that if we *do* unhash the target, we are not allowed
2576  * to rehash it without giving it a new name/hash key - whether
2577  * we swap or overwrite the names here, resulting name won't match
2578  * the reality in filesystem; it's only there for d_path() purposes.
2579  * Note that all of this is happening under rename_lock, so the
2580  * any hash lookup seeing it in the middle of manipulations will
2581  * be discarded anyway.  So we do not care what happens to the hash
2582  * key in that case.
2583  */
2584 /*
2585  * __d_move - move a dentry
2586  * @dentry: entry to move
2587  * @target: new dentry
2588  * @exchange: exchange the two dentries
2589  *
2590  * Update the dcache to reflect the move of a file name. Negative
2591  * dcache entries should not be moved in this way. Caller must hold
2592  * rename_lock, the i_mutex of the source and target directories,
2593  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2594  */
2595 static void __d_move(struct dentry *dentry, struct dentry *target,
2596 		     bool exchange)
2597 {
2598 	if (!dentry->d_inode)
2599 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2600 
2601 	BUG_ON(d_ancestor(dentry, target));
2602 	BUG_ON(d_ancestor(target, dentry));
2603 
2604 	dentry_lock_for_move(dentry, target);
2605 
2606 	write_seqcount_begin(&dentry->d_seq);
2607 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2608 
2609 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2610 
2611 	/*
2612 	 * Move the dentry to the target hash queue. Don't bother checking
2613 	 * for the same hash queue because of how unlikely it is.
2614 	 */
2615 	__d_drop(dentry);
2616 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2617 
2618 	/*
2619 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2620 	 * the two dentries, then rehash onto the other's hash queue.
2621 	 */
2622 	__d_drop(target);
2623 	if (exchange) {
2624 		__d_rehash(target,
2625 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2626 	}
2627 
2628 	/* Switch the names.. */
2629 	if (exchange)
2630 		swap_names(dentry, target);
2631 	else
2632 		copy_name(dentry, target);
2633 
2634 	/* ... and switch them in the tree */
2635 	if (IS_ROOT(dentry)) {
2636 		/* splicing a tree */
2637 		dentry->d_parent = target->d_parent;
2638 		target->d_parent = target;
2639 		list_del_init(&target->d_child);
2640 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2641 	} else {
2642 		/* swapping two dentries */
2643 		swap(dentry->d_parent, target->d_parent);
2644 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2645 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2646 		if (exchange)
2647 			fsnotify_d_move(target);
2648 		fsnotify_d_move(dentry);
2649 	}
2650 
2651 	write_seqcount_end(&target->d_seq);
2652 	write_seqcount_end(&dentry->d_seq);
2653 
2654 	dentry_unlock_for_move(dentry, target);
2655 }
2656 
2657 /*
2658  * d_move - move a dentry
2659  * @dentry: entry to move
2660  * @target: new dentry
2661  *
2662  * Update the dcache to reflect the move of a file name. Negative
2663  * dcache entries should not be moved in this way. See the locking
2664  * requirements for __d_move.
2665  */
2666 void d_move(struct dentry *dentry, struct dentry *target)
2667 {
2668 	write_seqlock(&rename_lock);
2669 	__d_move(dentry, target, false);
2670 	write_sequnlock(&rename_lock);
2671 }
2672 EXPORT_SYMBOL(d_move);
2673 
2674 /*
2675  * d_exchange - exchange two dentries
2676  * @dentry1: first dentry
2677  * @dentry2: second dentry
2678  */
2679 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2680 {
2681 	write_seqlock(&rename_lock);
2682 
2683 	WARN_ON(!dentry1->d_inode);
2684 	WARN_ON(!dentry2->d_inode);
2685 	WARN_ON(IS_ROOT(dentry1));
2686 	WARN_ON(IS_ROOT(dentry2));
2687 
2688 	__d_move(dentry1, dentry2, true);
2689 
2690 	write_sequnlock(&rename_lock);
2691 }
2692 
2693 /**
2694  * d_ancestor - search for an ancestor
2695  * @p1: ancestor dentry
2696  * @p2: child dentry
2697  *
2698  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2699  * an ancestor of p2, else NULL.
