1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 88 EXPORT_SYMBOL(dotdot_name); 89 90 /* 91 * This is the single most critical data structure when it comes 92 * to the dcache: the hashtable for lookups. Somebody should try 93 * to make this good - I've just made it work. 94 * 95 * This hash-function tries to avoid losing too many bits of hash 96 * information, yet avoid using a prime hash-size or similar. 97 */ 98 99 static unsigned int d_hash_shift __read_mostly; 100 101 static struct hlist_bl_head *dentry_hashtable __read_mostly; 102 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 104 { 105 return dentry_hashtable + (hash >> d_hash_shift); 106 } 107 108 #define IN_LOOKUP_SHIFT 10 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 110 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 112 unsigned int hash) 113 { 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 116 } 117 118 struct dentry_stat_t { 119 long nr_dentry; 120 long nr_unused; 121 long age_limit; /* age in seconds */ 122 long want_pages; /* pages requested by system */ 123 long nr_negative; /* # of unused negative dentries */ 124 long dummy; /* Reserved for future use */ 125 }; 126 127 static DEFINE_PER_CPU(long, nr_dentry); 128 static DEFINE_PER_CPU(long, nr_dentry_unused); 129 static DEFINE_PER_CPU(long, nr_dentry_negative); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 /* Statistics gathering. */ 133 static struct dentry_stat_t dentry_stat = { 134 .age_limit = 45, 135 }; 136 137 /* 138 * Here we resort to our own counters instead of using generic per-cpu counters 139 * for consistency with what the vfs inode code does. We are expected to harvest 140 * better code and performance by having our own specialized counters. 141 * 142 * Please note that the loop is done over all possible CPUs, not over all online 143 * CPUs. The reason for this is that we don't want to play games with CPUs going 144 * on and off. If one of them goes off, we will just keep their counters. 145 * 146 * glommer: See cffbc8a for details, and if you ever intend to change this, 147 * please update all vfs counters to match. 148 */ 149 static long get_nr_dentry(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_unused(void) 159 { 160 int i; 161 long sum = 0; 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry_unused, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 static long get_nr_dentry_negative(void) 168 { 169 int i; 170 long sum = 0; 171 172 for_each_possible_cpu(i) 173 sum += per_cpu(nr_dentry_negative, i); 174 return sum < 0 ? 0 : sum; 175 } 176 177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 178 size_t *lenp, loff_t *ppos) 179 { 180 dentry_stat.nr_dentry = get_nr_dentry(); 181 dentry_stat.nr_unused = get_nr_dentry_unused(); 182 dentry_stat.nr_negative = get_nr_dentry_negative(); 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 184 } 185 186 static struct ctl_table fs_dcache_sysctls[] = { 187 { 188 .procname = "dentry-state", 189 .data = &dentry_stat, 190 .maxlen = 6*sizeof(long), 191 .mode = 0444, 192 .proc_handler = proc_nr_dentry, 193 }, 194 { } 195 }; 196 197 static int __init init_fs_dcache_sysctls(void) 198 { 199 register_sysctl_init("fs", fs_dcache_sysctls); 200 return 0; 201 } 202 fs_initcall(init_fs_dcache_sysctls); 203 #endif 204 205 /* 206 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 207 * The strings are both count bytes long, and count is non-zero. 208 */ 209 #ifdef CONFIG_DCACHE_WORD_ACCESS 210 211 #include <asm/word-at-a-time.h> 212 /* 213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 214 * aligned allocation for this particular component. We don't 215 * strictly need the load_unaligned_zeropad() safety, but it 216 * doesn't hurt either. 217 * 218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 219 * need the careful unaligned handling. 220 */ 221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 222 { 223 unsigned long a,b,mask; 224 225 for (;;) { 226 a = read_word_at_a_time(cs); 227 b = load_unaligned_zeropad(ct); 228 if (tcount < sizeof(unsigned long)) 229 break; 230 if (unlikely(a != b)) 231 return 1; 232 cs += sizeof(unsigned long); 233 ct += sizeof(unsigned long); 234 tcount -= sizeof(unsigned long); 235 if (!tcount) 236 return 0; 237 } 238 mask = bytemask_from_count(tcount); 239 return unlikely(!!((a ^ b) & mask)); 240 } 241 242 #else 243 244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 245 { 246 do { 247 if (*cs != *ct) 248 return 1; 249 cs++; 250 ct++; 251 tcount--; 252 } while (tcount); 253 return 0; 254 } 255 256 #endif 257 258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 259 { 260 /* 261 * Be careful about RCU walk racing with rename: 262 * use 'READ_ONCE' to fetch the name pointer. 263 * 264 * NOTE! Even if a rename will mean that the length 265 * was not loaded atomically, we don't care. The 266 * RCU walk will check the sequence count eventually, 267 * and catch it. And we won't overrun the buffer, 268 * because we're reading the name pointer atomically, 269 * and a dentry name is guaranteed to be properly 270 * terminated with a NUL byte. 271 * 272 * End result: even if 'len' is wrong, we'll exit 273 * early because the data cannot match (there can 274 * be no NUL in the ct/tcount data) 275 */ 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 277 278 return dentry_string_cmp(cs, ct, tcount); 279 } 280 281 struct external_name { 282 union { 283 atomic_t count; 284 struct rcu_head head; 285 } u; 286 unsigned char name[]; 287 }; 288 289 static inline struct external_name *external_name(struct dentry *dentry) 290 { 291 return container_of(dentry->d_name.name, struct external_name, name[0]); 292 } 293 294 static void __d_free(struct rcu_head *head) 295 { 296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 297 298 kmem_cache_free(dentry_cache, dentry); 299 } 300 301 static void __d_free_external(struct rcu_head *head) 302 { 303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 kfree(external_name(dentry)); 305 kmem_cache_free(dentry_cache, dentry); 306 } 307 308 static inline int dname_external(const struct dentry *dentry) 309 { 310 return dentry->d_name.name != dentry->d_iname; 311 } 312 313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 314 { 315 spin_lock(&dentry->d_lock); 316 name->name = dentry->d_name; 317 if (unlikely(dname_external(dentry))) { 318 atomic_inc(&external_name(dentry)->u.count); 319 } else { 320 memcpy(name->inline_name, dentry->d_iname, 321 dentry->d_name.len + 1); 322 name->name.name = name->inline_name; 323 } 324 spin_unlock(&dentry->d_lock); 325 } 326 EXPORT_SYMBOL(take_dentry_name_snapshot); 327 328 void release_dentry_name_snapshot(struct name_snapshot *name) 329 { 330 if (unlikely(name->name.name != name->inline_name)) { 331 struct external_name *p; 332 p = container_of(name->name.name, struct external_name, name[0]); 333 if (unlikely(atomic_dec_and_test(&p->u.count))) 334 kfree_rcu(p, u.head); 335 } 336 } 337 EXPORT_SYMBOL(release_dentry_name_snapshot); 338 339 static inline void __d_set_inode_and_type(struct dentry *dentry, 340 struct inode *inode, 341 unsigned type_flags) 342 { 343 unsigned flags; 344 345 dentry->d_inode = inode; 346 flags = READ_ONCE(dentry->d_flags); 347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 348 flags |= type_flags; 349 smp_store_release(&dentry->d_flags, flags); 350 } 351 352 static inline void __d_clear_type_and_inode(struct dentry *dentry) 353 { 354 unsigned flags = READ_ONCE(dentry->d_flags); 355 356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 357 WRITE_ONCE(dentry->d_flags, flags); 358 dentry->d_inode = NULL; 359 /* 360 * The negative counter only tracks dentries on the LRU. Don't inc if 361 * d_lru is on another list. 362 */ 363 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 364 this_cpu_inc(nr_dentry_negative); 365 } 366 367 static void dentry_free(struct dentry *dentry) 368 { 369 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 370 if (unlikely(dname_external(dentry))) { 371 struct external_name *p = external_name(dentry); 372 if (likely(atomic_dec_and_test(&p->u.count))) { 373 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 374 return; 375 } 376 } 377 /* if dentry was never visible to RCU, immediate free is OK */ 378 if (dentry->d_flags & DCACHE_NORCU) 379 __d_free(&dentry->d_u.d_rcu); 380 else 381 call_rcu(&dentry->d_u.d_rcu, __d_free); 382 } 383 384 /* 385 * Release the dentry's inode, using the filesystem 386 * d_iput() operation if defined. 387 */ 388 static void dentry_unlink_inode(struct dentry * dentry) 389 __releases(dentry->d_lock) 390 __releases(dentry->d_inode->i_lock) 391 { 392 struct inode *inode = dentry->d_inode; 393 394 raw_write_seqcount_begin(&dentry->d_seq); 395 __d_clear_type_and_inode(dentry); 396 hlist_del_init(&dentry->d_u.d_alias); 397 raw_write_seqcount_end(&dentry->d_seq); 398 spin_unlock(&dentry->d_lock); 399 spin_unlock(&inode->i_lock); 400 if (!inode->i_nlink) 401 fsnotify_inoderemove(inode); 402 if (dentry->d_op && dentry->d_op->d_iput) 403 dentry->d_op->d_iput(dentry, inode); 404 else 405 iput(inode); 406 } 407 408 /* 409 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 410 * is in use - which includes both the "real" per-superblock 411 * LRU list _and_ the DCACHE_SHRINK_LIST use. 412 * 413 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 414 * on the shrink list (ie not on the superblock LRU list). 415 * 416 * The per-cpu "nr_dentry_unused" counters are updated with 417 * the DCACHE_LRU_LIST bit. 418 * 419 * The per-cpu "nr_dentry_negative" counters are only updated 420 * when deleted from or added to the per-superblock LRU list, not 421 * from/to the shrink list. That is to avoid an unneeded dec/inc 422 * pair when moving from LRU to shrink list in select_collect(). 423 * 424 * These helper functions make sure we always follow the 425 * rules. d_lock must be held by the caller. 