xref: /openbmc/linux/fs/dcache.c (revision 36bccb11)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	hash = hash + (hash >> d_hash_shift);
110 	return dentry_hashtable + (hash & d_hash_mask);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
120 
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 
123 /*
124  * Here we resort to our own counters instead of using generic per-cpu counters
125  * for consistency with what the vfs inode code does. We are expected to harvest
126  * better code and performance by having our own specialized counters.
127  *
128  * Please note that the loop is done over all possible CPUs, not over all online
129  * CPUs. The reason for this is that we don't want to play games with CPUs going
130  * on and off. If one of them goes off, we will just keep their counters.
131  *
132  * glommer: See cffbc8a for details, and if you ever intend to change this,
133  * please update all vfs counters to match.
134  */
135 static long get_nr_dentry(void)
136 {
137 	int i;
138 	long sum = 0;
139 	for_each_possible_cpu(i)
140 		sum += per_cpu(nr_dentry, i);
141 	return sum < 0 ? 0 : sum;
142 }
143 
144 static long get_nr_dentry_unused(void)
145 {
146 	int i;
147 	long sum = 0;
148 	for_each_possible_cpu(i)
149 		sum += per_cpu(nr_dentry_unused, i);
150 	return sum < 0 ? 0 : sum;
151 }
152 
153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 		   size_t *lenp, loff_t *ppos)
155 {
156 	dentry_stat.nr_dentry = get_nr_dentry();
157 	dentry_stat.nr_unused = get_nr_dentry_unused();
158 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 }
160 #endif
161 
162 /*
163  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164  * The strings are both count bytes long, and count is non-zero.
165  */
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 
168 #include <asm/word-at-a-time.h>
169 /*
170  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171  * aligned allocation for this particular component. We don't
172  * strictly need the load_unaligned_zeropad() safety, but it
173  * doesn't hurt either.
174  *
175  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176  * need the careful unaligned handling.
177  */
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 {
180 	unsigned long a,b,mask;
181 
182 	for (;;) {
183 		a = *(unsigned long *)cs;
184 		b = load_unaligned_zeropad(ct);
185 		if (tcount < sizeof(unsigned long))
186 			break;
187 		if (unlikely(a != b))
188 			return 1;
189 		cs += sizeof(unsigned long);
190 		ct += sizeof(unsigned long);
191 		tcount -= sizeof(unsigned long);
192 		if (!tcount)
193 			return 0;
194 	}
195 	mask = bytemask_from_count(tcount);
196 	return unlikely(!!((a ^ b) & mask));
197 }
198 
199 #else
200 
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 {
203 	do {
204 		if (*cs != *ct)
205 			return 1;
206 		cs++;
207 		ct++;
208 		tcount--;
209 	} while (tcount);
210 	return 0;
211 }
212 
213 #endif
214 
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 {
217 	const unsigned char *cs;
218 	/*
219 	 * Be careful about RCU walk racing with rename:
220 	 * use ACCESS_ONCE to fetch the name pointer.
221 	 *
222 	 * NOTE! Even if a rename will mean that the length
223 	 * was not loaded atomically, we don't care. The
224 	 * RCU walk will check the sequence count eventually,
225 	 * and catch it. And we won't overrun the buffer,
226 	 * because we're reading the name pointer atomically,
227 	 * and a dentry name is guaranteed to be properly
228 	 * terminated with a NUL byte.
229 	 *
230 	 * End result: even if 'len' is wrong, we'll exit
231 	 * early because the data cannot match (there can
232 	 * be no NUL in the ct/tcount data)
233 	 */
234 	cs = ACCESS_ONCE(dentry->d_name.name);
235 	smp_read_barrier_depends();
236 	return dentry_string_cmp(cs, ct, tcount);
237 }
238 
239 static void __d_free(struct rcu_head *head)
240 {
241 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242 
243 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 	if (dname_external(dentry))
245 		kfree(dentry->d_name.name);
246 	kmem_cache_free(dentry_cache, dentry);
247 }
248 
249 static void dentry_free(struct dentry *dentry)
250 {
251 	/* if dentry was never visible to RCU, immediate free is OK */
252 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 		__d_free(&dentry->d_u.d_rcu);
254 	else
255 		call_rcu(&dentry->d_u.d_rcu, __d_free);
256 }
257 
258 /**
259  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260  * @dentry: the target dentry
261  * After this call, in-progress rcu-walk path lookup will fail. This
262  * should be called after unhashing, and after changing d_inode (if
263  * the dentry has not already been unhashed).
264  */
265 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266 {
267 	assert_spin_locked(&dentry->d_lock);
268 	/* Go through a barrier */
269 	write_seqcount_barrier(&dentry->d_seq);
270 }
271 
272 /*
273  * Release the dentry's inode, using the filesystem
274  * d_iput() operation if defined. Dentry has no refcount
275  * and is unhashed.
276  */
277 static void dentry_iput(struct dentry * dentry)
278 	__releases(dentry->d_lock)
279 	__releases(dentry->d_inode->i_lock)
280 {
281 	struct inode *inode = dentry->d_inode;
282 	if (inode) {
283 		dentry->d_inode = NULL;
284 		hlist_del_init(&dentry->d_alias);
285 		spin_unlock(&dentry->d_lock);
286 		spin_unlock(&inode->i_lock);
287 		if (!inode->i_nlink)
288 			fsnotify_inoderemove(inode);
289 		if (dentry->d_op && dentry->d_op->d_iput)
290 			dentry->d_op->d_iput(dentry, inode);
291 		else
292 			iput(inode);
293 	} else {
294 		spin_unlock(&dentry->d_lock);
295 	}
296 }
297 
298 /*
299  * Release the dentry's inode, using the filesystem
300  * d_iput() operation if defined. dentry remains in-use.
301  */
302 static void dentry_unlink_inode(struct dentry * dentry)
303 	__releases(dentry->d_lock)
304 	__releases(dentry->d_inode->i_lock)
305 {
306 	struct inode *inode = dentry->d_inode;
307 	__d_clear_type(dentry);
308 	dentry->d_inode = NULL;
309 	hlist_del_init(&dentry->d_alias);
310 	dentry_rcuwalk_barrier(dentry);
311 	spin_unlock(&dentry->d_lock);
312 	spin_unlock(&inode->i_lock);
313 	if (!inode->i_nlink)
314 		fsnotify_inoderemove(inode);
315 	if (dentry->d_op && dentry->d_op->d_iput)
316 		dentry->d_op->d_iput(dentry, inode);
317 	else
318 		iput(inode);
319 }
320 
321 /*
322  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323  * is in use - which includes both the "real" per-superblock
324  * LRU list _and_ the DCACHE_SHRINK_LIST use.
325  *
326  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327  * on the shrink list (ie not on the superblock LRU list).
328  *
329  * The per-cpu "nr_dentry_unused" counters are updated with
330  * the DCACHE_LRU_LIST bit.
331  *
332  * These helper functions make sure we always follow the
333  * rules. d_lock must be held by the caller.
334  */
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry *dentry)
337 {
338 	D_FLAG_VERIFY(dentry, 0);
339 	dentry->d_flags |= DCACHE_LRU_LIST;
340 	this_cpu_inc(nr_dentry_unused);
341 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342 }
343 
344 static void d_lru_del(struct dentry *dentry)
345 {
346 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 	dentry->d_flags &= ~DCACHE_LRU_LIST;
348 	this_cpu_dec(nr_dentry_unused);
349 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350 }
351 
352 static void d_shrink_del(struct dentry *dentry)
353 {
354 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 	list_del_init(&dentry->d_lru);
356 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 	this_cpu_dec(nr_dentry_unused);
358 }
359 
360 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361 {
362 	D_FLAG_VERIFY(dentry, 0);
363 	list_add(&dentry->d_lru, list);
364 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 }
367 
368 /*
369  * These can only be called under the global LRU lock, ie during the
370  * callback for freeing the LRU list. "isolate" removes it from the
371  * LRU lists entirely, while shrink_move moves it to the indicated
372  * private list.
373  */
374 static void d_lru_isolate(struct dentry *dentry)
375 {
376 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 	dentry->d_flags &= ~DCACHE_LRU_LIST;
378 	this_cpu_dec(nr_dentry_unused);
379 	list_del_init(&dentry->d_lru);
380 }
381 
382 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383 {
384 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 	dentry->d_flags |= DCACHE_SHRINK_LIST;
386 	list_move_tail(&dentry->d_lru, list);
387 }
388 
389 /*
390  * dentry_lru_(add|del)_list) must be called with d_lock held.
391  */
392 static void dentry_lru_add(struct dentry *dentry)
393 {
394 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 		d_lru_add(dentry);
396 }
397 
398 /**
399  * d_drop - drop a dentry
400  * @dentry: dentry to drop
401  *
402  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403  * be found through a VFS lookup any more. Note that this is different from
404  * deleting the dentry - d_delete will try to mark the dentry negative if
405  * possible, giving a successful _negative_ lookup, while d_drop will
406  * just make the cache lookup fail.
407  *
408  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409  * reason (NFS timeouts or autofs deletes).
410  *
411  * __d_drop requires dentry->d_lock.
412  */
413 void __d_drop(struct dentry *dentry)
414 {
415 	if (!d_unhashed(dentry)) {
416 		struct hlist_bl_head *b;
417 		/*
418 		 * Hashed dentries are normally on the dentry hashtable,
419 		 * with the exception of those newly allocated by
420 		 * d_obtain_alias, which are always IS_ROOT:
421 		 */
422 		if (unlikely(IS_ROOT(dentry)))
423 			b = &dentry->d_sb->s_anon;
424 		else
425 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
426 
427 		hlist_bl_lock(b);
428 		__hlist_bl_del(&dentry->d_hash);
429 		dentry->d_hash.pprev = NULL;
430 		hlist_bl_unlock(b);
431 		dentry_rcuwalk_barrier(dentry);
432 	}
433 }
434 EXPORT_SYMBOL(__d_drop);
435 
436 void d_drop(struct dentry *dentry)
437 {
438 	spin_lock(&dentry->d_lock);
439 	__d_drop(dentry);
440 	spin_unlock(&dentry->d_lock);
441 }
442 EXPORT_SYMBOL(d_drop);
443 
444 /*
445  * Finish off a dentry we've decided to kill.
446  * dentry->d_lock must be held, returns with it unlocked.
447  * If ref is non-zero, then decrement the refcount too.
448  * Returns dentry requiring refcount drop, or NULL if we're done.
449  */
450 static struct dentry *
451 dentry_kill(struct dentry *dentry, int unlock_on_failure)
452 	__releases(dentry->d_lock)
453 {
454 	struct inode *inode;
455 	struct dentry *parent = NULL;
456 	bool can_free = true;
457 
458 	if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
459 		can_free = dentry->d_flags & DCACHE_MAY_FREE;
460 		spin_unlock(&dentry->d_lock);
461 		goto out;
462 	}
463 
464 	inode = dentry->d_inode;
465 	if (inode && !spin_trylock(&inode->i_lock)) {
466 relock:
467 		if (unlock_on_failure) {
468 			spin_unlock(&dentry->d_lock);
469 			cpu_relax();
470 		}
471 		return dentry; /* try again with same dentry */
472 	}
473 	if (!IS_ROOT(dentry))
474 		parent = dentry->d_parent;
475 	if (parent && !spin_trylock(&parent->d_lock)) {
476 		if (inode)
477 			spin_unlock(&inode->i_lock);
478 		goto relock;
479 	}
480 
481 	/*
482 	 * The dentry is now unrecoverably dead to the world.
483 	 */
484 	lockref_mark_dead(&dentry->d_lockref);
485 
486 	/*
487 	 * inform the fs via d_prune that this dentry is about to be
488 	 * unhashed and destroyed.
489 	 */
490 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
491 		dentry->d_op->d_prune(dentry);
492 
493 	if (dentry->d_flags & DCACHE_LRU_LIST) {
494 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 			d_lru_del(dentry);
496 	}
497 	/* if it was on the hash then remove it */
498 	__d_drop(dentry);
499 	list_del(&dentry->d_u.d_child);
500 	/*
501 	 * Inform d_walk() that we are no longer attached to the
502 	 * dentry tree
503 	 */
504 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 	if (parent)
506 		spin_unlock(&parent->d_lock);
507 	dentry_iput(dentry);
508 	/*
509 	 * dentry_iput drops the locks, at which point nobody (except
510 	 * transient RCU lookups) can reach this dentry.
511 	 */
512 	BUG_ON((int)dentry->d_lockref.count > 0);
513 	this_cpu_dec(nr_dentry);
514 	if (dentry->d_op && dentry->d_op->d_release)
515 		dentry->d_op->d_release(dentry);
516 
517 	spin_lock(&dentry->d_lock);
518 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 		dentry->d_flags |= DCACHE_MAY_FREE;
520 		can_free = false;
521 	}
522 	spin_unlock(&dentry->d_lock);
523 out:
524 	if (likely(can_free))
525 		dentry_free(dentry);
526 	return parent;
527 }
528 
529 /*
530  * This is dput
531  *
532  * This is complicated by the fact that we do not want to put
533  * dentries that are no longer on any hash chain on the unused
534  * list: we'd much rather just get rid of them immediately.