2700  */
2701 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2702 {
2703 	struct dentry *p;
2704 
2705 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2706 		if (p->d_parent == p1)
2707 			return p;
2708 	}
2709 	return NULL;
2710 }
2711 
2712 /*
2713  * This helper attempts to cope with remotely renamed directories
2714  *
2715  * It assumes that the caller is already holding
2716  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2717  *
2718  * Note: If ever the locking in lock_rename() changes, then please
2719  * remember to update this too...
2720  */
2721 static int __d_unalias(struct inode *inode,
2722 		struct dentry *dentry, struct dentry *alias)
2723 {
2724 	struct mutex *m1 = NULL, *m2 = NULL;
2725 	int ret = -ESTALE;
2726 
2727 	/* If alias and dentry share a parent, then no extra locks required */
2728 	if (alias->d_parent == dentry->d_parent)
2729 		goto out_unalias;
2730 
2731 	/* See lock_rename() */
2732 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2733 		goto out_err;
2734 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2735 	if (!inode_trylock(alias->d_parent->d_inode))
2736 		goto out_err;
2737 	m2 = &alias->d_parent->d_inode->i_mutex;
2738 out_unalias:
2739 	__d_move(alias, dentry, false);
2740 	ret = 0;
2741 out_err:
2742 	if (m2)
2743 		mutex_unlock(m2);
2744 	if (m1)
2745 		mutex_unlock(m1);
2746 	return ret;
2747 }
2748 
2749 /**
2750  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2751  * @inode:  the inode which may have a disconnected dentry
2752  * @dentry: a negative dentry which we want to point to the inode.
2753  *
2754  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2755  * place of the given dentry and return it, else simply d_add the inode
2756  * to the dentry and return NULL.
2757  *
2758  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2759  * we should error out: directories can't have multiple aliases.
2760  *
2761  * This is needed in the lookup routine of any filesystem that is exportable
2762  * (via knfsd) so that we can build dcache paths to directories effectively.
2763  *
2764  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2765  * is returned.  This matches the expected return value of ->lookup.
2766  *
2767  * Cluster filesystems may call this function with a negative, hashed dentry.
2768  * In that case, we know that the inode will be a regular file, and also this
2769  * will only occur during atomic_open. So we need to check for the dentry
2770  * being already hashed only in the final case.
2771  */
2772 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2773 {
2774 	if (IS_ERR(inode))
2775 		return ERR_CAST(inode);
2776 
2777 	BUG_ON(!d_unhashed(dentry));
2778 
2779 	if (!inode)
2780 		goto out;
2781 
2782 	spin_lock(&inode->i_lock);
2783 	if (S_ISDIR(inode->i_mode)) {
2784 		struct dentry *new = __d_find_any_alias(inode);
2785 		if (unlikely(new)) {
2786 			/* The reference to new ensures it remains an alias */
2787 			spin_unlock(&inode->i_lock);
2788 			write_seqlock(&rename_lock);
2789 			if (unlikely(d_ancestor(new, dentry))) {
2790 				write_sequnlock(&rename_lock);
2791 				dput(new);
2792 				new = ERR_PTR(-ELOOP);
2793 				pr_warn_ratelimited(
2794 					"VFS: Lookup of '%s' in %s %s"
2795 					" would have caused loop\n",
2796 					dentry->d_name.name,
2797 					inode->i_sb->s_type->name,
2798 					inode->i_sb->s_id);
2799 			} else if (!IS_ROOT(new)) {
2800 				int err = __d_unalias(inode, dentry, new);
2801 				write_sequnlock(&rename_lock);
2802 				if (err) {
2803 					dput(new);
2804 					new = ERR_PTR(err);
2805 				}
2806 			} else {
2807 				__d_move(new, dentry, false);
2808 				write_sequnlock(&rename_lock);
2809 				security_d_instantiate(new, inode);
2810 			}
2811 			iput(inode);
2812 			return new;
2813 		}
2814 	}
2815 out:
2816 	__d_add(dentry, inode);
2817 	return NULL;
2818 }
2819 EXPORT_SYMBOL(d_splice_alias);
2820 
2821 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2822 {
2823 	*buflen -= namelen;
2824 	if (*buflen < 0)
2825 		return -ENAMETOOLONG;
2826 	*buffer -= namelen;
2827 	memcpy(*buffer, str, namelen);
2828 	return 0;
2829 }
2830 
2831 /**
2832  * prepend_name - prepend a pathname in front of current buffer pointer
2833  * @buffer: buffer pointer
2834  * @buflen: allocated length of the buffer
2835  * @name:   name string and length qstr structure
2836  *
2837  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2838  * make sure that either the old or the new name pointer and length are
2839  * fetched. However, there may be mismatch between length and pointer.