426 */ 427 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 428 static void d_lru_add(struct dentry *dentry) 429 { 430 D_FLAG_VERIFY(dentry, 0); 431 dentry->d_flags |= DCACHE_LRU_LIST; 432 this_cpu_inc(nr_dentry_unused); 433 if (d_is_negative(dentry)) 434 this_cpu_inc(nr_dentry_negative); 435 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 436 } 437 438 static void d_lru_del(struct dentry *dentry) 439 { 440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 441 dentry->d_flags &= ~DCACHE_LRU_LIST; 442 this_cpu_dec(nr_dentry_unused); 443 if (d_is_negative(dentry)) 444 this_cpu_dec(nr_dentry_negative); 445 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 446 } 447 448 static void d_shrink_del(struct dentry *dentry) 449 { 450 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 451 list_del_init(&dentry->d_lru); 452 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 453 this_cpu_dec(nr_dentry_unused); 454 } 455 456 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 457 { 458 D_FLAG_VERIFY(dentry, 0); 459 list_add(&dentry->d_lru, list); 460 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 461 this_cpu_inc(nr_dentry_unused); 462 } 463 464 /* 465 * These can only be called under the global LRU lock, ie during the 466 * callback for freeing the LRU list. "isolate" removes it from the 467 * LRU lists entirely, while shrink_move moves it to the indicated 468 * private list. 469 */ 470 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 471 { 472 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 473 dentry->d_flags &= ~DCACHE_LRU_LIST; 474 this_cpu_dec(nr_dentry_unused); 475 if (d_is_negative(dentry)) 476 this_cpu_dec(nr_dentry_negative); 477 list_lru_isolate(lru, &dentry->d_lru); 478 } 479 480 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 481 struct list_head *list) 482 { 483 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 484 dentry->d_flags |= DCACHE_SHRINK_LIST; 485 if (d_is_negative(dentry)) 486 this_cpu_dec(nr_dentry_negative); 487 list_lru_isolate_move(lru, &dentry->d_lru, list); 488 } 489 490 static void ___d_drop(struct dentry *dentry) 491 { 492 struct hlist_bl_head *b; 493 /* 494 * Hashed dentries are normally on the dentry hashtable, 495 * with the exception of those newly allocated by 496 * d_obtain_root, which are always IS_ROOT: 497 */ 498 if (unlikely(IS_ROOT(dentry))) 499 b = &dentry->d_sb->s_roots; 500 else 501 b = d_hash(dentry->d_name.hash); 502 503 hlist_bl_lock(b); 504 __hlist_bl_del(&dentry->d_hash); 505 hlist_bl_unlock(b); 506 } 507 508 void __d_drop(struct dentry *dentry) 509 { 510 if (!d_unhashed(dentry)) { 511 ___d_drop(dentry); 512 dentry->d_hash.pprev = NULL; 513 write_seqcount_invalidate(&dentry->d_seq); 514 } 515 } 516 EXPORT_SYMBOL(__d_drop); 517 518 /** 519 * d_drop - drop a dentry 520 * @dentry: dentry to drop 521 * 522 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 523 * be found through a VFS lookup any more. Note that this is different from 524 * deleting the dentry - d_delete will try to mark the dentry negative if 525 * possible, giving a successful _negative_ lookup, while d_drop will 526 * just make the cache lookup fail. 527 * 528 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 529 * reason (NFS timeouts or autofs deletes). 530 * 531 * __d_drop requires dentry->d_lock 532 * 533 * ___d_drop doesn't mark dentry as "unhashed" 534 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 535 */ 536 void d_drop(struct dentry *dentry) 537 { 538 spin_lock(&dentry->d_lock); 539 __d_drop(dentry); 540 spin_unlock(&dentry->d_lock); 541 } 542 EXPORT_SYMBOL(d_drop); 543 544 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 545 { 546 struct dentry *next; 547 /* 548 * Inform d_walk() and shrink_dentry_list() that we are no longer 549 * attached to the dentry tree 550 */ 551 dentry->d_flags |= DCACHE_DENTRY_KILLED; 552 if (unlikely(list_empty(&dentry->d_child))) 553 return; 554 __list_del_entry(&dentry->d_child); 555 /* 556 * Cursors can move around the list of children. While we'd been 557 * a normal list member, it didn't matter - ->d_child.next would've 558 * been updated. However, from now on it won't be and for the 559 * things like d_walk() it might end up with a nasty surprise. 560 * Normally d_walk() doesn't care about cursors moving around - 561 * ->d_lock on parent prevents that and since a cursor has no children 562 * of its own, we get through it without ever unlocking the parent. 563 * There is one exception, though - if we ascend from a child that 564 * gets killed as soon as we unlock it, the next sibling is found 565 * using the value left in its ->d_child.next. And if _that_ 566 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 567 * before d_walk() regains parent->d_lock, we'll end up skipping 568 * everything the cursor had been moved past. 569 * 570 * Solution: make sure that the pointer left behind in ->d_child.next 571 * points to something that won't be moving around. I.e. skip the 572 * cursors. 573 */ 574 while (dentry->d_child.next != &parent->d_subdirs) { 575 next = list_entry(dentry->d_child.next, struct dentry, d_child); 576 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 577 break; 578 dentry->d_child.next = next->d_child.next; 579 } 580 } 581 582 static void __dentry_kill(struct dentry *dentry) 583 { 584 struct dentry *parent = NULL; 585 bool can_free = true; 586 if (!IS_ROOT(dentry)) 587 parent = dentry->d_parent; 588 589 /* 590 * The dentry is now unrecoverably dead to the world. 591 */ 592 lockref_mark_dead(&dentry->d_lockref); 593 594 /* 595 * inform the fs via d_prune that this dentry is about to be 596 * unhashed and destroyed. 597 */ 598 if (dentry->d_flags & DCACHE_OP_PRUNE) 599 dentry->d_op->d_prune(dentry); 600 601 if (dentry->d_flags & DCACHE_LRU_LIST) { 602 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 603 d_lru_del(dentry); 604 } 605 /* if it was on the hash then remove it */ 606 __d_drop(dentry); 607 dentry_unlist(dentry, parent); 608 if (parent) 609 spin_unlock(&parent->d_lock); 610 if (dentry->d_inode) 611 dentry_unlink_inode(dentry); 612 else 613 spin_unlock(&dentry->d_lock); 614 this_cpu_dec(nr_dentry); 615 if (dentry->d_op && dentry->d_op->d_release) 616 dentry->d_op->d_release(dentry); 617 618 spin_lock(&dentry->d_lock); 619 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 620 dentry->d_flags |= DCACHE_MAY_FREE; 621 can_free = false; 622 } 623 spin_unlock(&dentry->d_lock); 624 if (likely(can_free)) 625 dentry_free(dentry); 626 cond_resched(); 627 } 628 629 static struct dentry *__lock_parent(struct dentry *dentry) 630 { 631 struct dentry *parent; 632 rcu_read_lock(); 633 spin_unlock(&dentry->d_lock); 634 again: 635 parent = READ_ONCE(dentry->d_parent); 636 spin_lock(&parent->d_lock); 637 /* 638 * We can't blindly lock dentry until we are sure 639 * that we won't violate the locking order. 640 * Any changes of dentry->d_parent must have 641 * been done with parent->d_lock held, so 642 * spin_lock() above is enough of a barrier 643 * for checking if it's still our child. 644 */ 645 if (unlikely(parent != dentry->d_parent)) { 646 spin_unlock(&parent->d_lock); 647 goto again; 648 } 649 rcu_read_unlock(); 650 if (parent != dentry) 651 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 652 else 653 parent = NULL; 654 return parent; 655 } 656 657 static inline struct dentry *lock_parent(struct dentry *dentry) 658 { 659 struct dentry *parent = dentry->d_parent; 660 if (IS_ROOT(dentry)) 661 return NULL; 662 if (likely(spin_trylock(&parent->d_lock))) 663 return parent; 664 return __lock_parent(dentry); 665 } 666 667 static inline bool retain_dentry(struct dentry *dentry) 668 { 669 WARN_ON(d_in_lookup(dentry)); 670 671 /* Unreachable? Get rid of it */ 672 if (unlikely(d_unhashed(dentry))) 673 return false; 674 675 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 676 return false; 677 678 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 679 if (dentry->d_op->d_delete(dentry)) 680 return false; 681 } 682 683 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 684 return false; 685 686 /* retain; LRU fodder */ 687 dentry->d_lockref.count--; 688 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 689 d_lru_add(dentry); 690 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 691 dentry->d_flags |= DCACHE_REFERENCED; 692 return true; 693 } 694 695 void d_mark_dontcache(struct inode *inode) 696 { 697 struct dentry *de; 698 699 spin_lock(&inode->i_lock); 700 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 701 spin_lock(&de->d_lock); 702 de->d_flags |= DCACHE_DONTCACHE; 703 spin_unlock(&de->d_lock); 704 } 705 inode->i_state |= I_DONTCACHE; 706 spin_unlock(&inode->i_lock); 707 } 708 EXPORT_SYMBOL(d_mark_dontcache); 709 710 /* 711 * Finish off a dentry we've decided to kill. 712 * dentry->d_lock must be held, returns with it unlocked. 713 * Returns dentry requiring refcount drop, or NULL if we're done. 714 */ 715 static struct dentry *dentry_kill(struct dentry *dentry) 716 __releases(dentry->d_lock) 717 { 718 struct inode *inode = dentry->d_inode; 719 struct dentry *parent = NULL; 720 721 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 722 goto slow_positive; 723 724 if (!IS_ROOT(dentry)) { 725 parent = dentry->d_parent; 726 if (unlikely(!spin_trylock(&parent->d_lock))) { 727 parent = __lock_parent(dentry); 728 if (likely(inode || !dentry->d_inode)) 729 goto got_locks; 730 /* negative that became positive */ 731 if (parent) 732 spin_unlock(&parent->d_lock); 733 inode = dentry->d_inode; 734 goto slow_positive; 735 } 736 } 737 __dentry_kill(dentry); 738 return parent; 739 740 slow_positive: 741 spin_unlock(&dentry->d_lock); 742 spin_lock(&inode->i_lock); 743 spin_lock(&dentry->d_lock); 744 parent = lock_parent(dentry); 745 got_locks: 746 if (unlikely(dentry->d_lockref.count != 1)) { 747 dentry->d_lockref.count--; 748 } else if (likely(!retain_dentry(dentry))) { 749 __dentry_kill(dentry); 750 return parent; 751 } 752 /* we are keeping it, after all */ 753 if (inode) 754 spin_unlock(&inode->i_lock); 755 if (parent) 756 spin_unlock(&parent->d_lock); 757 spin_unlock(&dentry->d_lock); 758 return NULL; 759 } 760 761 /* 762 * Try to do a lockless dput(), and return whether that was successful. 