535  *
536  * However, that implies that we have to traverse the dentry
537  * tree upwards to the parents which might _also_ now be
538  * scheduled for deletion (it may have been only waiting for
539  * its last child to go away).
540  *
541  * This tail recursion is done by hand as we don't want to depend
542  * on the compiler to always get this right (gcc generally doesn't).
543  * Real recursion would eat up our stack space.
544  */
545 
546 /*
547  * dput - release a dentry
548  * @dentry: dentry to release
549  *
550  * Release a dentry. This will drop the usage count and if appropriate
551  * call the dentry unlink method as well as removing it from the queues and
552  * releasing its resources. If the parent dentries were scheduled for release
553  * they too may now get deleted.
554  */
555 void dput(struct dentry *dentry)
556 {
557 	if (unlikely(!dentry))
558 		return;
559 
560 repeat:
561 	if (lockref_put_or_lock(&dentry->d_lockref))
562 		return;
563 
564 	/* Unreachable? Get rid of it */
565 	if (unlikely(d_unhashed(dentry)))
566 		goto kill_it;
567 
568 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
569 		if (dentry->d_op->d_delete(dentry))
570 			goto kill_it;
571 	}
572 
573 	if (!(dentry->d_flags & DCACHE_REFERENCED))
574 		dentry->d_flags |= DCACHE_REFERENCED;
575 	dentry_lru_add(dentry);
576 
577 	dentry->d_lockref.count--;
578 	spin_unlock(&dentry->d_lock);
579 	return;
580 
581 kill_it:
582 	dentry = dentry_kill(dentry, 1);
583 	if (dentry)
584 		goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587 
588 /**
589  * d_invalidate - invalidate a dentry
590  * @dentry: dentry to invalidate
591  *
592  * Try to invalidate the dentry if it turns out to be
593  * possible. If there are other dentries that can be
594  * reached through this one we can't delete it and we
595  * return -EBUSY. On success we return 0.
596  *
597  * no dcache lock.
598  */
599 
600 int d_invalidate(struct dentry * dentry)
601 {
602 	/*
603 	 * If it's already been dropped, return OK.
604 	 */
605 	spin_lock(&dentry->d_lock);
606 	if (d_unhashed(dentry)) {
607 		spin_unlock(&dentry->d_lock);
608 		return 0;
609 	}
610 	/*
611 	 * Check whether to do a partial shrink_dcache
612 	 * to get rid of unused child entries.
613 	 */
614 	if (!list_empty(&dentry->d_subdirs)) {
615 		spin_unlock(&dentry->d_lock);
616 		shrink_dcache_parent(dentry);
617 		spin_lock(&dentry->d_lock);
618 	}
619 
620 	/*
621 	 * Somebody else still using it?
622 	 *
623 	 * If it's a directory, we can't drop it
624 	 * for fear of somebody re-populating it
625 	 * with children (even though dropping it
626 	 * would make it unreachable from the root,
627 	 * we might still populate it if it was a
628 	 * working directory or similar).
629 	 * We also need to leave mountpoints alone,
630 	 * directory or not.
631 	 */
632 	if (dentry->d_lockref.count > 1 && dentry->d_inode) {
633 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 			spin_unlock(&dentry->d_lock);
635 			return -EBUSY;
636 		}
637 	}
638 
639 	__d_drop(dentry);
640 	spin_unlock(&dentry->d_lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644 
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 	dentry->d_lockref.count++;
649 }
650 
651 static inline void __dget(struct dentry *dentry)
652 {
653 	lockref_get(&dentry->d_lockref);
654 }
655 
656 struct dentry *dget_parent(struct dentry *dentry)
657 {
658 	int gotref;
659 	struct dentry *ret;
660 
661 	/*
662 	 * Do optimistic parent lookup without any
663 	 * locking.
664 	 */
665 	rcu_read_lock();
666 	ret = ACCESS_ONCE(dentry->d_parent);
667 	gotref = lockref_get_not_zero(&ret->d_lockref);
668 	rcu_read_unlock();
669 	if (likely(gotref)) {
670 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
671 			return ret;
672 		dput(ret);
673 	}
674 
675 repeat:
676 	/*
677 	 * Don't need rcu_dereference because we re-check it was correct under
678 	 * the lock.
679 	 */
680 	rcu_read_lock();
681 	ret = dentry->d_parent;
682 	spin_lock(&ret->d_lock);
683 	if (unlikely(ret != dentry->d_parent)) {
684 		spin_unlock(&ret->d_lock);
685 		rcu_read_unlock();
686 		goto repeat;
687 	}
688 	rcu_read_unlock();
689 	BUG_ON(!ret->d_lockref.count);
690 	ret->d_lockref.count++;
691 	spin_unlock(&ret->d_lock);
692 	return ret;
693 }
694 EXPORT_SYMBOL(dget_parent);
695 
696 /**
697  * d_find_alias - grab a hashed alias of inode
698  * @inode: inode in question
699  * @want_discon:  flag, used by d_splice_alias, to request
700  *          that only a DISCONNECTED alias be returned.
701  *
702  * If inode has a hashed alias, or is a directory and has any alias,
703  * acquire the reference to alias and return it. Otherwise return NULL.
704  * Notice that if inode is a directory there can be only one alias and
705  * it can be unhashed only if it has no children, or if it is the root
706  * of a filesystem.
707  *
708  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
709  * any other hashed alias over that one unless @want_discon is set,
710  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
711  */
712 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
713 {
714 	struct dentry *alias, *discon_alias;
715 
716 again:
717 	discon_alias = NULL;
718 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
719 		spin_lock(&alias->d_lock);
720  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
721 			if (IS_ROOT(alias) &&
722 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
723 				discon_alias = alias;
724 			} else if (!want_discon) {
725 				__dget_dlock(alias);
726 				spin_unlock(&alias->d_lock);
727 				return alias;
728 			}
729 		}
730 		spin_unlock(&alias->d_lock);
731 	}
732 	if (discon_alias) {
733 		alias = discon_alias;
734 		spin_lock(&alias->d_lock);
735 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
736 			if (IS_ROOT(alias) &&
737 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
738 				__dget_dlock(alias);
739 				spin_unlock(&alias->d_lock);
740 				return alias;
741 			}
742 		}
743 		spin_unlock(&alias->d_lock);
744 		goto again;
745 	}
746 	return NULL;
747 }
748 
749 struct dentry *d_find_alias(struct inode *inode)
750 {
751 	struct dentry *de = NULL;
752 
753 	if (!hlist_empty(&inode->i_dentry)) {
754 		spin_lock(&inode->i_lock);
755 		de = __d_find_alias(inode, 0);
756 		spin_unlock(&inode->i_lock);
757 	}
758 	return de;
759 }
760 EXPORT_SYMBOL(d_find_alias);
761 
762 /*
763  *	Try to kill dentries associated with this inode.
764  * WARNING: you must own a reference to inode.
765  */
766 void d_prune_aliases(struct inode *inode)
767 {
768 	struct dentry *dentry;
769 restart:
770 	spin_lock(&inode->i_lock);
771 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
772 		spin_lock(&dentry->d_lock);
773 		if (!dentry->d_lockref.count) {
774 			/*
775 			 * inform the fs via d_prune that this dentry
776 			 * is about to be unhashed and destroyed.
777 			 */
778 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
779 			    !d_unhashed(dentry))
780 				dentry->d_op->d_prune(dentry);
781 
782 			__dget_dlock(dentry);
783 			__d_drop(dentry);
784 			spin_unlock(&dentry->d_lock);
785 			spin_unlock(&inode->i_lock);
786 			dput(dentry);
787 			goto restart;
788 		}
789 		spin_unlock(&dentry->d_lock);
790 	}
791 	spin_unlock(&inode->i_lock);
792 }
793 EXPORT_SYMBOL(d_prune_aliases);
794 
795 static void shrink_dentry_list(struct list_head *list)
796 {
797 	struct dentry *dentry, *parent;
798 
799 	while (!list_empty(list)) {
800 		dentry = list_entry(list->prev, struct dentry, d_lru);
801 		spin_lock(&dentry->d_lock);
802 		/*
803 		 * The dispose list is isolated and dentries are not accounted
804 		 * to the LRU here, so we can simply remove it from the list
805 		 * here regardless of whether it is referenced or not.
806 		 */
807 		d_shrink_del(dentry);
808 
809 		/*
810 		 * We found an inuse dentry which was not removed from
811 		 * the LRU because of laziness during lookup. Do not free it.
812 		 */
813 		if ((int)dentry->d_lockref.count > 0) {
814 			spin_unlock(&dentry->d_lock);
815 			continue;
816 		}
817 
818 		parent = dentry_kill(dentry, 0);
819 		/*
820 		 * If dentry_kill returns NULL, we have nothing more to do.
821 		 */
822 		if (!parent)
823 			continue;
824 
825 		if (unlikely(parent == dentry)) {
826 			/*
827 			 * trylocks have failed and d_lock has been held the
828 			 * whole time, so it could not have been added to any
829 			 * other lists. Just add it back to the shrink list.
830 			 */
831 			d_shrink_add(dentry, list);
832 			spin_unlock(&dentry->d_lock);
833 			continue;
834 		}
835 		/*
836 		 * We need to prune ancestors too. This is necessary to prevent
837 		 * quadratic behavior of shrink_dcache_parent(), but is also
838 		 * expected to be beneficial in reducing dentry cache
839 		 * fragmentation.
840 		 */
841 		dentry = parent;
842 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
843 			dentry = dentry_kill(dentry, 1);
844 	}
845 }
846 
847 static enum lru_status
848 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
849 {
850 	struct list_head *freeable = arg;
851 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
852 
853 
854 	/*
855 	 * we are inverting the lru lock/dentry->d_lock here,
856 	 * so use a trylock. If we fail to get the lock, just skip
857 	 * it
858 	 */
859 	if (!spin_trylock(&dentry->d_lock))
860 		return LRU_SKIP;
861 
862 	/*
863 	 * Referenced dentries are still in use. If they have active
864 	 * counts, just remove them from the LRU. Otherwise give them
865 	 * another pass through the LRU.
866 	 */
867 	if (dentry->d_lockref.count) {
868 		d_lru_isolate(dentry);
869 		spin_unlock(&dentry->d_lock);
870 		return LRU_REMOVED;
871 	}
872 
873 	if (dentry->d_flags & DCACHE_REFERENCED) {
874 		dentry->d_flags &= ~DCACHE_REFERENCED;
875 		spin_unlock(&dentry->d_lock);
876 
877 		/*
878 		 * The list move itself will be made by the common LRU code. At
879 		 * this point, we've dropped the dentry->d_lock but keep the
880 		 * lru lock. This is safe to do, since every list movement is
881 		 * protected by the lru lock even if both locks are held.
882 		 *
883 		 * This is guaranteed by the fact that all LRU management
884 		 * functions are intermediated by the LRU API calls like
885 		 * list_lru_add and list_lru_del. List movement in this file
886 		 * only ever occur through this functions or through callbacks
887 		 * like this one, that are called from the LRU API.
888 		 *
889 		 * The only exceptions to this are functions like
890 		 * shrink_dentry_list, and code that first checks for the
891 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
892 		 * operating only with stack provided lists after they are
893 		 * properly isolated from the main list.  It is thus, always a
894 		 * local access.
895 		 */
896 		return LRU_ROTATE;
897 	}
898 
899 	d_lru_shrink_move(dentry, freeable);
900 	spin_unlock(&dentry->d_lock);
901 
902 	return LRU_REMOVED;
903 }
904 
905 /**
906  * prune_dcache_sb - shrink the dcache
907  * @sb: superblock
908  * @nr_to_scan : number of entries to try to free
909  * @nid: which node to scan for freeable entities
910  *
911  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
912  * done when we need more memory an called from the superblock shrinker
913  * function.
914  *
915  * This function may fail to free any resources if all the dentries are in
916  * use.
917  */
918 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
919 		     int nid)
920 {
921 	LIST_HEAD(dispose);
922 	long freed;
923 
924 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
925 				       &dispose, &nr_to_scan);
926 	shrink_dentry_list(&dispose);
927 	return freed;
928 }
929 
930 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
931 						spinlock_t *lru_lock, void *arg)
932 {
933 	struct list_head *freeable = arg;
934 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
935 
936 	/*
937 	 * we are inverting the lru lock/dentry->d_lock here,
938 	 * so use a trylock. If we fail to get the lock, just skip
939 	 * it
940 	 */
941 	if (!spin_trylock(&dentry->d_lock))
942 		return LRU_SKIP;
943 
944 	d_lru_shrink_move(dentry, freeable);
945 	spin_unlock(&dentry->d_lock);
946 
947 	return LRU_REMOVED;
948 }
949 
950 
951 /**
952  * shrink_dcache_sb - shrink dcache for a superblock
953  * @sb: superblock
954  *
955  * Shrink the dcache for the specified super block. This is used to free
956  * the dcache before unmounting a file system.
