xref: /openbmc/linux/fs/dcache.c (revision 384740dc)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	if (dname_external(dentry))
73 		kfree(dentry->d_name.name);
74 	kmem_cache_free(dentry_cache, dentry);
75 }
76 
77 static void d_callback(struct rcu_head *head)
78 {
79 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 	__d_free(dentry);
81 }
82 
83 /*
84  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
85  * inside dcache_lock.
86  */
87 static void d_free(struct dentry *dentry)
88 {
89 	if (dentry->d_op && dentry->d_op->d_release)
90 		dentry->d_op->d_release(dentry);
91 	/* if dentry was never inserted into hash, immediate free is OK */
92 	if (hlist_unhashed(&dentry->d_hash))
93 		__d_free(dentry);
94 	else
95 		call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97 
98 /*
99  * Release the dentry's inode, using the filesystem
100  * d_iput() operation if defined.
101  */
102 static void dentry_iput(struct dentry * dentry)
103 	__releases(dentry->d_lock)
104 	__releases(dcache_lock)
105 {
106 	struct inode *inode = dentry->d_inode;
107 	if (inode) {
108 		dentry->d_inode = NULL;
109 		list_del_init(&dentry->d_alias);
110 		spin_unlock(&dentry->d_lock);
111 		spin_unlock(&dcache_lock);
112 		if (!inode->i_nlink)
113 			fsnotify_inoderemove(inode);
114 		if (dentry->d_op && dentry->d_op->d_iput)
115 			dentry->d_op->d_iput(dentry, inode);
116 		else
117 			iput(inode);
118 	} else {
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 	}
122 }
123 
124 /*
125  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
126  */
127 static void dentry_lru_add(struct dentry *dentry)
128 {
129 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 	dentry->d_sb->s_nr_dentry_unused++;
131 	dentry_stat.nr_unused++;
132 }
133 
134 static void dentry_lru_add_tail(struct dentry *dentry)
135 {
136 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 	dentry->d_sb->s_nr_dentry_unused++;
138 	dentry_stat.nr_unused++;
139 }
140 
141 static void dentry_lru_del(struct dentry *dentry)
142 {
143 	if (!list_empty(&dentry->d_lru)) {
144 		list_del(&dentry->d_lru);
145 		dentry->d_sb->s_nr_dentry_unused--;
146 		dentry_stat.nr_unused--;
147 	}
148 }
149 
150 static void dentry_lru_del_init(struct dentry *dentry)
151 {
152 	if (likely(!list_empty(&dentry->d_lru))) {
153 		list_del_init(&dentry->d_lru);
154 		dentry->d_sb->s_nr_dentry_unused--;
155 		dentry_stat.nr_unused--;
156 	}
157 }
158 
159 /**
160  * d_kill - kill dentry and return parent
161  * @dentry: dentry to kill
162  *
163  * The dentry must already be unhashed and removed from the LRU.
164  *
165  * If this is the root of the dentry tree, return NULL.
166  */
167 static struct dentry *d_kill(struct dentry *dentry)
168 	__releases(dentry->d_lock)
169 	__releases(dcache_lock)
170 {
171 	struct dentry *parent;
172 
173 	list_del(&dentry->d_u.d_child);
174 	dentry_stat.nr_dentry--;	/* For d_free, below */
175 	/*drops the locks, at that point nobody can reach this dentry */
176 	dentry_iput(dentry);
177 	parent = dentry->d_parent;
178 	d_free(dentry);
179 	return dentry == parent ? NULL : parent;
180 }
181 
182 /*
183  * This is dput
184  *
185  * This is complicated by the fact that we do not want to put
186  * dentries that are no longer on any hash chain on the unused
187  * list: we'd much rather just get rid of them immediately.
188  *
189  * However, that implies that we have to traverse the dentry
190  * tree upwards to the parents which might _also_ now be
191  * scheduled for deletion (it may have been only waiting for
192  * its last child to go away).
193  *
194  * This tail recursion is done by hand as we don't want to depend
195  * on the compiler to always get this right (gcc generally doesn't).
196  * Real recursion would eat up our stack space.
197  */
198 
199 /*
200  * dput - release a dentry
201  * @dentry: dentry to release
202  *
203  * Release a dentry. This will drop the usage count and if appropriate
204  * call the dentry unlink method as well as removing it from the queues and
205  * releasing its resources. If the parent dentries were scheduled for release
206  * they too may now get deleted.
207  *
208  * no dcache lock, please.
209  */
210 
211 void dput(struct dentry *dentry)
212 {
213 	if (!dentry)
214 		return;
215 
216 repeat:
217 	if (atomic_read(&dentry->d_count) == 1)
218 		might_sleep();
219 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
220 		return;
221 
222 	spin_lock(&dentry->d_lock);
223 	if (atomic_read(&dentry->d_count)) {
224 		spin_unlock(&dentry->d_lock);
225 		spin_unlock(&dcache_lock);
226 		return;
227 	}
228 
229 	/*
230 	 * AV: ->d_delete() is _NOT_ allowed to block now.
231 	 */
232 	if (dentry->d_op && dentry->d_op->d_delete) {
233 		if (dentry->d_op->d_delete(dentry))
234 			goto unhash_it;
235 	}
236 	/* Unreachable? Get rid of it */
237  	if (d_unhashed(dentry))
238 		goto kill_it;
239   	if (list_empty(&dentry->d_lru)) {
240   		dentry->d_flags |= DCACHE_REFERENCED;
241 		dentry_lru_add(dentry);
242   	}
243  	spin_unlock(&dentry->d_lock);
244 	spin_unlock(&dcache_lock);
245 	return;
246 
247 unhash_it:
248 	__d_drop(dentry);
249 kill_it:
250 	/* if dentry was on the d_lru list delete it from there */
251 	dentry_lru_del(dentry);
252 	dentry = d_kill(dentry);
253 	if (dentry)
254 		goto repeat;
255 }
256 
257 /**
258  * d_invalidate - invalidate a dentry
259  * @dentry: dentry to invalidate
260  *
261  * Try to invalidate the dentry if it turns out to be
262  * possible. If there are other dentries that can be
263  * reached through this one we can't delete it and we
264  * return -EBUSY. On success we return 0.
265  *
266  * no dcache lock.
267  */
268 
269 int d_invalidate(struct dentry * dentry)
270 {
271 	/*
272 	 * If it's already been dropped, return OK.
273 	 */
274 	spin_lock(&dcache_lock);
275 	if (d_unhashed(dentry)) {
276 		spin_unlock(&dcache_lock);
277 		return 0;
278 	}
279 	/*
280 	 * Check whether to do a partial shrink_dcache
281 	 * to get rid of unused child entries.
282 	 */
283 	if (!list_empty(&dentry->d_subdirs)) {
284 		spin_unlock(&dcache_lock);
285 		shrink_dcache_parent(dentry);
286 		spin_lock(&dcache_lock);
287 	}
288 
289 	/*
290 	 * Somebody else still using it?
291 	 *
292 	 * If it's a directory, we can't drop it
293 	 * for fear of somebody re-populating it
294 	 * with children (even though dropping it
295 	 * would make it unreachable from the root,
296 	 * we might still populate it if it was a
297 	 * working directory or similar).
298 	 */
299 	spin_lock(&dentry->d_lock);
300 	if (atomic_read(&dentry->d_count) > 1) {
301 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 			spin_unlock(&dentry->d_lock);
303 			spin_unlock(&dcache_lock);
304 			return -EBUSY;
305 		}
306 	}
307 
308 	__d_drop(dentry);
309 	spin_unlock(&dentry->d_lock);
310 	spin_unlock(&dcache_lock);
311 	return 0;
312 }
313 
314 /* This should be called _only_ with dcache_lock held */
315 
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
317 {
318 	atomic_inc(&dentry->d_count);
319 	dentry_lru_del_init(dentry);
320 	return dentry;
321 }
322 
323 struct dentry * dget_locked(struct dentry *dentry)
324 {
325 	return __dget_locked(dentry);
326 }
327 
328 /**
329  * d_find_alias - grab a hashed alias of inode
330  * @inode: inode in question
331  * @want_discon:  flag, used by d_splice_alias, to request
332  *          that only a DISCONNECTED alias be returned.
333  *
334  * If inode has a hashed alias, or is a directory and has any alias,
335  * acquire the reference to alias and return it. Otherwise return NULL.
336  * Notice that if inode is a directory there can be only one alias and
337  * it can be unhashed only if it has no children, or if it is the root
338  * of a filesystem.
339  *
340  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341  * any other hashed alias over that one unless @want_discon is set,
342  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
343  */
344 
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
346 {
347 	struct list_head *head, *next, *tmp;
348 	struct dentry *alias, *discon_alias=NULL;
349 
350 	head = &inode->i_dentry;
351 	next = inode->i_dentry.next;
352 	while (next != head) {
353 		tmp = next;
354 		next = tmp->next;
355 		prefetch(next);
356 		alias = list_entry(tmp, struct dentry, d_alias);
357  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 			if (IS_ROOT(alias) &&
359 			    (alias->d_flags & DCACHE_DISCONNECTED))
360 				discon_alias = alias;
361 			else if (!want_discon) {
362 				__dget_locked(alias);
363 				return alias;
364 			}
365 		}
366 	}
367 	if (discon_alias)
368 		__dget_locked(discon_alias);
369 	return discon_alias;
370 }
371 
372 struct dentry * d_find_alias(struct inode *inode)
373 {
374 	struct dentry *de = NULL;
375 
376 	if (!list_empty(&inode->i_dentry)) {
377 		spin_lock(&dcache_lock);
378 		de = __d_find_alias(inode, 0);
379 		spin_unlock(&dcache_lock);
380 	}
381 	return de;
382 }
383 
384 /*
385  *	Try to kill dentries associated with this inode.