763 * 764 * If unsuccessful, we return false, having already taken the dentry lock. 765 * 766 * The caller needs to hold the RCU read lock, so that the dentry is 767 * guaranteed to stay around even if the refcount goes down to zero! 768 */ 769 static inline bool fast_dput(struct dentry *dentry) 770 { 771 int ret; 772 unsigned int d_flags; 773 774 /* 775 * If we have a d_op->d_delete() operation, we sould not 776 * let the dentry count go to zero, so use "put_or_lock". 777 */ 778 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 779 return lockref_put_or_lock(&dentry->d_lockref); 780 781 /* 782 * .. otherwise, we can try to just decrement the 783 * lockref optimistically. 784 */ 785 ret = lockref_put_return(&dentry->d_lockref); 786 787 /* 788 * If the lockref_put_return() failed due to the lock being held 789 * by somebody else, the fast path has failed. We will need to 790 * get the lock, and then check the count again. 791 */ 792 if (unlikely(ret < 0)) { 793 spin_lock(&dentry->d_lock); 794 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 795 spin_unlock(&dentry->d_lock); 796 return true; 797 } 798 dentry->d_lockref.count--; 799 goto locked; 800 } 801 802 /* 803 * If we weren't the last ref, we're done. 804 */ 805 if (ret) 806 return true; 807 808 /* 809 * Careful, careful. The reference count went down 810 * to zero, but we don't hold the dentry lock, so 811 * somebody else could get it again, and do another 812 * dput(), and we need to not race with that. 813 * 814 * However, there is a very special and common case 815 * where we don't care, because there is nothing to 816 * do: the dentry is still hashed, it does not have 817 * a 'delete' op, and it's referenced and already on 818 * the LRU list. 819 * 820 * NOTE! Since we aren't locked, these values are 821 * not "stable". However, it is sufficient that at 822 * some point after we dropped the reference the 823 * dentry was hashed and the flags had the proper 824 * value. Other dentry users may have re-gotten 825 * a reference to the dentry and change that, but 826 * our work is done - we can leave the dentry 827 * around with a zero refcount. 828 * 829 * Nevertheless, there are two cases that we should kill 830 * the dentry anyway. 831 * 1. free disconnected dentries as soon as their refcount 832 * reached zero. 833 * 2. free dentries if they should not be cached. 834 */ 835 smp_rmb(); 836 d_flags = READ_ONCE(dentry->d_flags); 837 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 838 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 839 840 /* Nothing to do? Dropping the reference was all we needed? */ 841 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 842 return true; 843 844 /* 845 * Not the fast normal case? Get the lock. We've already decremented 846 * the refcount, but we'll need to re-check the situation after 847 * getting the lock. 848 */ 849 spin_lock(&dentry->d_lock); 850 851 /* 852 * Did somebody else grab a reference to it in the meantime, and 853 * we're no longer the last user after all? Alternatively, somebody 854 * else could have killed it and marked it dead. Either way, we 855 * don't need to do anything else. 856 */ 857 locked: 858 if (dentry->d_lockref.count) { 859 spin_unlock(&dentry->d_lock); 860 return true; 861 } 862 863 /* 864 * Re-get the reference we optimistically dropped. We hold the 865 * lock, and we just tested that it was zero, so we can just 866 * set it to 1. 867 */ 868 dentry->d_lockref.count = 1; 869 return false; 870 } 871 872 873 /* 874 * This is dput 875 * 876 * This is complicated by the fact that we do not want to put 877 * dentries that are no longer on any hash chain on the unused 878 * list: we'd much rather just get rid of them immediately. 879 * 880 * However, that implies that we have to traverse the dentry 881 * tree upwards to the parents which might _also_ now be 882 * scheduled for deletion (it may have been only waiting for 883 * its last child to go away). 884 * 885 * This tail recursion is done by hand as we don't want to depend 886 * on the compiler to always get this right (gcc generally doesn't). 887 * Real recursion would eat up our stack space. 888 */ 889 890 /* 891 * dput - release a dentry 892 * @dentry: dentry to release 893 * 894 * Release a dentry. This will drop the usage count and if appropriate 895 * call the dentry unlink method as well as removing it from the queues and 896 * releasing its resources. If the parent dentries were scheduled for release 897 * they too may now get deleted. 898 */ 899 void dput(struct dentry *dentry) 900 { 901 while (dentry) { 902 might_sleep(); 903 904 rcu_read_lock(); 905 if (likely(fast_dput(dentry))) { 906 rcu_read_unlock(); 907 return; 908 } 909 910 /* Slow case: now with the dentry lock held */ 911 rcu_read_unlock(); 912 913 if (likely(retain_dentry(dentry))) { 914 spin_unlock(&dentry->d_lock); 915 return; 916 } 917 918 dentry = dentry_kill(dentry); 919 } 920 } 921 EXPORT_SYMBOL(dput); 922 923 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 924 __must_hold(&dentry->d_lock) 925 { 926 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 927 /* let the owner of the list it's on deal with it */ 928 --dentry->d_lockref.count; 929 } else { 930 if (dentry->d_flags & DCACHE_LRU_LIST) 931 d_lru_del(dentry); 932 if (!--dentry->d_lockref.count) 933 d_shrink_add(dentry, list); 934 } 935 } 936 937 void dput_to_list(struct dentry *dentry, struct list_head *list) 938 { 939 rcu_read_lock(); 940 if (likely(fast_dput(dentry))) { 941 rcu_read_unlock(); 942 return; 943 } 944 rcu_read_unlock(); 945 if (!retain_dentry(dentry)) 946 __dput_to_list(dentry, list); 947 spin_unlock(&dentry->d_lock); 948 } 949 950 /* This must be called with d_lock held */ 951 static inline void __dget_dlock(struct dentry *dentry) 952 { 953 dentry->d_lockref.count++; 954 } 955 956 static inline void __dget(struct dentry *dentry) 957 { 958 lockref_get(&dentry->d_lockref); 959 } 960 961 struct dentry *dget_parent(struct dentry *dentry) 962 { 963 int gotref; 964 struct dentry *ret; 965 unsigned seq; 966 967 /* 968 * Do optimistic parent lookup without any 969 * locking. 970 */ 971 rcu_read_lock(); 972 seq = raw_seqcount_begin(&dentry->d_seq); 973 ret = READ_ONCE(dentry->d_parent); 974 gotref = lockref_get_not_zero(&ret->d_lockref); 975 rcu_read_unlock(); 976 if (likely(gotref)) { 977 if (!read_seqcount_retry(&dentry->d_seq, seq)) 978 return ret; 979 dput(ret); 980 } 981 982 repeat: 983 /* 984 * Don't need rcu_dereference because we re-check it was correct under 985 * the lock. 986 */ 987 rcu_read_lock(); 988 ret = dentry->d_parent; 989 spin_lock(&ret->d_lock); 990 if (unlikely(ret != dentry->d_parent)) { 991 spin_unlock(&ret->d_lock); 992 rcu_read_unlock(); 993 goto repeat; 994 } 995 rcu_read_unlock(); 996 BUG_ON(!ret->d_lockref.count); 997 ret->d_lockref.count++; 998 spin_unlock(&ret->d_lock); 999 return ret; 1000 } 1001 EXPORT_SYMBOL(dget_parent); 1002 1003 static struct dentry * __d_find_any_alias(struct inode *inode) 1004 { 1005 struct dentry *alias; 1006 1007 if (hlist_empty(&inode->i_dentry)) 1008 return NULL; 1009 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1010 __dget(alias); 1011 return alias; 1012 } 1013 1014 /** 1015 * d_find_any_alias - find any alias for a given inode 1016 * @inode: inode to find an alias for 1017 * 1018 * If any aliases exist for the given inode, take and return a 1019 * reference for one of them. If no aliases exist, return %NULL. 1020 */ 1021 struct dentry *d_find_any_alias(struct inode *inode) 1022 { 1023 struct dentry *de; 1024 1025 spin_lock(&inode->i_lock); 1026 de = __d_find_any_alias(inode); 1027 spin_unlock(&inode->i_lock); 1028 return de; 1029 } 1030 EXPORT_SYMBOL(d_find_any_alias); 1031 1032 static struct dentry *__d_find_alias(struct inode *inode) 1033 { 1034 struct dentry *alias; 1035 1036 if (S_ISDIR(inode->i_mode)) 1037 return __d_find_any_alias(inode); 1038 1039 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1040 spin_lock(&alias->d_lock); 1041 if (!d_unhashed(alias)) { 1042 __dget_dlock(alias); 1043 spin_unlock(&alias->d_lock); 1044 return alias; 1045 } 1046 spin_unlock(&alias->d_lock); 1047 } 1048 return NULL; 1049 } 1050 1051 /** 1052 * d_find_alias - grab a hashed alias of inode 1053 * @inode: inode in question 1054 * 1055 * If inode has a hashed alias, or is a directory and has any alias, 1056 * acquire the reference to alias and return it. Otherwise return NULL. 1057 * Notice that if inode is a directory there can be only one alias and 1058 * it can be unhashed only if it has no children, or if it is the root 1059 * of a filesystem, or if the directory was renamed and d_revalidate 1060 * was the first vfs operation to notice. 1061 * 1062 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1063 * any other hashed alias over that one. 1064 */ 1065 struct dentry *d_find_alias(struct inode *inode) 1066 { 1067 struct dentry *de = NULL; 1068 1069 if (!hlist_empty(&inode->i_dentry)) { 1070 spin_lock(&inode->i_lock); 1071 de = __d_find_alias(inode); 1072 spin_unlock(&inode->i_lock); 1073 } 1074 return de; 1075 } 1076 EXPORT_SYMBOL(d_find_alias); 1077 1078 /* 1079 * Caller MUST be holding rcu_read_lock() and be guaranteed 1080 * that inode won't get freed until rcu_read_unlock(). 1081 */ 1082 struct dentry *d_find_alias_rcu(struct inode *inode) 1083 { 1084 struct hlist_head *l = &inode->i_dentry; 1085 struct dentry *de = NULL; 1086 1087 spin_lock(&inode->i_lock); 1088 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1089 // used without having I_FREEING set, which means no aliases left 1090 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1091 if (S_ISDIR(inode->i_mode)) { 1092 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1093 } else { 1094 hlist_for_each_entry(de, l, d_u.d_alias) 1095 if (!d_unhashed(de)) 1096 break; 1097 } 1098 } 1099 spin_unlock(&inode->i_lock); 1100 return de; 1101 } 1102 1103 /* 1104 * Try to kill dentries associated with this inode. 