957  */
958 void shrink_dcache_sb(struct super_block *sb)
959 {
960 	long freed;
961 
962 	do {
963 		LIST_HEAD(dispose);
964 
965 		freed = list_lru_walk(&sb->s_dentry_lru,
966 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
967 
968 		this_cpu_sub(nr_dentry_unused, freed);
969 		shrink_dentry_list(&dispose);
970 	} while (freed > 0);
971 }
972 EXPORT_SYMBOL(shrink_dcache_sb);
973 
974 /**
975  * enum d_walk_ret - action to talke during tree walk
976  * @D_WALK_CONTINUE:	contrinue walk
977  * @D_WALK_QUIT:	quit walk
978  * @D_WALK_NORETRY:	quit when retry is needed
979  * @D_WALK_SKIP:	skip this dentry and its children
980  */
981 enum d_walk_ret {
982 	D_WALK_CONTINUE,
983 	D_WALK_QUIT,
984 	D_WALK_NORETRY,
985 	D_WALK_SKIP,
986 };
987 
988 /**
989  * d_walk - walk the dentry tree
990  * @parent:	start of walk
991  * @data:	data passed to @enter() and @finish()
992  * @enter:	callback when first entering the dentry
993  * @finish:	callback when successfully finished the walk
994  *
995  * The @enter() and @finish() callbacks are called with d_lock held.
996  */
997 static void d_walk(struct dentry *parent, void *data,
998 		   enum d_walk_ret (*enter)(void *, struct dentry *),
999 		   void (*finish)(void *))
1000 {
1001 	struct dentry *this_parent;
1002 	struct list_head *next;
1003 	unsigned seq = 0;
1004 	enum d_walk_ret ret;
1005 	bool retry = true;
1006 
1007 again:
1008 	read_seqbegin_or_lock(&rename_lock, &seq);
1009 	this_parent = parent;
1010 	spin_lock(&this_parent->d_lock);
1011 
1012 	ret = enter(data, this_parent);
1013 	switch (ret) {
1014 	case D_WALK_CONTINUE:
1015 		break;
1016 	case D_WALK_QUIT:
1017 	case D_WALK_SKIP:
1018 		goto out_unlock;
1019 	case D_WALK_NORETRY:
1020 		retry = false;
1021 		break;
1022 	}
1023 repeat:
1024 	next = this_parent->d_subdirs.next;
1025 resume:
1026 	while (next != &this_parent->d_subdirs) {
1027 		struct list_head *tmp = next;
1028 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1029 		next = tmp->next;
1030 
1031 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1032 
1033 		ret = enter(data, dentry);
1034 		switch (ret) {
1035 		case D_WALK_CONTINUE:
1036 			break;
1037 		case D_WALK_QUIT:
1038 			spin_unlock(&dentry->d_lock);
1039 			goto out_unlock;
1040 		case D_WALK_NORETRY:
1041 			retry = false;
1042 			break;
1043 		case D_WALK_SKIP:
1044 			spin_unlock(&dentry->d_lock);
1045 			continue;
1046 		}
1047 
1048 		if (!list_empty(&dentry->d_subdirs)) {
1049 			spin_unlock(&this_parent->d_lock);
1050 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1051 			this_parent = dentry;
1052 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1053 			goto repeat;
1054 		}
1055 		spin_unlock(&dentry->d_lock);
1056 	}
1057 	/*
1058 	 * All done at this level ... ascend and resume the search.
1059 	 */
1060 	if (this_parent != parent) {
1061 		struct dentry *child = this_parent;
1062 		this_parent = child->d_parent;
1063 
1064 		rcu_read_lock();
1065 		spin_unlock(&child->d_lock);
1066 		spin_lock(&this_parent->d_lock);
1067 
1068 		/*
1069 		 * might go back up the wrong parent if we have had a rename
1070 		 * or deletion
1071 		 */
1072 		if (this_parent != child->d_parent ||
1073 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1074 			 need_seqretry(&rename_lock, seq)) {
1075 			spin_unlock(&this_parent->d_lock);
1076 			rcu_read_unlock();
1077 			goto rename_retry;
1078 		}
1079 		rcu_read_unlock();
1080 		next = child->d_u.d_child.next;
1081 		goto resume;
1082 	}
1083 	if (need_seqretry(&rename_lock, seq)) {
1084 		spin_unlock(&this_parent->d_lock);
1085 		goto rename_retry;
1086 	}
1087 	if (finish)
1088 		finish(data);
1089 
1090 out_unlock:
1091 	spin_unlock(&this_parent->d_lock);
1092 	done_seqretry(&rename_lock, seq);
1093 	return;
1094 
1095 rename_retry:
1096 	if (!retry)
1097 		return;
1098 	seq = 1;
1099 	goto again;
1100 }
1101 
1102 /*
1103  * Search for at least 1 mount point in the dentry's subdirs.
1104  * We descend to the next level whenever the d_subdirs
1105  * list is non-empty and continue searching.
1106  */
1107 
1108 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1109 {
1110 	int *ret = data;
1111 	if (d_mountpoint(dentry)) {
1112 		*ret = 1;
1113 		return D_WALK_QUIT;
1114 	}
1115 	return D_WALK_CONTINUE;
1116 }
1117 
1118 /**
1119  * have_submounts - check for mounts over a dentry
1120  * @parent: dentry to check.
1121  *
1122  * Return true if the parent or its subdirectories contain
1123  * a mount point
1124  */
1125 int have_submounts(struct dentry *parent)
1126 {
1127 	int ret = 0;
1128 
1129 	d_walk(parent, &ret, check_mount, NULL);
1130 
1131 	return ret;
1132 }
1133 EXPORT_SYMBOL(have_submounts);
1134 
1135 /*
1136  * Called by mount code to set a mountpoint and check if the mountpoint is
1137  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1138  * subtree can become unreachable).
1139  *
1140  * Only one of check_submounts_and_drop() and d_set_mounted() must succeed.  For
1141  * this reason take rename_lock and d_lock on dentry and ancestors.
1142  */
1143 int d_set_mounted(struct dentry *dentry)
1144 {
1145 	struct dentry *p;
1146 	int ret = -ENOENT;
1147 	write_seqlock(&rename_lock);
1148 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1149 		/* Need exclusion wrt. check_submounts_and_drop() */
1150 		spin_lock(&p->d_lock);
1151 		if (unlikely(d_unhashed(p))) {
1152 			spin_unlock(&p->d_lock);
1153 			goto out;
1154 		}
1155 		spin_unlock(&p->d_lock);
1156 	}
1157 	spin_lock(&dentry->d_lock);
1158 	if (!d_unlinked(dentry)) {
1159 		dentry->d_flags |= DCACHE_MOUNTED;
1160 		ret = 0;
1161 	}
1162  	spin_unlock(&dentry->d_lock);
1163 out:
1164 	write_sequnlock(&rename_lock);
1165 	return ret;
1166 }
1167 
1168 /*
1169  * Search the dentry child list of the specified parent,
1170  * and move any unused dentries to the end of the unused
1171  * list for prune_dcache(). We descend to the next level
1172  * whenever the d_subdirs list is non-empty and continue
1173  * searching.
1174  *
1175  * It returns zero iff there are no unused children,
1176  * otherwise  it returns the number of children moved to
1177  * the end of the unused list. This may not be the total
1178  * number of unused children, because select_parent can
1179  * drop the lock and return early due to latency
1180  * constraints.
1181  */
1182 
1183 struct select_data {
1184 	struct dentry *start;
1185 	struct list_head dispose;
1186 	int found;
1187 };
1188 
1189 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1190 {
1191 	struct select_data *data = _data;
1192 	enum d_walk_ret ret = D_WALK_CONTINUE;
1193 
1194 	if (data->start == dentry)
1195 		goto out;
1196 
1197 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1198 		data->found++;
1199 	} else {
1200 		if (dentry->d_flags & DCACHE_LRU_LIST)
1201 			d_lru_del(dentry);
1202 		if (!dentry->d_lockref.count) {
1203 			d_shrink_add(dentry, &data->dispose);
1204 			data->found++;
1205 		}
1206 	}
1207 	/*
1208 	 * We can return to the caller if we have found some (this
1209 	 * ensures forward progress). We'll be coming back to find
1210 	 * the rest.
1211 	 */
1212 	if (!list_empty(&data->dispose))
1213 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1214 out:
1215 	return ret;
1216 }
1217 
1218 /**
1219  * shrink_dcache_parent - prune dcache
1220  * @parent: parent of entries to prune
1221  *
1222  * Prune the dcache to remove unused children of the parent dentry.
1223  */
1224 void shrink_dcache_parent(struct dentry *parent)
1225 {
1226 	for (;;) {
1227 		struct select_data data;
1228 
1229 		INIT_LIST_HEAD(&data.dispose);
1230 		data.start = parent;
1231 		data.found = 0;
1232 
1233 		d_walk(parent, &data, select_collect, NULL);
1234 		if (!data.found)
1235 			break;
1236 
1237 		shrink_dentry_list(&data.dispose);
1238 		cond_resched();
1239 	}
1240 }
1241 EXPORT_SYMBOL(shrink_dcache_parent);
1242 
1243 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1244 {
1245 	/* it has busy descendents; complain about those instead */
1246 	if (!list_empty(&dentry->d_subdirs))
1247 		return D_WALK_CONTINUE;
1248 
1249 	/* root with refcount 1 is fine */
1250 	if (dentry == _data && dentry->d_lockref.count == 1)
1251 		return D_WALK_CONTINUE;
1252 
1253 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1254 			" still in use (%d) [unmount of %s %s]\n",
1255 		       dentry,
1256 		       dentry->d_inode ?
1257 		       dentry->d_inode->i_ino : 0UL,
1258 		       dentry,
1259 		       dentry->d_lockref.count,
1260 		       dentry->d_sb->s_type->name,
1261 		       dentry->d_sb->s_id);
1262 	WARN_ON(1);
1263 	return D_WALK_CONTINUE;
1264 }
1265 
1266 static void do_one_tree(struct dentry *dentry)
1267 {
1268 	shrink_dcache_parent(dentry);
1269 	d_walk(dentry, dentry, umount_check, NULL);
1270 	d_drop(dentry);
1271 	dput(dentry);
1272 }
1273 
1274 /*
1275  * destroy the dentries attached to a superblock on unmounting
1276  */
1277 void shrink_dcache_for_umount(struct super_block *sb)
1278 {
1279 	struct dentry *dentry;
1280 
1281 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1282 
1283 	dentry = sb->s_root;
1284 	sb->s_root = NULL;
1285 	do_one_tree(dentry);
1286 
1287 	while (!hlist_bl_empty(&sb->s_anon)) {
1288 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1289 		do_one_tree(dentry);
1290 	}
1291 }
1292 
1293 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1294 {
1295 	struct select_data *data = _data;
1296 
1297 	if (d_mountpoint(dentry)) {
1298 		data->found = -EBUSY;
1299 		return D_WALK_QUIT;
1300 	}
1301 
1302 	return select_collect(_data, dentry);
1303 }
1304 
1305 static void check_and_drop(void *_data)
1306 {
1307 	struct select_data *data = _data;
1308 
1309 	if (d_mountpoint(data->start))
1310 		data->found = -EBUSY;
1311 	if (!data->found)
1312 		__d_drop(data->start);
1313 }
1314 
1315 /**
1316  * check_submounts_and_drop - prune dcache, check for submounts and drop
1317  *
1318  * All done as a single atomic operation relative to has_unlinked_ancestor().
1319  * Returns 0 if successfully unhashed @parent.  If there were submounts then
1320  * return -EBUSY.
1321  *
1322  * @dentry: dentry to prune and drop
1323  */
1324 int check_submounts_and_drop(struct dentry *dentry)
1325 {
1326 	int ret = 0;
1327 
1328 	/* Negative dentries can be dropped without further checks */
1329 	if (!dentry->d_inode) {
1330 		d_drop(dentry);
1331 		goto out;
1332 	}
1333 
1334 	for (;;) {
1335 		struct select_data data;
1336 
1337 		INIT_LIST_HEAD(&data.dispose);
1338 		data.start = dentry;
1339 		data.found = 0;
1340 
1341 		d_walk(dentry, &data, check_and_collect, check_and_drop);
1342 		ret = data.found;
1343 
1344 		if (!list_empty(&data.dispose))
1345 			shrink_dentry_list(&data.dispose);
1346 
1347 		if (ret <= 0)
1348 			break;
1349 
1350 		cond_resched();
1351 	}
1352 
1353 out:
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL(check_submounts_and_drop);
1357 
1358 /**
1359  * __d_alloc	-	allocate a dcache entry
1360  * @sb: filesystem it will belong to
1361  * @name: qstr of the name
1362  *
1363  * Allocates a dentry. It returns %NULL if there is insufficient memory
1364  * available. On a success the dentry is returned. The name passed in is
1365  * copied and the copy passed in may be reused after this call.
