xref: /openbmc/linux/fs/dcache.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 static void ___d_drop(struct dentry *dentry)
460 {
461 	struct hlist_bl_head *b;
462 	/*
463 	 * Hashed dentries are normally on the dentry hashtable,
464 	 * with the exception of those newly allocated by
465 	 * d_obtain_root, which are always IS_ROOT:
466 	 */
467 	if (unlikely(IS_ROOT(dentry)))
468 		b = &dentry->d_sb->s_roots;
469 	else
470 		b = d_hash(dentry->d_name.hash);
471 
472 	hlist_bl_lock(b);
473 	__hlist_bl_del(&dentry->d_hash);
474 	hlist_bl_unlock(b);
475 }
476 
477 void __d_drop(struct dentry *dentry)
478 {
479 	if (!d_unhashed(dentry)) {
480 		___d_drop(dentry);
481 		dentry->d_hash.pprev = NULL;
482 		write_seqcount_invalidate(&dentry->d_seq);
483 	}
484 }
485 EXPORT_SYMBOL(__d_drop);
486 
487 /**
488  * d_drop - drop a dentry
489  * @dentry: dentry to drop
490  *
491  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492  * be found through a VFS lookup any more. Note that this is different from
493  * deleting the dentry - d_delete will try to mark the dentry negative if
494  * possible, giving a successful _negative_ lookup, while d_drop will
495  * just make the cache lookup fail.
496  *
497  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498  * reason (NFS timeouts or autofs deletes).
499  *
500  * __d_drop requires dentry->d_lock
501  *
502  * ___d_drop doesn't mark dentry as "unhashed"
503  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
504  */
505 void d_drop(struct dentry *dentry)
506 {
507 	spin_lock(&dentry->d_lock);
508 	__d_drop(dentry);
509 	spin_unlock(&dentry->d_lock);
510 }
511 EXPORT_SYMBOL(d_drop);
512 
513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
514 {
515 	struct dentry *next;
516 	/*
517 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
518 	 * attached to the dentry tree
519 	 */
520 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
521 	if (unlikely(list_empty(&dentry->d_child)))
522 		return;
523 	__list_del_entry(&dentry->d_child);
524 	/*
525 	 * Cursors can move around the list of children.  While we'd been
526 	 * a normal list member, it didn't matter - ->d_child.next would've
527 	 * been updated.  However, from now on it won't be and for the
528 	 * things like d_walk() it might end up with a nasty surprise.
529 	 * Normally d_walk() doesn't care about cursors moving around -
530 	 * ->d_lock on parent prevents that and since a cursor has no children
531 	 * of its own, we get through it without ever unlocking the parent.
532 	 * There is one exception, though - if we ascend from a child that
533 	 * gets killed as soon as we unlock it, the next sibling is found
534 	 * using the value left in its ->d_child.next.  And if _that_
535 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
536 	 * before d_walk() regains parent->d_lock, we'll end up skipping
537 	 * everything the cursor had been moved past.
538 	 *
539 	 * Solution: make sure that the pointer left behind in ->d_child.next
540 	 * points to something that won't be moving around.  I.e. skip the
541 	 * cursors.
542 	 */
543 	while (dentry->d_child.next != &parent->d_subdirs) {
544 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
545 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
546 			break;
547 		dentry->d_child.next = next->d_child.next;
548 	}
549 }
550 
551 static void __dentry_kill(struct dentry *dentry)
552 {
553 	struct dentry *parent = NULL;
554 	bool can_free = true;
555 	if (!IS_ROOT(dentry))
556 		parent = dentry->d_parent;
557 
558 	/*
559 	 * The dentry is now unrecoverably dead to the world.
560 	 */
561 	lockref_mark_dead(&dentry->d_lockref);
562 
563 	/*
564 	 * inform the fs via d_prune that this dentry is about to be
565 	 * unhashed and destroyed.
566 	 */
567 	if (dentry->d_flags & DCACHE_OP_PRUNE)
568 		dentry->d_op->d_prune(dentry);
569 
570 	if (dentry->d_flags & DCACHE_LRU_LIST) {
571 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
572 			d_lru_del(dentry);
573 	}
574 	/* if it was on the hash then remove it */
575 	__d_drop(dentry);
576 	dentry_unlist(dentry, parent);
577 	if (parent)
578 		spin_unlock(&parent->d_lock);
579 	if (dentry->d_inode)
580 		dentry_unlink_inode(dentry);
581 	else
582 		spin_unlock(&dentry->d_lock);
583 	this_cpu_dec(nr_dentry);
584 	if (dentry->d_op && dentry->d_op->d_release)
585 		dentry->d_op->d_release(dentry);
586 
587 	spin_lock(&dentry->d_lock);
588 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
589 		dentry->d_flags |= DCACHE_MAY_FREE;
590 		can_free = false;
591 	}
592 	spin_unlock(&dentry->d_lock);
593 	if (likely(can_free))
594 		dentry_free(dentry);
595 	cond_resched();
596 }
597 
598 static struct dentry *__lock_parent(struct dentry *dentry)
599 {
600 	struct dentry *parent;
601 	rcu_read_lock();
602 	spin_unlock(&dentry->d_lock);
603 again:
604 	parent = READ_ONCE(dentry->d_parent);
605 	spin_lock(&parent->d_lock);
606 	/*
607 	 * We can't blindly lock dentry until we are sure
608 	 * that we won't violate the locking order.
609 	 * Any changes of dentry->d_parent must have
610 	 * been done with parent->d_lock held, so
611 	 * spin_lock() above is enough of a barrier
612 	 * for checking if it's still our child.
613 	 */
614 	if (unlikely(parent != dentry->d_parent)) {
615 		spin_unlock(&parent->d_lock);
616 		goto again;
617 	}
618 	rcu_read_unlock();
619 	if (parent != dentry)
620 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621 	else
622 		parent = NULL;
623 	return parent;
624 }
625 
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628 	struct dentry *parent = dentry->d_parent;
629 	if (IS_ROOT(dentry))
630 		return NULL;
631 	if (likely(spin_trylock(&parent->d_lock)))
632 		return parent;
633 	return __lock_parent(dentry);
634 }
635 
636 static inline bool retain_dentry(struct dentry *dentry)
637 {
638 	WARN_ON(d_in_lookup(dentry));
639 
640 	/* Unreachable? Get rid of it */
641 	if (unlikely(d_unhashed(dentry)))
642 		return false;
643 
644 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
645 		return false;
646 
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
648 		if (dentry->d_op->d_delete(dentry))
649 			return false;
650 	}
651 
652 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
653 		return false;
654 
655 	/* retain; LRU fodder */
656 	dentry->d_lockref.count--;
657 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
658 		d_lru_add(dentry);
659 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
660 		dentry->d_flags |= DCACHE_REFERENCED;
661 	return true;
662 }
663 
664 void d_mark_dontcache(struct inode *inode)
665 {
666 	struct dentry *de;
667 
668 	spin_lock(&inode->i_lock);
669 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
670 		spin_lock(&de->d_lock);
671 		de->d_flags |= DCACHE_DONTCACHE;
672 		spin_unlock(&de->d_lock);
673 	}
674 	inode->i_state |= I_DONTCACHE;
675 	spin_unlock(&inode->i_lock);
676 }
677 EXPORT_SYMBOL(d_mark_dontcache);
678 
679 /*
680  * Finish off a dentry we've decided to kill.
681  * dentry->d_lock must be held, returns with it unlocked.
682  * Returns dentry requiring refcount drop, or NULL if we're done.
683  */
684 static struct dentry *dentry_kill(struct dentry *dentry)
685 	__releases(dentry->d_lock)
686 {
687 	struct inode *inode = dentry->d_inode;
688 	struct dentry *parent = NULL;
689 
690 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
691 		goto slow_positive;
692 
693 	if (!IS_ROOT(dentry)) {
694 		parent = dentry->d_parent;
695 		if (unlikely(!spin_trylock(&parent->d_lock))) {
696 			parent = __lock_parent(dentry);
697 			if (likely(inode || !dentry->d_inode))
698 				goto got_locks;
699 			/* negative that became positive */
700 			if (parent)
701 				spin_unlock(&parent->d_lock);
702 			inode = dentry->d_inode;
703 			goto slow_positive;
704 		}
705 	}
706 	__dentry_kill(dentry);
707 	return parent;
708 
709 slow_positive:
710 	spin_unlock(&dentry->d_lock);
711 	spin_lock(&inode->i_lock);
712 	spin_lock(&dentry->d_lock);
713 	parent = lock_parent(dentry);
714 got_locks:
715 	if (unlikely(dentry->d_lockref.count != 1)) {
716 		dentry->d_lockref.count--;
717 	} else if (likely(!retain_dentry(dentry))) {
718 		__dentry_kill(dentry);
719 		return parent;
720 	}
721 	/* we are keeping it, after all */
722 	if (inode)
723 		spin_unlock(&inode->i_lock);
724 	if (parent)
725 		spin_unlock(&parent->d_lock);
726 	spin_unlock(&dentry->d_lock);
727 	return NULL;
728 }
729 
730 /*
731  * Try to do a lockless dput(), and return whether that was successful.
732  *
733  * If unsuccessful, we return false, having already taken the dentry lock.
734  *
735  * The caller needs to hold the RCU read lock, so that the dentry is
736  * guaranteed to stay around even if the refcount goes down to zero!
737  */
738 static inline bool fast_dput(struct dentry *dentry)
739 {
740 	int ret;
741 	unsigned int d_flags;
742 
743 	/*
744 	 * If we have a d_op->d_delete() operation, we sould not
745 	 * let the dentry count go to zero, so use "put_or_lock".
746 	 */
747 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
748 		return lockref_put_or_lock(&dentry->d_lockref);
749 
750 	/*
751 	 * .. otherwise, we can try to just decrement the
752 	 * lockref optimistically.
753 	 */
754 	ret = lockref_put_return(&dentry->d_lockref);
755 
756 	/*
757 	 * If the lockref_put_return() failed due to the lock being held
758 	 * by somebody else, the fast path has failed. We will need to
759 	 * get the lock, and then check the count again.
760 	 */
761 	if (unlikely(ret < 0)) {
762 		spin_lock(&dentry->d_lock);
763 		if (dentry->d_lockref.count > 1) {
764 			dentry->d_lockref.count--;
765 			spin_unlock(&dentry->d_lock);
766 			return true;
767 		}
768 		return false;
769 	}
770 
771 	/*
772 	 * If we weren't the last ref, we're done.
773 	 */
774 	if (ret)
775 		return true;
776 
777 	/*
778 	 * Careful, careful. The reference count went down
779 	 * to zero, but we don't hold the dentry lock, so
780 	 * somebody else could get it again, and do another
781 	 * dput(), and we need to not race with that.
782 	 *
783 	 * However, there is a very special and common case
784 	 * where we don't care, because there is nothing to
785 	 * do: the dentry is still hashed, it does not have
786 	 * a 'delete' op, and it's referenced and already on
787 	 * the LRU list.
788 	 *
789 	 * NOTE! Since we aren't locked, these values are
790 	 * not "stable". However, it is sufficient that at
791 	 * some point after we dropped the reference the
792 	 * dentry was hashed and the flags had the proper
793 	 * value. Other dentry users may have re-gotten
794 	 * a reference to the dentry and change that, but
795 	 * our work is done - we can leave the dentry
796 	 * around with a zero refcount.
797 	 *
798 	 * Nevertheless, there are two cases that we should kill
799 	 * the dentry anyway.
800 	 * 1. free disconnected dentries as soon as their refcount
801 	 *    reached zero.
802 	 * 2. free dentries if they should not be cached.