2840  * The length cannot be trusted, we need to copy it byte-by-byte until
2841  * the length is reached or a null byte is found. It also prepends "/" at
2842  * the beginning of the name. The sequence number check at the caller will
2843  * retry it again when a d_move() does happen. So any garbage in the buffer
2844  * due to mismatched pointer and length will be discarded.
2845  *
2846  * Data dependency barrier is needed to make sure that we see that terminating
2847  * NUL.  Alpha strikes again, film at 11...
2848  */
2849 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2850 {
2851 	const char *dname = ACCESS_ONCE(name->name);
2852 	u32 dlen = ACCESS_ONCE(name->len);
2853 	char *p;
2854 
2855 	smp_read_barrier_depends();
2856 
2857 	*buflen -= dlen + 1;
2858 	if (*buflen < 0)
2859 		return -ENAMETOOLONG;
2860 	p = *buffer -= dlen + 1;
2861 	*p++ = '/';
2862 	while (dlen--) {
2863 		char c = *dname++;
2864 		if (!c)
2865 			break;
2866 		*p++ = c;
2867 	}
2868 	return 0;
2869 }
2870 
2871 /**
2872  * prepend_path - Prepend path string to a buffer
2873  * @path: the dentry/vfsmount to report
2874  * @root: root vfsmnt/dentry
2875  * @buffer: pointer to the end of the buffer
2876  * @buflen: pointer to buffer length
2877  *
2878  * The function will first try to write out the pathname without taking any
2879  * lock other than the RCU read lock to make sure that dentries won't go away.
2880  * It only checks the sequence number of the global rename_lock as any change
2881  * in the dentry's d_seq will be preceded by changes in the rename_lock
2882  * sequence number. If the sequence number had been changed, it will restart
2883  * the whole pathname back-tracing sequence again by taking the rename_lock.
2884  * In this case, there is no need to take the RCU read lock as the recursive
2885  * parent pointer references will keep the dentry chain alive as long as no
2886  * rename operation is performed.