1366  */
1367 
1368 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1369 {
1370 	struct dentry *dentry;
1371 	char *dname;
1372 
1373 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1374 	if (!dentry)
1375 		return NULL;
1376 
1377 	/*
1378 	 * We guarantee that the inline name is always NUL-terminated.
1379 	 * This way the memcpy() done by the name switching in rename
1380 	 * will still always have a NUL at the end, even if we might
1381 	 * be overwriting an internal NUL character
1382 	 */
1383 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1384 	if (name->len > DNAME_INLINE_LEN-1) {
1385 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1386 		if (!dname) {
1387 			kmem_cache_free(dentry_cache, dentry);
1388 			return NULL;
1389 		}
1390 	} else  {
1391 		dname = dentry->d_iname;
1392 	}
1393 
1394 	dentry->d_name.len = name->len;
1395 	dentry->d_name.hash = name->hash;
1396 	memcpy(dname, name->name, name->len);
1397 	dname[name->len] = 0;
1398 
1399 	/* Make sure we always see the terminating NUL character */
1400 	smp_wmb();
1401 	dentry->d_name.name = dname;
1402 
1403 	dentry->d_lockref.count = 1;
1404 	dentry->d_flags = 0;
1405 	spin_lock_init(&dentry->d_lock);
1406 	seqcount_init(&dentry->d_seq);
1407 	dentry->d_inode = NULL;
1408 	dentry->d_parent = dentry;
1409 	dentry->d_sb = sb;
1410 	dentry->d_op = NULL;
1411 	dentry->d_fsdata = NULL;
1412 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1413 	INIT_LIST_HEAD(&dentry->d_lru);
1414 	INIT_LIST_HEAD(&dentry->d_subdirs);
1415 	INIT_HLIST_NODE(&dentry->d_alias);
1416 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1417 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1418 
1419 	this_cpu_inc(nr_dentry);
1420 
1421 	return dentry;
1422 }
1423 
1424 /**
1425  * d_alloc	-	allocate a dcache entry
1426  * @parent: parent of entry to allocate
1427  * @name: qstr of the name
1428  *
1429  * Allocates a dentry. It returns %NULL if there is insufficient memory
1430  * available. On a success the dentry is returned. The name passed in is
1431  * copied and the copy passed in may be reused after this call.
1432  */
1433 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1434 {
1435 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1436 	if (!dentry)
1437 		return NULL;
1438 
1439 	spin_lock(&parent->d_lock);
1440 	/*
1441 	 * don't need child lock because it is not subject
1442 	 * to concurrency here
1443 	 */
1444 	__dget_dlock(parent);
1445 	dentry->d_parent = parent;
1446 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1447 	spin_unlock(&parent->d_lock);
1448 
1449 	return dentry;
1450 }
1451 EXPORT_SYMBOL(d_alloc);
1452 
1453 /**
1454  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1455  * @sb: the superblock
1456  * @name: qstr of the name
1457  *
1458  * For a filesystem that just pins its dentries in memory and never
1459  * performs lookups at all, return an unhashed IS_ROOT dentry.
1460  */
1461 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1462 {
1463 	return __d_alloc(sb, name);
1464 }
1465 EXPORT_SYMBOL(d_alloc_pseudo);
1466 
1467 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1468 {
1469 	struct qstr q;
1470 
1471 	q.name = name;
1472 	q.len = strlen(name);
1473 	q.hash = full_name_hash(q.name, q.len);
1474 	return d_alloc(parent, &q);
1475 }
1476 EXPORT_SYMBOL(d_alloc_name);
1477 
1478 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1479 {
1480 	WARN_ON_ONCE(dentry->d_op);
1481 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1482 				DCACHE_OP_COMPARE	|
1483 				DCACHE_OP_REVALIDATE	|
1484 				DCACHE_OP_WEAK_REVALIDATE	|
1485 				DCACHE_OP_DELETE ));
1486 	dentry->d_op = op;
1487 	if (!op)
1488 		return;
1489 	if (op->d_hash)
1490 		dentry->d_flags |= DCACHE_OP_HASH;
1491 	if (op->d_compare)
1492 		dentry->d_flags |= DCACHE_OP_COMPARE;
1493 	if (op->d_revalidate)
1494 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1495 	if (op->d_weak_revalidate)
1496 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1497 	if (op->d_delete)
1498 		dentry->d_flags |= DCACHE_OP_DELETE;
1499 	if (op->d_prune)
1500 		dentry->d_flags |= DCACHE_OP_PRUNE;
1501 
1502 }
1503 EXPORT_SYMBOL(d_set_d_op);
1504 
1505 static unsigned d_flags_for_inode(struct inode *inode)
1506 {
1507 	unsigned add_flags = DCACHE_FILE_TYPE;
1508 
1509 	if (!inode)
1510 		return DCACHE_MISS_TYPE;
1511 
1512 	if (S_ISDIR(inode->i_mode)) {
1513 		add_flags = DCACHE_DIRECTORY_TYPE;
1514 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1515 			if (unlikely(!inode->i_op->lookup))
1516 				add_flags = DCACHE_AUTODIR_TYPE;
1517 			else
1518 				inode->i_opflags |= IOP_LOOKUP;
1519 		}
1520 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1521 		if (unlikely(inode->i_op->follow_link))
1522 			add_flags = DCACHE_SYMLINK_TYPE;
1523 		else
1524 			inode->i_opflags |= IOP_NOFOLLOW;
1525 	}
1526 
1527 	if (unlikely(IS_AUTOMOUNT(inode)))
1528 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1529 	return add_flags;
1530 }
1531 
1532 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1533 {
1534 	unsigned add_flags = d_flags_for_inode(inode);
1535 
1536 	spin_lock(&dentry->d_lock);
1537 	__d_set_type(dentry, add_flags);
1538 	if (inode)
1539 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1540 	dentry->d_inode = inode;
1541 	dentry_rcuwalk_barrier(dentry);
1542 	spin_unlock(&dentry->d_lock);
1543 	fsnotify_d_instantiate(dentry, inode);
1544 }
1545 
1546 /**
1547  * d_instantiate - fill in inode information for a dentry
1548  * @entry: dentry to complete
1549  * @inode: inode to attach to this dentry
1550  *
1551  * Fill in inode information in the entry.
1552  *
1553  * This turns negative dentries into productive full members
1554  * of society.
1555  *
1556  * NOTE! This assumes that the inode count has been incremented
1557  * (or otherwise set) by the caller to indicate that it is now
1558  * in use by the dcache.
1559  */
1560 
1561 void d_instantiate(struct dentry *entry, struct inode * inode)
1562 {
1563 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1564 	if (inode)
1565 		spin_lock(&inode->i_lock);
1566 	__d_instantiate(entry, inode);
1567 	if (inode)
1568 		spin_unlock(&inode->i_lock);
1569 	security_d_instantiate(entry, inode);
1570 }
1571 EXPORT_SYMBOL(d_instantiate);
1572 
1573 /**
1574  * d_instantiate_unique - instantiate a non-aliased dentry
1575  * @entry: dentry to instantiate
1576  * @inode: inode to attach to this dentry
1577  *
1578  * Fill in inode information in the entry. On success, it returns NULL.
1579  * If an unhashed alias of "entry" already exists, then we return the
1580  * aliased dentry instead and drop one reference to inode.
1581  *
1582  * Note that in order to avoid conflicts with rename() etc, the caller
1583  * had better be holding the parent directory semaphore.
1584  *
1585  * This also assumes that the inode count has been incremented
1586  * (or otherwise set) by the caller to indicate that it is now
1587  * in use by the dcache.
1588  */
1589 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1590 					     struct inode *inode)
1591 {
1592 	struct dentry *alias;
1593 	int len = entry->d_name.len;
1594 	const char *name = entry->d_name.name;
1595 	unsigned int hash = entry->d_name.hash;
1596 
1597 	if (!inode) {
1598 		__d_instantiate(entry, NULL);
1599 		return NULL;
1600 	}
1601 
1602 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1603 		/*
1604 		 * Don't need alias->d_lock here, because aliases with
1605 		 * d_parent == entry->d_parent are not subject to name or
1606 		 * parent changes, because the parent inode i_mutex is held.
1607 		 */
1608 		if (alias->d_name.hash != hash)
1609 			continue;
1610 		if (alias->d_parent != entry->d_parent)
1611 			continue;
1612 		if (alias->d_name.len != len)
1613 			continue;
1614 		if (dentry_cmp(alias, name, len))
1615 			continue;
1616 		__dget(alias);
1617 		return alias;
1618 	}
1619 
1620 	__d_instantiate(entry, inode);
1621 	return NULL;
1622 }
1623 
1624 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1625 {
1626 	struct dentry *result;
1627 
1628 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1629 
1630 	if (inode)
1631 		spin_lock(&inode->i_lock);
1632 	result = __d_instantiate_unique(entry, inode);
1633 	if (inode)
1634 		spin_unlock(&inode->i_lock);
1635 
1636 	if (!result) {
1637 		security_d_instantiate(entry, inode);
1638 		return NULL;
1639 	}
1640 
1641 	BUG_ON(!d_unhashed(result));
1642 	iput(inode);
1643 	return result;
1644 }
1645 
1646 EXPORT_SYMBOL(d_instantiate_unique);
1647 
1648 /**
1649  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1650  * @entry: dentry to complete
1651  * @inode: inode to attach to this dentry
1652  *
1653  * Fill in inode information in the entry.  If a directory alias is found, then
1654  * return an error (and drop inode).  Together with d_materialise_unique() this
1655  * guarantees that a directory inode may never have more than one alias.
1656  */
1657 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1658 {
1659 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1660 
1661 	spin_lock(&inode->i_lock);
1662 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1663 		spin_unlock(&inode->i_lock);
1664 		iput(inode);
1665 		return -EBUSY;
1666 	}
1667 	__d_instantiate(entry, inode);
1668 	spin_unlock(&inode->i_lock);
1669 	security_d_instantiate(entry, inode);
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL(d_instantiate_no_diralias);
1674 
1675 struct dentry *d_make_root(struct inode *root_inode)
1676 {
1677 	struct dentry *res = NULL;
1678 
1679 	if (root_inode) {
1680 		static const struct qstr name = QSTR_INIT("/", 1);
1681 
1682 		res = __d_alloc(root_inode->i_sb, &name);
1683 		if (res)
1684 			d_instantiate(res, root_inode);
1685 		else
1686 			iput(root_inode);
1687 	}
1688 	return res;
1689 }
1690 EXPORT_SYMBOL(d_make_root);
1691 
1692 static struct dentry * __d_find_any_alias(struct inode *inode)
1693 {
1694 	struct dentry *alias;
1695 
1696 	if (hlist_empty(&inode->i_dentry))
1697 		return NULL;
1698 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1699 	__dget(alias);
1700 	return alias;
1701 }
1702 
1703 /**
1704  * d_find_any_alias - find any alias for a given inode
1705  * @inode: inode to find an alias for
1706  *
1707  * If any aliases exist for the given inode, take and return a
1708  * reference for one of them.  If no aliases exist, return %NULL.
1709  */
1710 struct dentry *d_find_any_alias(struct inode *inode)
1711 {
1712 	struct dentry *de;
1713 
1714 	spin_lock(&inode->i_lock);
1715 	de = __d_find_any_alias(inode);
1716 	spin_unlock(&inode->i_lock);
1717 	return de;
1718 }
1719 EXPORT_SYMBOL(d_find_any_alias);
1720 
1721 /**
1722  * d_obtain_alias - find or allocate a dentry for a given inode
1723  * @inode: inode to allocate the dentry for
1724  *
1725  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1726  * similar open by handle operations.  The returned dentry may be anonymous,
1727  * or may have a full name (if the inode was already in the cache).
1728  *
1729  * When called on a directory inode, we must ensure that the inode only ever
1730  * has one dentry.  If a dentry is found, that is returned instead of
1731  * allocating a new one.
1732  *
1733  * On successful return, the reference to the inode has been transferred
1734  * to the dentry.  In case of an error the reference on the inode is released.