803 	 */
804 	smp_rmb();
805 	d_flags = READ_ONCE(dentry->d_flags);
806 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
807 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
808 
809 	/* Nothing to do? Dropping the reference was all we needed? */
810 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
811 		return true;
812 
813 	/*
814 	 * Not the fast normal case? Get the lock. We've already decremented
815 	 * the refcount, but we'll need to re-check the situation after
816 	 * getting the lock.
817 	 */
818 	spin_lock(&dentry->d_lock);
819 
820 	/*
821 	 * Did somebody else grab a reference to it in the meantime, and
822 	 * we're no longer the last user after all? Alternatively, somebody
823 	 * else could have killed it and marked it dead. Either way, we
824 	 * don't need to do anything else.
825 	 */
826 	if (dentry->d_lockref.count) {
827 		spin_unlock(&dentry->d_lock);
828 		return true;
829 	}
830 
831 	/*
832 	 * Re-get the reference we optimistically dropped. We hold the
833 	 * lock, and we just tested that it was zero, so we can just
834 	 * set it to 1.
835 	 */
836 	dentry->d_lockref.count = 1;
837 	return false;
838 }
839 
840 
841 /*
842  * This is dput
843  *
844  * This is complicated by the fact that we do not want to put
845  * dentries that are no longer on any hash chain on the unused
846  * list: we'd much rather just get rid of them immediately.
847  *
848  * However, that implies that we have to traverse the dentry
849  * tree upwards to the parents which might _also_ now be
850  * scheduled for deletion (it may have been only waiting for
851  * its last child to go away).
852  *
853  * This tail recursion is done by hand as we don't want to depend
854  * on the compiler to always get this right (gcc generally doesn't).
855  * Real recursion would eat up our stack space.
856  */
857 
858 /*
859  * dput - release a dentry
860  * @dentry: dentry to release
861  *
862  * Release a dentry. This will drop the usage count and if appropriate
863  * call the dentry unlink method as well as removing it from the queues and
864  * releasing its resources. If the parent dentries were scheduled for release
865  * they too may now get deleted.
866  */
867 void dput(struct dentry *dentry)
868 {
869 	while (dentry) {
870 		might_sleep();
871 
872 		rcu_read_lock();
873 		if (likely(fast_dput(dentry))) {
874 			rcu_read_unlock();
875 			return;
876 		}
877 
878 		/* Slow case: now with the dentry lock held */
879 		rcu_read_unlock();
880 
881 		if (likely(retain_dentry(dentry))) {
882 			spin_unlock(&dentry->d_lock);
883 			return;
884 		}
885 
886 		dentry = dentry_kill(dentry);
887 	}
888 }
889 EXPORT_SYMBOL(dput);
890 
891 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
892 __must_hold(&dentry->d_lock)
893 {
894 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
895 		/* let the owner of the list it's on deal with it */
896 		--dentry->d_lockref.count;
897 	} else {
898 		if (dentry->d_flags & DCACHE_LRU_LIST)
899 			d_lru_del(dentry);
900 		if (!--dentry->d_lockref.count)
901 			d_shrink_add(dentry, list);
902 	}
903 }
904 
905 void dput_to_list(struct dentry *dentry, struct list_head *list)
906 {
907 	rcu_read_lock();
908 	if (likely(fast_dput(dentry))) {
909 		rcu_read_unlock();
910 		return;
911 	}
912 	rcu_read_unlock();
913 	if (!retain_dentry(dentry))
914 		__dput_to_list(dentry, list);
915 	spin_unlock(&dentry->d_lock);
916 }
917 
918 /* This must be called with d_lock held */
919 static inline void __dget_dlock(struct dentry *dentry)
920 {
921 	dentry->d_lockref.count++;
922 }
923 
924 static inline void __dget(struct dentry *dentry)
925 {
926 	lockref_get(&dentry->d_lockref);
927 }
928 
929 struct dentry *dget_parent(struct dentry *dentry)
930 {
931 	int gotref;
932 	struct dentry *ret;
933 	unsigned seq;
934 
935 	/*
936 	 * Do optimistic parent lookup without any
937 	 * locking.
938 	 */
939 	rcu_read_lock();
940 	seq = raw_seqcount_begin(&dentry->d_seq);
941 	ret = READ_ONCE(dentry->d_parent);
942 	gotref = lockref_get_not_zero(&ret->d_lockref);
943 	rcu_read_unlock();
944 	if (likely(gotref)) {
945 		if (!read_seqcount_retry(&dentry->d_seq, seq))
946 			return ret;
947 		dput(ret);
948 	}
949 
950 repeat:
951 	/*
952 	 * Don't need rcu_dereference because we re-check it was correct under
953 	 * the lock.
954 	 */
955 	rcu_read_lock();
956 	ret = dentry->d_parent;
957 	spin_lock(&ret->d_lock);
958 	if (unlikely(ret != dentry->d_parent)) {
959 		spin_unlock(&ret->d_lock);
960 		rcu_read_unlock();
961 		goto repeat;
962 	}
963 	rcu_read_unlock();
964 	BUG_ON(!ret->d_lockref.count);
965 	ret->d_lockref.count++;
966 	spin_unlock(&ret->d_lock);
967 	return ret;
968 }
969 EXPORT_SYMBOL(dget_parent);
970 
971 static struct dentry * __d_find_any_alias(struct inode *inode)
972 {
973 	struct dentry *alias;
974 
975 	if (hlist_empty(&inode->i_dentry))
976 		return NULL;
977 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
978 	__dget(alias);
979 	return alias;
980 }
981 
982 /**
983  * d_find_any_alias - find any alias for a given inode
984  * @inode: inode to find an alias for
985  *
986  * If any aliases exist for the given inode, take and return a
987  * reference for one of them.  If no aliases exist, return %NULL.
988  */
989 struct dentry *d_find_any_alias(struct inode *inode)
990 {
991 	struct dentry *de;
992 
993 	spin_lock(&inode->i_lock);
994 	de = __d_find_any_alias(inode);
995 	spin_unlock(&inode->i_lock);
996 	return de;
997 }
998 EXPORT_SYMBOL(d_find_any_alias);
999 
1000 static struct dentry *__d_find_alias(struct inode *inode)
1001 {
1002 	struct dentry *alias;
1003 
1004 	if (S_ISDIR(inode->i_mode))
1005 		return __d_find_any_alias(inode);
1006 
1007 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1008 		spin_lock(&alias->d_lock);
1009  		if (!d_unhashed(alias)) {
1010 			__dget_dlock(alias);
1011 			spin_unlock(&alias->d_lock);
1012 			return alias;
1013 		}
1014 		spin_unlock(&alias->d_lock);
1015 	}
1016 	return NULL;
1017 }
1018 
1019 /**
1020  * d_find_alias - grab a hashed alias of inode
1021  * @inode: inode in question
1022  *
1023  * If inode has a hashed alias, or is a directory and has any alias,
1024  * acquire the reference to alias and return it. Otherwise return NULL.
1025  * Notice that if inode is a directory there can be only one alias and
1026  * it can be unhashed only if it has no children, or if it is the root
1027  * of a filesystem, or if the directory was renamed and d_revalidate
1028  * was the first vfs operation to notice.
1029  *
1030  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1031  * any other hashed alias over that one.
1032  */
1033 struct dentry *d_find_alias(struct inode *inode)
1034 {
1035 	struct dentry *de = NULL;
1036 
1037 	if (!hlist_empty(&inode->i_dentry)) {
1038 		spin_lock(&inode->i_lock);
1039 		de = __d_find_alias(inode);
1040 		spin_unlock(&inode->i_lock);
1041 	}
1042 	return de;
1043 }
1044 EXPORT_SYMBOL(d_find_alias);
1045 
1046 /*
1047  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1048  *  that inode won't get freed until rcu_read_unlock().
1049  */
1050 struct dentry *d_find_alias_rcu(struct inode *inode)
1051 {
1052 	struct hlist_head *l = &inode->i_dentry;
1053 	struct dentry *de = NULL;
1054 
1055 	spin_lock(&inode->i_lock);
1056 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1057 	// used without having I_FREEING set, which means no aliases left
1058 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1059 		if (S_ISDIR(inode->i_mode)) {
1060 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1061 		} else {
1062 			hlist_for_each_entry(de, l, d_u.d_alias)
1063 				if (!d_unhashed(de))
1064 					break;
1065 		}
1066 	}
1067 	spin_unlock(&inode->i_lock);
1068 	return de;
1069 }
1070 
1071 /*
1072  *	Try to kill dentries associated with this inode.
1073  * WARNING: you must own a reference to inode.
1074  */
1075 void d_prune_aliases(struct inode *inode)
1076 {
1077 	struct dentry *dentry;
1078 restart:
1079 	spin_lock(&inode->i_lock);
1080 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1081 		spin_lock(&dentry->d_lock);
1082 		if (!dentry->d_lockref.count) {
1083 			struct dentry *parent = lock_parent(dentry);
1084 			if (likely(!dentry->d_lockref.count)) {
1085 				__dentry_kill(dentry);
1086 				dput(parent);
1087 				goto restart;
1088 			}
1089 			if (parent)
1090 				spin_unlock(&parent->d_lock);
1091 		}
1092 		spin_unlock(&dentry->d_lock);
1093 	}
1094 	spin_unlock(&inode->i_lock);
1095 }
1096 EXPORT_SYMBOL(d_prune_aliases);
1097 
1098 /*
1099  * Lock a dentry from shrink list.
1100  * Called under rcu_read_lock() and dentry->d_lock; the former
1101  * guarantees that nothing we access will be freed under us.
1102  * Note that dentry is *not* protected from concurrent dentry_kill(),
1103  * d_delete(), etc.
1104  *
1105  * Return false if dentry has been disrupted or grabbed, leaving
1106  * the caller to kick it off-list.  Otherwise, return true and have
1107  * that dentry's inode and parent both locked.
1108  */
1109 static bool shrink_lock_dentry(struct dentry *dentry)
1110 {
1111 	struct inode *inode;
1112 	struct dentry *parent;
1113 
1114 	if (dentry->d_lockref.count)
1115 		return false;
1116 
1117 	inode = dentry->d_inode;
1118 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1119 		spin_unlock(&dentry->d_lock);
1120 		spin_lock(&inode->i_lock);
1121 		spin_lock(&dentry->d_lock);
1122 		if (unlikely(dentry->d_lockref.count))
1123 			goto out;
1124 		/* changed inode means that somebody had grabbed it */
1125 		if (unlikely(inode != dentry->d_inode))
1126 			goto out;
1127 	}
1128 
1129 	parent = dentry->d_parent;
1130 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1131 		return true;
1132 
1133 	spin_unlock(&dentry->d_lock);
1134 	spin_lock(&parent->d_lock);
1135 	if (unlikely(parent != dentry->d_parent)) {
1136 		spin_unlock(&parent->d_lock);
1137 		spin_lock(&dentry->d_lock);
1138 		goto out;
1139 	}
1140 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1141 	if (likely(!dentry->d_lockref.count))
1142 		return true;
1143 	spin_unlock(&parent->d_lock);
1144 out:
1145 	if (inode)
1146 		spin_unlock(&inode->i_lock);
1147 	return false;
1148 }
1149 
1150 void shrink_dentry_list(struct list_head *list)
1151 {
1152 	while (!list_empty(list)) {
1153 		struct dentry *dentry, *parent;
1154 
1155 		dentry = list_entry(list->prev, struct dentry, d_lru);
1156 		spin_lock(&dentry->d_lock);
1157 		rcu_read_lock();
1158 		if (!shrink_lock_dentry(dentry)) {
1159 			bool can_free = false;
1160 			rcu_read_unlock();
1161 			d_shrink_del(dentry);
1162 			if (dentry->d_lockref.count < 0)
1163 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1164 			spin_unlock(&dentry->d_lock);
1165 			if (can_free)
1166 				dentry_free(dentry);
1167 			continue;
1168 		}
1169 		rcu_read_unlock();
1170 		d_shrink_del(dentry);
1171 		parent = dentry->d_parent;
1172 		if (parent != dentry)
1173 			__dput_to_list(parent, list);
1174 		__dentry_kill(dentry);
1175 	}
1176 }
1177 
1178 static enum lru_status dentry_lru_isolate(struct list_head *item,
1179 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1180 {
1181 	struct list_head *freeable = arg;
1182 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1183 
1184 
1185 	/*
1186 	 * we are inverting the lru lock/dentry->d_lock here,
1187 	 * so use a trylock. If we fail to get the lock, just skip
1188 	 * it
1189 	 */
1190 	if (!spin_trylock(&dentry->d_lock))
1191 		return LRU_SKIP;
1192 
1193 	/*
1194 	 * Referenced dentries are still in use. If they have active
1195 	 * counts, just remove them from the LRU. Otherwise give them
1196 	 * another pass through the LRU.