2887  */
2888 static int prepend_path(const struct path *path,
2889 			const struct path *root,
2890 			char **buffer, int *buflen)
2891 {
2892 	struct dentry *dentry;
2893 	struct vfsmount *vfsmnt;
2894 	struct mount *mnt;
2895 	int error = 0;
2896 	unsigned seq, m_seq = 0;
2897 	char *bptr;
2898 	int blen;
2899 
2900 	rcu_read_lock();
2901 restart_mnt:
2902 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2903 	seq = 0;
2904 	rcu_read_lock();
2905 restart:
2906 	bptr = *buffer;
2907 	blen = *buflen;
2908 	error = 0;
2909 	dentry = path->dentry;
2910 	vfsmnt = path->mnt;
2911 	mnt = real_mount(vfsmnt);
2912 	read_seqbegin_or_lock(&rename_lock, &seq);
2913 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2914 		struct dentry * parent;
2915 
2916 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2917 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2918 			/* Escaped? */
2919 			if (dentry != vfsmnt->mnt_root) {
2920 				bptr = *buffer;
2921 				blen = *buflen;
2922 				error = 3;
2923 				break;
2924 			}
2925 			/* Global root? */
2926 			if (mnt != parent) {
2927 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2928 				mnt = parent;
2929 				vfsmnt = &mnt->mnt;
2930 				continue;
2931 			}
2932 			if (!error)
2933 				error = is_mounted(vfsmnt) ? 1 : 2;
2934 			break;
2935 		}
2936 		parent = dentry->d_parent;
2937 		prefetch(parent);
2938 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2939 		if (error)
2940 			break;
2941 
2942 		dentry = parent;
2943 	}
2944 	if (!(seq & 1))
2945 		rcu_read_unlock();
2946 	if (need_seqretry(&rename_lock, seq)) {
2947 		seq = 1;
2948 		goto restart;
2949 	}
2950 	done_seqretry(&rename_lock, seq);
2951 
2952 	if (!(m_seq & 1))
2953 		rcu_read_unlock();
2954 	if (need_seqretry(&mount_lock, m_seq)) {
2955 		m_seq = 1;
2956 		goto restart_mnt;
2957 	}
2958 	done_seqretry(&mount_lock, m_seq);
2959 
2960 	if (error >= 0 && bptr == *buffer) {
2961 		if (--blen < 0)
2962 			error = -ENAMETOOLONG;
2963 		else
2964 			*--bptr = '/';
2965 	}
2966 	*buffer = bptr;
2967 	*buflen = blen;
2968 	return error;
2969 }
2970 
2971 /**
2972  * __d_path - return the path of a dentry
2973  * @path: the dentry/vfsmount to report
2974  * @root: root vfsmnt/dentry
2975  * @buf: buffer to return value in
2976  * @buflen: buffer length
2977  *
2978  * Convert a dentry into an ASCII path name.
2979  *
2980  * Returns a pointer into the buffer or an error code if the
2981  * path was too long.
2982  *
2983  * "buflen" should be positive.
2984  *
2985  * If the path is not reachable from the supplied root, return %NULL.
2986  */
2987 char *__d_path(const struct path *path,
2988 	       const struct path *root,
2989 	       char *buf, int buflen)
2990 {
2991 	char *res = buf + buflen;
2992 	int error;
2993 
2994 	prepend(&res, &buflen, "\0", 1);
2995 	error = prepend_path(path, root, &res, &buflen);
2996 
2997 	if (error < 0)
2998 		return ERR_PTR(error);
2999 	if (error > 0)
3000 		return NULL;
3001 	return res;
3002 }
3003 
3004 char *d_absolute_path(const struct path *path,
3005 	       char *buf, int buflen)
3006 {
3007 	struct path root = {};
3008 	char *res = buf + buflen;
3009 	int error;
3010 
3011 	prepend(&res, &buflen, "\0", 1);
3012 	error = prepend_path(path, &root, &res, &buflen);
3013 
3014 	if (error > 1)
3015 		error = -EINVAL;
3016 	if (error < 0)
3017 		return ERR_PTR(error);
3018 	return res;
3019 }
3020 
3021 /*
3022  * same as __d_path but appends "(deleted)" for unlinked files.
3023  */
3024 static int path_with_deleted(const struct path *path,
3025 			     const struct path *root,
3026 			     char **buf, int *buflen)
3027 {
3028 	prepend(buf, buflen, "\0", 1);
3029 	if (d_unlinked(path->dentry)) {
3030 		int error = prepend(buf, buflen, " (deleted)", 10);
3031 		if (error)
3032 			return error;
3033 	}
3034 
3035 	return prepend_path(path, root, buf, buflen);
3036 }
3037 
3038 static int prepend_unreachable(char **buffer, int *buflen)
3039 {
3040 	return prepend(buffer, buflen, "(unreachable)", 13);
3041 }
3042 
3043 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3044 {
3045 	unsigned seq;
3046 
3047 	do {
3048 		seq = read_seqcount_begin(&fs->seq);
3049 		*root = fs->root;
3050 	} while (read_seqcount_retry(&fs->seq, seq));
3051 }
3052 
3053 /**
3054  * d_path - return the path of a dentry
3055  * @path: path to report
3056  * @buf: buffer to return value in
3057  * @buflen: buffer length
3058  *
3059  * Convert a dentry into an ASCII path name. If the entry has been deleted
3060  * the string " (deleted)" is appended. Note that this is ambiguous.