386  * WARNING: you must own a reference to inode.
387  */
388 void d_prune_aliases(struct inode *inode)
389 {
390 	struct dentry *dentry;
391 restart:
392 	spin_lock(&dcache_lock);
393 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 		spin_lock(&dentry->d_lock);
395 		if (!atomic_read(&dentry->d_count)) {
396 			__dget_locked(dentry);
397 			__d_drop(dentry);
398 			spin_unlock(&dentry->d_lock);
399 			spin_unlock(&dcache_lock);
400 			dput(dentry);
401 			goto restart;
402 		}
403 		spin_unlock(&dentry->d_lock);
404 	}
405 	spin_unlock(&dcache_lock);
406 }
407 
408 /*
409  * Throw away a dentry - free the inode, dput the parent.  This requires that
410  * the LRU list has already been removed.
411  *
412  * Try to prune ancestors as well.  This is necessary to prevent
413  * quadratic behavior of shrink_dcache_parent(), but is also expected
414  * to be beneficial in reducing dentry cache fragmentation.
415  */
416 static void prune_one_dentry(struct dentry * dentry)
417 	__releases(dentry->d_lock)
418 	__releases(dcache_lock)
419 	__acquires(dcache_lock)
420 {
421 	__d_drop(dentry);
422 	dentry = d_kill(dentry);
423 
424 	/*
425 	 * Prune ancestors.  Locking is simpler than in dput(),
426 	 * because dcache_lock needs to be taken anyway.
427 	 */
428 	spin_lock(&dcache_lock);
429 	while (dentry) {
430 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
431 			return;
432 
433 		if (dentry->d_op && dentry->d_op->d_delete)
434 			dentry->d_op->d_delete(dentry);
435 		dentry_lru_del_init(dentry);
436 		__d_drop(dentry);
437 		dentry = d_kill(dentry);
438 		spin_lock(&dcache_lock);
439 	}
440 }
441 
442 /*
443  * Shrink the dentry LRU on a given superblock.
444  * @sb   : superblock to shrink dentry LRU.
445  * @count: If count is NULL, we prune all dentries on superblock.
446  * @flags: If flags is non-zero, we need to do special processing based on
447  * which flags are set. This means we don't need to maintain multiple
448  * similar copies of this loop.
449  */
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
451 {
452 	LIST_HEAD(referenced);
453 	LIST_HEAD(tmp);
454 	struct dentry *dentry;
455 	int cnt = 0;
456 
457 	BUG_ON(!sb);
458 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 	spin_lock(&dcache_lock);
460 	if (count != NULL)
461 		/* called from prune_dcache() and shrink_dcache_parent() */
462 		cnt = *count;
463 restart:
464 	if (count == NULL)
465 		list_splice_init(&sb->s_dentry_lru, &tmp);
466 	else {
467 		while (!list_empty(&sb->s_dentry_lru)) {
468 			dentry = list_entry(sb->s_dentry_lru.prev,
469 					struct dentry, d_lru);
470 			BUG_ON(dentry->d_sb != sb);
471 
472 			spin_lock(&dentry->d_lock);
473 			/*
474 			 * If we are honouring the DCACHE_REFERENCED flag and
475 			 * the dentry has this flag set, don't free it. Clear
476 			 * the flag and put it back on the LRU.
477 			 */
478 			if ((flags & DCACHE_REFERENCED)
479 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
480 				dentry->d_flags &= ~DCACHE_REFERENCED;
481 				list_move_tail(&dentry->d_lru, &referenced);
482 				spin_unlock(&dentry->d_lock);
483 			} else {
484 				list_move_tail(&dentry->d_lru, &tmp);
485 				spin_unlock(&dentry->d_lock);
486 				cnt--;
487 				if (!cnt)
488 					break;
489 			}
490 			cond_resched_lock(&dcache_lock);
491 		}
492 	}
493 	while (!list_empty(&tmp)) {
494 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
495 		dentry_lru_del_init(dentry);
496 		spin_lock(&dentry->d_lock);
497 		/*
498 		 * We found an inuse dentry which was not removed from
499 		 * the LRU because of laziness during lookup.  Do not free
500 		 * it - just keep it off the LRU list.
501 		 */
502 		if (atomic_read(&dentry->d_count)) {
503 			spin_unlock(&dentry->d_lock);
504 			continue;
505 		}
506 		prune_one_dentry(dentry);
507 		/* dentry->d_lock was dropped in prune_one_dentry() */
508 		cond_resched_lock(&dcache_lock);
509 	}
510 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
511 		goto restart;
512 	if (count != NULL)
513 		*count = cnt;
514 	if (!list_empty(&referenced))
515 		list_splice(&referenced, &sb->s_dentry_lru);
516 	spin_unlock(&dcache_lock);
517 }
518 
519 /**
520  * prune_dcache - shrink the dcache
521  * @count: number of entries to try to free
522  *
523  * Shrink the dcache. This is done when we need more memory, or simply when we
524  * need to unmount something (at which point we need to unuse all dentries).
525  *
526  * This function may fail to free any resources if all the dentries are in use.
527  */
528 static void prune_dcache(int count)
529 {
530 	struct super_block *sb;
531 	int w_count;
532 	int unused = dentry_stat.nr_unused;
533 	int prune_ratio;
534 	int pruned;
535 
536 	if (unused == 0 || count == 0)
537 		return;
538 	spin_lock(&dcache_lock);
539 restart:
540 	if (count >= unused)
541 		prune_ratio = 1;
542 	else
543 		prune_ratio = unused / count;
544 	spin_lock(&sb_lock);
545 	list_for_each_entry(sb, &super_blocks, s_list) {
546 		if (sb->s_nr_dentry_unused == 0)
547 			continue;
548 		sb->s_count++;
549 		/* Now, we reclaim unused dentrins with fairness.
550 		 * We reclaim them same percentage from each superblock.
551 		 * We calculate number of dentries to scan on this sb
552 		 * as follows, but the implementation is arranged to avoid
553 		 * overflows:
554 		 * number of dentries to scan on this sb =
555 		 * count * (number of dentries on this sb /
556 		 * number of dentries in the machine)
557 		 */
558 		spin_unlock(&sb_lock);
559 		if (prune_ratio != 1)
560 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
561 		else
562 			w_count = sb->s_nr_dentry_unused;
563 		pruned = w_count;
564 		/*
565 		 * We need to be sure this filesystem isn't being unmounted,
566 		 * otherwise we could race with generic_shutdown_super(), and
567 		 * end up holding a reference to an inode while the filesystem
568 		 * is unmounted.  So we try to get s_umount, and make sure
569 		 * s_root isn't NULL.
570 		 */
571 		if (down_read_trylock(&sb->s_umount)) {
572 			if ((sb->s_root != NULL) &&
573 			    (!list_empty(&sb->s_dentry_lru))) {
574 				spin_unlock(&dcache_lock);
575 				__shrink_dcache_sb(sb, &w_count,
576 						DCACHE_REFERENCED);
577 				pruned -= w_count;
578 				spin_lock(&dcache_lock);
579 			}
580 			up_read(&sb->s_umount);
581 		}
582 		spin_lock(&sb_lock);
583 		count -= pruned;
584 		/*
585 		 * restart only when sb is no longer on the list and
586 		 * we have more work to do.
587 		 */
588 		if (__put_super_and_need_restart(sb) && count > 0) {
589 			spin_unlock(&sb_lock);
590 			goto restart;
591 		}
592 	}
593 	spin_unlock(&sb_lock);
594 	spin_unlock(&dcache_lock);
595 }
596 
597 /**
598  * shrink_dcache_sb - shrink dcache for a superblock
599  * @sb: superblock
600  *
601  * Shrink the dcache for the specified super block. This
602  * is used to free the dcache before unmounting a file
603  * system
604  */
605 void shrink_dcache_sb(struct super_block * sb)
606 {
607 	__shrink_dcache_sb(sb, NULL, 0);
608 }
609 
610 /*
611  * destroy a single subtree of dentries for unmount
612  * - see the comments on shrink_dcache_for_umount() for a description of the
613  *   locking
614  */
615 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
616 {
617 	struct dentry *parent;
618 	unsigned detached = 0;
619 
620 	BUG_ON(!IS_ROOT(dentry));
621 
622 	/* detach this root from the system */
623 	spin_lock(&dcache_lock);
624 	dentry_lru_del_init(dentry);
625 	__d_drop(dentry);
626 	spin_unlock(&dcache_lock);
627 
628 	for (;;) {
629 		/* descend to the first leaf in the current subtree */
630 		while (!list_empty(&dentry->d_subdirs)) {
631 			struct dentry *loop;
632 
633 			/* this is a branch with children - detach all of them
634 			 * from the system in one go */
635 			spin_lock(&dcache_lock);
636 			list_for_each_entry(loop, &dentry->d_subdirs,
637 					    d_u.d_child) {
638 				dentry_lru_del_init(loop);
639 				__d_drop(loop);
640 				cond_resched_lock(&dcache_lock);
641 			}
642 			spin_unlock(&dcache_lock);
643 
644 			/* move to the first child */
645 			dentry = list_entry(dentry->d_subdirs.next,
646 					    struct dentry, d_u.d_child);
647 		}
648 
649 		/* consume the dentries from this leaf up through its parents
650 		 * until we find one with children or run out altogether */
651 		do {
652 			struct inode *inode;
653 
654 			if (atomic_read(&dentry->d_count) != 0) {
655 				printk(KERN_ERR
656 				       "BUG: Dentry %p{i=%lx,n=%s}"
657 				       " still in use (%d)"
658 				       " [unmount of %s %s]\n",
659 				       dentry,
660 				       dentry->d_inode ?