1105 * WARNING: you must own a reference to inode. 1106 */ 1107 void d_prune_aliases(struct inode *inode) 1108 { 1109 struct dentry *dentry; 1110 restart: 1111 spin_lock(&inode->i_lock); 1112 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1113 spin_lock(&dentry->d_lock); 1114 if (!dentry->d_lockref.count) { 1115 struct dentry *parent = lock_parent(dentry); 1116 if (likely(!dentry->d_lockref.count)) { 1117 __dentry_kill(dentry); 1118 dput(parent); 1119 goto restart; 1120 } 1121 if (parent) 1122 spin_unlock(&parent->d_lock); 1123 } 1124 spin_unlock(&dentry->d_lock); 1125 } 1126 spin_unlock(&inode->i_lock); 1127 } 1128 EXPORT_SYMBOL(d_prune_aliases); 1129 1130 /* 1131 * Lock a dentry from shrink list. 1132 * Called under rcu_read_lock() and dentry->d_lock; the former 1133 * guarantees that nothing we access will be freed under us. 1134 * Note that dentry is *not* protected from concurrent dentry_kill(), 1135 * d_delete(), etc. 1136 * 1137 * Return false if dentry has been disrupted or grabbed, leaving 1138 * the caller to kick it off-list. Otherwise, return true and have 1139 * that dentry's inode and parent both locked. 1140 */ 1141 static bool shrink_lock_dentry(struct dentry *dentry) 1142 { 1143 struct inode *inode; 1144 struct dentry *parent; 1145 1146 if (dentry->d_lockref.count) 1147 return false; 1148 1149 inode = dentry->d_inode; 1150 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1151 spin_unlock(&dentry->d_lock); 1152 spin_lock(&inode->i_lock); 1153 spin_lock(&dentry->d_lock); 1154 if (unlikely(dentry->d_lockref.count)) 1155 goto out; 1156 /* changed inode means that somebody had grabbed it */ 1157 if (unlikely(inode != dentry->d_inode)) 1158 goto out; 1159 } 1160 1161 parent = dentry->d_parent; 1162 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1163 return true; 1164 1165 spin_unlock(&dentry->d_lock); 1166 spin_lock(&parent->d_lock); 1167 if (unlikely(parent != dentry->d_parent)) { 1168 spin_unlock(&parent->d_lock); 1169 spin_lock(&dentry->d_lock); 1170 goto out; 1171 } 1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1173 if (likely(!dentry->d_lockref.count)) 1174 return true; 1175 spin_unlock(&parent->d_lock); 1176 out: 1177 if (inode) 1178 spin_unlock(&inode->i_lock); 1179 return false; 1180 } 1181 1182 void shrink_dentry_list(struct list_head *list) 1183 { 1184 while (!list_empty(list)) { 1185 struct dentry *dentry, *parent; 1186 1187 dentry = list_entry(list->prev, struct dentry, d_lru); 1188 spin_lock(&dentry->d_lock); 1189 rcu_read_lock(); 1190 if (!shrink_lock_dentry(dentry)) { 1191 bool can_free = false; 1192 rcu_read_unlock(); 1193 d_shrink_del(dentry); 1194 if (dentry->d_lockref.count < 0) 1195 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1196 spin_unlock(&dentry->d_lock); 1197 if (can_free) 1198 dentry_free(dentry); 1199 continue; 1200 } 1201 rcu_read_unlock(); 1202 d_shrink_del(dentry); 1203 parent = dentry->d_parent; 1204 if (parent != dentry) 1205 __dput_to_list(parent, list); 1206 __dentry_kill(dentry); 1207 } 1208 } 1209 1210 static enum lru_status dentry_lru_isolate(struct list_head *item, 1211 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1212 { 1213 struct list_head *freeable = arg; 1214 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1215 1216 1217 /* 1218 * we are inverting the lru lock/dentry->d_lock here, 1219 * so use a trylock. If we fail to get the lock, just skip 1220 * it 1221 */ 1222 if (!spin_trylock(&dentry->d_lock)) 1223 return LRU_SKIP; 1224 1225 /* 1226 * Referenced dentries are still in use. If they have active 1227 * counts, just remove them from the LRU. Otherwise give them 1228 * another pass through the LRU. 1229 */ 1230 if (dentry->d_lockref.count) { 1231 d_lru_isolate(lru, dentry); 1232 spin_unlock(&dentry->d_lock); 1233 return LRU_REMOVED; 1234 } 1235 1236 if (dentry->d_flags & DCACHE_REFERENCED) { 1237 dentry->d_flags &= ~DCACHE_REFERENCED; 1238 spin_unlock(&dentry->d_lock); 1239 1240 /* 1241 * The list move itself will be made by the common LRU code. At 1242 * this point, we've dropped the dentry->d_lock but keep the 1243 * lru lock. This is safe to do, since every list movement is 1244 * protected by the lru lock even if both locks are held. 1245 * 1246 * This is guaranteed by the fact that all LRU management 1247 * functions are intermediated by the LRU API calls like 1248 * list_lru_add and list_lru_del. List movement in this file 1249 * only ever occur through this functions or through callbacks 1250 * like this one, that are called from the LRU API. 1251 * 1252 * The only exceptions to this are functions like 1253 * shrink_dentry_list, and code that first checks for the 1254 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1255 * operating only with stack provided lists after they are 1256 * properly isolated from the main list. It is thus, always a 1257 * local access. 1258 */ 1259 return LRU_ROTATE; 1260 } 1261 1262 d_lru_shrink_move(lru, dentry, freeable); 1263 spin_unlock(&dentry->d_lock); 1264 1265 return LRU_REMOVED; 1266 } 1267 1268 /** 1269 * prune_dcache_sb - shrink the dcache 1270 * @sb: superblock 1271 * @sc: shrink control, passed to list_lru_shrink_walk() 1272 * 1273 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1274 * is done when we need more memory and called from the superblock shrinker 1275 * function. 1276 * 1277 * This function may fail to free any resources if all the dentries are in 1278 * use. 1279 */ 1280 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1281 { 1282 LIST_HEAD(dispose); 1283 long freed; 1284 1285 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1286 dentry_lru_isolate, &dispose); 1287 shrink_dentry_list(&dispose); 1288 return freed; 1289 } 1290 1291 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1292 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1293 { 1294 struct list_head *freeable = arg; 1295 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1296 1297 /* 1298 * we are inverting the lru lock/dentry->d_lock here, 1299 * so use a trylock. If we fail to get the lock, just skip 1300 * it 1301 */ 1302 if (!spin_trylock(&dentry->d_lock)) 1303 return LRU_SKIP; 1304 1305 d_lru_shrink_move(lru, dentry, freeable); 1306 spin_unlock(&dentry->d_lock); 1307 1308 return LRU_REMOVED; 1309 } 1310 1311 1312 /** 1313 * shrink_dcache_sb - shrink dcache for a superblock 1314 * @sb: superblock 1315 * 1316 * Shrink the dcache for the specified super block. This is used to free 1317 * the dcache before unmounting a file system. 1318 */ 1319 void shrink_dcache_sb(struct super_block *sb) 1320 { 1321 do { 1322 LIST_HEAD(dispose); 1323 1324 list_lru_walk(&sb->s_dentry_lru, 1325 dentry_lru_isolate_shrink, &dispose, 1024); 1326 shrink_dentry_list(&dispose); 1327 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1328 } 1329 EXPORT_SYMBOL(shrink_dcache_sb); 1330 1331 /** 1332 * enum d_walk_ret - action to talke during tree walk 1333 * @D_WALK_CONTINUE: contrinue walk 1334 * @D_WALK_QUIT: quit walk 1335 * @D_WALK_NORETRY: quit when retry is needed 1336 * @D_WALK_SKIP: skip this dentry and its children 1337 */ 1338 enum d_walk_ret { 1339 D_WALK_CONTINUE, 1340 D_WALK_QUIT, 1341 D_WALK_NORETRY, 1342 D_WALK_SKIP, 1343 }; 1344 1345 /** 1346 * d_walk - walk the dentry tree 1347 * @parent: start of walk 1348 * @data: data passed to @enter() and @finish() 1349 * @enter: callback when first entering the dentry 1350 * 1351 * The @enter() callbacks are called with d_lock held. 1352 */ 1353 static void d_walk(struct dentry *parent, void *data, 1354 enum d_walk_ret (*enter)(void *, struct dentry *)) 1355 { 1356 struct dentry *this_parent; 1357 struct list_head *next; 1358 unsigned seq = 0; 1359 enum d_walk_ret ret; 1360 bool retry = true; 1361 1362 again: 1363 read_seqbegin_or_lock(&rename_lock, &seq); 1364 this_parent = parent; 1365 spin_lock(&this_parent->d_lock); 1366 1367 ret = enter(data, this_parent); 1368 switch (ret) { 1369 case D_WALK_CONTINUE: 1370 break; 1371 case D_WALK_QUIT: 1372 case D_WALK_SKIP: 1373 goto out_unlock; 1374 case D_WALK_NORETRY: 1375 retry = false; 1376 break; 1377 } 1378 repeat: 1379 next = this_parent->d_subdirs.next; 1380 resume: 1381 while (next != &this_parent->d_subdirs) { 1382 struct list_head *tmp = next; 1383 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1384 next = tmp->next; 1385 1386 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1387 continue; 1388 1389 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1390 1391 ret = enter(data, dentry); 1392 switch (ret) { 1393 case D_WALK_CONTINUE: 1394 break; 1395 case D_WALK_QUIT: 1396 spin_unlock(&dentry->d_lock); 1397 goto out_unlock; 1398 case D_WALK_NORETRY: 1399 retry = false; 1400 break; 1401 case D_WALK_SKIP: 1402 spin_unlock(&dentry->d_lock); 1403 continue; 1404 } 1405 1406 if (!list_empty(&dentry->d_subdirs)) { 1407 spin_unlock(&this_parent->d_lock); 1408 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1409 this_parent = dentry; 1410 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1411 goto repeat; 1412 } 1413 spin_unlock(&dentry->d_lock); 1414 } 1415 /* 1416 * All done at this level ... ascend and resume the search. 1417 */ 1418 rcu_read_lock(); 1419 ascend: 1420 if (this_parent != parent) { 1421 struct dentry *child = this_parent; 1422 this_parent = child->d_parent; 1423 1424 spin_unlock(&child->d_lock); 1425 spin_lock(&this_parent->d_lock); 1426 1427 /* might go back up the wrong parent if we have had a rename. */ 1428 if (need_seqretry(&rename_lock, seq)) 1429 goto rename_retry; 1430 /* go into the first sibling still alive */ 1431 do { 1432 next = child->d_child.next; 1433 if (next == &this_parent->d_subdirs) 1434 goto ascend; 1435 child = list_entry(next, struct dentry, d_child); 1436 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1437 rcu_read_unlock(); 1438 goto resume; 1439 } 1440 if (need_seqretry(&rename_lock, seq)) 1441 goto rename_retry; 1442 rcu_read_unlock(); 1443 1444 out_unlock: 1445 spin_unlock(&this_parent->d_lock); 1446 done_seqretry(&rename_lock, seq); 1447 return; 1448 1449 rename_retry: 1450 spin_unlock(&this_parent->d_lock); 1451 rcu_read_unlock(); 1452 BUG_ON(seq & 1); 1453 if (!retry) 1454 return; 1455 seq = 1; 1456 goto again; 1457 } 1458 1459 struct check_mount { 1460 struct vfsmount *mnt; 1461 unsigned int mounted; 1462 }; 1463 1464 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1465 { 1466 struct check_mount *info = data; 1467 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1468 1469 if (likely(!d_mountpoint(dentry))) 1470 return D_WALK_CONTINUE; 1471 if (__path_is_mountpoint(&path)) { 1472 info->mounted = 1; 1473 return D_WALK_QUIT; 1474 } 1475 return D_WALK_CONTINUE; 1476 } 1477 1478 /** 1479 * path_has_submounts - check for mounts over a dentry in the 1480 * current namespace. 