1735  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1736  * be passed in and will be the error will be propagate to the return value,
1737  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1738  */
1739 struct dentry *d_obtain_alias(struct inode *inode)
1740 {
1741 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1742 	struct dentry *tmp;
1743 	struct dentry *res;
1744 	unsigned add_flags;
1745 
1746 	if (!inode)
1747 		return ERR_PTR(-ESTALE);
1748 	if (IS_ERR(inode))
1749 		return ERR_CAST(inode);
1750 
1751 	res = d_find_any_alias(inode);
1752 	if (res)
1753 		goto out_iput;
1754 
1755 	tmp = __d_alloc(inode->i_sb, &anonstring);
1756 	if (!tmp) {
1757 		res = ERR_PTR(-ENOMEM);
1758 		goto out_iput;
1759 	}
1760 
1761 	spin_lock(&inode->i_lock);
1762 	res = __d_find_any_alias(inode);
1763 	if (res) {
1764 		spin_unlock(&inode->i_lock);
1765 		dput(tmp);
1766 		goto out_iput;
1767 	}
1768 
1769 	/* attach a disconnected dentry */
1770 	add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1771 
1772 	spin_lock(&tmp->d_lock);
1773 	tmp->d_inode = inode;
1774 	tmp->d_flags |= add_flags;
1775 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1776 	hlist_bl_lock(&tmp->d_sb->s_anon);
1777 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1778 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1779 	spin_unlock(&tmp->d_lock);
1780 	spin_unlock(&inode->i_lock);
1781 	security_d_instantiate(tmp, inode);
1782 
1783 	return tmp;
1784 
1785  out_iput:
1786 	if (res && !IS_ERR(res))
1787 		security_d_instantiate(res, inode);
1788 	iput(inode);
1789 	return res;
1790 }
1791 EXPORT_SYMBOL(d_obtain_alias);
1792 
1793 /**
1794  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1795  * @inode:  the inode which may have a disconnected dentry
1796  * @dentry: a negative dentry which we want to point to the inode.
1797  *
1798  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1799  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1800  * and return it, else simply d_add the inode to the dentry and return NULL.
1801  *
1802  * This is needed in the lookup routine of any filesystem that is exportable
1803  * (via knfsd) so that we can build dcache paths to directories effectively.
1804  *
1805  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1806  * is returned.  This matches the expected return value of ->lookup.
1807  *
1808  * Cluster filesystems may call this function with a negative, hashed dentry.
1809  * In that case, we know that the inode will be a regular file, and also this
1810  * will only occur during atomic_open. So we need to check for the dentry
1811  * being already hashed only in the final case.
1812  */
1813 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1814 {
1815 	struct dentry *new = NULL;
1816 
1817 	if (IS_ERR(inode))
1818 		return ERR_CAST(inode);
1819 
1820 	if (inode && S_ISDIR(inode->i_mode)) {
1821 		spin_lock(&inode->i_lock);
1822 		new = __d_find_alias(inode, 1);
1823 		if (new) {
1824 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1825 			spin_unlock(&inode->i_lock);
1826 			security_d_instantiate(new, inode);
1827 			d_move(new, dentry);
1828 			iput(inode);
1829 		} else {
1830 			/* already taking inode->i_lock, so d_add() by hand */
1831 			__d_instantiate(dentry, inode);
1832 			spin_unlock(&inode->i_lock);
1833 			security_d_instantiate(dentry, inode);
1834 			d_rehash(dentry);
1835 		}
1836 	} else {
1837 		d_instantiate(dentry, inode);
1838 		if (d_unhashed(dentry))
1839 			d_rehash(dentry);
1840 	}
1841 	return new;
1842 }
1843 EXPORT_SYMBOL(d_splice_alias);
1844 
1845 /**
1846  * d_add_ci - lookup or allocate new dentry with case-exact name
1847  * @inode:  the inode case-insensitive lookup has found
1848  * @dentry: the negative dentry that was passed to the parent's lookup func
1849  * @name:   the case-exact name to be associated with the returned dentry
1850  *
1851  * This is to avoid filling the dcache with case-insensitive names to the
1852  * same inode, only the actual correct case is stored in the dcache for
1853  * case-insensitive filesystems.
1854  *
1855  * For a case-insensitive lookup match and if the the case-exact dentry
1856  * already exists in in the dcache, use it and return it.
1857  *
1858  * If no entry exists with the exact case name, allocate new dentry with
1859  * the exact case, and return the spliced entry.
1860  */
1861 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1862 			struct qstr *name)
1863 {
1864 	struct dentry *found;
1865 	struct dentry *new;
1866 
1867 	/*
1868 	 * First check if a dentry matching the name already exists,
1869 	 * if not go ahead and create it now.
1870 	 */
1871 	found = d_hash_and_lookup(dentry->d_parent, name);
1872 	if (unlikely(IS_ERR(found)))
1873 		goto err_out;
1874 	if (!found) {
1875 		new = d_alloc(dentry->d_parent, name);
1876 		if (!new) {
1877 			found = ERR_PTR(-ENOMEM);
1878 			goto err_out;
1879 		}
1880 
1881 		found = d_splice_alias(inode, new);
1882 		if (found) {
1883 			dput(new);
1884 			return found;
1885 		}
1886 		return new;
1887 	}
1888 
1889 	/*
1890 	 * If a matching dentry exists, and it's not negative use it.
1891 	 *
1892 	 * Decrement the reference count to balance the iget() done
1893 	 * earlier on.
1894 	 */
1895 	if (found->d_inode) {
1896 		if (unlikely(found->d_inode != inode)) {
1897 			/* This can't happen because bad inodes are unhashed. */
1898 			BUG_ON(!is_bad_inode(inode));
1899 			BUG_ON(!is_bad_inode(found->d_inode));
1900 		}
1901 		iput(inode);
1902 		return found;
1903 	}
1904 
1905 	/*
1906 	 * Negative dentry: instantiate it unless the inode is a directory and
1907 	 * already has a dentry.
1908 	 */
1909 	new = d_splice_alias(inode, found);
1910 	if (new) {
1911 		dput(found);
1912 		found = new;
1913 	}
1914 	return found;
1915 
1916 err_out:
1917 	iput(inode);
1918 	return found;
1919 }
1920 EXPORT_SYMBOL(d_add_ci);
1921 
1922 /*
1923  * Do the slow-case of the dentry name compare.
1924  *
1925  * Unlike the dentry_cmp() function, we need to atomically
1926  * load the name and length information, so that the
1927  * filesystem can rely on them, and can use the 'name' and
1928  * 'len' information without worrying about walking off the
1929  * end of memory etc.
1930  *
1931  * Thus the read_seqcount_retry() and the "duplicate" info
1932  * in arguments (the low-level filesystem should not look
1933  * at the dentry inode or name contents directly, since
1934  * rename can change them while we're in RCU mode).
1935  */
1936 enum slow_d_compare {
1937 	D_COMP_OK,
1938 	D_COMP_NOMATCH,
1939 	D_COMP_SEQRETRY,
1940 };
1941 
1942 static noinline enum slow_d_compare slow_dentry_cmp(
1943 		const struct dentry *parent,
1944 		struct dentry *dentry,
1945 		unsigned int seq,
1946 		const struct qstr *name)
1947 {
1948 	int tlen = dentry->d_name.len;
1949 	const char *tname = dentry->d_name.name;
1950 
1951 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1952 		cpu_relax();
1953 		return D_COMP_SEQRETRY;
1954 	}
1955 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1956 		return D_COMP_NOMATCH;
1957 	return D_COMP_OK;
1958 }
1959 
1960 /**
1961  * __d_lookup_rcu - search for a dentry (racy, store-free)
1962  * @parent: parent dentry
1963  * @name: qstr of name we wish to find
1964  * @seqp: returns d_seq value at the point where the dentry was found
1965  * Returns: dentry, or NULL
1966  *
1967  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1968  * resolution (store-free path walking) design described in
1969  * Documentation/filesystems/path-lookup.txt.
1970  *
1971  * This is not to be used outside core vfs.
1972  *
1973  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1974  * held, and rcu_read_lock held. The returned dentry must not be stored into
1975  * without taking d_lock and checking d_seq sequence count against @seq
1976  * returned here.
1977  *
1978  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1979  * function.
1980  *
1981  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1982  * the returned dentry, so long as its parent's seqlock is checked after the
1983  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1984  * is formed, giving integrity down the path walk.
1985  *
1986  * NOTE! The caller *has* to check the resulting dentry against the sequence
1987  * number we've returned before using any of the resulting dentry state!
1988  */
1989 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1990 				const struct qstr *name,
1991 				unsigned *seqp)
1992 {
1993 	u64 hashlen = name->hash_len;
1994 	const unsigned char *str = name->name;
1995 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1996 	struct hlist_bl_node *node;
1997 	struct dentry *dentry;
1998 
1999 	/*
2000 	 * Note: There is significant duplication with __d_lookup_rcu which is
2001 	 * required to prevent single threaded performance regressions
2002 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2003 	 * Keep the two functions in sync.
2004 	 */
2005 
2006 	/*
2007 	 * The hash list is protected using RCU.
2008 	 *
2009 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2010 	 * races with d_move().
2011 	 *
2012 	 * It is possible that concurrent renames can mess up our list
2013 	 * walk here and result in missing our dentry, resulting in the
2014 	 * false-negative result. d_lookup() protects against concurrent
2015 	 * renames using rename_lock seqlock.
2016 	 *
2017 	 * See Documentation/filesystems/path-lookup.txt for more details.
2018 	 */
2019 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2020 		unsigned seq;
2021 
2022 seqretry:
2023 		/*
2024 		 * The dentry sequence count protects us from concurrent
2025 		 * renames, and thus protects parent and name fields.
2026 		 *
2027 		 * The caller must perform a seqcount check in order
2028 		 * to do anything useful with the returned dentry.
2029 		 *
2030 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2031 		 * we don't wait for the sequence count to stabilize if it
2032 		 * is in the middle of a sequence change. If we do the slow
2033 		 * dentry compare, we will do seqretries until it is stable,
2034 		 * and if we end up with a successful lookup, we actually
2035 		 * want to exit RCU lookup anyway.
2036 		 */
2037 		seq = raw_seqcount_begin(&dentry->d_seq);
2038 		if (dentry->d_parent != parent)
2039 			continue;
2040 		if (d_unhashed(dentry))
2041 			continue;
2042 
2043 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2044 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2045 				continue;
2046 			*seqp = seq;
2047 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2048 			case D_COMP_OK:
2049 				return dentry;
2050 			case D_COMP_NOMATCH:
2051 				continue;
2052 			default:
2053 				goto seqretry;
2054 			}
2055 		}
2056 
2057 		if (dentry->d_name.hash_len != hashlen)
2058 			continue;
2059 		*seqp = seq;
2060 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2061 			return dentry;
2062 	}
2063 	return NULL;
2064 }
2065 
2066 /**
2067  * d_lookup - search for a dentry
2068  * @parent: parent dentry
2069  * @name: qstr of name we wish to find
2070  * Returns: dentry, or NULL
2071  *
2072  * d_lookup searches the children of the parent dentry for the name in
2073  * question. If the dentry is found its reference count is incremented and the
2074  * dentry is returned. The caller must use dput to free the entry when it has
2075  * finished using it. %NULL is returned if the dentry does not exist.
2076  */
2077 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2078 {
2079 	struct dentry *dentry;
2080 	unsigned seq;
2081 
2082         do {
2083                 seq = read_seqbegin(&rename_lock);
2084                 dentry = __d_lookup(parent, name);
2085                 if (dentry)
2086 			break;
2087 	} while (read_seqretry(&rename_lock, seq));
2088 	return dentry;
2089 }
2090 EXPORT_SYMBOL(d_lookup);
2091 
2092 /**
2093  * __d_lookup - search for a dentry (racy)
2094  * @parent: parent dentry
2095  * @name: qstr of name we wish to find
2096  * Returns: dentry, or NULL
2097  *
2098  * __d_lookup is like d_lookup, however it may (rarely) return a
2099  * false-negative result due to unrelated rename activity.
2100  *
2101  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2102  * however it must be used carefully, eg. with a following d_lookup in
2103  * the case of failure.
2104  *
2105  * __d_lookup callers must be commented.
2106  */
2107 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2108 {
2109 	unsigned int len = name->len;
2110 	unsigned int hash = name->hash;
2111 	const unsigned char *str = name->name;
2112 	struct hlist_bl_head *b = d_hash(parent, hash);
2113 	struct hlist_bl_node *node;
2114 	struct dentry *found = NULL;
2115 	struct dentry *dentry;
2116 
2117 	/*
2118 	 * Note: There is significant duplication with __d_lookup_rcu which is
2119 	 * required to prevent single threaded performance regressions
2120 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2121 	 * Keep the two functions in sync.
2122 	 */
2123 
2124 	/*
2125 	 * The hash list is protected using RCU.
2126 	 *
2127 	 * Take d_lock when comparing a candidate dentry, to avoid races
2128 	 * with d_move().
2129 	 *
2130 	 * It is possible that concurrent renames can mess up our list
2131 	 * walk here and result in missing our dentry, resulting in the
2132 	 * false-negative result. d_lookup() protects against concurrent
2133 	 * renames using rename_lock seqlock.
2134 	 *
2135 	 * See Documentation/filesystems/path-lookup.txt for more details.