661 				       dentry->d_inode->i_ino : 0UL,
662 				       dentry->d_name.name,
663 				       atomic_read(&dentry->d_count),
664 				       dentry->d_sb->s_type->name,
665 				       dentry->d_sb->s_id);
666 				BUG();
667 			}
668 
669 			parent = dentry->d_parent;
670 			if (parent == dentry)
671 				parent = NULL;
672 			else
673 				atomic_dec(&parent->d_count);
674 
675 			list_del(&dentry->d_u.d_child);
676 			detached++;
677 
678 			inode = dentry->d_inode;
679 			if (inode) {
680 				dentry->d_inode = NULL;
681 				list_del_init(&dentry->d_alias);
682 				if (dentry->d_op && dentry->d_op->d_iput)
683 					dentry->d_op->d_iput(dentry, inode);
684 				else
685 					iput(inode);
686 			}
687 
688 			d_free(dentry);
689 
690 			/* finished when we fall off the top of the tree,
691 			 * otherwise we ascend to the parent and move to the
692 			 * next sibling if there is one */
693 			if (!parent)
694 				goto out;
695 
696 			dentry = parent;
697 
698 		} while (list_empty(&dentry->d_subdirs));
699 
700 		dentry = list_entry(dentry->d_subdirs.next,
701 				    struct dentry, d_u.d_child);
702 	}
703 out:
704 	/* several dentries were freed, need to correct nr_dentry */
705 	spin_lock(&dcache_lock);
706 	dentry_stat.nr_dentry -= detached;
707 	spin_unlock(&dcache_lock);
708 }
709 
710 /*
711  * destroy the dentries attached to a superblock on unmounting
712  * - we don't need to use dentry->d_lock, and only need dcache_lock when
713  *   removing the dentry from the system lists and hashes because:
714  *   - the superblock is detached from all mountings and open files, so the
715  *     dentry trees will not be rearranged by the VFS
716  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
717  *     any dentries belonging to this superblock that it comes across
718  *   - the filesystem itself is no longer permitted to rearrange the dentries
719  *     in this superblock
720  */
721 void shrink_dcache_for_umount(struct super_block *sb)
722 {
723 	struct dentry *dentry;
724 
725 	if (down_read_trylock(&sb->s_umount))
726 		BUG();
727 
728 	dentry = sb->s_root;
729 	sb->s_root = NULL;
730 	atomic_dec(&dentry->d_count);
731 	shrink_dcache_for_umount_subtree(dentry);
732 
733 	while (!hlist_empty(&sb->s_anon)) {
734 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
735 		shrink_dcache_for_umount_subtree(dentry);
736 	}
737 }
738 
739 /*
740  * Search for at least 1 mount point in the dentry's subdirs.
741  * We descend to the next level whenever the d_subdirs
742  * list is non-empty and continue searching.
743  */
744 
745 /**
746  * have_submounts - check for mounts over a dentry
747  * @parent: dentry to check.
748  *
749  * Return true if the parent or its subdirectories contain
750  * a mount point
751  */
752 
753 int have_submounts(struct dentry *parent)
754 {
755 	struct dentry *this_parent = parent;
756 	struct list_head *next;
757 
758 	spin_lock(&dcache_lock);
759 	if (d_mountpoint(parent))
760 		goto positive;
761 repeat:
762 	next = this_parent->d_subdirs.next;
763 resume:
764 	while (next != &this_parent->d_subdirs) {
765 		struct list_head *tmp = next;
766 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
767 		next = tmp->next;
768 		/* Have we found a mount point ? */
769 		if (d_mountpoint(dentry))
770 			goto positive;
771 		if (!list_empty(&dentry->d_subdirs)) {
772 			this_parent = dentry;
773 			goto repeat;
774 		}
775 	}
776 	/*
777 	 * All done at this level ... ascend and resume the search.
778 	 */
779 	if (this_parent != parent) {
780 		next = this_parent->d_u.d_child.next;
781 		this_parent = this_parent->d_parent;
782 		goto resume;
783 	}
784 	spin_unlock(&dcache_lock);
785 	return 0; /* No mount points found in tree */
786 positive:
787 	spin_unlock(&dcache_lock);
788 	return 1;
789 }
790 
791 /*
792  * Search the dentry child list for the specified parent,
793  * and move any unused dentries to the end of the unused
794  * list for prune_dcache(). We descend to the next level
795  * whenever the d_subdirs list is non-empty and continue
796  * searching.
797  *
798  * It returns zero iff there are no unused children,
799  * otherwise  it returns the number of children moved to
800  * the end of the unused list. This may not be the total
801  * number of unused children, because select_parent can
802  * drop the lock and return early due to latency
803  * constraints.
804  */
805 static int select_parent(struct dentry * parent)
806 {
807 	struct dentry *this_parent = parent;
808 	struct list_head *next;
809 	int found = 0;
810 
811 	spin_lock(&dcache_lock);
812 repeat:
813 	next = this_parent->d_subdirs.next;
814 resume:
815 	while (next != &this_parent->d_subdirs) {
816 		struct list_head *tmp = next;
817 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
818 		next = tmp->next;
819 
820 		dentry_lru_del_init(dentry);
821 		/*
822 		 * move only zero ref count dentries to the end
823 		 * of the unused list for prune_dcache
824 		 */
825 		if (!atomic_read(&dentry->d_count)) {
826 			dentry_lru_add_tail(dentry);
827 			found++;
828 		}
829 
830 		/*
831 		 * We can return to the caller if we have found some (this
832 		 * ensures forward progress). We'll be coming back to find
833 		 * the rest.
834 		 */
835 		if (found && need_resched())
836 			goto out;
837 
838 		/*
839 		 * Descend a level if the d_subdirs list is non-empty.
840 		 */
841 		if (!list_empty(&dentry->d_subdirs)) {
842 			this_parent = dentry;
843 			goto repeat;
844 		}
845 	}
846 	/*
847 	 * All done at this level ... ascend and resume the search.
848 	 */
849 	if (this_parent != parent) {
850 		next = this_parent->d_u.d_child.next;
851 		this_parent = this_parent->d_parent;
852 		goto resume;
853 	}
854 out:
855 	spin_unlock(&dcache_lock);
856 	return found;
857 }
858 
859 /**
860  * shrink_dcache_parent - prune dcache
861  * @parent: parent of entries to prune
862  *
863  * Prune the dcache to remove unused children of the parent dentry.
864  */
865 
866 void shrink_dcache_parent(struct dentry * parent)
867 {
868 	struct super_block *sb = parent->d_sb;
869 	int found;
870 
871 	while ((found = select_parent(parent)) != 0)
872 		__shrink_dcache_sb(sb, &found, 0);
873 }
874 
875 /*
876  * Scan `nr' dentries and return the number which remain.
877  *
878  * We need to avoid reentering the filesystem if the caller is performing a
879  * GFP_NOFS allocation attempt.  One example deadlock is:
880  *
881  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
882  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
883  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884  *
885  * In this case we return -1 to tell the caller that we baled.
886  */
887 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
888 {
889 	if (nr) {
890 		if (!(gfp_mask & __GFP_FS))
891 			return -1;
892 		prune_dcache(nr);
893 	}
894 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
895 }
896 
897 static struct shrinker dcache_shrinker = {
898 	.shrink = shrink_dcache_memory,
899 	.seeks = DEFAULT_SEEKS,
900 };
901 
902 /**
903  * d_alloc	-	allocate a dcache entry
904  * @parent: parent of entry to allocate
905  * @name: qstr of the name
906  *
907  * Allocates a dentry. It returns %NULL if there is insufficient memory
908  * available. On a success the dentry is returned. The name passed in is
909  * copied and the copy passed in may be reused after this call.