1481 * @parent: path to check. 1482 * 1483 * Return true if the parent or its subdirectories contain 1484 * a mount point in the current namespace. 1485 */ 1486 int path_has_submounts(const struct path *parent) 1487 { 1488 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1489 1490 read_seqlock_excl(&mount_lock); 1491 d_walk(parent->dentry, &data, path_check_mount); 1492 read_sequnlock_excl(&mount_lock); 1493 1494 return data.mounted; 1495 } 1496 EXPORT_SYMBOL(path_has_submounts); 1497 1498 /* 1499 * Called by mount code to set a mountpoint and check if the mountpoint is 1500 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1501 * subtree can become unreachable). 1502 * 1503 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1504 * this reason take rename_lock and d_lock on dentry and ancestors. 1505 */ 1506 int d_set_mounted(struct dentry *dentry) 1507 { 1508 struct dentry *p; 1509 int ret = -ENOENT; 1510 write_seqlock(&rename_lock); 1511 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1512 /* Need exclusion wrt. d_invalidate() */ 1513 spin_lock(&p->d_lock); 1514 if (unlikely(d_unhashed(p))) { 1515 spin_unlock(&p->d_lock); 1516 goto out; 1517 } 1518 spin_unlock(&p->d_lock); 1519 } 1520 spin_lock(&dentry->d_lock); 1521 if (!d_unlinked(dentry)) { 1522 ret = -EBUSY; 1523 if (!d_mountpoint(dentry)) { 1524 dentry->d_flags |= DCACHE_MOUNTED; 1525 ret = 0; 1526 } 1527 } 1528 spin_unlock(&dentry->d_lock); 1529 out: 1530 write_sequnlock(&rename_lock); 1531 return ret; 1532 } 1533 1534 /* 1535 * Search the dentry child list of the specified parent, 1536 * and move any unused dentries to the end of the unused 1537 * list for prune_dcache(). We descend to the next level 1538 * whenever the d_subdirs list is non-empty and continue 1539 * searching. 1540 * 1541 * It returns zero iff there are no unused children, 1542 * otherwise it returns the number of children moved to 1543 * the end of the unused list. This may not be the total 1544 * number of unused children, because select_parent can 1545 * drop the lock and return early due to latency 1546 * constraints. 1547 */ 1548 1549 struct select_data { 1550 struct dentry *start; 1551 union { 1552 long found; 1553 struct dentry *victim; 1554 }; 1555 struct list_head dispose; 1556 }; 1557 1558 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1559 { 1560 struct select_data *data = _data; 1561 enum d_walk_ret ret = D_WALK_CONTINUE; 1562 1563 if (data->start == dentry) 1564 goto out; 1565 1566 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1567 data->found++; 1568 } else { 1569 if (dentry->d_flags & DCACHE_LRU_LIST) 1570 d_lru_del(dentry); 1571 if (!dentry->d_lockref.count) { 1572 d_shrink_add(dentry, &data->dispose); 1573 data->found++; 1574 } 1575 } 1576 /* 1577 * We can return to the caller if we have found some (this 1578 * ensures forward progress). We'll be coming back to find 1579 * the rest. 1580 */ 1581 if (!list_empty(&data->dispose)) 1582 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1583 out: 1584 return ret; 1585 } 1586 1587 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1588 { 1589 struct select_data *data = _data; 1590 enum d_walk_ret ret = D_WALK_CONTINUE; 1591 1592 if (data->start == dentry) 1593 goto out; 1594 1595 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1596 if (!dentry->d_lockref.count) { 1597 rcu_read_lock(); 1598 data->victim = dentry; 1599 return D_WALK_QUIT; 1600 } 1601 } else { 1602 if (dentry->d_flags & DCACHE_LRU_LIST) 1603 d_lru_del(dentry); 1604 if (!dentry->d_lockref.count) 1605 d_shrink_add(dentry, &data->dispose); 1606 } 1607 /* 1608 * We can return to the caller if we have found some (this 1609 * ensures forward progress). We'll be coming back to find 1610 * the rest. 1611 */ 1612 if (!list_empty(&data->dispose)) 1613 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1614 out: 1615 return ret; 1616 } 1617 1618 /** 1619 * shrink_dcache_parent - prune dcache 1620 * @parent: parent of entries to prune 1621 * 1622 * Prune the dcache to remove unused children of the parent dentry. 1623 */ 1624 void shrink_dcache_parent(struct dentry *parent) 1625 { 1626 for (;;) { 1627 struct select_data data = {.start = parent}; 1628 1629 INIT_LIST_HEAD(&data.dispose); 1630 d_walk(parent, &data, select_collect); 1631 1632 if (!list_empty(&data.dispose)) { 1633 shrink_dentry_list(&data.dispose); 1634 continue; 1635 } 1636 1637 cond_resched(); 1638 if (!data.found) 1639 break; 1640 data.victim = NULL; 1641 d_walk(parent, &data, select_collect2); 1642 if (data.victim) { 1643 struct dentry *parent; 1644 spin_lock(&data.victim->d_lock); 1645 if (!shrink_lock_dentry(data.victim)) { 1646 spin_unlock(&data.victim->d_lock); 1647 rcu_read_unlock(); 1648 } else { 1649 rcu_read_unlock(); 1650 parent = data.victim->d_parent; 1651 if (parent != data.victim) 1652 __dput_to_list(parent, &data.dispose); 1653 __dentry_kill(data.victim); 1654 } 1655 } 1656 if (!list_empty(&data.dispose)) 1657 shrink_dentry_list(&data.dispose); 1658 } 1659 } 1660 EXPORT_SYMBOL(shrink_dcache_parent); 1661 1662 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1663 { 1664 /* it has busy descendents; complain about those instead */ 1665 if (!list_empty(&dentry->d_subdirs)) 1666 return D_WALK_CONTINUE; 1667 1668 /* root with refcount 1 is fine */ 1669 if (dentry == _data && dentry->d_lockref.count == 1) 1670 return D_WALK_CONTINUE; 1671 1672 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1673 " still in use (%d) [unmount of %s %s]\n", 1674 dentry, 1675 dentry->d_inode ? 1676 dentry->d_inode->i_ino : 0UL, 1677 dentry, 1678 dentry->d_lockref.count, 1679 dentry->d_sb->s_type->name, 1680 dentry->d_sb->s_id); 1681 return D_WALK_CONTINUE; 1682 } 1683 1684 static void do_one_tree(struct dentry *dentry) 1685 { 1686 shrink_dcache_parent(dentry); 1687 d_walk(dentry, dentry, umount_check); 1688 d_drop(dentry); 1689 dput(dentry); 1690 } 1691 1692 /* 1693 * destroy the dentries attached to a superblock on unmounting 1694 */ 1695 void shrink_dcache_for_umount(struct super_block *sb) 1696 { 1697 struct dentry *dentry; 1698 1699 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1700 1701 dentry = sb->s_root; 1702 sb->s_root = NULL; 1703 do_one_tree(dentry); 1704 1705 while (!hlist_bl_empty(&sb->s_roots)) { 1706 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1707 do_one_tree(dentry); 1708 } 1709 } 1710 1711 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1712 { 1713 struct dentry **victim = _data; 1714 if (d_mountpoint(dentry)) { 1715 __dget_dlock(dentry); 1716 *victim = dentry; 1717 return D_WALK_QUIT; 1718 } 1719 return D_WALK_CONTINUE; 1720 } 1721 1722 /** 1723 * d_invalidate - detach submounts, prune dcache, and drop 1724 * @dentry: dentry to invalidate (aka detach, prune and drop) 1725 */ 1726 void d_invalidate(struct dentry *dentry) 1727 { 1728 bool had_submounts = false; 1729 spin_lock(&dentry->d_lock); 1730 if (d_unhashed(dentry)) { 1731 spin_unlock(&dentry->d_lock); 1732 return; 1733 } 1734 __d_drop(dentry); 1735 spin_unlock(&dentry->d_lock); 1736 1737 /* Negative dentries can be dropped without further checks */ 1738 if (!dentry->d_inode) 1739 return; 1740 1741 shrink_dcache_parent(dentry); 1742 for (;;) { 1743 struct dentry *victim = NULL; 1744 d_walk(dentry, &victim, find_submount); 1745 if (!victim) { 1746 if (had_submounts) 1747 shrink_dcache_parent(dentry); 1748 return; 1749 } 1750 had_submounts = true; 1751 detach_mounts(victim); 1752 dput(victim); 1753 } 1754 } 1755 EXPORT_SYMBOL(d_invalidate); 1756 1757 /** 1758 * __d_alloc - allocate a dcache entry 1759 * @sb: filesystem it will belong to 1760 * @name: qstr of the name 1761 * 1762 * Allocates a dentry. It returns %NULL if there is insufficient memory 1763 * available. On a success the dentry is returned. The name passed in is 1764 * copied and the copy passed in may be reused after this call. 1765 */ 1766 1767 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1768 { 1769 struct dentry *dentry; 1770 char *dname; 1771 int err; 1772 1773 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1774 GFP_KERNEL); 1775 if (!dentry) 1776 return NULL; 1777 1778 /* 1779 * We guarantee that the inline name is always NUL-terminated. 