1197 	 */
1198 	if (dentry->d_lockref.count) {
1199 		d_lru_isolate(lru, dentry);
1200 		spin_unlock(&dentry->d_lock);
1201 		return LRU_REMOVED;
1202 	}
1203 
1204 	if (dentry->d_flags & DCACHE_REFERENCED) {
1205 		dentry->d_flags &= ~DCACHE_REFERENCED;
1206 		spin_unlock(&dentry->d_lock);
1207 
1208 		/*
1209 		 * The list move itself will be made by the common LRU code. At
1210 		 * this point, we've dropped the dentry->d_lock but keep the
1211 		 * lru lock. This is safe to do, since every list movement is
1212 		 * protected by the lru lock even if both locks are held.
1213 		 *
1214 		 * This is guaranteed by the fact that all LRU management
1215 		 * functions are intermediated by the LRU API calls like
1216 		 * list_lru_add and list_lru_del. List movement in this file
1217 		 * only ever occur through this functions or through callbacks
1218 		 * like this one, that are called from the LRU API.
1219 		 *
1220 		 * The only exceptions to this are functions like
1221 		 * shrink_dentry_list, and code that first checks for the
1222 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1223 		 * operating only with stack provided lists after they are
1224 		 * properly isolated from the main list.  It is thus, always a
1225 		 * local access.
1226 		 */
1227 		return LRU_ROTATE;
1228 	}
1229 
1230 	d_lru_shrink_move(lru, dentry, freeable);
1231 	spin_unlock(&dentry->d_lock);
1232 
1233 	return LRU_REMOVED;
1234 }
1235 
1236 /**
1237  * prune_dcache_sb - shrink the dcache
1238  * @sb: superblock
1239  * @sc: shrink control, passed to list_lru_shrink_walk()
1240  *
1241  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1242  * is done when we need more memory and called from the superblock shrinker
1243  * function.
1244  *
1245  * This function may fail to free any resources if all the dentries are in
1246  * use.
1247  */
1248 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1249 {
1250 	LIST_HEAD(dispose);
1251 	long freed;
1252 
1253 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1254 				     dentry_lru_isolate, &dispose);
1255 	shrink_dentry_list(&dispose);
1256 	return freed;
1257 }
1258 
1259 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1260 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1261 {
1262 	struct list_head *freeable = arg;
1263 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1264 
1265 	/*
1266 	 * we are inverting the lru lock/dentry->d_lock here,
1267 	 * so use a trylock. If we fail to get the lock, just skip
1268 	 * it
1269 	 */
1270 	if (!spin_trylock(&dentry->d_lock))
1271 		return LRU_SKIP;
1272 
1273 	d_lru_shrink_move(lru, dentry, freeable);
1274 	spin_unlock(&dentry->d_lock);
1275 
1276 	return LRU_REMOVED;
1277 }
1278 
1279 
1280 /**
1281  * shrink_dcache_sb - shrink dcache for a superblock
1282  * @sb: superblock
1283  *
1284  * Shrink the dcache for the specified super block. This is used to free
1285  * the dcache before unmounting a file system.
1286  */
1287 void shrink_dcache_sb(struct super_block *sb)
1288 {
1289 	do {
1290 		LIST_HEAD(dispose);
1291 
1292 		list_lru_walk(&sb->s_dentry_lru,
1293 			dentry_lru_isolate_shrink, &dispose, 1024);
1294 		shrink_dentry_list(&dispose);
1295 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1296 }
1297 EXPORT_SYMBOL(shrink_dcache_sb);
1298 
1299 /**
1300  * enum d_walk_ret - action to talke during tree walk
1301  * @D_WALK_CONTINUE:	contrinue walk
1302  * @D_WALK_QUIT:	quit walk
1303  * @D_WALK_NORETRY:	quit when retry is needed
1304  * @D_WALK_SKIP:	skip this dentry and its children
1305  */
1306 enum d_walk_ret {
1307 	D_WALK_CONTINUE,
1308 	D_WALK_QUIT,
1309 	D_WALK_NORETRY,
1310 	D_WALK_SKIP,
1311 };
1312 
1313 /**
1314  * d_walk - walk the dentry tree
1315  * @parent:	start of walk
1316  * @data:	data passed to @enter() and @finish()
1317  * @enter:	callback when first entering the dentry
1318  *
1319  * The @enter() callbacks are called with d_lock held.
1320  */
1321 static void d_walk(struct dentry *parent, void *data,
1322 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1323 {
1324 	struct dentry *this_parent;
1325 	struct list_head *next;
1326 	unsigned seq = 0;
1327 	enum d_walk_ret ret;
1328 	bool retry = true;
1329 
1330 again:
1331 	read_seqbegin_or_lock(&rename_lock, &seq);
1332 	this_parent = parent;
1333 	spin_lock(&this_parent->d_lock);
1334 
1335 	ret = enter(data, this_parent);
1336 	switch (ret) {
1337 	case D_WALK_CONTINUE:
1338 		break;
1339 	case D_WALK_QUIT:
1340 	case D_WALK_SKIP:
1341 		goto out_unlock;
1342 	case D_WALK_NORETRY:
1343 		retry = false;
1344 		break;
1345 	}
1346 repeat:
1347 	next = this_parent->d_subdirs.next;
1348 resume:
1349 	while (next != &this_parent->d_subdirs) {
1350 		struct list_head *tmp = next;
1351 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1352 		next = tmp->next;
1353 
1354 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1355 			continue;
1356 
1357 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1358 
1359 		ret = enter(data, dentry);
1360 		switch (ret) {
1361 		case D_WALK_CONTINUE:
1362 			break;
1363 		case D_WALK_QUIT:
1364 			spin_unlock(&dentry->d_lock);
1365 			goto out_unlock;
1366 		case D_WALK_NORETRY:
1367 			retry = false;
1368 			break;
1369 		case D_WALK_SKIP:
1370 			spin_unlock(&dentry->d_lock);
1371 			continue;
1372 		}
1373 
1374 		if (!list_empty(&dentry->d_subdirs)) {
1375 			spin_unlock(&this_parent->d_lock);
1376 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1377 			this_parent = dentry;
1378 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1379 			goto repeat;
1380 		}
1381 		spin_unlock(&dentry->d_lock);
1382 	}
1383 	/*
1384 	 * All done at this level ... ascend and resume the search.
1385 	 */
1386 	rcu_read_lock();
1387 ascend:
1388 	if (this_parent != parent) {
1389 		struct dentry *child = this_parent;
1390 		this_parent = child->d_parent;
1391 
1392 		spin_unlock(&child->d_lock);
1393 		spin_lock(&this_parent->d_lock);
1394 
1395 		/* might go back up the wrong parent if we have had a rename. */
1396 		if (need_seqretry(&rename_lock, seq))
1397 			goto rename_retry;
1398 		/* go into the first sibling still alive */
1399 		do {
1400 			next = child->d_child.next;
1401 			if (next == &this_parent->d_subdirs)
1402 				goto ascend;
1403 			child = list_entry(next, struct dentry, d_child);
1404 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1405 		rcu_read_unlock();
1406 		goto resume;
1407 	}
1408 	if (need_seqretry(&rename_lock, seq))
1409 		goto rename_retry;
1410 	rcu_read_unlock();
1411 
1412 out_unlock:
1413 	spin_unlock(&this_parent->d_lock);
1414 	done_seqretry(&rename_lock, seq);
1415 	return;
1416 
1417 rename_retry:
1418 	spin_unlock(&this_parent->d_lock);
1419 	rcu_read_unlock();
1420 	BUG_ON(seq & 1);
1421 	if (!retry)
1422 		return;
1423 	seq = 1;
1424 	goto again;
1425 }
1426 
1427 struct check_mount {
1428 	struct vfsmount *mnt;
1429 	unsigned int mounted;
1430 };
1431 
1432 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1433 {
1434 	struct check_mount *info = data;
1435 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1436 
1437 	if (likely(!d_mountpoint(dentry)))
1438 		return D_WALK_CONTINUE;
1439 	if (__path_is_mountpoint(&path)) {
1440 		info->mounted = 1;
1441 		return D_WALK_QUIT;
1442 	}
1443 	return D_WALK_CONTINUE;
1444 }
1445 
1446 /**
1447  * path_has_submounts - check for mounts over a dentry in the
1448  *                      current namespace.
1449  * @parent: path to check.
1450  *
1451  * Return true if the parent or its subdirectories contain
1452  * a mount point in the current namespace.
1453  */
1454 int path_has_submounts(const struct path *parent)
1455 {
1456 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1457 
1458 	read_seqlock_excl(&mount_lock);
1459 	d_walk(parent->dentry, &data, path_check_mount);
1460 	read_sequnlock_excl(&mount_lock);
1461 
1462 	return data.mounted;
1463 }
1464 EXPORT_SYMBOL(path_has_submounts);
1465 
1466 /*
1467  * Called by mount code to set a mountpoint and check if the mountpoint is
1468  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1469  * subtree can become unreachable).
1470  *
1471  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1472  * this reason take rename_lock and d_lock on dentry and ancestors.
1473  */
1474 int d_set_mounted(struct dentry *dentry)
1475 {
1476 	struct dentry *p;
1477 	int ret = -ENOENT;
1478 	write_seqlock(&rename_lock);
1479 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1480 		/* Need exclusion wrt. d_invalidate() */
1481 		spin_lock(&p->d_lock);
1482 		if (unlikely(d_unhashed(p))) {
1483 			spin_unlock(&p->d_lock);
1484 			goto out;
1485 		}
1486 		spin_unlock(&p->d_lock);
1487 	}
1488 	spin_lock(&dentry->d_lock);
1489 	if (!d_unlinked(dentry)) {
1490 		ret = -EBUSY;
1491 		if (!d_mountpoint(dentry)) {
1492 			dentry->d_flags |= DCACHE_MOUNTED;
1493 			ret = 0;
1494 		}
1495 	}
1496  	spin_unlock(&dentry->d_lock);
1497 out:
1498 	write_sequnlock(&rename_lock);
1499 	return ret;
1500 }
1501 
1502 /*
1503  * Search the dentry child list of the specified parent,
1504  * and move any unused dentries to the end of the unused
1505  * list for prune_dcache(). We descend to the next level
1506  * whenever the d_subdirs list is non-empty and continue
1507  * searching.
1508  *
1509  * It returns zero iff there are no unused children,
1510  * otherwise  it returns the number of children moved to
1511  * the end of the unused list. This may not be the total
1512  * number of unused children, because select_parent can
1513  * drop the lock and return early due to latency
1514  * constraints.