910  */
911 
912 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
913 {
914 	struct dentry *dentry;
915 	char *dname;
916 
917 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
918 	if (!dentry)
919 		return NULL;
920 
921 	if (name->len > DNAME_INLINE_LEN-1) {
922 		dname = kmalloc(name->len + 1, GFP_KERNEL);
923 		if (!dname) {
924 			kmem_cache_free(dentry_cache, dentry);
925 			return NULL;
926 		}
927 	} else  {
928 		dname = dentry->d_iname;
929 	}
930 	dentry->d_name.name = dname;
931 
932 	dentry->d_name.len = name->len;
933 	dentry->d_name.hash = name->hash;
934 	memcpy(dname, name->name, name->len);
935 	dname[name->len] = 0;
936 
937 	atomic_set(&dentry->d_count, 1);
938 	dentry->d_flags = DCACHE_UNHASHED;
939 	spin_lock_init(&dentry->d_lock);
940 	dentry->d_inode = NULL;
941 	dentry->d_parent = NULL;
942 	dentry->d_sb = NULL;
943 	dentry->d_op = NULL;
944 	dentry->d_fsdata = NULL;
945 	dentry->d_mounted = 0;
946 #ifdef CONFIG_PROFILING
947 	dentry->d_cookie = NULL;
948 #endif
949 	INIT_HLIST_NODE(&dentry->d_hash);
950 	INIT_LIST_HEAD(&dentry->d_lru);
951 	INIT_LIST_HEAD(&dentry->d_subdirs);
952 	INIT_LIST_HEAD(&dentry->d_alias);
953 
954 	if (parent) {
955 		dentry->d_parent = dget(parent);
956 		dentry->d_sb = parent->d_sb;
957 	} else {
958 		INIT_LIST_HEAD(&dentry->d_u.d_child);
959 	}
960 
961 	spin_lock(&dcache_lock);
962 	if (parent)
963 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
964 	dentry_stat.nr_dentry++;
965 	spin_unlock(&dcache_lock);
966 
967 	return dentry;
968 }
969 
970 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
971 {
972 	struct qstr q;
973 
974 	q.name = name;
975 	q.len = strlen(name);
976 	q.hash = full_name_hash(q.name, q.len);
977 	return d_alloc(parent, &q);
978 }
979 
980 /**
981  * d_instantiate - fill in inode information for a dentry
982  * @entry: dentry to complete
983  * @inode: inode to attach to this dentry
984  *
985  * Fill in inode information in the entry.
986  *
987  * This turns negative dentries into productive full members
988  * of society.
989  *
990  * NOTE! This assumes that the inode count has been incremented
991  * (or otherwise set) by the caller to indicate that it is now
992  * in use by the dcache.
993  */
994 
995 void d_instantiate(struct dentry *entry, struct inode * inode)
996 {
997 	BUG_ON(!list_empty(&entry->d_alias));
998 	spin_lock(&dcache_lock);
999 	if (inode)
1000 		list_add(&entry->d_alias, &inode->i_dentry);
1001 	entry->d_inode = inode;
1002 	fsnotify_d_instantiate(entry, inode);
1003 	spin_unlock(&dcache_lock);
1004 	security_d_instantiate(entry, inode);
1005 }
1006 
1007 /**
1008  * d_instantiate_unique - instantiate a non-aliased dentry
1009  * @entry: dentry to instantiate
1010  * @inode: inode to attach to this dentry
1011  *
1012  * Fill in inode information in the entry. On success, it returns NULL.
1013  * If an unhashed alias of "entry" already exists, then we return the
1014  * aliased dentry instead and drop one reference to inode.
1015  *
1016  * Note that in order to avoid conflicts with rename() etc, the caller
1017  * had better be holding the parent directory semaphore.
1018  *
1019  * This also assumes that the inode count has been incremented
1020  * (or otherwise set) by the caller to indicate that it is now
1021  * in use by the dcache.
1022  */
1023 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1024 					     struct inode *inode)
1025 {
1026 	struct dentry *alias;
1027 	int len = entry->d_name.len;
1028 	const char *name = entry->d_name.name;
1029 	unsigned int hash = entry->d_name.hash;
1030 
1031 	if (!inode) {
1032 		entry->d_inode = NULL;
1033 		return NULL;
1034 	}
1035 
1036 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1037 		struct qstr *qstr = &alias->d_name;
1038 
1039 		if (qstr->hash != hash)
1040 			continue;
1041 		if (alias->d_parent != entry->d_parent)
1042 			continue;
1043 		if (qstr->len != len)
1044 			continue;
1045 		if (memcmp(qstr->name, name, len))
1046 			continue;
1047 		dget_locked(alias);
1048 		return alias;
1049 	}
1050 
1051 	list_add(&entry->d_alias, &inode->i_dentry);
1052 	entry->d_inode = inode;
1053 	fsnotify_d_instantiate(entry, inode);
1054 	return NULL;
1055 }
1056 
1057 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058 {
1059 	struct dentry *result;
1060 
1061 	BUG_ON(!list_empty(&entry->d_alias));
1062 
1063 	spin_lock(&dcache_lock);
1064 	result = __d_instantiate_unique(entry, inode);
1065 	spin_unlock(&dcache_lock);
1066 
1067 	if (!result) {
1068 		security_d_instantiate(entry, inode);
1069 		return NULL;
1070 	}
1071 
1072 	BUG_ON(!d_unhashed(result));
1073 	iput(inode);
1074 	return result;
1075 }
1076 
1077 EXPORT_SYMBOL(d_instantiate_unique);
1078 
1079 /**
1080  * d_alloc_root - allocate root dentry
1081  * @root_inode: inode to allocate the root for
1082  *
1083  * Allocate a root ("/") dentry for the inode given. The inode is
1084  * instantiated and returned. %NULL is returned if there is insufficient
1085  * memory or the inode passed is %NULL.
1086  */
1087 
1088 struct dentry * d_alloc_root(struct inode * root_inode)
1089 {
1090 	struct dentry *res = NULL;
1091 
1092 	if (root_inode) {
1093 		static const struct qstr name = { .name = "/", .len = 1 };
1094 
1095 		res = d_alloc(NULL, &name);
1096 		if (res) {
1097 			res->d_sb = root_inode->i_sb;
1098 			res->d_parent = res;
1099 			d_instantiate(res, root_inode);
1100 		}
1101 	}
1102 	return res;
1103 }
1104 
1105 static inline struct hlist_head *d_hash(struct dentry *parent,
1106 					unsigned long hash)
1107 {
1108 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1109 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1110 	return dentry_hashtable + (hash & D_HASHMASK);
1111 }
1112 
1113 /**
1114  * d_alloc_anon - allocate an anonymous dentry
1115  * @inode: inode to allocate the dentry for
1116  *
1117  * This is similar to d_alloc_root.  It is used by filesystems when
1118  * creating a dentry for a given inode, often in the process of
1119  * mapping a filehandle to a dentry.  The returned dentry may be
1120  * anonymous, or may have a full name (if the inode was already
1121  * in the cache).  The file system may need to make further
1122  * efforts to connect this dentry into the dcache properly.
1123  *
1124  * When called on a directory inode, we must ensure that
1125  * the inode only ever has one dentry.  If a dentry is
1126  * found, that is returned instead of allocating a new one.
1127  *
1128  * On successful return, the reference to the inode has been transferred
1129  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1130  * the reference on the inode has not been released.
1131  */
1132 
1133 struct dentry * d_alloc_anon(struct inode *inode)
1134 {
1135 	static const struct qstr anonstring = { .name = "" };
1136 	struct dentry *tmp;
1137 	struct dentry *res;
1138 
1139 	if ((res = d_find_alias(inode))) {
1140 		iput(inode);
1141 		return res;
1142 	}
1143 
1144 	tmp = d_alloc(NULL, &anonstring);
1145 	if (!tmp)
1146 		return NULL;
1147 
1148 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149 
1150 	spin_lock(&dcache_lock);
1151 	res = __d_find_alias(inode, 0);
1152 	if (!res) {
1153 		/* attach a disconnected dentry */
1154 		res = tmp;
1155 		tmp = NULL;
1156 		spin_lock(&res->d_lock);
1157 		res->d_sb = inode->i_sb;
1158 		res->d_parent = res;
1159 		res->d_inode = inode;
1160 		res->d_flags |= DCACHE_DISCONNECTED;
1161 		res->d_flags &= ~DCACHE_UNHASHED;
1162 		list_add(&res->d_alias, &inode->i_dentry);
1163 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1164 		spin_unlock(&res->d_lock);
1165 
1166 		inode = NULL; /* don't drop reference */
1167 	}
1168 	spin_unlock(&dcache_lock);
1169 
1170 	if (inode)
1171 		iput(inode);
1172 	if (tmp)
1173 		dput(tmp);
1174 	return res;
1175 }
1176 
1177 
1178 /**
1179  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1180  * @inode:  the inode which may have a disconnected dentry
1181  * @dentry: a negative dentry which we want to point to the inode.
1182  *
1183  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1184  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1185  * and return it, else simply d_add the inode to the dentry and return NULL.
1186  *
1187  * This is needed in the lookup routine of any filesystem that is exportable
1188  * (via knfsd) so that we can build dcache paths to directories effectively.
1189  *
1190  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1191  * is returned.  This matches the expected return value of ->lookup.
1192  *
1193  */
1194 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1195 {
1196 	struct dentry *new = NULL;
1197 
1198 	if (inode && S_ISDIR(inode->i_mode)) {
1199 		spin_lock(&dcache_lock);
1200 		new = __d_find_alias(inode, 1);
1201 		if (new) {
1202 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1203 			fsnotify_d_instantiate(new, inode);
1204 			spin_unlock(&dcache_lock);
1205 			security_d_instantiate(new, inode);
1206 			d_rehash(dentry);
1207 			d_move(new, dentry);
1208 			iput(inode);
1209 		} else {
1210 			/* d_instantiate takes dcache_lock, so we do it by hand */
1211 			list_add(&dentry->d_alias, &inode->i_dentry);
1212 			dentry->d_inode = inode;
1213 			fsnotify_d_instantiate(dentry, inode);
1214 			spin_unlock(&dcache_lock);
1215 			security_d_instantiate(dentry, inode);
1216 			d_rehash(dentry);
1217 		}
1218 	} else
1219 		d_add(dentry, inode);
1220 	return new;
1221 }
1222 
1223 /**
1224  * d_add_ci - lookup or allocate new dentry with case-exact name
1225  * @inode:  the inode case-insensitive lookup has found
1226  * @dentry: the negative dentry that was passed to the parent's lookup func
1227  * @name:   the case-exact name to be associated with the returned dentry
1228  *
1229  * This is to avoid filling the dcache with case-insensitive names to the
1230  * same inode, only the actual correct case is stored in the dcache for
1231  * case-insensitive filesystems.