3061  *
3062  * Returns a pointer into the buffer or an error code if the path was
3063  * too long. Note: Callers should use the returned pointer, not the passed
3064  * in buffer, to use the name! The implementation often starts at an offset
3065  * into the buffer, and may leave 0 bytes at the start.
3066  *
3067  * "buflen" should be positive.
3068  */
3069 char *d_path(const struct path *path, char *buf, int buflen)
3070 {
3071 	char *res = buf + buflen;
3072 	struct path root;
3073 	int error;
3074 
3075 	/*
3076 	 * We have various synthetic filesystems that never get mounted.  On
3077 	 * these filesystems dentries are never used for lookup purposes, and
3078 	 * thus don't need to be hashed.  They also don't need a name until a
3079 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3080 	 * below allows us to generate a name for these objects on demand:
3081 	 *
3082 	 * Some pseudo inodes are mountable.  When they are mounted
3083 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3084 	 * and instead have d_path return the mounted path.
3085 	 */
3086 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3087 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3088 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3089 
3090 	rcu_read_lock();
3091 	get_fs_root_rcu(current->fs, &root);
3092 	error = path_with_deleted(path, &root, &res, &buflen);
3093 	rcu_read_unlock();
3094 
3095 	if (error < 0)
3096 		res = ERR_PTR(error);
3097 	return res;
3098 }
3099 EXPORT_SYMBOL(d_path);
3100 
3101 /*
3102  * Helper function for dentry_operations.d_dname() members
3103  */
3104 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3105 			const char *fmt, ...)
3106 {
3107 	va_list args;
3108 	char temp[64];
3109 	int sz;
3110 
3111 	va_start(args, fmt);
3112 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3113 	va_end(args);
3114 
3115 	if (sz > sizeof(temp) || sz > buflen)
3116 		return ERR_PTR(-ENAMETOOLONG);
3117 
3118 	buffer += buflen - sz;
3119 	return memcpy(buffer, temp, sz);
3120 }
3121 
3122 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3123 {
3124 	char *end = buffer + buflen;
3125 	/* these dentries are never renamed, so d_lock is not needed */
3126 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3127 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3128 	    prepend(&end, &buflen, "/", 1))
3129 		end = ERR_PTR(-ENAMETOOLONG);
3130 	return end;
3131 }
3132 EXPORT_SYMBOL(simple_dname);
3133 
3134 /*
3135  * Write full pathname from the root of the filesystem into the buffer.
3136  */
3137 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3138 {
3139 	struct dentry *dentry;
3140 	char *end, *retval;
3141 	int len, seq = 0;
3142 	int error = 0;
3143 
3144 	if (buflen < 2)
3145 		goto Elong;
3146 
3147 	rcu_read_lock();
3148 restart:
3149 	dentry = d;
3150 	end = buf + buflen;
3151 	len = buflen;
3152 	prepend(&end, &len, "\0", 1);
3153 	/* Get '/' right */
3154 	retval = end-1;
3155 	*retval = '/';
3156 	read_seqbegin_or_lock(&rename_lock, &seq);
3157 	while (!IS_ROOT(dentry)) {
3158 		struct dentry *parent = dentry->d_parent;
3159 
3160 		prefetch(parent);
3161 		error = prepend_name(&end, &len, &dentry->d_name);
3162 		if (error)
3163 			break;
3164 
3165 		retval = end;