1515  */
1516 
1517 struct select_data {
1518 	struct dentry *start;
1519 	union {
1520 		long found;
1521 		struct dentry *victim;
1522 	};
1523 	struct list_head dispose;
1524 };
1525 
1526 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1527 {
1528 	struct select_data *data = _data;
1529 	enum d_walk_ret ret = D_WALK_CONTINUE;
1530 
1531 	if (data->start == dentry)
1532 		goto out;
1533 
1534 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1535 		data->found++;
1536 	} else {
1537 		if (dentry->d_flags & DCACHE_LRU_LIST)
1538 			d_lru_del(dentry);
1539 		if (!dentry->d_lockref.count) {
1540 			d_shrink_add(dentry, &data->dispose);
1541 			data->found++;
1542 		}
1543 	}
1544 	/*
1545 	 * We can return to the caller if we have found some (this
1546 	 * ensures forward progress). We'll be coming back to find
1547 	 * the rest.
1548 	 */
1549 	if (!list_empty(&data->dispose))
1550 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1551 out:
1552 	return ret;
1553 }
1554 
1555 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1556 {
1557 	struct select_data *data = _data;
1558 	enum d_walk_ret ret = D_WALK_CONTINUE;
1559 
1560 	if (data->start == dentry)
1561 		goto out;
1562 
1563 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564 		if (!dentry->d_lockref.count) {
1565 			rcu_read_lock();
1566 			data->victim = dentry;
1567 			return D_WALK_QUIT;
1568 		}
1569 	} else {
1570 		if (dentry->d_flags & DCACHE_LRU_LIST)
1571 			d_lru_del(dentry);
1572 		if (!dentry->d_lockref.count)
1573 			d_shrink_add(dentry, &data->dispose);
1574 	}
1575 	/*
1576 	 * We can return to the caller if we have found some (this
1577 	 * ensures forward progress). We'll be coming back to find
1578 	 * the rest.
1579 	 */
1580 	if (!list_empty(&data->dispose))
1581 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1582 out:
1583 	return ret;
1584 }
1585 
1586 /**
1587  * shrink_dcache_parent - prune dcache
1588  * @parent: parent of entries to prune
1589  *
1590  * Prune the dcache to remove unused children of the parent dentry.
1591  */
1592 void shrink_dcache_parent(struct dentry *parent)
1593 {
1594 	for (;;) {
1595 		struct select_data data = {.start = parent};
1596 
1597 		INIT_LIST_HEAD(&data.dispose);
1598 		d_walk(parent, &data, select_collect);
1599 
1600 		if (!list_empty(&data.dispose)) {
1601 			shrink_dentry_list(&data.dispose);
1602 			continue;
1603 		}
1604 
1605 		cond_resched();
1606 		if (!data.found)
1607 			break;
1608 		data.victim = NULL;
1609 		d_walk(parent, &data, select_collect2);
1610 		if (data.victim) {
1611 			struct dentry *parent;
1612 			spin_lock(&data.victim->d_lock);
1613 			if (!shrink_lock_dentry(data.victim)) {
1614 				spin_unlock(&data.victim->d_lock);
1615 				rcu_read_unlock();
1616 			} else {
1617 				rcu_read_unlock();
1618 				parent = data.victim->d_parent;
1619 				if (parent != data.victim)
1620 					__dput_to_list(parent, &data.dispose);
1621 				__dentry_kill(data.victim);
1622 			}
1623 		}
1624 		if (!list_empty(&data.dispose))
1625 			shrink_dentry_list(&data.dispose);
1626 	}
1627 }
1628 EXPORT_SYMBOL(shrink_dcache_parent);
1629 
1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631 {
1632 	/* it has busy descendents; complain about those instead */
1633 	if (!list_empty(&dentry->d_subdirs))
1634 		return D_WALK_CONTINUE;
1635 
1636 	/* root with refcount 1 is fine */
1637 	if (dentry == _data && dentry->d_lockref.count == 1)
1638 		return D_WALK_CONTINUE;
1639 
1640 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1641 			" still in use (%d) [unmount of %s %s]\n",
1642 		       dentry,
1643 		       dentry->d_inode ?
1644 		       dentry->d_inode->i_ino : 0UL,
1645 		       dentry,
1646 		       dentry->d_lockref.count,
1647 		       dentry->d_sb->s_type->name,
1648 		       dentry->d_sb->s_id);
1649 	WARN_ON(1);
1650 	return D_WALK_CONTINUE;
1651 }
1652 
1653 static void do_one_tree(struct dentry *dentry)
1654 {
1655 	shrink_dcache_parent(dentry);
1656 	d_walk(dentry, dentry, umount_check);
1657 	d_drop(dentry);
1658 	dput(dentry);
1659 }
1660 
1661 /*
1662  * destroy the dentries attached to a superblock on unmounting
1663  */
1664 void shrink_dcache_for_umount(struct super_block *sb)
1665 {
1666 	struct dentry *dentry;
1667 
1668 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1669 
1670 	dentry = sb->s_root;
1671 	sb->s_root = NULL;
1672 	do_one_tree(dentry);
1673 
1674 	while (!hlist_bl_empty(&sb->s_roots)) {
1675 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1676 		do_one_tree(dentry);
1677 	}
1678 }
1679 
1680 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1681 {
1682 	struct dentry **victim = _data;
1683 	if (d_mountpoint(dentry)) {
1684 		__dget_dlock(dentry);
1685 		*victim = dentry;
1686 		return D_WALK_QUIT;
1687 	}
1688 	return D_WALK_CONTINUE;
1689 }
1690 
1691 /**
1692  * d_invalidate - detach submounts, prune dcache, and drop
1693  * @dentry: dentry to invalidate (aka detach, prune and drop)
1694  */
1695 void d_invalidate(struct dentry *dentry)
1696 {
1697 	bool had_submounts = false;
1698 	spin_lock(&dentry->d_lock);
1699 	if (d_unhashed(dentry)) {
1700 		spin_unlock(&dentry->d_lock);
1701 		return;
1702 	}
1703 	__d_drop(dentry);
1704 	spin_unlock(&dentry->d_lock);
1705 
1706 	/* Negative dentries can be dropped without further checks */
1707 	if (!dentry->d_inode)
1708 		return;
1709 
1710 	shrink_dcache_parent(dentry);
1711 	for (;;) {
1712 		struct dentry *victim = NULL;
1713 		d_walk(dentry, &victim, find_submount);
1714 		if (!victim) {
1715 			if (had_submounts)
1716 				shrink_dcache_parent(dentry);
1717 			return;
1718 		}
1719 		had_submounts = true;
1720 		detach_mounts(victim);
1721 		dput(victim);
1722 	}
1723 }
1724 EXPORT_SYMBOL(d_invalidate);
1725 
1726 /**
1727  * __d_alloc	-	allocate a dcache entry
1728  * @sb: filesystem it will belong to
1729  * @name: qstr of the name
1730  *
1731  * Allocates a dentry. It returns %NULL if there is insufficient memory
1732  * available. On a success the dentry is returned. The name passed in is
1733  * copied and the copy passed in may be reused after this call.
1734  */
1735 
1736 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1737 {
1738 	struct dentry *dentry;
1739 	char *dname;
1740 	int err;
1741 
1742 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1743 	if (!dentry)
1744 		return NULL;
1745 
1746 	/*
1747 	 * We guarantee that the inline name is always NUL-terminated.
1748 	 * This way the memcpy() done by the name switching in rename
1749 	 * will still always have a NUL at the end, even if we might
1750 	 * be overwriting an internal NUL character
1751 	 */
1752 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1753 	if (unlikely(!name)) {
1754 		name = &slash_name;
1755 		dname = dentry->d_iname;
1756 	} else if (name->len > DNAME_INLINE_LEN-1) {
1757 		size_t size = offsetof(struct external_name, name[1]);
1758 		struct external_name *p = kmalloc(size + name->len,
1759 						  GFP_KERNEL_ACCOUNT |
1760 						  __GFP_RECLAIMABLE);
1761 		if (!p) {
1762 			kmem_cache_free(dentry_cache, dentry);
1763 			return NULL;
1764 		}
1765 		atomic_set(&p->u.count, 1);
1766 		dname = p->name;
1767 	} else  {
1768 		dname = dentry->d_iname;
1769 	}
1770 
1771 	dentry->d_name.len = name->len;
1772 	dentry->d_name.hash = name->hash;
1773 	memcpy(dname, name->name, name->len);
1774 	dname[name->len] = 0;
1775 
1776 	/* Make sure we always see the terminating NUL character */
1777 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1778 
1779 	dentry->d_lockref.count = 1;
1780 	dentry->d_flags = 0;
1781 	spin_lock_init(&dentry->d_lock);
1782 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1783 	dentry->d_inode = NULL;
1784 	dentry->d_parent = dentry;
1785 	dentry->d_sb = sb;
1786 	dentry->d_op = NULL;
1787 	dentry->d_fsdata = NULL;
1788 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1789 	INIT_LIST_HEAD(&dentry->d_lru);
1790 	INIT_LIST_HEAD(&dentry->d_subdirs);
1791 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1792 	INIT_LIST_HEAD(&dentry->d_child);
1793 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1794 
1795 	if (dentry->d_op && dentry->d_op->d_init) {
1796 		err = dentry->d_op->d_init(dentry);
1797 		if (err) {
1798 			if (dname_external(dentry))
1799 				kfree(external_name(dentry));
1800 			kmem_cache_free(dentry_cache, dentry);
1801 			return NULL;
1802 		}
1803 	}
1804 
1805 	this_cpu_inc(nr_dentry);
1806 
1807 	return dentry;
1808 }
1809 
1810 /**
1811  * d_alloc	-	allocate a dcache entry
1812  * @parent: parent of entry to allocate
1813  * @name: qstr of the name
1814  *
1815  * Allocates a dentry. It returns %NULL if there is insufficient memory
1816  * available. On a success the dentry is returned. The name passed in is
1817  * copied and the copy passed in may be reused after this call.
1818  */
1819 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1820 {
1821 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1822 	if (!dentry)
1823 		return NULL;
1824 	spin_lock(&parent->d_lock);
1825 	/*
1826 	 * don't need child lock because it is not subject
1827 	 * to concurrency here
1828 	 */
1829 	__dget_dlock(parent);
1830 	dentry->d_parent = parent;
1831 	list_add(&dentry->d_child, &parent->d_subdirs);
1832 	spin_unlock(&parent->d_lock);
1833 
1834 	return dentry;
1835 }
1836 EXPORT_SYMBOL(d_alloc);
1837 
1838 struct dentry *d_alloc_anon(struct super_block *sb)
1839 {
1840 	return __d_alloc(sb, NULL);
1841 }
1842 EXPORT_SYMBOL(d_alloc_anon);
1843 
1844 struct dentry *d_alloc_cursor(struct dentry * parent)
1845 {
1846 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1847 	if (dentry) {
1848 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1849 		dentry->d_parent = dget(parent);
1850 	}
1851 	return dentry;
1852 }
1853 
1854 /**
1855  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1856  * @sb: the superblock
1857  * @name: qstr of the name
1858  *
1859  * For a filesystem that just pins its dentries in memory and never
1860  * performs lookups at all, return an unhashed IS_ROOT dentry.
1861  * This is used for pipes, sockets et.al. - the stuff that should
1862  * never be anyone's children or parents.  Unlike all other
1863  * dentries, these will not have RCU delay between dropping the
1864  * last reference and freeing them.
1865  *
1866  * The only user is alloc_file_pseudo() and that's what should
1867  * be considered a public interface.  Don't use directly.