1232  *
1233  * For a case-insensitive lookup match and if the the case-exact dentry
1234  * already exists in in the dcache, use it and return it.
1235  *
1236  * If no entry exists with the exact case name, allocate new dentry with
1237  * the exact case, and return the spliced entry.
1238  */
1239 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1240 			struct qstr *name)
1241 {
1242 	int error;
1243 	struct dentry *found;
1244 	struct dentry *new;
1245 
1246 	/* Does a dentry matching the name exist already? */
1247 	found = d_hash_and_lookup(dentry->d_parent, name);
1248 	/* If not, create it now and return */
1249 	if (!found) {
1250 		new = d_alloc(dentry->d_parent, name);
1251 		if (!new) {
1252 			error = -ENOMEM;
1253 			goto err_out;
1254 		}
1255 		found = d_splice_alias(inode, new);
1256 		if (found) {
1257 			dput(new);
1258 			return found;
1259 		}
1260 		return new;
1261 	}
1262 	/* Matching dentry exists, check if it is negative. */
1263 	if (found->d_inode) {
1264 		if (unlikely(found->d_inode != inode)) {
1265 			/* This can't happen because bad inodes are unhashed. */
1266 			BUG_ON(!is_bad_inode(inode));
1267 			BUG_ON(!is_bad_inode(found->d_inode));
1268 		}
1269 		/*
1270 		 * Already have the inode and the dentry attached, decrement
1271 		 * the reference count to balance the iget() done
1272 		 * earlier on.  We found the dentry using d_lookup() so it
1273 		 * cannot be disconnected and thus we do not need to worry
1274 		 * about any NFS/disconnectedness issues here.
1275 		 */
1276 		iput(inode);
1277 		return found;
1278 	}
1279 	/*
1280 	 * Negative dentry: instantiate it unless the inode is a directory and
1281 	 * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
1282 	 * in which case d_move() that in place of the found dentry.
1283 	 */
1284 	if (!S_ISDIR(inode->i_mode)) {
1285 		/* Not a directory; everything is easy. */
1286 		d_instantiate(found, inode);
1287 		return found;
1288 	}
1289 	spin_lock(&dcache_lock);
1290 	if (list_empty(&inode->i_dentry)) {
1291 		/*
1292 		 * Directory without a 'disconnected' dentry; we need to do
1293 		 * d_instantiate() by hand because it takes dcache_lock which
1294 		 * we already hold.
1295 		 */
1296 		list_add(&found->d_alias, &inode->i_dentry);
1297 		found->d_inode = inode;
1298 		spin_unlock(&dcache_lock);
1299 		security_d_instantiate(found, inode);
1300 		return found;
1301 	}
1302 	/*
1303 	 * Directory with a 'disconnected' dentry; get a reference to the
1304 	 * 'disconnected' dentry.
1305 	 */
1306 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1307 	dget_locked(new);
1308 	spin_unlock(&dcache_lock);
1309 	/* Do security vodoo. */
1310 	security_d_instantiate(found, inode);
1311 	/* Move new in place of found. */
1312 	d_move(new, found);
1313 	/* Balance the iget() we did above. */
1314 	iput(inode);
1315 	/* Throw away found. */
1316 	dput(found);
1317 	/* Use new as the actual dentry. */
1318 	return new;
1319 
1320 err_out:
1321 	iput(inode);
1322 	return ERR_PTR(error);
1323 }
1324 
1325 /**
1326  * d_lookup - search for a dentry
1327  * @parent: parent dentry
1328  * @name: qstr of name we wish to find
1329  *
1330  * Searches the children of the parent dentry for the name in question. If
1331  * the dentry is found its reference count is incremented and the dentry
1332  * is returned. The caller must use d_put to free the entry when it has
1333  * finished using it. %NULL is returned on failure.
1334  *
1335  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1336  * Memory barriers are used while updating and doing lockless traversal.
1337  * To avoid races with d_move while rename is happening, d_lock is used.
1338  *
1339  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1340  * and name pointer in one structure pointed by d_qstr.
1341  *
1342  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1343  * lookup is going on.
1344  *
1345  * The dentry unused LRU is not updated even if lookup finds the required dentry
1346  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1347  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1348  * acquisition.
1349  *
1350  * d_lookup() is protected against the concurrent renames in some unrelated
1351  * directory using the seqlockt_t rename_lock.
1352  */
1353 
1354 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1355 {
1356 	struct dentry * dentry = NULL;
1357 	unsigned long seq;
1358 
1359         do {
1360                 seq = read_seqbegin(&rename_lock);
1361                 dentry = __d_lookup(parent, name);
1362                 if (dentry)
1363 			break;
1364 	} while (read_seqretry(&rename_lock, seq));
1365 	return dentry;
1366 }
1367 
1368 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1369 {
1370 	unsigned int len = name->len;
1371 	unsigned int hash = name->hash;
1372 	const unsigned char *str = name->name;
1373 	struct hlist_head *head = d_hash(parent,hash);
1374 	struct dentry *found = NULL;
1375 	struct hlist_node *node;
1376 	struct dentry *dentry;
1377 
1378 	rcu_read_lock();
1379 
1380 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1381 		struct qstr *qstr;
1382 
1383 		if (dentry->d_name.hash != hash)
1384 			continue;
1385 		if (dentry->d_parent != parent)
1386 			continue;
1387 
1388 		spin_lock(&dentry->d_lock);
1389 
1390 		/*
1391 		 * Recheck the dentry after taking the lock - d_move may have
1392 		 * changed things.  Don't bother checking the hash because we're
1393 		 * about to compare the whole name anyway.
1394 		 */
1395 		if (dentry->d_parent != parent)
1396 			goto next;
1397 
1398 		/* non-existing due to RCU? */
1399 		if (d_unhashed(dentry))
1400 			goto next;
1401 
1402 		/*
1403 		 * It is safe to compare names since d_move() cannot
1404 		 * change the qstr (protected by d_lock).
1405 		 */
1406 		qstr = &dentry->d_name;
1407 		if (parent->d_op && parent->d_op->d_compare) {
1408 			if (parent->d_op->d_compare(parent, qstr, name))
1409 				goto next;
1410 		} else {
1411 			if (qstr->len != len)
1412 				goto next;
1413 			if (memcmp(qstr->name, str, len))
1414 				goto next;
1415 		}
1416 
1417 		atomic_inc(&dentry->d_count);
1418 		found = dentry;
1419 		spin_unlock(&dentry->d_lock);
1420 		break;
1421 next:
1422 		spin_unlock(&dentry->d_lock);
1423  	}
1424  	rcu_read_unlock();
1425 
1426  	return found;
1427 }
1428 
1429 /**
1430  * d_hash_and_lookup - hash the qstr then search for a dentry
1431  * @dir: Directory to search in
1432  * @name: qstr of name we wish to find
1433  *
1434  * On hash failure or on lookup failure NULL is returned.
1435  */
1436 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1437 {
1438 	struct dentry *dentry = NULL;
1439 
1440 	/*
1441 	 * Check for a fs-specific hash function. Note that we must
1442 	 * calculate the standard hash first, as the d_op->d_hash()
1443 	 * routine may choose to leave the hash value unchanged.
1444 	 */
1445 	name->hash = full_name_hash(name->name, name->len);
1446 	if (dir->d_op && dir->d_op->d_hash) {
1447 		if (dir->d_op->d_hash(dir, name) < 0)
1448 			goto out;
1449 	}
1450 	dentry = d_lookup(dir, name);
1451 out:
1452 	return dentry;
1453 }
1454 
1455 /**
1456  * d_validate - verify dentry provided from insecure source
1457  * @dentry: The dentry alleged to be valid child of @dparent
1458  * @dparent: The parent dentry (known to be valid)
1459  * @hash: Hash of the dentry
1460  * @len: Length of the name
1461  *
1462  * An insecure source has sent us a dentry, here we verify it and dget() it.
1463  * This is used by ncpfs in its readdir implementation.
1464  * Zero is returned in the dentry is invalid.
1465  */
1466 
1467 int d_validate(struct dentry *dentry, struct dentry *dparent)
1468 {
1469 	struct hlist_head *base;
1470 	struct hlist_node *lhp;
1471 
1472 	/* Check whether the ptr might be valid at all.. */
1473 	if (!kmem_ptr_validate(dentry_cache, dentry))
1474 		goto out;
1475 
1476 	if (dentry->d_parent != dparent)
1477 		goto out;
1478 
1479 	spin_lock(&dcache_lock);
1480 	base = d_hash(dparent, dentry->d_name.hash);
1481 	hlist_for_each(lhp,base) {
1482 		/* hlist_for_each_entry_rcu() not required for d_hash list
1483 		 * as it is parsed under dcache_lock
1484 		 */
1485 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1486 			__dget_locked(dentry);
1487 			spin_unlock(&dcache_lock);
1488 			return 1;
1489 		}
1490 	}
1491 	spin_unlock(&dcache_lock);
1492 out:
1493 	return 0;
1494 }
1495 
1496 /*
1497  * When a file is deleted, we have two options:
1498  * - turn this dentry into a negative dentry
1499  * - unhash this dentry and free it.