1780 * This way the memcpy() done by the name switching in rename 1781 * will still always have a NUL at the end, even if we might 1782 * be overwriting an internal NUL character 1783 */ 1784 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1785 if (unlikely(!name)) { 1786 name = &slash_name; 1787 dname = dentry->d_iname; 1788 } else if (name->len > DNAME_INLINE_LEN-1) { 1789 size_t size = offsetof(struct external_name, name[1]); 1790 struct external_name *p = kmalloc(size + name->len, 1791 GFP_KERNEL_ACCOUNT | 1792 __GFP_RECLAIMABLE); 1793 if (!p) { 1794 kmem_cache_free(dentry_cache, dentry); 1795 return NULL; 1796 } 1797 atomic_set(&p->u.count, 1); 1798 dname = p->name; 1799 } else { 1800 dname = dentry->d_iname; 1801 } 1802 1803 dentry->d_name.len = name->len; 1804 dentry->d_name.hash = name->hash; 1805 memcpy(dname, name->name, name->len); 1806 dname[name->len] = 0; 1807 1808 /* Make sure we always see the terminating NUL character */ 1809 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1810 1811 dentry->d_lockref.count = 1; 1812 dentry->d_flags = 0; 1813 spin_lock_init(&dentry->d_lock); 1814 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1815 dentry->d_inode = NULL; 1816 dentry->d_parent = dentry; 1817 dentry->d_sb = sb; 1818 dentry->d_op = NULL; 1819 dentry->d_fsdata = NULL; 1820 INIT_HLIST_BL_NODE(&dentry->d_hash); 1821 INIT_LIST_HEAD(&dentry->d_lru); 1822 INIT_LIST_HEAD(&dentry->d_subdirs); 1823 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1824 INIT_LIST_HEAD(&dentry->d_child); 1825 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1826 1827 if (dentry->d_op && dentry->d_op->d_init) { 1828 err = dentry->d_op->d_init(dentry); 1829 if (err) { 1830 if (dname_external(dentry)) 1831 kfree(external_name(dentry)); 1832 kmem_cache_free(dentry_cache, dentry); 1833 return NULL; 1834 } 1835 } 1836 1837 this_cpu_inc(nr_dentry); 1838 1839 return dentry; 1840 } 1841 1842 /** 1843 * d_alloc - allocate a dcache entry 1844 * @parent: parent of entry to allocate 1845 * @name: qstr of the name 1846 * 1847 * Allocates a dentry. It returns %NULL if there is insufficient memory 1848 * available. On a success the dentry is returned. The name passed in is 1849 * copied and the copy passed in may be reused after this call. 1850 */ 1851 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1852 { 1853 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1854 if (!dentry) 1855 return NULL; 1856 spin_lock(&parent->d_lock); 1857 /* 1858 * don't need child lock because it is not subject 1859 * to concurrency here 1860 */ 1861 __dget_dlock(parent); 1862 dentry->d_parent = parent; 1863 list_add(&dentry->d_child, &parent->d_subdirs); 1864 spin_unlock(&parent->d_lock); 1865 1866 return dentry; 1867 } 1868 EXPORT_SYMBOL(d_alloc); 1869 1870 struct dentry *d_alloc_anon(struct super_block *sb) 1871 { 1872 return __d_alloc(sb, NULL); 1873 } 1874 EXPORT_SYMBOL(d_alloc_anon); 1875 1876 struct dentry *d_alloc_cursor(struct dentry * parent) 1877 { 1878 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1879 if (dentry) { 1880 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1881 dentry->d_parent = dget(parent); 1882 } 1883 return dentry; 1884 } 1885 1886 /** 1887 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1888 * @sb: the superblock 1889 * @name: qstr of the name 1890 * 1891 * For a filesystem that just pins its dentries in memory and never 1892 * performs lookups at all, return an unhashed IS_ROOT dentry. 1893 * This is used for pipes, sockets et.al. - the stuff that should 1894 * never be anyone's children or parents. Unlike all other 1895 * dentries, these will not have RCU delay between dropping the 1896 * last reference and freeing them. 1897 * 1898 * The only user is alloc_file_pseudo() and that's what should 1899 * be considered a public interface. Don't use directly. 1900 */ 1901 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1902 { 1903 struct dentry *dentry = __d_alloc(sb, name); 1904 if (likely(dentry)) 1905 dentry->d_flags |= DCACHE_NORCU; 1906 return dentry; 1907 } 1908 1909 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1910 { 1911 struct qstr q; 1912 1913 q.name = name; 1914 q.hash_len = hashlen_string(parent, name); 1915 return d_alloc(parent, &q); 1916 } 1917 EXPORT_SYMBOL(d_alloc_name); 1918 1919 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1920 { 1921 WARN_ON_ONCE(dentry->d_op); 1922 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1923 DCACHE_OP_COMPARE | 1924 DCACHE_OP_REVALIDATE | 1925 DCACHE_OP_WEAK_REVALIDATE | 1926 DCACHE_OP_DELETE | 1927 DCACHE_OP_REAL)); 1928 dentry->d_op = op; 1929 if (!op) 1930 return; 1931 if (op->d_hash) 1932 dentry->d_flags |= DCACHE_OP_HASH; 1933 if (op->d_compare) 1934 dentry->d_flags |= DCACHE_OP_COMPARE; 1935 if (op->d_revalidate) 1936 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1937 if (op->d_weak_revalidate) 1938 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1939 if (op->d_delete) 1940 dentry->d_flags |= DCACHE_OP_DELETE; 1941 if (op->d_prune) 1942 dentry->d_flags |= DCACHE_OP_PRUNE; 1943 if (op->d_real) 1944 dentry->d_flags |= DCACHE_OP_REAL; 1945 1946 } 1947 EXPORT_SYMBOL(d_set_d_op); 1948 1949 1950 /* 1951 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1952 * @dentry - The dentry to mark 1953 * 1954 * Mark a dentry as falling through to the lower layer (as set with 1955 * d_pin_lower()). This flag may be recorded on the medium. 1956 */ 1957 void d_set_fallthru(struct dentry *dentry) 1958 { 1959 spin_lock(&dentry->d_lock); 1960 dentry->d_flags |= DCACHE_FALLTHRU; 1961 spin_unlock(&dentry->d_lock); 1962 } 1963 EXPORT_SYMBOL(d_set_fallthru); 1964 1965 static unsigned d_flags_for_inode(struct inode *inode) 1966 { 1967 unsigned add_flags = DCACHE_REGULAR_TYPE; 1968 1969 if (!inode) 1970 return DCACHE_MISS_TYPE; 1971 1972 if (S_ISDIR(inode->i_mode)) { 1973 add_flags = DCACHE_DIRECTORY_TYPE; 1974 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1975 if (unlikely(!inode->i_op->lookup)) 1976 add_flags = DCACHE_AUTODIR_TYPE; 1977 else 1978 inode->i_opflags |= IOP_LOOKUP; 1979 } 1980 goto type_determined; 1981 } 1982 1983 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1984 if (unlikely(inode->i_op->get_link)) { 1985 add_flags = DCACHE_SYMLINK_TYPE; 1986 goto type_determined; 1987 } 1988 inode->i_opflags |= IOP_NOFOLLOW; 1989 } 1990 1991 if (unlikely(!S_ISREG(inode->i_mode))) 1992 add_flags = DCACHE_SPECIAL_TYPE; 1993 1994 type_determined: 1995 if (unlikely(IS_AUTOMOUNT(inode))) 1996 add_flags |= DCACHE_NEED_AUTOMOUNT; 1997 return add_flags; 1998 } 1999 2000 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 2001 { 2002 unsigned add_flags = d_flags_for_inode(inode); 2003 WARN_ON(d_in_lookup(dentry)); 2004 2005 spin_lock(&dentry->d_lock); 2006 /* 2007 * The negative counter only tracks dentries on the LRU. Don't dec if 2008 * d_lru is on another list. 2009 */ 2010 if ((dentry->d_flags & 2011 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 2012 this_cpu_dec(nr_dentry_negative); 2013 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2014 raw_write_seqcount_begin(&dentry->d_seq); 2015 __d_set_inode_and_type(dentry, inode, add_flags); 2016 raw_write_seqcount_end(&dentry->d_seq); 2017 fsnotify_update_flags(dentry); 2018 spin_unlock(&dentry->d_lock); 2019 } 2020 2021 /** 2022 * d_instantiate - fill in inode information for a dentry 2023 * @entry: dentry to complete 2024 * @inode: inode to attach to this dentry 2025 * 2026 * Fill in inode information in the entry. 2027 * 2028 * This turns negative dentries into productive full members 2029 * of society. 2030 * 2031 * NOTE! This assumes that the inode count has been incremented 2032 * (or otherwise set) by the caller to indicate that it is now 2033 * in use by the dcache. 2034 */ 2035 2036 void d_instantiate(struct dentry *entry, struct inode * inode) 2037 { 2038 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2039 if (inode) { 2040 security_d_instantiate(entry, inode); 2041 spin_lock(&inode->i_lock); 2042 __d_instantiate(entry, inode); 2043 spin_unlock(&inode->i_lock); 2044 } 2045 } 2046 EXPORT_SYMBOL(d_instantiate); 2047 2048 /* 2049 * This should be equivalent to d_instantiate() + unlock_new_inode(), 2050 * with lockdep-related part of unlock_new_inode() done before 2051 * anything else. Use that instead of open-coding d_instantiate()/ 2052 * unlock_new_inode() combinations. 2053 */ 2054 void d_instantiate_new(struct dentry *entry, struct inode *inode) 2055 { 2056 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2057 BUG_ON(!inode); 2058 lockdep_annotate_inode_mutex_key(inode); 2059 security_d_instantiate(entry, inode); 2060 spin_lock(&inode->i_lock); 2061 __d_instantiate(entry, inode); 2062 WARN_ON(!(inode->i_state & I_NEW)); 2063 inode->i_state &= ~I_NEW & ~I_CREATING; 2064 smp_mb(); 2065 wake_up_bit(&inode->i_state, __I_NEW); 2066 spin_unlock(&inode->i_lock); 2067 } 2068 EXPORT_SYMBOL(d_instantiate_new); 2069 2070 struct dentry *d_make_root(struct inode *root_inode) 2071 { 2072 struct dentry *res = NULL; 2073 2074 if (root_inode) { 2075 res = d_alloc_anon(root_inode->i_sb); 2076 if (res) 2077 d_instantiate(res, root_inode); 2078 else 2079 iput(root_inode); 2080 } 2081 return res; 2082 } 2083 EXPORT_SYMBOL(d_make_root); 2084 2085 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2086 struct inode *inode, 2087 bool disconnected) 2088 { 2089 struct dentry *res; 2090 unsigned add_flags; 2091 2092 security_d_instantiate(dentry, inode); 2093 spin_lock(&inode->i_lock); 2094 res = __d_find_any_alias(inode); 2095 if (res) { 2096 spin_unlock(&inode->i_lock); 2097 dput(dentry); 2098 goto out_iput; 2099 } 2100 2101 /* attach a disconnected dentry */ 2102 add_flags = d_flags_for_inode(inode); 2103 2104 if (disconnected) 2105 add_flags |= DCACHE_DISCONNECTED; 2106 2107 spin_lock(&dentry->d_lock); 2108 __d_set_inode_and_type(dentry, inode, add_flags); 2109 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2110 if (!disconnected) { 2111 hlist_bl_lock(&dentry->d_sb->s_roots); 2112 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2113 hlist_bl_unlock(&dentry->d_sb->s_roots); 2114 } 2115 spin_unlock(&dentry->d_lock); 2116 spin_unlock(&inode->i_lock); 2117 2118 return dentry; 2119 2120 out_iput: 2121 iput(inode); 2122 return res; 2123 } 2124 2125 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2126 { 2127 return __d_instantiate_anon(dentry, inode, true); 2128 } 2129 EXPORT_SYMBOL(d_instantiate_anon); 2130 2131 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2132 { 2133 struct dentry *tmp; 2134 struct dentry *res; 2135 2136 if (!inode) 2137 return ERR_PTR(-ESTALE); 2138 if (IS_ERR(inode)) 2139 return ERR_CAST(inode); 2140 2141 res = d_find_any_alias(inode); 2142 if (res) 2143 goto out_iput; 2144 2145 tmp = d_alloc_anon(inode->i_sb); 2146 if (!tmp) { 2147 res = ERR_PTR(-ENOMEM); 2148 goto out_iput; 2149 } 2150 2151 return __d_instantiate_anon(tmp, inode, disconnected); 2152 2153 out_iput: 2154 iput(inode); 2155 return res; 2156 } 2157 2158 /** 2159 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2160 * @inode: inode to allocate the dentry for 2161 * 2162 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2163 * similar open by handle operations. The returned dentry may be anonymous, 2164 * or may have a full name (if the inode was already in the cache). 