1868  */
1869 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1870 {
1871 	struct dentry *dentry = __d_alloc(sb, name);
1872 	if (likely(dentry))
1873 		dentry->d_flags |= DCACHE_NORCU;
1874 	return dentry;
1875 }
1876 
1877 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1878 {
1879 	struct qstr q;
1880 
1881 	q.name = name;
1882 	q.hash_len = hashlen_string(parent, name);
1883 	return d_alloc(parent, &q);
1884 }
1885 EXPORT_SYMBOL(d_alloc_name);
1886 
1887 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1888 {
1889 	WARN_ON_ONCE(dentry->d_op);
1890 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1891 				DCACHE_OP_COMPARE	|
1892 				DCACHE_OP_REVALIDATE	|
1893 				DCACHE_OP_WEAK_REVALIDATE	|
1894 				DCACHE_OP_DELETE	|
1895 				DCACHE_OP_REAL));
1896 	dentry->d_op = op;
1897 	if (!op)
1898 		return;
1899 	if (op->d_hash)
1900 		dentry->d_flags |= DCACHE_OP_HASH;
1901 	if (op->d_compare)
1902 		dentry->d_flags |= DCACHE_OP_COMPARE;
1903 	if (op->d_revalidate)
1904 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1905 	if (op->d_weak_revalidate)
1906 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1907 	if (op->d_delete)
1908 		dentry->d_flags |= DCACHE_OP_DELETE;
1909 	if (op->d_prune)
1910 		dentry->d_flags |= DCACHE_OP_PRUNE;
1911 	if (op->d_real)
1912 		dentry->d_flags |= DCACHE_OP_REAL;
1913 
1914 }
1915 EXPORT_SYMBOL(d_set_d_op);
1916 
1917 
1918 /*
1919  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1920  * @dentry - The dentry to mark
1921  *
1922  * Mark a dentry as falling through to the lower layer (as set with
1923  * d_pin_lower()).  This flag may be recorded on the medium.
1924  */
1925 void d_set_fallthru(struct dentry *dentry)
1926 {
1927 	spin_lock(&dentry->d_lock);
1928 	dentry->d_flags |= DCACHE_FALLTHRU;
1929 	spin_unlock(&dentry->d_lock);
1930 }
1931 EXPORT_SYMBOL(d_set_fallthru);
1932 
1933 static unsigned d_flags_for_inode(struct inode *inode)
1934 {
1935 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1936 
1937 	if (!inode)
1938 		return DCACHE_MISS_TYPE;
1939 
1940 	if (S_ISDIR(inode->i_mode)) {
1941 		add_flags = DCACHE_DIRECTORY_TYPE;
1942 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1943 			if (unlikely(!inode->i_op->lookup))
1944 				add_flags = DCACHE_AUTODIR_TYPE;
1945 			else
1946 				inode->i_opflags |= IOP_LOOKUP;
1947 		}
1948 		goto type_determined;
1949 	}
1950 
1951 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1952 		if (unlikely(inode->i_op->get_link)) {
1953 			add_flags = DCACHE_SYMLINK_TYPE;
1954 			goto type_determined;
1955 		}
1956 		inode->i_opflags |= IOP_NOFOLLOW;
1957 	}
1958 
1959 	if (unlikely(!S_ISREG(inode->i_mode)))
1960 		add_flags = DCACHE_SPECIAL_TYPE;
1961 
1962 type_determined:
1963 	if (unlikely(IS_AUTOMOUNT(inode)))
1964 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1965 	return add_flags;
1966 }
1967 
1968 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1969 {
1970 	unsigned add_flags = d_flags_for_inode(inode);
1971 	WARN_ON(d_in_lookup(dentry));
1972 
1973 	spin_lock(&dentry->d_lock);
1974 	/*
1975 	 * Decrement negative dentry count if it was in the LRU list.
1976 	 */
1977 	if (dentry->d_flags & DCACHE_LRU_LIST)
1978 		this_cpu_dec(nr_dentry_negative);
1979 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1980 	raw_write_seqcount_begin(&dentry->d_seq);
1981 	__d_set_inode_and_type(dentry, inode, add_flags);
1982 	raw_write_seqcount_end(&dentry->d_seq);
1983 	fsnotify_update_flags(dentry);
1984 	spin_unlock(&dentry->d_lock);
1985 }
1986 
1987 /**
1988  * d_instantiate - fill in inode information for a dentry
1989  * @entry: dentry to complete
1990  * @inode: inode to attach to this dentry
1991  *
1992  * Fill in inode information in the entry.
1993  *
1994  * This turns negative dentries into productive full members
1995  * of society.
1996  *
1997  * NOTE! This assumes that the inode count has been incremented
1998  * (or otherwise set) by the caller to indicate that it is now
1999  * in use by the dcache.
2000  */
2001 
2002 void d_instantiate(struct dentry *entry, struct inode * inode)
2003 {
2004 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2005 	if (inode) {
2006 		security_d_instantiate(entry, inode);
2007 		spin_lock(&inode->i_lock);
2008 		__d_instantiate(entry, inode);
2009 		spin_unlock(&inode->i_lock);
2010 	}
2011 }
2012 EXPORT_SYMBOL(d_instantiate);
2013 
2014 /*
2015  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2016  * with lockdep-related part of unlock_new_inode() done before
2017  * anything else.  Use that instead of open-coding d_instantiate()/
2018  * unlock_new_inode() combinations.
2019  */
2020 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2021 {
2022 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2023 	BUG_ON(!inode);
2024 	lockdep_annotate_inode_mutex_key(inode);
2025 	security_d_instantiate(entry, inode);
2026 	spin_lock(&inode->i_lock);
2027 	__d_instantiate(entry, inode);
2028 	WARN_ON(!(inode->i_state & I_NEW));
2029 	inode->i_state &= ~I_NEW & ~I_CREATING;
2030 	smp_mb();
2031 	wake_up_bit(&inode->i_state, __I_NEW);
2032 	spin_unlock(&inode->i_lock);
2033 }
2034 EXPORT_SYMBOL(d_instantiate_new);
2035 
2036 struct dentry *d_make_root(struct inode *root_inode)
2037 {
2038 	struct dentry *res = NULL;
2039 
2040 	if (root_inode) {
2041 		res = d_alloc_anon(root_inode->i_sb);
2042 		if (res)
2043 			d_instantiate(res, root_inode);
2044 		else
2045 			iput(root_inode);
2046 	}
2047 	return res;
2048 }
2049 EXPORT_SYMBOL(d_make_root);
2050 
2051 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2052 					   struct inode *inode,
2053 					   bool disconnected)
2054 {
2055 	struct dentry *res;
2056 	unsigned add_flags;
2057 
2058 	security_d_instantiate(dentry, inode);
2059 	spin_lock(&inode->i_lock);
2060 	res = __d_find_any_alias(inode);
2061 	if (res) {
2062 		spin_unlock(&inode->i_lock);
2063 		dput(dentry);
2064 		goto out_iput;
2065 	}
2066 
2067 	/* attach a disconnected dentry */
2068 	add_flags = d_flags_for_inode(inode);
2069 
2070 	if (disconnected)
2071 		add_flags |= DCACHE_DISCONNECTED;
2072 
2073 	spin_lock(&dentry->d_lock);
2074 	__d_set_inode_and_type(dentry, inode, add_flags);
2075 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2076 	if (!disconnected) {
2077 		hlist_bl_lock(&dentry->d_sb->s_roots);
2078 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2079 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2080 	}
2081 	spin_unlock(&dentry->d_lock);
2082 	spin_unlock(&inode->i_lock);
2083 
2084 	return dentry;
2085 
2086  out_iput:
2087 	iput(inode);
2088 	return res;
2089 }
2090 
2091 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2092 {
2093 	return __d_instantiate_anon(dentry, inode, true);
2094 }
2095 EXPORT_SYMBOL(d_instantiate_anon);
2096 
2097 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2098 {
2099 	struct dentry *tmp;
2100 	struct dentry *res;
2101 
2102 	if (!inode)
2103 		return ERR_PTR(-ESTALE);
2104 	if (IS_ERR(inode))
2105 		return ERR_CAST(inode);
2106 
2107 	res = d_find_any_alias(inode);
2108 	if (res)
2109 		goto out_iput;
2110 
2111 	tmp = d_alloc_anon(inode->i_sb);
2112 	if (!tmp) {
2113 		res = ERR_PTR(-ENOMEM);
2114 		goto out_iput;
2115 	}
2116 
2117 	return __d_instantiate_anon(tmp, inode, disconnected);
2118 
2119 out_iput:
2120 	iput(inode);
2121 	return res;
2122 }
2123 
2124 /**
2125  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2126  * @inode: inode to allocate the dentry for
2127  *
2128  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2129  * similar open by handle operations.  The returned dentry may be anonymous,
2130  * or may have a full name (if the inode was already in the cache).
2131  *
2132  * When called on a directory inode, we must ensure that the inode only ever
2133  * has one dentry.  If a dentry is found, that is returned instead of
2134  * allocating a new one.
2135  *
2136  * On successful return, the reference to the inode has been transferred
2137  * to the dentry.  In case of an error the reference on the inode is released.
2138  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2139  * be passed in and the error will be propagated to the return value,
2140  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2141  */
2142 struct dentry *d_obtain_alias(struct inode *inode)
2143 {
2144 	return __d_obtain_alias(inode, true);
2145 }
2146 EXPORT_SYMBOL(d_obtain_alias);
2147 
2148 /**
2149  * d_obtain_root - find or allocate a dentry for a given inode
2150  * @inode: inode to allocate the dentry for
2151  *
2152  * Obtain an IS_ROOT dentry for the root of a filesystem.
2153  *
2154  * We must ensure that directory inodes only ever have one dentry.  If a
2155  * dentry is found, that is returned instead of allocating a new one.
2156  *
2157  * On successful return, the reference to the inode has been transferred
2158  * to the dentry.  In case of an error the reference on the inode is
2159  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2160  * error will be propagate to the return value, with a %NULL @inode
2161  * replaced by ERR_PTR(-ESTALE).
2162  */
2163 struct dentry *d_obtain_root(struct inode *inode)
2164 {
2165 	return __d_obtain_alias(inode, false);
2166 }
2167 EXPORT_SYMBOL(d_obtain_root);
2168 
2169 /**
2170  * d_add_ci - lookup or allocate new dentry with case-exact name
2171  * @inode:  the inode case-insensitive lookup has found
2172  * @dentry: the negative dentry that was passed to the parent's lookup func
2173  * @name:   the case-exact name to be associated with the returned dentry
2174  *
2175  * This is to avoid filling the dcache with case-insensitive names to the
2176  * same inode, only the actual correct case is stored in the dcache for
2177  * case-insensitive filesystems.
2178  *
2179  * For a case-insensitive lookup match and if the case-exact dentry
2180  * already exists in the dcache, use it and return it.
2181  *
2182  * If no entry exists with the exact case name, allocate new dentry with
2183  * the exact case, and return the spliced entry.
2184  */
2185 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2186 			struct qstr *name)
2187 {
2188 	struct dentry *found, *res;
2189 
2190 	/*
2191 	 * First check if a dentry matching the name already exists,
2192 	 * if not go ahead and create it now.