1500  *
1501  * Usually, we want to just turn this into
1502  * a negative dentry, but if anybody else is
1503  * currently using the dentry or the inode
1504  * we can't do that and we fall back on removing
1505  * it from the hash queues and waiting for
1506  * it to be deleted later when it has no users
1507  */
1508 
1509 /**
1510  * d_delete - delete a dentry
1511  * @dentry: The dentry to delete
1512  *
1513  * Turn the dentry into a negative dentry if possible, otherwise
1514  * remove it from the hash queues so it can be deleted later
1515  */
1516 
1517 void d_delete(struct dentry * dentry)
1518 {
1519 	int isdir = 0;
1520 	/*
1521 	 * Are we the only user?
1522 	 */
1523 	spin_lock(&dcache_lock);
1524 	spin_lock(&dentry->d_lock);
1525 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1526 	if (atomic_read(&dentry->d_count) == 1) {
1527 		dentry_iput(dentry);
1528 		fsnotify_nameremove(dentry, isdir);
1529 		return;
1530 	}
1531 
1532 	if (!d_unhashed(dentry))
1533 		__d_drop(dentry);
1534 
1535 	spin_unlock(&dentry->d_lock);
1536 	spin_unlock(&dcache_lock);
1537 
1538 	fsnotify_nameremove(dentry, isdir);
1539 }
1540 
1541 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1542 {
1543 
1544  	entry->d_flags &= ~DCACHE_UNHASHED;
1545  	hlist_add_head_rcu(&entry->d_hash, list);
1546 }
1547 
1548 static void _d_rehash(struct dentry * entry)
1549 {
1550 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1551 }
1552 
1553 /**
1554  * d_rehash	- add an entry back to the hash
1555  * @entry: dentry to add to the hash
1556  *
1557  * Adds a dentry to the hash according to its name.
1558  */
1559 
1560 void d_rehash(struct dentry * entry)
1561 {
1562 	spin_lock(&dcache_lock);
1563 	spin_lock(&entry->d_lock);
1564 	_d_rehash(entry);
1565 	spin_unlock(&entry->d_lock);
1566 	spin_unlock(&dcache_lock);
1567 }
1568 
1569 #define do_switch(x,y) do { \
1570 	__typeof__ (x) __tmp = x; \
1571 	x = y; y = __tmp; } while (0)
1572 
1573 /*
1574  * When switching names, the actual string doesn't strictly have to
1575  * be preserved in the target - because we're dropping the target
1576  * anyway. As such, we can just do a simple memcpy() to copy over
1577  * the new name before we switch.
1578  *
1579  * Note that we have to be a lot more careful about getting the hash
1580  * switched - we have to switch the hash value properly even if it
1581  * then no longer matches the actual (corrupted) string of the target.
1582  * The hash value has to match the hash queue that the dentry is on..
1583  */
1584 static void switch_names(struct dentry *dentry, struct dentry *target)
1585 {
1586 	if (dname_external(target)) {
1587 		if (dname_external(dentry)) {
1588 			/*
1589 			 * Both external: swap the pointers
1590 			 */
1591 			do_switch(target->d_name.name, dentry->d_name.name);
1592 		} else {
1593 			/*
1594 			 * dentry:internal, target:external.  Steal target's
1595 			 * storage and make target internal.
1596 			 */
1597 			memcpy(target->d_iname, dentry->d_name.name,
1598 					dentry->d_name.len + 1);
1599 			dentry->d_name.name = target->d_name.name;
1600 			target->d_name.name = target->d_iname;
1601 		}
1602 	} else {
1603 		if (dname_external(dentry)) {
1604 			/*
1605 			 * dentry:external, target:internal.  Give dentry's
1606 			 * storage to target and make dentry internal
1607 			 */
1608 			memcpy(dentry->d_iname, target->d_name.name,
1609 					target->d_name.len + 1);
1610 			target->d_name.name = dentry->d_name.name;
1611 			dentry->d_name.name = dentry->d_iname;
1612 		} else {
1613 			/*
1614 			 * Both are internal.  Just copy target to dentry
1615 			 */
1616 			memcpy(dentry->d_iname, target->d_name.name,
1617 					target->d_name.len + 1);
1618 		}
1619 	}
1620 }
1621 
1622 /*
1623  * We cannibalize "target" when moving dentry on top of it,
1624  * because it's going to be thrown away anyway. We could be more
1625  * polite about it, though.
1626  *
1627  * This forceful removal will result in ugly /proc output if
1628  * somebody holds a file open that got deleted due to a rename.
1629  * We could be nicer about the deleted file, and let it show
1630  * up under the name it had before it was deleted rather than
1631  * under the original name of the file that was moved on top of it.
1632  */
1633 
1634 /*
1635  * d_move_locked - move a dentry
1636  * @dentry: entry to move
1637  * @target: new dentry
1638  *
1639  * Update the dcache to reflect the move of a file name. Negative
1640  * dcache entries should not be moved in this way.
1641  */
1642 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1643 {
1644 	struct hlist_head *list;
1645 
1646 	if (!dentry->d_inode)
1647 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1648 
1649 	write_seqlock(&rename_lock);
1650 	/*
1651 	 * XXXX: do we really need to take target->d_lock?
1652 	 */
1653 	if (target < dentry) {
1654 		spin_lock(&target->d_lock);
1655 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1656 	} else {
1657 		spin_lock(&dentry->d_lock);
1658 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1659 	}
1660 
1661 	/* Move the dentry to the target hash queue, if on different bucket */
1662 	if (d_unhashed(dentry))
1663 		goto already_unhashed;
1664 
1665 	hlist_del_rcu(&dentry->d_hash);
1666 
1667 already_unhashed:
1668 	list = d_hash(target->d_parent, target->d_name.hash);
1669 	__d_rehash(dentry, list);
1670 
1671 	/* Unhash the target: dput() will then get rid of it */
1672 	__d_drop(target);
1673 
1674 	list_del(&dentry->d_u.d_child);
1675 	list_del(&target->d_u.d_child);
1676 
1677 	/* Switch the names.. */
1678 	switch_names(dentry, target);
1679 	do_switch(dentry->d_name.len, target->d_name.len);
1680 	do_switch(dentry->d_name.hash, target->d_name.hash);
1681 
1682 	/* ... and switch the parents */
1683 	if (IS_ROOT(dentry)) {
1684 		dentry->d_parent = target->d_parent;
1685 		target->d_parent = target;
1686 		INIT_LIST_HEAD(&target->d_u.d_child);
1687 	} else {
1688 		do_switch(dentry->d_parent, target->d_parent);
1689 
1690 		/* And add them back to the (new) parent lists */
1691 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1692 	}
1693 
1694 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1695 	spin_unlock(&target->d_lock);
1696 	fsnotify_d_move(dentry);
1697 	spin_unlock(&dentry->d_lock);
1698 	write_sequnlock(&rename_lock);
1699 }
1700 
1701 /**
1702  * d_move - move a dentry
1703  * @dentry: entry to move
1704  * @target: new dentry
1705  *
1706  * Update the dcache to reflect the move of a file name. Negative
1707  * dcache entries should not be moved in this way.
1708  */
1709 
1710 void d_move(struct dentry * dentry, struct dentry * target)
1711 {
1712 	spin_lock(&dcache_lock);
1713 	d_move_locked(dentry, target);
1714 	spin_unlock(&dcache_lock);
1715 }
1716 
1717 /*
1718  * Helper that returns 1 if p1 is a parent of p2, else 0
1719  */
1720 static int d_isparent(struct dentry *p1, struct dentry *p2)
1721 {
1722 	struct dentry *p;
1723 
1724 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1725 		if (p->d_parent == p1)
1726 			return 1;
1727 	}
1728 	return 0;
1729 }
1730 
1731 /*
1732  * This helper attempts to cope with remotely renamed directories
1733  *
1734  * It assumes that the caller is already holding
1735  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1736  *
1737  * Note: If ever the locking in lock_rename() changes, then please
1738  * remember to update this too...
1739  */
1740 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1741 	__releases(dcache_lock)
1742 {
1743 	struct mutex *m1 = NULL, *m2 = NULL;
1744 	struct dentry *ret;
1745 
1746 	/* If alias and dentry share a parent, then no extra locks required */
1747 	if (alias->d_parent == dentry->d_parent)
1748 		goto out_unalias;
1749 
1750 	/* Check for loops */
1751 	ret = ERR_PTR(-ELOOP);
1752 	if (d_isparent(alias, dentry))
1753 		goto out_err;
1754 
1755 	/* See lock_rename() */
1756 	ret = ERR_PTR(-EBUSY);
1757 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1758 		goto out_err;
1759 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1760 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1761 		goto out_err;
1762 	m2 = &alias->d_parent->d_inode->i_mutex;
1763 out_unalias:
1764 	d_move_locked(alias, dentry);
1765 	ret = alias;
1766 out_err:
1767 	spin_unlock(&dcache_lock);
1768 	if (m2)
1769 		mutex_unlock(m2);
1770 	if (m1)
1771 		mutex_unlock(m1);
1772 	return ret;
1773 }
1774 
1775 /*
1776  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1777  * named dentry in place of the dentry to be replaced.