3166 		dentry = parent;
3167 	}
3168 	if (!(seq & 1))
3169 		rcu_read_unlock();
3170 	if (need_seqretry(&rename_lock, seq)) {
3171 		seq = 1;
3172 		goto restart;
3173 	}
3174 	done_seqretry(&rename_lock, seq);
3175 	if (error)
3176 		goto Elong;
3177 	return retval;
3178 Elong:
3179 	return ERR_PTR(-ENAMETOOLONG);
3180 }
3181 
3182 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3183 {
3184 	return __dentry_path(dentry, buf, buflen);
3185 }
3186 EXPORT_SYMBOL(dentry_path_raw);
3187 
3188 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3189 {
3190 	char *p = NULL;
3191 	char *retval;
3192 
3193 	if (d_unlinked(dentry)) {
3194 		p = buf + buflen;
3195 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3196 			goto Elong;
3197 		buflen++;
3198 	}
3199 	retval = __dentry_path(dentry, buf, buflen);
3200 	if (!IS_ERR(retval) && p)
3201 		*p = '/';	/* restore '/' overriden with '\0' */
3202 	return retval;
3203 Elong:
3204 	return ERR_PTR(-ENAMETOOLONG);
3205 }
3206 
3207 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3208 				    struct path *pwd)
3209 {
3210 	unsigned seq;
3211 
3212 	do {
3213 		seq = read_seqcount_begin(&fs->seq);
3214 		*root = fs->root;
3215 		*pwd = fs->pwd;
3216 	} while (read_seqcount_retry(&fs->seq, seq));
3217 }
3218 
3219 /*
3220  * NOTE! The user-level library version returns a
3221  * character pointer. The kernel system call just
3222  * returns the length of the buffer filled (which
3223  * includes the ending '\0' character), or a negative
3224  * error value. So libc would do something like
3225  *
3226  *	char *getcwd(char * buf, size_t size)
3227  *	{
3228  *		int retval;
3229  *
3230  *		retval = sys_getcwd(buf, size);
3231  *		if (retval >= 0)
3232  *			return buf;
3233  *		errno = -retval;
3234  *		return NULL;
3235  *	}
3236  */
3237 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3238 {
3239 	int error;
3240 	struct path pwd, root;
3241 	char *page = __getname();
3242 
3243 	if (!page)
3244 		return -ENOMEM;
3245 
3246 	rcu_read_lock();
3247 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3248 
3249 	error = -ENOENT;
3250 	if (!d_unlinked(pwd.dentry)) {
3251 		unsigned long len;
3252 		char *cwd = page + PATH_MAX;
3253 		int buflen = PATH_MAX;
3254 
3255 		prepend(&cwd, &buflen, "\0", 1);
3256 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3257 		rcu_read_unlock();
3258 
3259 		if (error < 0)
3260 			goto out;
3261 
3262 		/* Unreachable from current root */
3263 		if (error > 0) {
3264 			error = prepend_unreachable(&cwd, &buflen);
3265 			if (error)
3266 				goto out;
3267 		}
3268 
3269 		error = -ERANGE;
3270 		len = PATH_MAX + page - cwd;
3271 		if (len <= size) {
3272 			error = len;
3273 			if (copy_to_user(buf, cwd, len))
3274 				error = -EFAULT;
3275 		}
3276 	} else {
3277 		rcu_read_unlock();
3278 	}
3279 
3280 out:
3281 	__putname(page);
3282 	return error;
3283 }
3284 
3285 /*
3286  * Test whether new_dentry is a subdirectory of old_dentry.
3287  *
3288  * Trivially implemented using the dcache structure
3289  */
3290 
3291 /**
3292  * is_subdir - is new dentry a subdirectory of old_dentry
3293  * @new_dentry: new dentry
3294  * @old_dentry: old dentry
3295  *
3296  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3297  * Returns false otherwise.