2165 * 2166 * When called on a directory inode, we must ensure that the inode only ever 2167 * has one dentry. If a dentry is found, that is returned instead of 2168 * allocating a new one. 2169 * 2170 * On successful return, the reference to the inode has been transferred 2171 * to the dentry. In case of an error the reference on the inode is released. 2172 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2173 * be passed in and the error will be propagated to the return value, 2174 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2175 */ 2176 struct dentry *d_obtain_alias(struct inode *inode) 2177 { 2178 return __d_obtain_alias(inode, true); 2179 } 2180 EXPORT_SYMBOL(d_obtain_alias); 2181 2182 /** 2183 * d_obtain_root - find or allocate a dentry for a given inode 2184 * @inode: inode to allocate the dentry for 2185 * 2186 * Obtain an IS_ROOT dentry for the root of a filesystem. 2187 * 2188 * We must ensure that directory inodes only ever have one dentry. If a 2189 * dentry is found, that is returned instead of allocating a new one. 2190 * 2191 * On successful return, the reference to the inode has been transferred 2192 * to the dentry. In case of an error the reference on the inode is 2193 * released. A %NULL or IS_ERR inode may be passed in and will be the 2194 * error will be propagate to the return value, with a %NULL @inode 2195 * replaced by ERR_PTR(-ESTALE). 2196 */ 2197 struct dentry *d_obtain_root(struct inode *inode) 2198 { 2199 return __d_obtain_alias(inode, false); 2200 } 2201 EXPORT_SYMBOL(d_obtain_root); 2202 2203 /** 2204 * d_add_ci - lookup or allocate new dentry with case-exact name 2205 * @inode: the inode case-insensitive lookup has found 2206 * @dentry: the negative dentry that was passed to the parent's lookup func 2207 * @name: the case-exact name to be associated with the returned dentry 2208 * 2209 * This is to avoid filling the dcache with case-insensitive names to the 2210 * same inode, only the actual correct case is stored in the dcache for 2211 * case-insensitive filesystems. 2212 * 2213 * For a case-insensitive lookup match and if the case-exact dentry 2214 * already exists in the dcache, use it and return it. 2215 * 2216 * If no entry exists with the exact case name, allocate new dentry with 2217 * the exact case, and return the spliced entry. 2218 */ 2219 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2220 struct qstr *name) 2221 { 2222 struct dentry *found, *res; 2223 2224 /* 2225 * First check if a dentry matching the name already exists, 2226 * if not go ahead and create it now. 2227 */ 2228 found = d_hash_and_lookup(dentry->d_parent, name); 2229 if (found) { 2230 iput(inode); 2231 return found; 2232 } 2233 if (d_in_lookup(dentry)) { 2234 found = d_alloc_parallel(dentry->d_parent, name, 2235 dentry->d_wait); 2236 if (IS_ERR(found) || !d_in_lookup(found)) { 2237 iput(inode); 2238 return found; 2239 } 2240 } else { 2241 found = d_alloc(dentry->d_parent, name); 2242 if (!found) { 2243 iput(inode); 2244 return ERR_PTR(-ENOMEM); 2245 } 2246 } 2247 res = d_splice_alias(inode, found); 2248 if (res) { 2249 d_lookup_done(found); 2250 dput(found); 2251 return res; 2252 } 2253 return found; 2254 } 2255 EXPORT_SYMBOL(d_add_ci); 2256 2257 /** 2258 * d_same_name - compare dentry name with case-exact name 2259 * @parent: parent dentry 2260 * @dentry: the negative dentry that was passed to the parent's lookup func 2261 * @name: the case-exact name to be associated with the returned dentry 2262 * 2263 * Return: true if names are same, or false 2264 */ 2265 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2266 const struct qstr *name) 2267 { 2268 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2269 if (dentry->d_name.len != name->len) 2270 return false; 2271 return dentry_cmp(dentry, name->name, name->len) == 0; 2272 } 2273 return parent->d_op->d_compare(dentry, 2274 dentry->d_name.len, dentry->d_name.name, 2275 name) == 0; 2276 } 2277 EXPORT_SYMBOL_GPL(d_same_name); 2278 2279 /* 2280 * This is __d_lookup_rcu() when the parent dentry has 2281 * DCACHE_OP_COMPARE, which makes things much nastier. 2282 */ 2283 static noinline struct dentry *__d_lookup_rcu_op_compare( 2284 const struct dentry *parent, 2285 const struct qstr *name, 2286 unsigned *seqp) 2287 { 2288 u64 hashlen = name->hash_len; 2289 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2290 struct hlist_bl_node *node; 2291 struct dentry *dentry; 2292 2293 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2294 int tlen; 2295 const char *tname; 2296 unsigned seq; 2297 2298 seqretry: 2299 seq = raw_seqcount_begin(&dentry->d_seq); 2300 if (dentry->d_parent != parent) 2301 continue; 2302 if (d_unhashed(dentry)) 2303 continue; 2304 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2305 continue; 2306 tlen = dentry->d_name.len; 2307 tname = dentry->d_name.name; 2308 /* we want a consistent (name,len) pair */ 2309 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2310 cpu_relax(); 2311 goto seqretry; 2312 } 2313 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2314 continue; 2315 *seqp = seq; 2316 return dentry; 2317 } 2318 return NULL; 2319 } 2320 2321 /** 2322 * __d_lookup_rcu - search for a dentry (racy, store-free) 2323 * @parent: parent dentry 2324 * @name: qstr of name we wish to find 2325 * @seqp: returns d_seq value at the point where the dentry was found 2326 * Returns: dentry, or NULL 2327 * 2328 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2329 * resolution (store-free path walking) design described in 2330 * Documentation/filesystems/path-lookup.txt. 2331 * 2332 * This is not to be used outside core vfs. 2333 * 2334 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2335 * held, and rcu_read_lock held. The returned dentry must not be stored into 2336 * without taking d_lock and checking d_seq sequence count against @seq 2337 * returned here. 2338 * 2339 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2340 * function. 2341 * 2342 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2343 * the returned dentry, so long as its parent's seqlock is checked after the 2344 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2345 * is formed, giving integrity down the path walk. 2346 * 2347 * NOTE! The caller *has* to check the resulting dentry against the sequence 2348 * number we've returned before using any of the resulting dentry state! 2349 */ 2350 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2351 const struct qstr *name, 2352 unsigned *seqp) 2353 { 2354 u64 hashlen = name->hash_len; 2355 const unsigned char *str = name->name; 2356 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2357 struct hlist_bl_node *node; 2358 struct dentry *dentry; 2359 2360 /* 2361 * Note: There is significant duplication with __d_lookup_rcu which is 2362 * required to prevent single threaded performance regressions 2363 * especially on architectures where smp_rmb (in seqcounts) are costly. 2364 * Keep the two functions in sync. 2365 */ 2366 2367 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2368 return __d_lookup_rcu_op_compare(parent, name, seqp); 2369 2370 /* 2371 * The hash list is protected using RCU. 2372 * 2373 * Carefully use d_seq when comparing a candidate dentry, to avoid 2374 * races with d_move(). 2375 * 2376 * It is possible that concurrent renames can mess up our list 2377 * walk here and result in missing our dentry, resulting in the 2378 * false-negative result. d_lookup() protects against concurrent 2379 * renames using rename_lock seqlock. 2380 * 2381 * See Documentation/filesystems/path-lookup.txt for more details. 2382 */ 2383 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2384 unsigned seq; 2385 2386 /* 2387 * The dentry sequence count protects us from concurrent 2388 * renames, and thus protects parent and name fields. 2389 * 2390 * The caller must perform a seqcount check in order 2391 * to do anything useful with the returned dentry. 2392 * 2393 * NOTE! We do a "raw" seqcount_begin here. That means that 2394 * we don't wait for the sequence count to stabilize if it 2395 * is in the middle of a sequence change. If we do the slow 2396 * dentry compare, we will do seqretries until it is stable, 2397 * and if we end up with a successful lookup, we actually 2398 * want to exit RCU lookup anyway. 2399 * 2400 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2401 * we are still guaranteed NUL-termination of ->d_name.name. 2402 */ 2403 seq = raw_seqcount_begin(&dentry->d_seq); 2404 if (dentry->d_parent != parent) 2405 continue; 2406 if (d_unhashed(dentry)) 2407 continue; 2408 if (dentry->d_name.hash_len != hashlen) 2409 continue; 2410 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2411 continue; 2412 *seqp = seq; 2413 return dentry; 2414 } 2415 return NULL; 2416 } 2417 2418 /** 2419 * d_lookup - search for a dentry 2420 * @parent: parent dentry 2421 * @name: qstr of name we wish to find 2422 * Returns: dentry, or NULL 2423 * 2424 * d_lookup searches the children of the parent dentry for the name in 2425 * question. If the dentry is found its reference count is incremented and the 2426 * dentry is returned. The caller must use dput to free the entry when it has 2427 * finished using it. %NULL is returned if the dentry does not exist. 2428 */ 2429 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2430 { 2431 struct dentry *dentry; 2432 unsigned seq; 2433 2434 do { 2435 seq = read_seqbegin(&rename_lock); 2436 dentry = __d_lookup(parent, name); 2437 if (dentry) 2438 break; 2439 } while (read_seqretry(&rename_lock, seq)); 2440 return dentry; 2441 } 2442 EXPORT_SYMBOL(d_lookup); 2443 2444 /** 2445 * __d_lookup - search for a dentry (racy) 2446 * @parent: parent dentry 2447 * @name: qstr of name we wish to find 2448 * Returns: dentry, or NULL 2449 * 2450 * __d_lookup is like d_lookup, however it may (rarely) return a 2451 * false-negative result due to unrelated rename activity. 