1778  */
1779 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1780 {
1781 	struct dentry *dparent, *aparent;
1782 
1783 	switch_names(dentry, anon);
1784 	do_switch(dentry->d_name.len, anon->d_name.len);
1785 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1786 
1787 	dparent = dentry->d_parent;
1788 	aparent = anon->d_parent;
1789 
1790 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1791 	list_del(&dentry->d_u.d_child);
1792 	if (!IS_ROOT(dentry))
1793 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1794 	else
1795 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1796 
1797 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1798 	list_del(&anon->d_u.d_child);
1799 	if (!IS_ROOT(anon))
1800 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1801 	else
1802 		INIT_LIST_HEAD(&anon->d_u.d_child);
1803 
1804 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1805 }
1806 
1807 /**
1808  * d_materialise_unique - introduce an inode into the tree
1809  * @dentry: candidate dentry
1810  * @inode: inode to bind to the dentry, to which aliases may be attached
1811  *
1812  * Introduces an dentry into the tree, substituting an extant disconnected
1813  * root directory alias in its place if there is one
1814  */
1815 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1816 {
1817 	struct dentry *actual;
1818 
1819 	BUG_ON(!d_unhashed(dentry));
1820 
1821 	spin_lock(&dcache_lock);
1822 
1823 	if (!inode) {
1824 		actual = dentry;
1825 		dentry->d_inode = NULL;
1826 		goto found_lock;
1827 	}
1828 
1829 	if (S_ISDIR(inode->i_mode)) {
1830 		struct dentry *alias;
1831 
1832 		/* Does an aliased dentry already exist? */
1833 		alias = __d_find_alias(inode, 0);
1834 		if (alias) {
1835 			actual = alias;
1836 			/* Is this an anonymous mountpoint that we could splice
1837 			 * into our tree? */
1838 			if (IS_ROOT(alias)) {
1839 				spin_lock(&alias->d_lock);
1840 				__d_materialise_dentry(dentry, alias);
1841 				__d_drop(alias);
1842 				goto found;
1843 			}
1844 			/* Nope, but we must(!) avoid directory aliasing */
1845 			actual = __d_unalias(dentry, alias);
1846 			if (IS_ERR(actual))
1847 				dput(alias);
1848 			goto out_nolock;
1849 		}
1850 	}
1851 
1852 	/* Add a unique reference */
1853 	actual = __d_instantiate_unique(dentry, inode);
1854 	if (!actual)
1855 		actual = dentry;
1856 	else if (unlikely(!d_unhashed(actual)))
1857 		goto shouldnt_be_hashed;
1858 
1859 found_lock:
1860 	spin_lock(&actual->d_lock);
1861 found:
1862 	_d_rehash(actual);
1863 	spin_unlock(&actual->d_lock);
1864 	spin_unlock(&dcache_lock);
1865 out_nolock:
1866 	if (actual == dentry) {
1867 		security_d_instantiate(dentry, inode);
1868 		return NULL;
1869 	}
1870 
1871 	iput(inode);
1872 	return actual;
1873 
1874 shouldnt_be_hashed:
1875 	spin_unlock(&dcache_lock);
1876 	BUG();
1877 }
1878 
1879 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1880 {
1881 	*buflen -= namelen;
1882 	if (*buflen < 0)
1883 		return -ENAMETOOLONG;
1884 	*buffer -= namelen;
1885 	memcpy(*buffer, str, namelen);
1886 	return 0;
1887 }
1888 
1889 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1890 {
1891 	return prepend(buffer, buflen, name->name, name->len);
1892 }
1893 
1894 /**
1895  * __d_path - return the path of a dentry
1896  * @path: the dentry/vfsmount to report
1897  * @root: root vfsmnt/dentry (may be modified by this function)
1898  * @buffer: buffer to return value in
1899  * @buflen: buffer length
1900  *
1901  * Convert a dentry into an ASCII path name. If the entry has been deleted
1902  * the string " (deleted)" is appended. Note that this is ambiguous.
1903  *
1904  * Returns the buffer or an error code if the path was too long.
1905  *
1906  * "buflen" should be positive. Caller holds the dcache_lock.
1907  *
1908  * If path is not reachable from the supplied root, then the value of
1909  * root is changed (without modifying refcounts).
1910  */
1911 char *__d_path(const struct path *path, struct path *root,
1912 	       char *buffer, int buflen)
1913 {
1914 	struct dentry *dentry = path->dentry;
1915 	struct vfsmount *vfsmnt = path->mnt;
1916 	char *end = buffer + buflen;
1917 	char *retval;
1918 
1919 	spin_lock(&vfsmount_lock);
1920 	prepend(&end, &buflen, "\0", 1);
1921 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1922 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1923 			goto Elong;
1924 
1925 	if (buflen < 1)
1926 		goto Elong;
1927 	/* Get '/' right */
1928 	retval = end-1;
1929 	*retval = '/';
1930 
1931 	for (;;) {
1932 		struct dentry * parent;
1933 
1934 		if (dentry == root->dentry && vfsmnt == root->mnt)
1935 			break;
1936 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1937 			/* Global root? */
1938 			if (vfsmnt->mnt_parent == vfsmnt) {
1939 				goto global_root;
1940 			}
1941 			dentry = vfsmnt->mnt_mountpoint;
1942 			vfsmnt = vfsmnt->mnt_parent;
1943 			continue;
1944 		}
1945 		parent = dentry->d_parent;
1946 		prefetch(parent);
1947 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1948 		    (prepend(&end, &buflen, "/", 1) != 0))
1949 			goto Elong;
1950 		retval = end;
1951 		dentry = parent;
1952 	}
1953 
1954 out:
1955 	spin_unlock(&vfsmount_lock);
1956 	return retval;
1957 
1958 global_root:
1959 	retval += 1;	/* hit the slash */
1960 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1961 		goto Elong;
1962 	root->mnt = vfsmnt;
1963 	root->dentry = dentry;
1964 	goto out;
1965 
1966 Elong:
1967 	retval = ERR_PTR(-ENAMETOOLONG);
1968 	goto out;
1969 }
1970 
1971 /**
1972  * d_path - return the path of a dentry
1973  * @path: path to report
1974  * @buf: buffer to return value in
1975  * @buflen: buffer length
1976  *
1977  * Convert a dentry into an ASCII path name. If the entry has been deleted
1978  * the string " (deleted)" is appended. Note that this is ambiguous.
1979  *
1980  * Returns the buffer or an error code if the path was too long.
1981  *
1982  * "buflen" should be positive.
1983  */
1984 char *d_path(const struct path *path, char *buf, int buflen)
1985 {
1986 	char *res;
1987 	struct path root;
1988 	struct path tmp;
1989 
1990 	/*
1991 	 * We have various synthetic filesystems that never get mounted.  On
1992 	 * these filesystems dentries are never used for lookup purposes, and
1993 	 * thus don't need to be hashed.  They also don't need a name until a
1994 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1995 	 * below allows us to generate a name for these objects on demand:
1996 	 */
1997 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
1998 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1999 
2000 	read_lock(&current->fs->lock);
2001 	root = current->fs->root;
2002 	path_get(&root);
2003 	read_unlock(&current->fs->lock);
2004 	spin_lock(&dcache_lock);
2005 	tmp = root;
2006 	res = __d_path(path, &tmp, buf, buflen);
2007 	spin_unlock(&dcache_lock);
2008 	path_put(&root);
2009 	return res;
2010 }
2011 
2012 /*
2013  * Helper function for dentry_operations.d_dname() members
2014  */
2015 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2016 			const char *fmt, ...)
2017 {
2018 	va_list args;
2019 	char temp[64];
2020 	int sz;
2021 
2022 	va_start(args, fmt);
2023 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2024 	va_end(args);
2025 
2026 	if (sz > sizeof(temp) || sz > buflen)
2027 		return ERR_PTR(-ENAMETOOLONG);
2028 
2029 	buffer += buflen - sz;
2030 	return memcpy(buffer, temp, sz);
2031 }
2032 
2033 /*
2034  * Write full pathname from the root of the filesystem into the buffer.