3298  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3299  */
3300 
3301 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3302 {
3303 	bool result;
3304 	unsigned seq;
3305 
3306 	if (new_dentry == old_dentry)
3307 		return true;
3308 
3309 	do {
3310 		/* for restarting inner loop in case of seq retry */
3311 		seq = read_seqbegin(&rename_lock);
3312 		/*
3313 		 * Need rcu_readlock to protect against the d_parent trashing
3314 		 * due to d_move
3315 		 */
3316 		rcu_read_lock();
3317 		if (d_ancestor(old_dentry, new_dentry))
3318 			result = true;
3319 		else
3320 			result = false;
3321 		rcu_read_unlock();
3322 	} while (read_seqretry(&rename_lock, seq));
3323 
3324 	return result;
3325 }
3326 
3327 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3328 {
3329 	struct dentry *root = data;
3330 	if (dentry != root) {
3331 		if (d_unhashed(dentry) || !dentry->d_inode)
3332 			return D_WALK_SKIP;
3333 
3334 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3335 			dentry->d_flags |= DCACHE_GENOCIDE;
3336 			dentry->d_lockref.count--;
3337 		}
3338 	}
3339 	return D_WALK_CONTINUE;
3340 }
3341 
3342 void d_genocide(struct dentry *parent)
3343 {
3344 	d_walk(parent, parent, d_genocide_kill, NULL);
3345 }
3346 
3347 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3348 {
3349 	inode_dec_link_count(inode);
3350 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3351 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3352 		!d_unlinked(dentry));
3353 	spin_lock(&dentry->d_parent->d_lock);
3354 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3355 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3356 				(unsigned long long)inode->i_ino);
3357 	spin_unlock(&dentry->d_lock);
3358 	spin_unlock(&dentry->d_parent->d_lock);
3359 	d_instantiate(dentry, inode);
3360 }
3361 EXPORT_SYMBOL(d_tmpfile);
3362 
3363 static __initdata unsigned long dhash_entries;
3364 static int __init set_dhash_entries(char *str)
3365 {
3366 	if (!str)
3367 		return 0;
3368 	dhash_entries = simple_strtoul(str, &str, 0);
3369 	return 1;
3370 }
3371 __setup("dhash_entries=", set_dhash_entries);
3372 
3373 static void __init dcache_init_early(void)
3374 {
3375 	unsigned int loop;
3376 
3377 	/* If hashes are distributed across NUMA nodes, defer
3378 	 * hash allocation until vmalloc space is available.
3379 	 */
3380 	if (hashdist)
3381 		return;
3382 
3383 	dentry_hashtable =
3384 		alloc_large_system_hash("Dentry cache",
3385 					sizeof(struct hlist_bl_head),
3386 					dhash_entries,
3387 					13,
3388 					HASH_EARLY,
3389 					&d_hash_shift,
3390 					&d_hash_mask,
3391 					0,
3392 					0);
3393 
3394 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3395 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3396 }
3397 
3398 static void __init dcache_init(void)
3399 {
3400 	unsigned int loop;
3401 
3402 	/*
3403 	 * A constructor could be added for stable state like the lists,
3404 	 * but it is probably not worth it because of the cache nature
3405 	 * of the dcache.
3406 	 */
3407 	dentry_cache = KMEM_CACHE(dentry,
3408 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3409 
3410 	/* Hash may have been set up in dcache_init_early */
3411 	if (!hashdist)
3412 		return;
3413 
3414 	dentry_hashtable =
3415 		alloc_large_system_hash("Dentry cache",
3416 					sizeof(struct hlist_bl_head),
3417 					dhash_entries,
3418 					13,
3419 					0,
3420 					&d_hash_shift,
3421 					&d_hash_mask,
3422 					0,
3423 					0);
3424 
3425 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3426 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3427 }
3428 
3429 /* SLAB cache for __getname() consumers */
3430 struct kmem_cache *names_cachep __read_mostly;
3431 EXPORT_SYMBOL(names_cachep);
3432 
3433 EXPORT_SYMBOL(d_genocide);
3434 
3435 void __init vfs_caches_init_early(void)
3436 {
3437 	dcache_init_early();
3438 	inode_init_early();
3439 }
3440 
3441 void __init vfs_caches_init(void)
3442 {
3443 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3444 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3445 
3446 	dcache_init();
3447 	inode_init();
3448 	files_init();
3449 	files_maxfiles_init();
3450 	mnt_init();
3451 	bdev_cache_init();
3452 	chrdev_init();
3453 }
3454