2193 	 */
2194 	found = d_hash_and_lookup(dentry->d_parent, name);
2195 	if (found) {
2196 		iput(inode);
2197 		return found;
2198 	}
2199 	if (d_in_lookup(dentry)) {
2200 		found = d_alloc_parallel(dentry->d_parent, name,
2201 					dentry->d_wait);
2202 		if (IS_ERR(found) || !d_in_lookup(found)) {
2203 			iput(inode);
2204 			return found;
2205 		}
2206 	} else {
2207 		found = d_alloc(dentry->d_parent, name);
2208 		if (!found) {
2209 			iput(inode);
2210 			return ERR_PTR(-ENOMEM);
2211 		}
2212 	}
2213 	res = d_splice_alias(inode, found);
2214 	if (res) {
2215 		dput(found);
2216 		return res;
2217 	}
2218 	return found;
2219 }
2220 EXPORT_SYMBOL(d_add_ci);
2221 
2222 
2223 static inline bool d_same_name(const struct dentry *dentry,
2224 				const struct dentry *parent,
2225 				const struct qstr *name)
2226 {
2227 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2228 		if (dentry->d_name.len != name->len)
2229 			return false;
2230 		return dentry_cmp(dentry, name->name, name->len) == 0;
2231 	}
2232 	return parent->d_op->d_compare(dentry,
2233 				       dentry->d_name.len, dentry->d_name.name,
2234 				       name) == 0;
2235 }
2236 
2237 /**
2238  * __d_lookup_rcu - search for a dentry (racy, store-free)
2239  * @parent: parent dentry
2240  * @name: qstr of name we wish to find
2241  * @seqp: returns d_seq value at the point where the dentry was found
2242  * Returns: dentry, or NULL
2243  *
2244  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2245  * resolution (store-free path walking) design described in
2246  * Documentation/filesystems/path-lookup.txt.
2247  *
2248  * This is not to be used outside core vfs.
2249  *
2250  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2251  * held, and rcu_read_lock held. The returned dentry must not be stored into
2252  * without taking d_lock and checking d_seq sequence count against @seq
2253  * returned here.
2254  *
2255  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2256  * function.
2257  *
2258  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2259  * the returned dentry, so long as its parent's seqlock is checked after the
2260  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2261  * is formed, giving integrity down the path walk.
2262  *
2263  * NOTE! The caller *has* to check the resulting dentry against the sequence
2264  * number we've returned before using any of the resulting dentry state!
2265  */
2266 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2267 				const struct qstr *name,
2268 				unsigned *seqp)
2269 {
2270 	u64 hashlen = name->hash_len;
2271 	const unsigned char *str = name->name;
2272 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2273 	struct hlist_bl_node *node;
2274 	struct dentry *dentry;
2275 
2276 	/*
2277 	 * Note: There is significant duplication with __d_lookup_rcu which is
2278 	 * required to prevent single threaded performance regressions
2279 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2280 	 * Keep the two functions in sync.
2281 	 */
2282 
2283 	/*
2284 	 * The hash list is protected using RCU.
2285 	 *
2286 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2287 	 * races with d_move().
2288 	 *
2289 	 * It is possible that concurrent renames can mess up our list
2290 	 * walk here and result in missing our dentry, resulting in the
2291 	 * false-negative result. d_lookup() protects against concurrent
2292 	 * renames using rename_lock seqlock.
2293 	 *
2294 	 * See Documentation/filesystems/path-lookup.txt for more details.
2295 	 */
2296 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2297 		unsigned seq;
2298 
2299 seqretry:
2300 		/*
2301 		 * The dentry sequence count protects us from concurrent
2302 		 * renames, and thus protects parent and name fields.
2303 		 *
2304 		 * The caller must perform a seqcount check in order
2305 		 * to do anything useful with the returned dentry.
2306 		 *
2307 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2308 		 * we don't wait for the sequence count to stabilize if it
2309 		 * is in the middle of a sequence change. If we do the slow
2310 		 * dentry compare, we will do seqretries until it is stable,
2311 		 * and if we end up with a successful lookup, we actually
2312 		 * want to exit RCU lookup anyway.
2313 		 *
2314 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2315 		 * we are still guaranteed NUL-termination of ->d_name.name.
2316 		 */
2317 		seq = raw_seqcount_begin(&dentry->d_seq);
2318 		if (dentry->d_parent != parent)
2319 			continue;
2320 		if (d_unhashed(dentry))
2321 			continue;
2322 
2323 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2324 			int tlen;
2325 			const char *tname;
2326 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2327 				continue;
2328 			tlen = dentry->d_name.len;
2329 			tname = dentry->d_name.name;
2330 			/* we want a consistent (name,len) pair */
2331 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2332 				cpu_relax();
2333 				goto seqretry;
2334 			}
2335 			if (parent->d_op->d_compare(dentry,
2336 						    tlen, tname, name) != 0)
2337 				continue;
2338 		} else {
2339 			if (dentry->d_name.hash_len != hashlen)
2340 				continue;
2341 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2342 				continue;
2343 		}
2344 		*seqp = seq;
2345 		return dentry;
2346 	}
2347 	return NULL;
2348 }
2349 
2350 /**
2351  * d_lookup - search for a dentry
2352  * @parent: parent dentry
2353  * @name: qstr of name we wish to find
2354  * Returns: dentry, or NULL
2355  *
2356  * d_lookup searches the children of the parent dentry for the name in
2357  * question. If the dentry is found its reference count is incremented and the
2358  * dentry is returned. The caller must use dput to free the entry when it has
2359  * finished using it. %NULL is returned if the dentry does not exist.
2360  */
2361 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2362 {
2363 	struct dentry *dentry;
2364 	unsigned seq;
2365 
2366 	do {
2367 		seq = read_seqbegin(&rename_lock);
2368 		dentry = __d_lookup(parent, name);
2369 		if (dentry)
2370 			break;
2371 	} while (read_seqretry(&rename_lock, seq));
2372 	return dentry;
2373 }
2374 EXPORT_SYMBOL(d_lookup);
2375 
2376 /**
2377  * __d_lookup - search for a dentry (racy)
2378  * @parent: parent dentry
2379  * @name: qstr of name we wish to find
2380  * Returns: dentry, or NULL
2381  *
2382  * __d_lookup is like d_lookup, however it may (rarely) return a
2383  * false-negative result due to unrelated rename activity.
2384  *
2385  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2386  * however it must be used carefully, eg. with a following d_lookup in
2387  * the case of failure.
2388  *
2389  * __d_lookup callers must be commented.
2390  */
2391 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2392 {
2393 	unsigned int hash = name->hash;
2394 	struct hlist_bl_head *b = d_hash(hash);
2395 	struct hlist_bl_node *node;
2396 	struct dentry *found = NULL;
2397 	struct dentry *dentry;
2398 
2399 	/*
2400 	 * Note: There is significant duplication with __d_lookup_rcu which is
2401 	 * required to prevent single threaded performance regressions
2402 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2403 	 * Keep the two functions in sync.
2404 	 */
2405 
2406 	/*
2407 	 * The hash list is protected using RCU.
2408 	 *
2409 	 * Take d_lock when comparing a candidate dentry, to avoid races
2410 	 * with d_move().
2411 	 *
2412 	 * It is possible that concurrent renames can mess up our list
2413 	 * walk here and result in missing our dentry, resulting in the
2414 	 * false-negative result. d_lookup() protects against concurrent
2415 	 * renames using rename_lock seqlock.
2416 	 *
2417 	 * See Documentation/filesystems/path-lookup.txt for more details.
2418 	 */
2419 	rcu_read_lock();
2420 
2421 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2422 
2423 		if (dentry->d_name.hash != hash)
2424 			continue;
2425 
2426 		spin_lock(&dentry->d_lock);
2427 		if (dentry->d_parent != parent)
2428 			goto next;
2429 		if (d_unhashed(dentry))
2430 			goto next;
2431 
2432 		if (!d_same_name(dentry, parent, name))
2433 			goto next;
2434 
2435 		dentry->d_lockref.count++;
2436 		found = dentry;
2437 		spin_unlock(&dentry->d_lock);
2438 		break;
2439 next:
2440 		spin_unlock(&dentry->d_lock);
2441  	}
2442  	rcu_read_unlock();
2443 
2444  	return found;
2445 }
2446 
2447 /**
2448  * d_hash_and_lookup - hash the qstr then search for a dentry
2449  * @dir: Directory to search in
2450  * @name: qstr of name we wish to find
2451  *
2452  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2453  */
2454 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2455 {
2456 	/*
2457 	 * Check for a fs-specific hash function. Note that we must
2458 	 * calculate the standard hash first, as the d_op->d_hash()
2459 	 * routine may choose to leave the hash value unchanged.
2460 	 */
2461 	name->hash = full_name_hash(dir, name->name, name->len);
2462 	if (dir->d_flags & DCACHE_OP_HASH) {
2463 		int err = dir->d_op->d_hash(dir, name);
2464 		if (unlikely(err < 0))
2465 			return ERR_PTR(err);
2466 	}
2467 	return d_lookup(dir, name);
2468 }
2469 EXPORT_SYMBOL(d_hash_and_lookup);
2470 
2471 /*
2472  * When a file is deleted, we have two options:
2473  * - turn this dentry into a negative dentry
2474  * - unhash this dentry and free it.
2475  *
2476  * Usually, we want to just turn this into
2477  * a negative dentry, but if anybody else is
2478  * currently using the dentry or the inode
2479  * we can't do that and we fall back on removing
2480  * it from the hash queues and waiting for
2481  * it to be deleted later when it has no users
2482  */
2483 
2484 /**
2485  * d_delete - delete a dentry
2486  * @dentry: The dentry to delete
2487  *
2488  * Turn the dentry into a negative dentry if possible, otherwise
2489  * remove it from the hash queues so it can be deleted later
2490  */
2491 
2492 void d_delete(struct dentry * dentry)
2493 {
2494 	struct inode *inode = dentry->d_inode;
2495 
2496 	spin_lock(&inode->i_lock);
2497 	spin_lock(&dentry->d_lock);
2498 	/*
2499 	 * Are we the only user?
2500 	 */
2501 	if (dentry->d_lockref.count == 1) {
2502 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2503 		dentry_unlink_inode(dentry);
2504 	} else {
2505 		__d_drop(dentry);
2506 		spin_unlock(&dentry->d_lock);
2507 		spin_unlock(&inode->i_lock);
2508 	}
2509 }
2510 EXPORT_SYMBOL(d_delete);
2511 
2512 static void __d_rehash(struct dentry *entry)
2513 {
2514 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2515 
2516 	hlist_bl_lock(b);
2517 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2518 	hlist_bl_unlock(b);
2519 }
2520 
2521 /**
2522  * d_rehash	- add an entry back to the hash
2523  * @entry: dentry to add to the hash
2524  *
2525  * Adds a dentry to the hash according to its name.
2526  */
2527 
2528 void d_rehash(struct dentry * entry)
2529 {
2530 	spin_lock(&entry->d_lock);
2531 	__d_rehash(entry);
2532 	spin_unlock(&entry->d_lock);
2533 }
2534 EXPORT_SYMBOL(d_rehash);
2535 
2536 static inline unsigned start_dir_add(struct inode *dir)
2537 {
2538 
2539 	for (;;) {
2540 		unsigned n = dir->i_dir_seq;
2541 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2542 			return n;
2543 		cpu_relax();
2544 	}
2545 }
2546 
2547 static inline void end_dir_add(struct inode *dir, unsigned n)
2548 {
2549 	smp_store_release(&dir->i_dir_seq, n + 2);
2550 }
2551 
2552 static void d_wait_lookup(struct dentry *dentry)
2553 {
2554 	if (d_in_lookup(dentry)) {
2555 		DECLARE_WAITQUEUE(wait, current);
2556 		add_wait_queue(dentry->d_wait, &wait);
2557 		do {
2558 			set_current_state(TASK_UNINTERRUPTIBLE);
2559 			spin_unlock(&dentry->d_lock);
2560 			schedule();
2561 			spin_lock(&dentry->d_lock);
2562 		} while (d_in_lookup(dentry));
2563 	}
2564 }
2565 
2566 struct dentry *d_alloc_parallel(struct dentry *parent,
2567 				const struct qstr *name,
2568 				wait_queue_head_t *wq)
2569 {
2570 	unsigned int hash = name->hash;
2571 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2572 	struct hlist_bl_node *node;
2573 	struct dentry *new = d_alloc(parent, name);
2574 	struct dentry *dentry;
2575 	unsigned seq, r_seq, d_seq;
2576 
2577 	if (unlikely(!new))
2578 		return ERR_PTR(-ENOMEM);
2579 
2580 retry:
2581 	rcu_read_lock();
2582 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2583 	r_seq = read_seqbegin(&rename_lock);
2584 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2585 	if (unlikely(dentry)) {
2586 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2587 			rcu_read_unlock();
2588 			goto retry;
2589 		}
2590 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2591 			rcu_read_unlock();
2592 			dput(dentry);
2593 			goto retry;
2594 		}
2595 		rcu_read_unlock();
2596 		dput(new);
2597 		return dentry;
2598 	}
2599 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2600 		rcu_read_unlock();
2601 		goto retry;
2602 	}
2603 
2604 	if (unlikely(seq & 1)) {
2605 		rcu_read_unlock();
2606 		goto retry;
2607 	}
2608 
2609 	hlist_bl_lock(b);
2610 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2611 		hlist_bl_unlock(b);
2612 		rcu_read_unlock();
2613 		goto retry;
2614 	}
2615 	/*
2616 	 * No changes for the parent since the beginning of d_lookup().