2035  */
2036 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2037 {
2038 	char *end = buf + buflen;
2039 	char *retval;
2040 
2041 	spin_lock(&dcache_lock);
2042 	prepend(&end, &buflen, "\0", 1);
2043 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
2044 		(prepend(&end, &buflen, "//deleted", 9) != 0))
2045 			goto Elong;
2046 	if (buflen < 1)
2047 		goto Elong;
2048 	/* Get '/' right */
2049 	retval = end-1;
2050 	*retval = '/';
2051 
2052 	while (!IS_ROOT(dentry)) {
2053 		struct dentry *parent = dentry->d_parent;
2054 
2055 		prefetch(parent);
2056 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2057 		    (prepend(&end, &buflen, "/", 1) != 0))
2058 			goto Elong;
2059 
2060 		retval = end;
2061 		dentry = parent;
2062 	}
2063 	spin_unlock(&dcache_lock);
2064 	return retval;
2065 Elong:
2066 	spin_unlock(&dcache_lock);
2067 	return ERR_PTR(-ENAMETOOLONG);
2068 }
2069 
2070 /*
2071  * NOTE! The user-level library version returns a
2072  * character pointer. The kernel system call just
2073  * returns the length of the buffer filled (which
2074  * includes the ending '\0' character), or a negative
2075  * error value. So libc would do something like
2076  *
2077  *	char *getcwd(char * buf, size_t size)
2078  *	{
2079  *		int retval;
2080  *
2081  *		retval = sys_getcwd(buf, size);
2082  *		if (retval >= 0)
2083  *			return buf;
2084  *		errno = -retval;
2085  *		return NULL;
2086  *	}
2087  */
2088 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
2089 {
2090 	int error;
2091 	struct path pwd, root;
2092 	char *page = (char *) __get_free_page(GFP_USER);
2093 
2094 	if (!page)
2095 		return -ENOMEM;
2096 
2097 	read_lock(&current->fs->lock);
2098 	pwd = current->fs->pwd;
2099 	path_get(&pwd);
2100 	root = current->fs->root;
2101 	path_get(&root);
2102 	read_unlock(&current->fs->lock);
2103 
2104 	error = -ENOENT;
2105 	/* Has the current directory has been unlinked? */
2106 	spin_lock(&dcache_lock);
2107 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2108 		unsigned long len;
2109 		struct path tmp = root;
2110 		char * cwd;
2111 
2112 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2113 		spin_unlock(&dcache_lock);
2114 
2115 		error = PTR_ERR(cwd);
2116 		if (IS_ERR(cwd))
2117 			goto out;
2118 
2119 		error = -ERANGE;
2120 		len = PAGE_SIZE + page - cwd;
2121 		if (len <= size) {
2122 			error = len;
2123 			if (copy_to_user(buf, cwd, len))
2124 				error = -EFAULT;
2125 		}
2126 	} else
2127 		spin_unlock(&dcache_lock);
2128 
2129 out:
2130 	path_put(&pwd);
2131 	path_put(&root);
2132 	free_page((unsigned long) page);
2133 	return error;
2134 }
2135 
2136 /*
2137  * Test whether new_dentry is a subdirectory of old_dentry.
2138  *
2139  * Trivially implemented using the dcache structure
2140  */
2141 
2142 /**
2143  * is_subdir - is new dentry a subdirectory of old_dentry
2144  * @new_dentry: new dentry
2145  * @old_dentry: old dentry
2146  *
2147  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2148  * Returns 0 otherwise.
2149  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2150  */
2151 
2152 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2153 {
2154 	int result;
2155 	struct dentry * saved = new_dentry;
2156 	unsigned long seq;
2157 
2158 	/* need rcu_readlock to protect against the d_parent trashing due to
2159 	 * d_move
2160 	 */
2161 	rcu_read_lock();
2162         do {
2163 		/* for restarting inner loop in case of seq retry */
2164 		new_dentry = saved;
2165 		result = 0;
2166 		seq = read_seqbegin(&rename_lock);
2167 		for (;;) {
2168 			if (new_dentry != old_dentry) {
2169 				struct dentry * parent = new_dentry->d_parent;
2170 				if (parent == new_dentry)
2171 					break;
2172 				new_dentry = parent;
2173 				continue;
2174 			}
2175 			result = 1;
2176 			break;
2177 		}
2178 	} while (read_seqretry(&rename_lock, seq));
2179 	rcu_read_unlock();
2180 
2181 	return result;
2182 }
2183 
2184 void d_genocide(struct dentry *root)
2185 {
2186 	struct dentry *this_parent = root;
2187 	struct list_head *next;
2188 
2189 	spin_lock(&dcache_lock);
2190 repeat:
2191 	next = this_parent->d_subdirs.next;
2192 resume:
2193 	while (next != &this_parent->d_subdirs) {
2194 		struct list_head *tmp = next;
2195 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2196 		next = tmp->next;
2197 		if (d_unhashed(dentry)||!dentry->d_inode)
2198 			continue;
2199 		if (!list_empty(&dentry->d_subdirs)) {
2200 			this_parent = dentry;
2201 			goto repeat;
2202 		}
2203 		atomic_dec(&dentry->d_count);
2204 	}
2205 	if (this_parent != root) {
2206 		next = this_parent->d_u.d_child.next;
2207 		atomic_dec(&this_parent->d_count);
2208 		this_parent = this_parent->d_parent;
2209 		goto resume;
2210 	}
2211 	spin_unlock(&dcache_lock);
2212 }
2213 
2214 /**
2215  * find_inode_number - check for dentry with name
2216  * @dir: directory to check
2217  * @name: Name to find.
2218  *
2219  * Check whether a dentry already exists for the given name,
2220  * and return the inode number if it has an inode. Otherwise
2221  * 0 is returned.
2222  *
2223  * This routine is used to post-process directory listings for
2224  * filesystems using synthetic inode numbers, and is necessary
2225  * to keep getcwd() working.
2226  */
2227 
2228 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2229 {
2230 	struct dentry * dentry;
2231 	ino_t ino = 0;
2232 
2233 	dentry = d_hash_and_lookup(dir, name);
2234 	if (dentry) {
2235 		if (dentry->d_inode)
2236 			ino = dentry->d_inode->i_ino;
2237 		dput(dentry);
2238 	}
2239 	return ino;
2240 }
2241 
2242 static __initdata unsigned long dhash_entries;
2243 static int __init set_dhash_entries(char *str)
2244 {
2245 	if (!str)
2246 		return 0;
2247 	dhash_entries = simple_strtoul(str, &str, 0);
2248 	return 1;
2249 }
2250 __setup("dhash_entries=", set_dhash_entries);
2251 
2252 static void __init dcache_init_early(void)
2253 {
2254 	int loop;
2255 
2256 	/* If hashes are distributed across NUMA nodes, defer
2257 	 * hash allocation until vmalloc space is available.
2258 	 */
2259 	if (hashdist)
2260 		return;
2261 
2262 	dentry_hashtable =
2263 		alloc_large_system_hash("Dentry cache",
2264 					sizeof(struct hlist_head),
2265 					dhash_entries,
2266 					13,
2267 					HASH_EARLY,
2268 					&d_hash_shift,
2269 					&d_hash_mask,
2270 					0);
2271 
2272 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2273 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2274 }
2275 
2276 static void __init dcache_init(void)
2277 {
2278 	int loop;
2279 
2280 	/*
2281 	 * A constructor could be added for stable state like the lists,
2282 	 * but it is probably not worth it because of the cache nature
2283 	 * of the dcache.
2284 	 */
2285 	dentry_cache = KMEM_CACHE(dentry,
2286 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2287 
2288 	register_shrinker(&dcache_shrinker);
2289 
2290 	/* Hash may have been set up in dcache_init_early */
2291 	if (!hashdist)
2292 		return;
2293 
2294 	dentry_hashtable =
2295 		alloc_large_system_hash("Dentry cache",
2296 					sizeof(struct hlist_head),
2297 					dhash_entries,
2298 					13,
2299 					0,
2300 					&d_hash_shift,
2301 					&d_hash_mask,
2302 					0);
2303 
2304 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2305 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2306 }
2307 
2308 /* SLAB cache for __getname() consumers */
2309 struct kmem_cache *names_cachep __read_mostly;
2310 
2311 /* SLAB cache for file structures */
2312 struct kmem_cache *filp_cachep __read_mostly;
2313 
2314 EXPORT_SYMBOL(d_genocide);
2315 
2316 void __init vfs_caches_init_early(void)
2317 {
2318 	dcache_init_early();
2319 	inode_init_early();
2320 }
2321 
2322 void __init vfs_caches_init(unsigned long mempages)
2323 {
2324 	unsigned long reserve;
2325 
2326 	/* Base hash sizes on available memory, with a reserve equal to
2327            150% of current kernel size */
2328 
2329 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2330 	mempages -= reserve;
2331 
2332 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2333 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2334 
2335 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2336 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2337 
2338 	dcache_init();
2339 	inode_init();
2340 	files_init(mempages);
2341 	mnt_init();
2342 	bdev_cache_init();
2343 	chrdev_init();
2344 }
2345 
2346 EXPORT_SYMBOL(d_alloc);
2347 EXPORT_SYMBOL(d_alloc_anon);
2348 EXPORT_SYMBOL(d_alloc_root);
2349 EXPORT_SYMBOL(d_delete);
2350 EXPORT_SYMBOL(d_find_alias);
2351 EXPORT_SYMBOL(d_instantiate);
2352 EXPORT_SYMBOL(d_invalidate);
2353 EXPORT_SYMBOL(d_lookup);
2354 EXPORT_SYMBOL(d_move);
2355 EXPORT_SYMBOL_GPL(d_materialise_unique);
2356 EXPORT_SYMBOL(d_path);
2357 EXPORT_SYMBOL(d_prune_aliases);
2358 EXPORT_SYMBOL(d_rehash);
2359 EXPORT_SYMBOL(d_splice_alias);
2360 EXPORT_SYMBOL(d_add_ci);
2361 EXPORT_SYMBOL(d_validate);
2362 EXPORT_SYMBOL(dget_locked);
2363 EXPORT_SYMBOL(dput);
2364 EXPORT_SYMBOL(find_inode_number);
2365 EXPORT_SYMBOL(have_submounts);
2366 EXPORT_SYMBOL(names_cachep);
2367 EXPORT_SYMBOL(shrink_dcache_parent);
2368 EXPORT_SYMBOL(shrink_dcache_sb);
2369