2136 	 */
2137 	rcu_read_lock();
2138 
2139 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2140 
2141 		if (dentry->d_name.hash != hash)
2142 			continue;
2143 
2144 		spin_lock(&dentry->d_lock);
2145 		if (dentry->d_parent != parent)
2146 			goto next;
2147 		if (d_unhashed(dentry))
2148 			goto next;
2149 
2150 		/*
2151 		 * It is safe to compare names since d_move() cannot
2152 		 * change the qstr (protected by d_lock).
2153 		 */
2154 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2155 			int tlen = dentry->d_name.len;
2156 			const char *tname = dentry->d_name.name;
2157 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2158 				goto next;
2159 		} else {
2160 			if (dentry->d_name.len != len)
2161 				goto next;
2162 			if (dentry_cmp(dentry, str, len))
2163 				goto next;
2164 		}
2165 
2166 		dentry->d_lockref.count++;
2167 		found = dentry;
2168 		spin_unlock(&dentry->d_lock);
2169 		break;
2170 next:
2171 		spin_unlock(&dentry->d_lock);
2172  	}
2173  	rcu_read_unlock();
2174 
2175  	return found;
2176 }
2177 
2178 /**
2179  * d_hash_and_lookup - hash the qstr then search for a dentry
2180  * @dir: Directory to search in
2181  * @name: qstr of name we wish to find
2182  *
2183  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2184  */
2185 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2186 {
2187 	/*
2188 	 * Check for a fs-specific hash function. Note that we must
2189 	 * calculate the standard hash first, as the d_op->d_hash()
2190 	 * routine may choose to leave the hash value unchanged.
2191 	 */
2192 	name->hash = full_name_hash(name->name, name->len);
2193 	if (dir->d_flags & DCACHE_OP_HASH) {
2194 		int err = dir->d_op->d_hash(dir, name);
2195 		if (unlikely(err < 0))
2196 			return ERR_PTR(err);
2197 	}
2198 	return d_lookup(dir, name);
2199 }
2200 EXPORT_SYMBOL(d_hash_and_lookup);
2201 
2202 /**
2203  * d_validate - verify dentry provided from insecure source (deprecated)
2204  * @dentry: The dentry alleged to be valid child of @dparent
2205  * @dparent: The parent dentry (known to be valid)
2206  *
2207  * An insecure source has sent us a dentry, here we verify it and dget() it.
2208  * This is used by ncpfs in its readdir implementation.
2209  * Zero is returned in the dentry is invalid.
2210  *
2211  * This function is slow for big directories, and deprecated, do not use it.
2212  */
2213 int d_validate(struct dentry *dentry, struct dentry *dparent)
2214 {
2215 	struct dentry *child;
2216 
2217 	spin_lock(&dparent->d_lock);
2218 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2219 		if (dentry == child) {
2220 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2221 			__dget_dlock(dentry);
2222 			spin_unlock(&dentry->d_lock);
2223 			spin_unlock(&dparent->d_lock);
2224 			return 1;
2225 		}
2226 	}
2227 	spin_unlock(&dparent->d_lock);
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(d_validate);
2232 
2233 /*
2234  * When a file is deleted, we have two options:
2235  * - turn this dentry into a negative dentry
2236  * - unhash this dentry and free it.
2237  *
2238  * Usually, we want to just turn this into
2239  * a negative dentry, but if anybody else is
2240  * currently using the dentry or the inode
2241  * we can't do that and we fall back on removing
2242  * it from the hash queues and waiting for
2243  * it to be deleted later when it has no users
2244  */
2245 
2246 /**
2247  * d_delete - delete a dentry
2248  * @dentry: The dentry to delete
2249  *
2250  * Turn the dentry into a negative dentry if possible, otherwise
2251  * remove it from the hash queues so it can be deleted later
2252  */
2253 
2254 void d_delete(struct dentry * dentry)
2255 {
2256 	struct inode *inode;
2257 	int isdir = 0;
2258 	/*
2259 	 * Are we the only user?
2260 	 */
2261 again:
2262 	spin_lock(&dentry->d_lock);
2263 	inode = dentry->d_inode;
2264 	isdir = S_ISDIR(inode->i_mode);
2265 	if (dentry->d_lockref.count == 1) {
2266 		if (!spin_trylock(&inode->i_lock)) {
2267 			spin_unlock(&dentry->d_lock);
2268 			cpu_relax();
2269 			goto again;
2270 		}
2271 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2272 		dentry_unlink_inode(dentry);
2273 		fsnotify_nameremove(dentry, isdir);
2274 		return;
2275 	}
2276 
2277 	if (!d_unhashed(dentry))
2278 		__d_drop(dentry);
2279 
2280 	spin_unlock(&dentry->d_lock);
2281 
2282 	fsnotify_nameremove(dentry, isdir);
2283 }
2284 EXPORT_SYMBOL(d_delete);
2285 
2286 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2287 {
2288 	BUG_ON(!d_unhashed(entry));
2289 	hlist_bl_lock(b);
2290 	entry->d_flags |= DCACHE_RCUACCESS;
2291 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2292 	hlist_bl_unlock(b);
2293 }
2294 
2295 static void _d_rehash(struct dentry * entry)
2296 {
2297 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2298 }
2299 
2300 /**
2301  * d_rehash	- add an entry back to the hash
2302  * @entry: dentry to add to the hash
2303  *
2304  * Adds a dentry to the hash according to its name.
2305  */
2306 
2307 void d_rehash(struct dentry * entry)
2308 {
2309 	spin_lock(&entry->d_lock);
2310 	_d_rehash(entry);
2311 	spin_unlock(&entry->d_lock);
2312 }
2313 EXPORT_SYMBOL(d_rehash);
2314 
2315 /**
2316  * dentry_update_name_case - update case insensitive dentry with a new name
2317  * @dentry: dentry to be updated
2318  * @name: new name
2319  *
2320  * Update a case insensitive dentry with new case of name.
2321  *
2322  * dentry must have been returned by d_lookup with name @name. Old and new
2323  * name lengths must match (ie. no d_compare which allows mismatched name
2324  * lengths).
2325  *
2326  * Parent inode i_mutex must be held over d_lookup and into this call (to
2327  * keep renames and concurrent inserts, and readdir(2) away).
2328  */
2329 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2330 {
2331 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2332 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2333 
2334 	spin_lock(&dentry->d_lock);
2335 	write_seqcount_begin(&dentry->d_seq);
2336 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2337 	write_seqcount_end(&dentry->d_seq);
2338 	spin_unlock(&dentry->d_lock);
2339 }
2340 EXPORT_SYMBOL(dentry_update_name_case);
2341 
2342 static void switch_names(struct dentry *dentry, struct dentry *target)
2343 {
2344 	if (dname_external(target)) {
2345 		if (dname_external(dentry)) {
2346 			/*
2347 			 * Both external: swap the pointers
2348 			 */
2349 			swap(target->d_name.name, dentry->d_name.name);
2350 		} else {
2351 			/*
2352 			 * dentry:internal, target:external.  Steal target's
2353 			 * storage and make target internal.
2354 			 */
2355 			memcpy(target->d_iname, dentry->d_name.name,
2356 					dentry->d_name.len + 1);
2357 			dentry->d_name.name = target->d_name.name;
2358 			target->d_name.name = target->d_iname;
2359 		}
2360 	} else {
2361 		if (dname_external(dentry)) {
2362 			/*
2363 			 * dentry:external, target:internal.  Give dentry's
2364 			 * storage to target and make dentry internal
2365 			 */
2366 			memcpy(dentry->d_iname, target->d_name.name,
2367 					target->d_name.len + 1);
2368 			target->d_name.name = dentry->d_name.name;
2369 			dentry->d_name.name = dentry->d_iname;
2370 		} else {
2371 			/*
2372 			 * Both are internal.
2373 			 */
2374 			unsigned int i;
2375 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2376 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2377 				swap(((long *) &dentry->d_iname)[i],
2378 				     ((long *) &target->d_iname)[i]);
2379 			}
2380 		}
2381 	}
2382 	swap(dentry->d_name.len, target->d_name.len);
2383 }
2384 
2385 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2386 {
2387 	/*
2388 	 * XXXX: do we really need to take target->d_lock?
2389 	 */
2390 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2391 		spin_lock(&target->d_parent->d_lock);
2392 	else {
2393 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2394 			spin_lock(&dentry->d_parent->d_lock);
2395 			spin_lock_nested(&target->d_parent->d_lock,
2396 						DENTRY_D_LOCK_NESTED);
2397 		} else {
2398 			spin_lock(&target->d_parent->d_lock);
2399 			spin_lock_nested(&dentry->d_parent->d_lock,
2400 						DENTRY_D_LOCK_NESTED);
2401 		}
2402 	}
2403 	if (target < dentry) {
2404 		spin_lock_nested(&target->d_lock, 2);
2405 		spin_lock_nested(&dentry->d_lock, 3);
2406 	} else {
2407 		spin_lock_nested(&dentry->d_lock, 2);
2408 		spin_lock_nested(&target->d_lock, 3);
2409 	}
2410 }
2411 
2412 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2413 					struct dentry *target)
2414 {
2415 	if (target->d_parent != dentry->d_parent)
2416 		spin_unlock(&dentry->d_parent->d_lock);
2417 	if (target->d_parent != target)
2418 		spin_unlock(&target->d_parent->d_lock);
2419 }
2420 
2421 /*
2422  * When switching names, the actual string doesn't strictly have to
2423  * be preserved in the target - because we're dropping the target
2424  * anyway. As such, we can just do a simple memcpy() to copy over
2425  * the new name before we switch.
2426  *
2427  * Note that we have to be a lot more careful about getting the hash
2428  * switched - we have to switch the hash value properly even if it
2429  * then no longer matches the actual (corrupted) string of the target.
2430  * The hash value has to match the hash queue that the dentry is on..
2431  */
2432 /*
2433  * __d_move - move a dentry
2434  * @dentry: entry to move
2435  * @target: new dentry
2436  * @exchange: exchange the two dentries
2437  *
2438  * Update the dcache to reflect the move of a file name. Negative
2439  * dcache entries should not be moved in this way. Caller must hold
2440  * rename_lock, the i_mutex of the source and target directories,
2441  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2442  */
2443 static void __d_move(struct dentry *dentry, struct dentry *target,
2444 		     bool exchange)
2445 {
2446 	if (!dentry->d_inode)
2447 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2448 
2449 	BUG_ON(d_ancestor(dentry, target));
2450 	BUG_ON(d_ancestor(target, dentry));
2451 
2452 	dentry_lock_for_move(dentry, target);
2453 
2454 	write_seqcount_begin(&dentry->d_seq);
2455 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2456 
2457 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2458 
2459 	/*
2460 	 * Move the dentry to the target hash queue. Don't bother checking
2461 	 * for the same hash queue because of how unlikely it is.
2462 	 */
2463 	__d_drop(dentry);
2464 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2465 
2466 	/*
2467 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2468 	 * the two dentries, then rehash onto the other's hash queue.
2469 	 */
2470 	__d_drop(target);
2471 	if (exchange) {
2472 		__d_rehash(target,
2473 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2474 	}
2475 
2476 	list_del(&dentry->d_u.d_child);
2477 	list_del(&target->d_u.d_child);
2478 
2479 	/* Switch the names.. */
2480 	switch_names(dentry, target);
2481 	swap(dentry->d_name.hash, target->d_name.hash);
2482 
2483 	/* ... and switch the parents */
2484 	if (IS_ROOT(dentry)) {
2485 		dentry->d_parent = target->d_parent;
2486 		target->d_parent = target;
2487 		INIT_LIST_HEAD(&target->d_u.d_child);
2488 	} else {
2489 		swap(dentry->d_parent, target->d_parent);
2490 
2491 		/* And add them back to the (new) parent lists */
2492 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2493 	}
2494 
2495 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2496 
2497 	write_seqcount_end(&target->d_seq);
2498 	write_seqcount_end(&dentry->d_seq);
2499 
2500 	dentry_unlock_parents_for_move(dentry, target);
2501 	if (exchange)
2502 		fsnotify_d_move(target);
2503 	spin_unlock(&target->d_lock);
2504 	fsnotify_d_move(dentry);
2505 	spin_unlock(&dentry->d_lock);
2506 }
2507 
2508 /*
2509  * d_move - move a dentry
2510  * @dentry: entry to move
2511  * @target: new dentry
2512  *
2513  * Update the dcache to reflect the move of a file name. Negative
2514  * dcache entries should not be moved in this way. See the locking
2515  * requirements for __d_move.
2516  */
2517 void d_move(struct dentry *dentry, struct dentry *target)
2518 {
2519 	write_seqlock(&rename_lock);
2520 	__d_move(dentry, target, false);
2521 	write_sequnlock(&rename_lock);
2522 }
2523 EXPORT_SYMBOL(d_move);
2524 
2525 /*
2526  * d_exchange - exchange two dentries
2527  * @dentry1: first dentry
2528  * @dentry2: second dentry
2529  */
2530 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2531 {
2532 	write_seqlock(&rename_lock);
2533 
2534 	WARN_ON(!dentry1->d_inode);
2535 	WARN_ON(!dentry2->d_inode);
2536 	WARN_ON(IS_ROOT(dentry1));
2537 	WARN_ON(IS_ROOT(dentry2));
2538 
2539 	__d_move(dentry1, dentry2, true);
2540 
2541 	write_sequnlock(&rename_lock);
2542 }
2543 
2544 /**
2545  * d_ancestor - search for an ancestor
2546  * @p1: ancestor dentry
2547  * @p2: child dentry
2548  *
2549  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2550  * an ancestor of p2, else NULL.