2617 	 * Since all removals from the chain happen with hlist_bl_lock(),
2618 	 * any potential in-lookup matches are going to stay here until
2619 	 * we unlock the chain.  All fields are stable in everything
2620 	 * we encounter.
2621 	 */
2622 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2623 		if (dentry->d_name.hash != hash)
2624 			continue;
2625 		if (dentry->d_parent != parent)
2626 			continue;
2627 		if (!d_same_name(dentry, parent, name))
2628 			continue;
2629 		hlist_bl_unlock(b);
2630 		/* now we can try to grab a reference */
2631 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2632 			rcu_read_unlock();
2633 			goto retry;
2634 		}
2635 
2636 		rcu_read_unlock();
2637 		/*
2638 		 * somebody is likely to be still doing lookup for it;
2639 		 * wait for them to finish
2640 		 */
2641 		spin_lock(&dentry->d_lock);
2642 		d_wait_lookup(dentry);
2643 		/*
2644 		 * it's not in-lookup anymore; in principle we should repeat
2645 		 * everything from dcache lookup, but it's likely to be what
2646 		 * d_lookup() would've found anyway.  If it is, just return it;
2647 		 * otherwise we really have to repeat the whole thing.
2648 		 */
2649 		if (unlikely(dentry->d_name.hash != hash))
2650 			goto mismatch;
2651 		if (unlikely(dentry->d_parent != parent))
2652 			goto mismatch;
2653 		if (unlikely(d_unhashed(dentry)))
2654 			goto mismatch;
2655 		if (unlikely(!d_same_name(dentry, parent, name)))
2656 			goto mismatch;
2657 		/* OK, it *is* a hashed match; return it */
2658 		spin_unlock(&dentry->d_lock);
2659 		dput(new);
2660 		return dentry;
2661 	}
2662 	rcu_read_unlock();
2663 	/* we can't take ->d_lock here; it's OK, though. */
2664 	new->d_flags |= DCACHE_PAR_LOOKUP;
2665 	new->d_wait = wq;
2666 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2667 	hlist_bl_unlock(b);
2668 	return new;
2669 mismatch:
2670 	spin_unlock(&dentry->d_lock);
2671 	dput(dentry);
2672 	goto retry;
2673 }
2674 EXPORT_SYMBOL(d_alloc_parallel);
2675 
2676 void __d_lookup_done(struct dentry *dentry)
2677 {
2678 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2679 						 dentry->d_name.hash);
2680 	hlist_bl_lock(b);
2681 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2682 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2683 	wake_up_all(dentry->d_wait);
2684 	dentry->d_wait = NULL;
2685 	hlist_bl_unlock(b);
2686 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2687 	INIT_LIST_HEAD(&dentry->d_lru);
2688 }
2689 EXPORT_SYMBOL(__d_lookup_done);
2690 
2691 /* inode->i_lock held if inode is non-NULL */
2692 
2693 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2694 {
2695 	struct inode *dir = NULL;
2696 	unsigned n;
2697 	spin_lock(&dentry->d_lock);
2698 	if (unlikely(d_in_lookup(dentry))) {
2699 		dir = dentry->d_parent->d_inode;
2700 		n = start_dir_add(dir);
2701 		__d_lookup_done(dentry);
2702 	}
2703 	if (inode) {
2704 		unsigned add_flags = d_flags_for_inode(inode);
2705 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2706 		raw_write_seqcount_begin(&dentry->d_seq);
2707 		__d_set_inode_and_type(dentry, inode, add_flags);
2708 		raw_write_seqcount_end(&dentry->d_seq);
2709 		fsnotify_update_flags(dentry);
2710 	}
2711 	__d_rehash(dentry);
2712 	if (dir)
2713 		end_dir_add(dir, n);
2714 	spin_unlock(&dentry->d_lock);
2715 	if (inode)
2716 		spin_unlock(&inode->i_lock);
2717 }
2718 
2719 /**
2720  * d_add - add dentry to hash queues
2721  * @entry: dentry to add
2722  * @inode: The inode to attach to this dentry
2723  *
2724  * This adds the entry to the hash queues and initializes @inode.
2725  * The entry was actually filled in earlier during d_alloc().
2726  */
2727 
2728 void d_add(struct dentry *entry, struct inode *inode)
2729 {
2730 	if (inode) {
2731 		security_d_instantiate(entry, inode);
2732 		spin_lock(&inode->i_lock);
2733 	}
2734 	__d_add(entry, inode);
2735 }
2736 EXPORT_SYMBOL(d_add);
2737 
2738 /**
2739  * d_exact_alias - find and hash an exact unhashed alias
2740  * @entry: dentry to add
2741  * @inode: The inode to go with this dentry
2742  *
2743  * If an unhashed dentry with the same name/parent and desired
2744  * inode already exists, hash and return it.  Otherwise, return
2745  * NULL.
2746  *
2747  * Parent directory should be locked.
2748  */
2749 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2750 {
2751 	struct dentry *alias;
2752 	unsigned int hash = entry->d_name.hash;
2753 
2754 	spin_lock(&inode->i_lock);
2755 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2756 		/*
2757 		 * Don't need alias->d_lock here, because aliases with
2758 		 * d_parent == entry->d_parent are not subject to name or
2759 		 * parent changes, because the parent inode i_mutex is held.
2760 		 */
2761 		if (alias->d_name.hash != hash)
2762 			continue;
2763 		if (alias->d_parent != entry->d_parent)
2764 			continue;
2765 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2766 			continue;
2767 		spin_lock(&alias->d_lock);
2768 		if (!d_unhashed(alias)) {
2769 			spin_unlock(&alias->d_lock);
2770 			alias = NULL;
2771 		} else {
2772 			__dget_dlock(alias);
2773 			__d_rehash(alias);
2774 			spin_unlock(&alias->d_lock);
2775 		}
2776 		spin_unlock(&inode->i_lock);
2777 		return alias;
2778 	}
2779 	spin_unlock(&inode->i_lock);
2780 	return NULL;
2781 }
2782 EXPORT_SYMBOL(d_exact_alias);
2783 
2784 static void swap_names(struct dentry *dentry, struct dentry *target)
2785 {
2786 	if (unlikely(dname_external(target))) {
2787 		if (unlikely(dname_external(dentry))) {
2788 			/*
2789 			 * Both external: swap the pointers
2790 			 */
2791 			swap(target->d_name.name, dentry->d_name.name);
2792 		} else {
2793 			/*
2794 			 * dentry:internal, target:external.  Steal target's
2795 			 * storage and make target internal.
2796 			 */
2797 			memcpy(target->d_iname, dentry->d_name.name,
2798 					dentry->d_name.len + 1);
2799 			dentry->d_name.name = target->d_name.name;
2800 			target->d_name.name = target->d_iname;
2801 		}
2802 	} else {
2803 		if (unlikely(dname_external(dentry))) {
2804 			/*
2805 			 * dentry:external, target:internal.  Give dentry's
2806 			 * storage to target and make dentry internal
2807 			 */
2808 			memcpy(dentry->d_iname, target->d_name.name,
2809 					target->d_name.len + 1);
2810 			target->d_name.name = dentry->d_name.name;
2811 			dentry->d_name.name = dentry->d_iname;
2812 		} else {
2813 			/*
2814 			 * Both are internal.
2815 			 */
2816 			unsigned int i;
2817 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2818 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2819 				swap(((long *) &dentry->d_iname)[i],
2820 				     ((long *) &target->d_iname)[i]);
2821 			}
2822 		}
2823 	}
2824 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2825 }
2826 
2827 static void copy_name(struct dentry *dentry, struct dentry *target)
2828 {
2829 	struct external_name *old_name = NULL;
2830 	if (unlikely(dname_external(dentry)))
2831 		old_name = external_name(dentry);
2832 	if (unlikely(dname_external(target))) {
2833 		atomic_inc(&external_name(target)->u.count);
2834 		dentry->d_name = target->d_name;
2835 	} else {
2836 		memcpy(dentry->d_iname, target->d_name.name,
2837 				target->d_name.len + 1);
2838 		dentry->d_name.name = dentry->d_iname;
2839 		dentry->d_name.hash_len = target->d_name.hash_len;
2840 	}
2841 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2842 		kfree_rcu(old_name, u.head);
2843 }
2844 
2845 /*
2846  * __d_move - move a dentry
2847  * @dentry: entry to move
2848  * @target: new dentry
2849  * @exchange: exchange the two dentries
2850  *
2851  * Update the dcache to reflect the move of a file name. Negative
2852  * dcache entries should not be moved in this way. Caller must hold
2853  * rename_lock, the i_mutex of the source and target directories,
2854  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2855  */
2856 static void __d_move(struct dentry *dentry, struct dentry *target,
2857 		     bool exchange)
2858 {
2859 	struct dentry *old_parent, *p;
2860 	struct inode *dir = NULL;
2861 	unsigned n;
2862 
2863 	WARN_ON(!dentry->d_inode);
2864 	if (WARN_ON(dentry == target))
2865 		return;
2866 
2867 	BUG_ON(d_ancestor(target, dentry));
2868 	old_parent = dentry->d_parent;
2869 	p = d_ancestor(old_parent, target);
2870 	if (IS_ROOT(dentry)) {
2871 		BUG_ON(p);
2872 		spin_lock(&target->d_parent->d_lock);
2873 	} else if (!p) {
2874 		/* target is not a descendent of dentry->d_parent */
2875 		spin_lock(&target->d_parent->d_lock);
2876 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2877 	} else {
2878 		BUG_ON(p == dentry);
2879 		spin_lock(&old_parent->d_lock);
2880 		if (p != target)
2881 			spin_lock_nested(&target->d_parent->d_lock,
2882 					DENTRY_D_LOCK_NESTED);
2883 	}
2884 	spin_lock_nested(&dentry->d_lock, 2);
2885 	spin_lock_nested(&target->d_lock, 3);
2886 
2887 	if (unlikely(d_in_lookup(target))) {
2888 		dir = target->d_parent->d_inode;
2889 		n = start_dir_add(dir);
2890 		__d_lookup_done(target);
2891 	}
2892 
2893 	write_seqcount_begin(&dentry->d_seq);
2894 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2895 
2896 	/* unhash both */
2897 	if (!d_unhashed(dentry))
2898 		___d_drop(dentry);
2899 	if (!d_unhashed(target))
2900 		___d_drop(target);
2901 
2902 	/* ... and switch them in the tree */
2903 	dentry->d_parent = target->d_parent;
2904 	if (!exchange) {
2905 		copy_name(dentry, target);
2906 		target->d_hash.pprev = NULL;
2907 		dentry->d_parent->d_lockref.count++;
2908 		if (dentry != old_parent) /* wasn't IS_ROOT */
2909 			WARN_ON(!--old_parent->d_lockref.count);
2910 	} else {
2911 		target->d_parent = old_parent;
2912 		swap_names(dentry, target);
2913 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2914 		__d_rehash(target);
2915 		fsnotify_update_flags(target);
2916 	}
2917 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2918 	__d_rehash(dentry);
2919 	fsnotify_update_flags(dentry);
2920 	fscrypt_handle_d_move(dentry);
2921 
2922 	write_seqcount_end(&target->d_seq);
2923 	write_seqcount_end(&dentry->d_seq);
2924 
2925 	if (dir)
2926 		end_dir_add(dir, n);
2927 
2928 	if (dentry->d_parent != old_parent)
2929 		spin_unlock(&dentry->d_parent->d_lock);
2930 	if (dentry != old_parent)
2931 		spin_unlock(&old_parent->d_lock);
2932 	spin_unlock(&target->d_lock);
2933 	spin_unlock(&dentry->d_lock);
2934 }
2935 
2936 /*
2937  * d_move - move a dentry
2938  * @dentry: entry to move
2939  * @target: new dentry
2940  *
2941  * Update the dcache to reflect the move of a file name. Negative
2942  * dcache entries should not be moved in this way. See the locking
2943  * requirements for __d_move.
2944  */
2945 void d_move(struct dentry *dentry, struct dentry *target)
2946 {
2947 	write_seqlock(&rename_lock);
2948 	__d_move(dentry, target, false);
2949 	write_sequnlock(&rename_lock);
2950 }
2951 EXPORT_SYMBOL(d_move);
2952 
2953 /*
2954  * d_exchange - exchange two dentries
2955  * @dentry1: first dentry
2956  * @dentry2: second dentry
2957  */
2958 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2959 {
2960 	write_seqlock(&rename_lock);
2961 
2962 	WARN_ON(!dentry1->d_inode);
2963 	WARN_ON(!dentry2->d_inode);
2964 	WARN_ON(IS_ROOT(dentry1));
2965 	WARN_ON(IS_ROOT(dentry2));
2966 
2967 	__d_move(dentry1, dentry2, true);
2968 
2969 	write_sequnlock(&rename_lock);
2970 }
2971 
2972 /**
2973  * d_ancestor - search for an ancestor
2974  * @p1: ancestor dentry
2975  * @p2: child dentry
2976  *
2977  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2978  * an ancestor of p2, else NULL.
2979  */
2980 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2981 {
2982 	struct dentry *p;
2983 
2984 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2985 		if (p->d_parent == p1)
2986 			return p;
2987 	}
2988 	return NULL;
2989 }
2990 
2991 /*
2992  * This helper attempts to cope with remotely renamed directories
2993  *
2994  * It assumes that the caller is already holding
2995  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2996  *
2997  * Note: If ever the locking in lock_rename() changes, then please
2998  * remember to update this too...
2999  */
3000 static int __d_unalias(struct inode *inode,
3001 		struct dentry *dentry, struct dentry *alias)
3002 {
3003 	struct mutex *m1 = NULL;
3004 	struct rw_semaphore *m2 = NULL;
3005 	int ret = -ESTALE;
3006 
3007 	/* If alias and dentry share a parent, then no extra locks required */
3008 	if (alias->d_parent == dentry->d_parent)
3009 		goto out_unalias;
3010 
3011 	/* See lock_rename() */
3012 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3013 		goto out_err;
3014 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3015 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3016 		goto out_err;
3017 	m2 = &alias->d_parent->d_inode->i_rwsem;
3018 out_unalias:
3019 	__d_move(alias, dentry, false);
3020 	ret = 0;
3021 out_err:
3022 	if (m2)
3023 		up_read(m2);
3024 	if (m1)
3025 		mutex_unlock(m1);
3026 	return ret;
3027 }
3028 
3029 /**
3030  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3031  * @inode:  the inode which may have a disconnected dentry
3032  * @dentry: a negative dentry which we want to point to the inode.
3033  *
3034  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3035  * place of the given dentry and return it, else simply d_add the inode
3036  * to the dentry and return NULL.
3037  *
3038  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3039  * we should error out: directories can't have multiple aliases.
3040  *
3041  * This is needed in the lookup routine of any filesystem that is exportable
3042  * (via knfsd) so that we can build dcache paths to directories effectively.
3043  *
3044  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3045  * is returned.  This matches the expected return value of ->lookup.
3046  *
3047  * Cluster filesystems may call this function with a negative, hashed dentry.
3048  * In that case, we know that the inode will be a regular file, and also this
3049  * will only occur during atomic_open. So we need to check for the dentry
3050  * being already hashed only in the final case.
3051  */
3052 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3053 {
3054 	if (IS_ERR(inode))
3055 		return ERR_CAST(inode);
3056 
3057 	BUG_ON(!d_unhashed(dentry));
3058 
3059 	if (!inode)
3060 		goto out;
3061 
3062 	security_d_instantiate(dentry, inode);
3063 	spin_lock(&inode->i_lock);
3064 	if (S_ISDIR(inode->i_mode)) {
3065 		struct dentry *new = __d_find_any_alias(inode);
3066 		if (unlikely(new)) {
3067 			/* The reference to new ensures it remains an alias */
3068 			spin_unlock(&inode->i_lock);
3069 			write_seqlock(&rename_lock);
3070 			if (unlikely(d_ancestor(new, dentry))) {
3071 				write_sequnlock(&rename_lock);
3072 				dput(new);
3073 				new = ERR_PTR(-ELOOP);
3074 				pr_warn_ratelimited(
3075 					"VFS: Lookup of '%s' in %s %s"
3076 					" would have caused loop\n",
3077 					dentry->d_name.name,
3078 					inode->i_sb->s_type->name,
3079 					inode->i_sb->s_id);
3080 			} else if (!IS_ROOT(new)) {
3081 				struct dentry *old_parent = dget(new->d_parent);
3082 				int err = __d_unalias(inode, dentry, new);
3083 				write_sequnlock(&rename_lock);
3084 				if (err) {
3085 					dput(new);
3086 					new = ERR_PTR(err);
3087 				}
3088 				dput(old_parent);
3089 			} else {
3090 				__d_move(new, dentry, false);
3091 				write_sequnlock(&rename_lock);
3092 			}
3093 			iput(inode);
3094 			return new;
3095 		}
3096 	}
3097 out:
3098 	__d_add(dentry, inode);
3099 	return NULL;
3100 }
3101 EXPORT_SYMBOL(d_splice_alias);
3102 
3103 /*
3104  * Test whether new_dentry is a subdirectory of old_dentry.
3105  *
3106  * Trivially implemented using the dcache structure
3107  */
3108 
3109 /**
3110  * is_subdir - is new dentry a subdirectory of old_dentry
3111  * @new_dentry: new dentry
3112  * @old_dentry: old dentry
3113  *
3114  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3115  * Returns false otherwise.
3116  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3117  */
3118 
3119 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3120 {
3121 	bool result;
3122 	unsigned seq;
3123 
3124 	if (new_dentry == old_dentry)
3125 		return true;
3126 
3127 	do {
3128 		/* for restarting inner loop in case of seq retry */
3129 		seq = read_seqbegin(&rename_lock);
3130 		/*
3131 		 * Need rcu_readlock to protect against the d_parent trashing
3132 		 * due to d_move
3133 		 */
3134 		rcu_read_lock();
3135 		if (d_ancestor(old_dentry, new_dentry))
3136 			result = true;
3137 		else
3138 			result = false;
3139 		rcu_read_unlock();
3140 	} while (read_seqretry(&rename_lock, seq));
3141 
3142 	return result;
3143 }
3144 EXPORT_SYMBOL(is_subdir);
3145 
3146 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3147 {
3148 	struct dentry *root = data;
3149 	if (dentry != root) {
3150 		if (d_unhashed(dentry) || !dentry->d_inode)
3151 			return D_WALK_SKIP;
3152 
3153 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3154 			dentry->d_flags |= DCACHE_GENOCIDE;
3155 			dentry->d_lockref.count--;
3156 		}
3157 	}
3158 	return D_WALK_CONTINUE;
3159 }
3160 
3161 void d_genocide(struct dentry *parent)
3162 {
3163 	d_walk(parent, parent, d_genocide_kill);
3164 }
3165 
3166 EXPORT_SYMBOL(d_genocide);
3167 
3168 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3169 {
3170 	inode_dec_link_count(inode);
3171 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3172 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3173 		!d_unlinked(dentry));
3174 	spin_lock(&dentry->d_parent->d_lock);
3175 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3176 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3177 				(unsigned long long)inode->i_ino);
3178 	spin_unlock(&dentry->d_lock);
3179 	spin_unlock(&dentry->d_parent->d_lock);
3180 	d_instantiate(dentry, inode);
3181 }
3182 EXPORT_SYMBOL(d_tmpfile);
3183 
3184 static __initdata unsigned long dhash_entries;
3185 static int __init set_dhash_entries(char *str)
3186 {
3187 	if (!str)
3188 		return 0;
3189 	dhash_entries = simple_strtoul(str, &str, 0);
3190 	return 1;
3191 }
3192 __setup("dhash_entries=", set_dhash_entries);
3193 
3194 static void __init dcache_init_early(void)
3195 {
3196 	/* If hashes are distributed across NUMA nodes, defer
3197 	 * hash allocation until vmalloc space is available.
3198 	 */
3199 	if (hashdist)
3200 		return;
3201 
3202 	dentry_hashtable =
3203 		alloc_large_system_hash("Dentry cache",
3204 					sizeof(struct hlist_bl_head),
3205 					dhash_entries,
3206 					13,
3207 					HASH_EARLY | HASH_ZERO,
3208 					&d_hash_shift,
3209 					NULL,
3210 					0,
3211 					0);
3212 	d_hash_shift = 32 - d_hash_shift;
3213 }
3214 
3215 static void __init dcache_init(void)
3216 {
3217 	/*
3218 	 * A constructor could be added for stable state like the lists,
3219 	 * but it is probably not worth it because of the cache nature
3220 	 * of the dcache.
3221 	 */
3222 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3223 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3224 		d_iname);
3225 
3226 	/* Hash may have been set up in dcache_init_early */
3227 	if (!hashdist)
3228 		return;
3229 
3230 	dentry_hashtable =
3231 		alloc_large_system_hash("Dentry cache",
3232 					sizeof(struct hlist_bl_head),
3233 					dhash_entries,
3234 					13,
3235 					HASH_ZERO,
3236 					&d_hash_shift,
3237 					NULL,
3238 					0,
3239 					0);
3240 	d_hash_shift = 32 - d_hash_shift;
3241 }
3242 
3243 /* SLAB cache for __getname() consumers */
3244 struct kmem_cache *names_cachep __read_mostly;
3245 EXPORT_SYMBOL(names_cachep);
3246 
3247 void __init vfs_caches_init_early(void)
3248 {
3249 	int i;
3250 
3251 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3252 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3253 
3254 	dcache_init_early();
3255 	inode_init_early();
3256 }
3257 
3258 void __init vfs_caches_init(void)
3259 {
3260 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3262 
3263 	dcache_init();
3264 	inode_init();
3265 	files_init();
3266 	files_maxfiles_init();
3267 	mnt_init();
3268 	bdev_cache_init();
3269 	chrdev_init();
3270 }
3271