2551  */
2552 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2553 {
2554 	struct dentry *p;
2555 
2556 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2557 		if (p->d_parent == p1)
2558 			return p;
2559 	}
2560 	return NULL;
2561 }
2562 
2563 /*
2564  * This helper attempts to cope with remotely renamed directories
2565  *
2566  * It assumes that the caller is already holding
2567  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2568  *
2569  * Note: If ever the locking in lock_rename() changes, then please
2570  * remember to update this too...
2571  */
2572 static struct dentry *__d_unalias(struct inode *inode,
2573 		struct dentry *dentry, struct dentry *alias)
2574 {
2575 	struct mutex *m1 = NULL, *m2 = NULL;
2576 	struct dentry *ret = ERR_PTR(-EBUSY);
2577 
2578 	/* If alias and dentry share a parent, then no extra locks required */
2579 	if (alias->d_parent == dentry->d_parent)
2580 		goto out_unalias;
2581 
2582 	/* See lock_rename() */
2583 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2584 		goto out_err;
2585 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2586 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2587 		goto out_err;
2588 	m2 = &alias->d_parent->d_inode->i_mutex;
2589 out_unalias:
2590 	if (likely(!d_mountpoint(alias))) {
2591 		__d_move(alias, dentry, false);
2592 		ret = alias;
2593 	}
2594 out_err:
2595 	spin_unlock(&inode->i_lock);
2596 	if (m2)
2597 		mutex_unlock(m2);
2598 	if (m1)
2599 		mutex_unlock(m1);
2600 	return ret;
2601 }
2602 
2603 /*
2604  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2605  * named dentry in place of the dentry to be replaced.
2606  * returns with anon->d_lock held!
2607  */
2608 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2609 {
2610 	struct dentry *dparent;
2611 
2612 	dentry_lock_for_move(anon, dentry);
2613 
2614 	write_seqcount_begin(&dentry->d_seq);
2615 	write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2616 
2617 	dparent = dentry->d_parent;
2618 
2619 	switch_names(dentry, anon);
2620 	swap(dentry->d_name.hash, anon->d_name.hash);
2621 
2622 	dentry->d_parent = dentry;
2623 	list_del_init(&dentry->d_u.d_child);
2624 	anon->d_parent = dparent;
2625 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2626 
2627 	write_seqcount_end(&dentry->d_seq);
2628 	write_seqcount_end(&anon->d_seq);
2629 
2630 	dentry_unlock_parents_for_move(anon, dentry);
2631 	spin_unlock(&dentry->d_lock);
2632 
2633 	/* anon->d_lock still locked, returns locked */
2634 }
2635 
2636 /**
2637  * d_materialise_unique - introduce an inode into the tree
2638  * @dentry: candidate dentry
2639  * @inode: inode to bind to the dentry, to which aliases may be attached
2640  *
2641  * Introduces an dentry into the tree, substituting an extant disconnected
2642  * root directory alias in its place if there is one. Caller must hold the
2643  * i_mutex of the parent directory.
2644  */
2645 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2646 {
2647 	struct dentry *actual;
2648 
2649 	BUG_ON(!d_unhashed(dentry));
2650 
2651 	if (!inode) {
2652 		actual = dentry;
2653 		__d_instantiate(dentry, NULL);
2654 		d_rehash(actual);
2655 		goto out_nolock;
2656 	}
2657 
2658 	spin_lock(&inode->i_lock);
2659 
2660 	if (S_ISDIR(inode->i_mode)) {
2661 		struct dentry *alias;
2662 
2663 		/* Does an aliased dentry already exist? */
2664 		alias = __d_find_alias(inode, 0);
2665 		if (alias) {
2666 			actual = alias;
2667 			write_seqlock(&rename_lock);
2668 
2669 			if (d_ancestor(alias, dentry)) {
2670 				/* Check for loops */
2671 				actual = ERR_PTR(-ELOOP);
2672 				spin_unlock(&inode->i_lock);
2673 			} else if (IS_ROOT(alias)) {
2674 				/* Is this an anonymous mountpoint that we
2675 				 * could splice into our tree? */
2676 				__d_materialise_dentry(dentry, alias);
2677 				write_sequnlock(&rename_lock);
2678 				__d_drop(alias);
2679 				goto found;
2680 			} else {
2681 				/* Nope, but we must(!) avoid directory
2682 				 * aliasing. This drops inode->i_lock */
2683 				actual = __d_unalias(inode, dentry, alias);
2684 			}
2685 			write_sequnlock(&rename_lock);
2686 			if (IS_ERR(actual)) {
2687 				if (PTR_ERR(actual) == -ELOOP)
2688 					pr_warn_ratelimited(
2689 						"VFS: Lookup of '%s' in %s %s"
2690 						" would have caused loop\n",
2691 						dentry->d_name.name,
2692 						inode->i_sb->s_type->name,
2693 						inode->i_sb->s_id);
2694 				dput(alias);
2695 			}
2696 			goto out_nolock;
2697 		}
2698 	}
2699 
2700 	/* Add a unique reference */
2701 	actual = __d_instantiate_unique(dentry, inode);
2702 	if (!actual)
2703 		actual = dentry;
2704 	else
2705 		BUG_ON(!d_unhashed(actual));
2706 
2707 	spin_lock(&actual->d_lock);
2708 found:
2709 	_d_rehash(actual);
2710 	spin_unlock(&actual->d_lock);
2711 	spin_unlock(&inode->i_lock);
2712 out_nolock:
2713 	if (actual == dentry) {
2714 		security_d_instantiate(dentry, inode);
2715 		return NULL;
2716 	}
2717 
2718 	iput(inode);
2719 	return actual;
2720 }
2721 EXPORT_SYMBOL_GPL(d_materialise_unique);
2722 
2723 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2724 {
2725 	*buflen -= namelen;
2726 	if (*buflen < 0)
2727 		return -ENAMETOOLONG;
2728 	*buffer -= namelen;
2729 	memcpy(*buffer, str, namelen);
2730 	return 0;
2731 }
2732 
2733 /**
2734  * prepend_name - prepend a pathname in front of current buffer pointer
2735  * @buffer: buffer pointer
2736  * @buflen: allocated length of the buffer
2737  * @name:   name string and length qstr structure
2738  *
2739  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2740  * make sure that either the old or the new name pointer and length are
2741  * fetched. However, there may be mismatch between length and pointer.
2742  * The length cannot be trusted, we need to copy it byte-by-byte until
2743  * the length is reached or a null byte is found. It also prepends "/" at
2744  * the beginning of the name. The sequence number check at the caller will
2745  * retry it again when a d_move() does happen. So any garbage in the buffer
2746  * due to mismatched pointer and length will be discarded.
2747  */
2748 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2749 {
2750 	const char *dname = ACCESS_ONCE(name->name);
2751 	u32 dlen = ACCESS_ONCE(name->len);
2752 	char *p;
2753 
2754 	*buflen -= dlen + 1;
2755 	if (*buflen < 0)
2756 		return -ENAMETOOLONG;
2757 	p = *buffer -= dlen + 1;
2758 	*p++ = '/';
2759 	while (dlen--) {
2760 		char c = *dname++;
2761 		if (!c)
2762 			break;
2763 		*p++ = c;
2764 	}
2765 	return 0;
2766 }
2767 
2768 /**
2769  * prepend_path - Prepend path string to a buffer
2770  * @path: the dentry/vfsmount to report
2771  * @root: root vfsmnt/dentry
2772  * @buffer: pointer to the end of the buffer
2773  * @buflen: pointer to buffer length
2774  *
2775  * The function will first try to write out the pathname without taking any
2776  * lock other than the RCU read lock to make sure that dentries won't go away.
2777  * It only checks the sequence number of the global rename_lock as any change
2778  * in the dentry's d_seq will be preceded by changes in the rename_lock
2779  * sequence number. If the sequence number had been changed, it will restart
2780  * the whole pathname back-tracing sequence again by taking the rename_lock.
2781  * In this case, there is no need to take the RCU read lock as the recursive
2782  * parent pointer references will keep the dentry chain alive as long as no
2783  * rename operation is performed.
2784  */
2785 static int prepend_path(const struct path *path,
2786 			const struct path *root,
2787 			char **buffer, int *buflen)
2788 {
2789 	struct dentry *dentry;
2790 	struct vfsmount *vfsmnt;
2791 	struct mount *mnt;
2792 	int error = 0;
2793 	unsigned seq, m_seq = 0;
2794 	char *bptr;
2795 	int blen;
2796 
2797 	rcu_read_lock();
2798 restart_mnt:
2799 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2800 	seq = 0;
2801 	rcu_read_lock();
2802 restart:
2803 	bptr = *buffer;
2804 	blen = *buflen;
2805 	error = 0;
2806 	dentry = path->dentry;
2807 	vfsmnt = path->mnt;
2808 	mnt = real_mount(vfsmnt);
2809 	read_seqbegin_or_lock(&rename_lock, &seq);
2810 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2811 		struct dentry * parent;
2812 
2813 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2814 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2815 			/* Global root? */
2816 			if (mnt != parent) {
2817 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2818 				mnt = parent;
2819 				vfsmnt = &mnt->mnt;
2820 				continue;
2821 			}
2822 			/*
2823 			 * Filesystems needing to implement special "root names"
2824 			 * should do so with ->d_dname()
2825 			 */
2826 			if (IS_ROOT(dentry) &&
2827 			   (dentry->d_name.len != 1 ||
2828 			    dentry->d_name.name[0] != '/')) {
2829 				WARN(1, "Root dentry has weird name <%.*s>\n",
2830 				     (int) dentry->d_name.len,
2831 				     dentry->d_name.name);
2832 			}
2833 			if (!error)
2834 				error = is_mounted(vfsmnt) ? 1 : 2;
2835 			break;
2836 		}
2837 		parent = dentry->d_parent;
2838 		prefetch(parent);
2839 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2840 		if (error)
2841 			break;
2842 
2843 		dentry = parent;
2844 	}
2845 	if (!(seq & 1))
2846 		rcu_read_unlock();
2847 	if (need_seqretry(&rename_lock, seq)) {
2848 		seq = 1;
2849 		goto restart;
2850 	}
2851 	done_seqretry(&rename_lock, seq);
2852 
2853 	if (!(m_seq & 1))
2854 		rcu_read_unlock();
2855 	if (need_seqretry(&mount_lock, m_seq)) {
2856 		m_seq = 1;
2857 		goto restart_mnt;
2858 	}
2859 	done_seqretry(&mount_lock, m_seq);
2860 
2861 	if (error >= 0 && bptr == *buffer) {
2862 		if (--blen < 0)
2863 			error = -ENAMETOOLONG;
2864 		else
2865 			*--bptr = '/';
2866 	}
2867 	*buffer = bptr;
2868 	*buflen = blen;
2869 	return error;
2870 }
2871 
2872 /**
2873  * __d_path - return the path of a dentry
2874  * @path: the dentry/vfsmount to report
2875  * @root: root vfsmnt/dentry
2876  * @buf: buffer to return value in
2877  * @buflen: buffer length
2878  *
2879  * Convert a dentry into an ASCII path name.
2880  *
2881  * Returns a pointer into the buffer or an error code if the
2882  * path was too long.
2883  *
2884  * "buflen" should be positive.
2885  *
2886  * If the path is not reachable from the supplied root, return %NULL.
2887  */
2888 char *__d_path(const struct path *path,
2889 	       const struct path *root,
2890 	       char *buf, int buflen)
2891 {
2892 	char *res = buf + buflen;
2893 	int error;
2894 
2895 	prepend(&res, &buflen, "\0", 1);
2896 	error = prepend_path(path, root, &res, &buflen);
2897 
2898 	if (error < 0)
2899 		return ERR_PTR(error);
2900 	if (error > 0)
2901 		return NULL;
2902 	return res;
2903 }
2904 
2905 char *d_absolute_path(const struct path *path,
2906 	       char *buf, int buflen)
2907 {
2908 	struct path root = {};
2909 	char *res = buf + buflen;
2910 	int error;
2911 
2912 	prepend(&res, &buflen, "\0", 1);
2913 	error = prepend_path(path, &root, &res, &buflen);
2914 
2915 	if (error > 1)
2916 		error = -EINVAL;
2917 	if (error < 0)
2918 		return ERR_PTR(error);
2919 	return res;
2920 }
2921 
2922 /*
2923  * same as __d_path but appends "(deleted)" for unlinked files.
2924  */
2925 static int path_with_deleted(const struct path *path,
2926 			     const struct path *root,
2927 			     char **buf, int *buflen)
2928 {
2929 	prepend(buf, buflen, "\0", 1);
2930 	if (d_unlinked(path->dentry)) {
2931 		int error = prepend(buf, buflen, " (deleted)", 10);
2932 		if (error)
2933 			return error;
2934 	}
2935 
2936 	return prepend_path(path, root, buf, buflen);
2937 }
2938 
2939 static int prepend_unreachable(char **buffer, int *buflen)
2940 {
2941 	return prepend(buffer, buflen, "(unreachable)", 13);
2942 }
2943 
2944 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2945 {
2946 	unsigned seq;
2947 
2948 	do {
2949 		seq = read_seqcount_begin(&fs->seq);
2950 		*root = fs->root;
2951 	} while (read_seqcount_retry(&fs->seq, seq));
2952 }
2953 
2954 /**
2955  * d_path - return the path of a dentry
2956  * @path: path to report
2957  * @buf: buffer to return value in
2958  * @buflen: buffer length
2959  *
2960  * Convert a dentry into an ASCII path name. If the entry has been deleted
2961  * the string " (deleted)" is appended. Note that this is ambiguous.
2962  *
2963  * Returns a pointer into the buffer or an error code if the path was
2964  * too long. Note: Callers should use the returned pointer, not the passed
2965  * in buffer, to use the name! The implementation often starts at an offset
2966  * into the buffer, and may leave 0 bytes at the start.
2967  *
2968  * "buflen" should be positive.
2969  */
2970 char *d_path(const struct path *path, char *buf, int buflen)
2971 {
2972 	char *res = buf + buflen;
2973 	struct path root;
2974 	int error;
2975 
2976 	/*
2977 	 * We have various synthetic filesystems that never get mounted.  On
2978 	 * these filesystems dentries are never used for lookup purposes, and
2979 	 * thus don't need to be hashed.  They also don't need a name until a
2980 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2981 	 * below allows us to generate a name for these objects on demand:
2982 	 *
2983 	 * Some pseudo inodes are mountable.  When they are mounted
2984 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
2985 	 * and instead have d_path return the mounted path.
2986 	 */
2987 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2988 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
2989 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2990 
2991 	rcu_read_lock();
2992 	get_fs_root_rcu(current->fs, &root);
2993 	error = path_with_deleted(path, &root, &res, &buflen);
2994 	rcu_read_unlock();
2995 
2996 	if (error < 0)
2997 		res = ERR_PTR(error);
2998 	return res;
2999 }
3000 EXPORT_SYMBOL(d_path);
3001 
3002 /*
3003  * Helper function for dentry_operations.d_dname() members
3004  */
3005 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3006 			const char *fmt, ...)
3007 {
3008 	va_list args;
3009 	char temp[64];
3010 	int sz;
3011 
3012 	va_start(args, fmt);
3013 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3014 	va_end(args);
3015 
3016 	if (sz > sizeof(temp) || sz > buflen)
3017 		return ERR_PTR(-ENAMETOOLONG);
3018 
3019 	buffer += buflen - sz;
3020 	return memcpy(buffer, temp, sz);
3021 }
3022 
3023 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3024 {
3025 	char *end = buffer + buflen;
3026 	/* these dentries are never renamed, so d_lock is not needed */
3027 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3028 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3029 	    prepend(&end, &buflen, "/", 1))
3030 		end = ERR_PTR(-ENAMETOOLONG);
3031 	return end;
3032 }
3033 EXPORT_SYMBOL(simple_dname);
3034 
3035 /*
3036  * Write full pathname from the root of the filesystem into the buffer.
3037  */
3038 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3039 {
3040 	struct dentry *dentry;
3041 	char *end, *retval;
3042 	int len, seq = 0;
3043 	int error = 0;
3044 
3045 	if (buflen < 2)
3046 		goto Elong;
3047 
3048 	rcu_read_lock();
3049 restart:
3050 	dentry = d;
3051 	end = buf + buflen;
3052 	len = buflen;
3053 	prepend(&end, &len, "\0", 1);
3054 	/* Get '/' right */
3055 	retval = end-1;
3056 	*retval = '/';
3057 	read_seqbegin_or_lock(&rename_lock, &seq);
3058 	while (!IS_ROOT(dentry)) {
3059 		struct dentry *parent = dentry->d_parent;
3060 
3061 		prefetch(parent);
3062 		error = prepend_name(&end, &len, &dentry->d_name);
3063 		if (error)
3064 			break;
3065 
3066 		retval = end;
3067 		dentry = parent;
3068 	}
3069 	if (!(seq & 1))
3070 		rcu_read_unlock();
3071 	if (need_seqretry(&rename_lock, seq)) {
3072 		seq = 1;
3073 		goto restart;
3074 	}
3075 	done_seqretry(&rename_lock, seq);
3076 	if (error)
3077 		goto Elong;
3078 	return retval;
3079 Elong:
3080 	return ERR_PTR(-ENAMETOOLONG);
3081 }
3082 
3083 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3084 {
3085 	return __dentry_path(dentry, buf, buflen);
3086 }
3087 EXPORT_SYMBOL(dentry_path_raw);
3088 
3089 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3090 {
3091 	char *p = NULL;
3092 	char *retval;
3093 
3094 	if (d_unlinked(dentry)) {
3095 		p = buf + buflen;
3096 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3097 			goto Elong;
3098 		buflen++;
3099 	}
3100 	retval = __dentry_path(dentry, buf, buflen);
3101 	if (!IS_ERR(retval) && p)
3102 		*p = '/';	/* restore '/' overriden with '\0' */
3103 	return retval;
3104 Elong:
3105 	return ERR_PTR(-ENAMETOOLONG);
3106 }
3107 
3108 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3109 				    struct path *pwd)
3110 {
3111 	unsigned seq;
3112 
3113 	do {
3114 		seq = read_seqcount_begin(&fs->seq);
3115 		*root = fs->root;
3116 		*pwd = fs->pwd;
3117 	} while (read_seqcount_retry(&fs->seq, seq));
3118 }
3119 
3120 /*
3121  * NOTE! The user-level library version returns a
3122  * character pointer. The kernel system call just
3123  * returns the length of the buffer filled (which
3124  * includes the ending '\0' character), or a negative
3125  * error value. So libc would do something like
3126  *
3127  *	char *getcwd(char * buf, size_t size)
3128  *	{
3129  *		int retval;
3130  *
3131  *		retval = sys_getcwd(buf, size);
3132  *		if (retval >= 0)
3133  *			return buf;
3134  *		errno = -retval;
3135  *		return NULL;
3136  *	}
3137  */
3138 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3139 {
3140 	int error;
3141 	struct path pwd, root;
3142 	char *page = __getname();
3143 
3144 	if (!page)
3145 		return -ENOMEM;
3146 
3147 	rcu_read_lock();
3148 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3149 
3150 	error = -ENOENT;
3151 	if (!d_unlinked(pwd.dentry)) {
3152 		unsigned long len;
3153 		char *cwd = page + PATH_MAX;
3154 		int buflen = PATH_MAX;
3155 
3156 		prepend(&cwd, &buflen, "\0", 1);
3157 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3158 		rcu_read_unlock();
3159 
3160 		if (error < 0)
3161 			goto out;
3162 
3163 		/* Unreachable from current root */
3164 		if (error > 0) {
3165 			error = prepend_unreachable(&cwd, &buflen);
3166 			if (error)
3167 				goto out;
3168 		}
3169 
3170 		error = -ERANGE;
3171 		len = PATH_MAX + page - cwd;
3172 		if (len <= size) {
3173 			error = len;
3174 			if (copy_to_user(buf, cwd, len))
3175 				error = -EFAULT;
3176 		}
3177 	} else {
3178 		rcu_read_unlock();
3179 	}
3180 
3181 out:
3182 	__putname(page);
3183 	return error;
3184 }
3185 
3186 /*
3187  * Test whether new_dentry is a subdirectory of old_dentry.
3188  *
3189  * Trivially implemented using the dcache structure
3190  */
3191 
3192 /**
3193  * is_subdir - is new dentry a subdirectory of old_dentry
3194  * @new_dentry: new dentry
3195  * @old_dentry: old dentry
3196  *
3197  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3198  * Returns 0 otherwise.
3199  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3200  */
3201 
3202 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3203 {
3204 	int result;
3205 	unsigned seq;
3206 
3207 	if (new_dentry == old_dentry)
3208 		return 1;
3209 
3210 	do {
3211 		/* for restarting inner loop in case of seq retry */
3212 		seq = read_seqbegin(&rename_lock);
3213 		/*
3214 		 * Need rcu_readlock to protect against the d_parent trashing
3215 		 * due to d_move
3216 		 */
3217 		rcu_read_lock();
3218 		if (d_ancestor(old_dentry, new_dentry))
3219 			result = 1;
3220 		else
3221 			result = 0;
3222 		rcu_read_unlock();
3223 	} while (read_seqretry(&rename_lock, seq));
3224 
3225 	return result;
3226 }
3227 
3228 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3229 {
3230 	struct dentry *root = data;
3231 	if (dentry != root) {
3232 		if (d_unhashed(dentry) || !dentry->d_inode)
3233 			return D_WALK_SKIP;
3234 
3235 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3236 			dentry->d_flags |= DCACHE_GENOCIDE;
3237 			dentry->d_lockref.count--;
3238 		}
3239 	}
3240 	return D_WALK_CONTINUE;
3241 }
3242 
3243 void d_genocide(struct dentry *parent)
3244 {
3245 	d_walk(parent, parent, d_genocide_kill, NULL);
3246 }
3247 
3248 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3249 {
3250 	inode_dec_link_count(inode);
3251 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3252 		!hlist_unhashed(&dentry->d_alias) ||
3253 		!d_unlinked(dentry));
3254 	spin_lock(&dentry->d_parent->d_lock);
3255 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3256 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3257 				(unsigned long long)inode->i_ino);
3258 	spin_unlock(&dentry->d_lock);
3259 	spin_unlock(&dentry->d_parent->d_lock);
3260 	d_instantiate(dentry, inode);
3261 }
3262 EXPORT_SYMBOL(d_tmpfile);
3263 
3264 static __initdata unsigned long dhash_entries;
3265 static int __init set_dhash_entries(char *str)
3266 {
3267 	if (!str)
3268 		return 0;
3269 	dhash_entries = simple_strtoul(str, &str, 0);
3270 	return 1;
3271 }
3272 __setup("dhash_entries=", set_dhash_entries);
3273 
3274 static void __init dcache_init_early(void)
3275 {
3276 	unsigned int loop;
3277 
3278 	/* If hashes are distributed across NUMA nodes, defer
3279 	 * hash allocation until vmalloc space is available.
3280 	 */
3281 	if (hashdist)
3282 		return;
3283 
3284 	dentry_hashtable =
3285 		alloc_large_system_hash("Dentry cache",
3286 					sizeof(struct hlist_bl_head),
3287 					dhash_entries,
3288 					13,
3289 					HASH_EARLY,
3290 					&d_hash_shift,
3291 					&d_hash_mask,
3292 					0,
3293 					0);
3294 
3295 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3296 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3297 }
3298 
3299 static void __init dcache_init(void)
3300 {
3301 	unsigned int loop;
3302 
3303 	/*
3304 	 * A constructor could be added for stable state like the lists,
3305 	 * but it is probably not worth it because of the cache nature
3306 	 * of the dcache.
3307 	 */
3308 	dentry_cache = KMEM_CACHE(dentry,
3309 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3310 
3311 	/* Hash may have been set up in dcache_init_early */
3312 	if (!hashdist)
3313 		return;
3314 
3315 	dentry_hashtable =
3316 		alloc_large_system_hash("Dentry cache",
3317 					sizeof(struct hlist_bl_head),
3318 					dhash_entries,
3319 					13,
3320 					0,
3321 					&d_hash_shift,
3322 					&d_hash_mask,
3323 					0,
3324 					0);
3325 
3326 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3327 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3328 }
3329 
3330 /* SLAB cache for __getname() consumers */
3331 struct kmem_cache *names_cachep __read_mostly;
3332 EXPORT_SYMBOL(names_cachep);
3333 
3334 EXPORT_SYMBOL(d_genocide);
3335 
3336 void __init vfs_caches_init_early(void)
3337 {
3338 	dcache_init_early();
3339 	inode_init_early();
3340 }
3341 
3342 void __init vfs_caches_init(unsigned long mempages)
3343 {
3344 	unsigned long reserve;
3345 
3346 	/* Base hash sizes on available memory, with a reserve equal to
3347            150% of current kernel size */
3348 
3349 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3350 	mempages -= reserve;
3351 
3352 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3353 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3354 
3355 	dcache_init();
3356 	inode_init();
3357 	files_init(mempages);
3358 	mnt_init();
3359 	bdev_cache_init();
3360 	chrdev_init();
3361 }
3362