2452 * 2453 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2454 * however it must be used carefully, eg. with a following d_lookup in 2455 * the case of failure. 2456 * 2457 * __d_lookup callers must be commented. 2458 */ 2459 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2460 { 2461 unsigned int hash = name->hash; 2462 struct hlist_bl_head *b = d_hash(hash); 2463 struct hlist_bl_node *node; 2464 struct dentry *found = NULL; 2465 struct dentry *dentry; 2466 2467 /* 2468 * Note: There is significant duplication with __d_lookup_rcu which is 2469 * required to prevent single threaded performance regressions 2470 * especially on architectures where smp_rmb (in seqcounts) are costly. 2471 * Keep the two functions in sync. 2472 */ 2473 2474 /* 2475 * The hash list is protected using RCU. 2476 * 2477 * Take d_lock when comparing a candidate dentry, to avoid races 2478 * with d_move(). 2479 * 2480 * It is possible that concurrent renames can mess up our list 2481 * walk here and result in missing our dentry, resulting in the 2482 * false-negative result. d_lookup() protects against concurrent 2483 * renames using rename_lock seqlock. 2484 * 2485 * See Documentation/filesystems/path-lookup.txt for more details. 2486 */ 2487 rcu_read_lock(); 2488 2489 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2490 2491 if (dentry->d_name.hash != hash) 2492 continue; 2493 2494 spin_lock(&dentry->d_lock); 2495 if (dentry->d_parent != parent) 2496 goto next; 2497 if (d_unhashed(dentry)) 2498 goto next; 2499 2500 if (!d_same_name(dentry, parent, name)) 2501 goto next; 2502 2503 dentry->d_lockref.count++; 2504 found = dentry; 2505 spin_unlock(&dentry->d_lock); 2506 break; 2507 next: 2508 spin_unlock(&dentry->d_lock); 2509 } 2510 rcu_read_unlock(); 2511 2512 return found; 2513 } 2514 2515 /** 2516 * d_hash_and_lookup - hash the qstr then search for a dentry 2517 * @dir: Directory to search in 2518 * @name: qstr of name we wish to find 2519 * 2520 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2521 */ 2522 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2523 { 2524 /* 2525 * Check for a fs-specific hash function. Note that we must 2526 * calculate the standard hash first, as the d_op->d_hash() 2527 * routine may choose to leave the hash value unchanged. 2528 */ 2529 name->hash = full_name_hash(dir, name->name, name->len); 2530 if (dir->d_flags & DCACHE_OP_HASH) { 2531 int err = dir->d_op->d_hash(dir, name); 2532 if (unlikely(err < 0)) 2533 return ERR_PTR(err); 2534 } 2535 return d_lookup(dir, name); 2536 } 2537 EXPORT_SYMBOL(d_hash_and_lookup); 2538 2539 /* 2540 * When a file is deleted, we have two options: 2541 * - turn this dentry into a negative dentry 2542 * - unhash this dentry and free it. 2543 * 2544 * Usually, we want to just turn this into 2545 * a negative dentry, but if anybody else is 2546 * currently using the dentry or the inode 2547 * we can't do that and we fall back on removing 2548 * it from the hash queues and waiting for 2549 * it to be deleted later when it has no users 2550 */ 2551 2552 /** 2553 * d_delete - delete a dentry 2554 * @dentry: The dentry to delete 2555 * 2556 * Turn the dentry into a negative dentry if possible, otherwise 2557 * remove it from the hash queues so it can be deleted later 2558 */ 2559 2560 void d_delete(struct dentry * dentry) 2561 { 2562 struct inode *inode = dentry->d_inode; 2563 2564 spin_lock(&inode->i_lock); 2565 spin_lock(&dentry->d_lock); 2566 /* 2567 * Are we the only user? 2568 */ 2569 if (dentry->d_lockref.count == 1) { 2570 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2571 dentry_unlink_inode(dentry); 2572 } else { 2573 __d_drop(dentry); 2574 spin_unlock(&dentry->d_lock); 2575 spin_unlock(&inode->i_lock); 2576 } 2577 } 2578 EXPORT_SYMBOL(d_delete); 2579 2580 static void __d_rehash(struct dentry *entry) 2581 { 2582 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2583 2584 hlist_bl_lock(b); 2585 hlist_bl_add_head_rcu(&entry->d_hash, b); 2586 hlist_bl_unlock(b); 2587 } 2588 2589 /** 2590 * d_rehash - add an entry back to the hash 2591 * @entry: dentry to add to the hash 2592 * 2593 * Adds a dentry to the hash according to its name. 2594 */ 2595 2596 void d_rehash(struct dentry * entry) 2597 { 2598 spin_lock(&entry->d_lock); 2599 __d_rehash(entry); 2600 spin_unlock(&entry->d_lock); 2601 } 2602 EXPORT_SYMBOL(d_rehash); 2603 2604 static inline unsigned start_dir_add(struct inode *dir) 2605 { 2606 preempt_disable_nested(); 2607 for (;;) { 2608 unsigned n = dir->i_dir_seq; 2609 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2610 return n; 2611 cpu_relax(); 2612 } 2613 } 2614 2615 static inline void end_dir_add(struct inode *dir, unsigned int n, 2616 wait_queue_head_t *d_wait) 2617 { 2618 smp_store_release(&dir->i_dir_seq, n + 2); 2619 preempt_enable_nested(); 2620 wake_up_all(d_wait); 2621 } 2622 2623 static void d_wait_lookup(struct dentry *dentry) 2624 { 2625 if (d_in_lookup(dentry)) { 2626 DECLARE_WAITQUEUE(wait, current); 2627 add_wait_queue(dentry->d_wait, &wait); 2628 do { 2629 set_current_state(TASK_UNINTERRUPTIBLE); 2630 spin_unlock(&dentry->d_lock); 2631 schedule(); 2632 spin_lock(&dentry->d_lock); 2633 } while (d_in_lookup(dentry)); 2634 } 2635 } 2636 2637 struct dentry *d_alloc_parallel(struct dentry *parent, 2638 const struct qstr *name, 2639 wait_queue_head_t *wq) 2640 { 2641 unsigned int hash = name->hash; 2642 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2643 struct hlist_bl_node *node; 2644 struct dentry *new = d_alloc(parent, name); 2645 struct dentry *dentry; 2646 unsigned seq, r_seq, d_seq; 2647 2648 if (unlikely(!new)) 2649 return ERR_PTR(-ENOMEM); 2650 2651 retry: 2652 rcu_read_lock(); 2653 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2654 r_seq = read_seqbegin(&rename_lock); 2655 dentry = __d_lookup_rcu(parent, name, &d_seq); 2656 if (unlikely(dentry)) { 2657 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2658 rcu_read_unlock(); 2659 goto retry; 2660 } 2661 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2662 rcu_read_unlock(); 2663 dput(dentry); 2664 goto retry; 2665 } 2666 rcu_read_unlock(); 2667 dput(new); 2668 return dentry; 2669 } 2670 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2671 rcu_read_unlock(); 2672 goto retry; 2673 } 2674 2675 if (unlikely(seq & 1)) { 2676 rcu_read_unlock(); 2677 goto retry; 2678 } 2679 2680 hlist_bl_lock(b); 2681 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2682 hlist_bl_unlock(b); 2683 rcu_read_unlock(); 2684 goto retry; 2685 } 2686 /* 2687 * No changes for the parent since the beginning of d_lookup(). 2688 * Since all removals from the chain happen with hlist_bl_lock(), 2689 * any potential in-lookup matches are going to stay here until 2690 * we unlock the chain. All fields are stable in everything 2691 * we encounter. 2692 */ 2693 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2694 if (dentry->d_name.hash != hash) 2695 continue; 2696 if (dentry->d_parent != parent) 2697 continue; 2698 if (!d_same_name(dentry, parent, name)) 2699 continue; 2700 hlist_bl_unlock(b); 2701 /* now we can try to grab a reference */ 2702 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2703 rcu_read_unlock(); 2704 goto retry; 2705 } 2706 2707 rcu_read_unlock(); 2708 /* 2709 * somebody is likely to be still doing lookup for it; 2710 * wait for them to finish 2711 */ 2712 spin_lock(&dentry->d_lock); 2713 d_wait_lookup(dentry); 2714 /* 2715 * it's not in-lookup anymore; in principle we should repeat 2716 * everything from dcache lookup, but it's likely to be what 2717 * d_lookup() would've found anyway. If it is, just return it; 2718 * otherwise we really have to repeat the whole thing. 2719 */ 2720 if (unlikely(dentry->d_name.hash != hash)) 2721 goto mismatch; 2722 if (unlikely(dentry->d_parent != parent)) 2723 goto mismatch; 2724 if (unlikely(d_unhashed(dentry))) 2725 goto mismatch; 2726 if (unlikely(!d_same_name(dentry, parent, name))) 2727 goto mismatch; 2728 /* OK, it *is* a hashed match; return it */ 2729 spin_unlock(&dentry->d_lock); 2730 dput(new); 2731 return dentry; 2732 } 2733 rcu_read_unlock(); 2734 /* we can't take ->d_lock here; it's OK, though. */ 2735 new->d_flags |= DCACHE_PAR_LOOKUP; 2736 new->d_wait = wq; 2737 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2738 hlist_bl_unlock(b); 2739 return new; 2740 mismatch: 2741 spin_unlock(&dentry->d_lock); 2742 dput(dentry); 2743 goto retry; 2744 } 2745 EXPORT_SYMBOL(d_alloc_parallel); 2746 2747 /* 2748 * - Unhash the dentry 2749 * - Retrieve and clear the waitqueue head in dentry 2750 * - Return the waitqueue head 2751 */ 2752 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2753 { 2754 wait_queue_head_t *d_wait; 2755 struct hlist_bl_head *b; 2756 2757 lockdep_assert_held(&dentry->d_lock); 2758 2759 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2760 hlist_bl_lock(b); 2761 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2762 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2763 d_wait = dentry->d_wait; 2764 dentry->d_wait = NULL; 2765 hlist_bl_unlock(b); 2766 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2767 INIT_LIST_HEAD(&dentry->d_lru); 2768 return d_wait; 2769 } 2770 2771 void __d_lookup_unhash_wake(struct dentry *dentry) 2772 { 2773 spin_lock(&dentry->d_lock); 2774 wake_up_all(__d_lookup_unhash(dentry)); 2775 spin_unlock(&dentry->d_lock); 2776 } 2777 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2778 2779 /* inode->i_lock held if inode is non-NULL */ 2780 2781 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2782 { 2783 wait_queue_head_t *d_wait; 2784 struct inode *dir = NULL; 2785 unsigned n; 2786 spin_lock(&dentry->d_lock); 2787 if (unlikely(d_in_lookup(dentry))) { 2788 dir = dentry->d_parent->d_inode; 2789 n = start_dir_add(dir); 2790 d_wait = __d_lookup_unhash(dentry); 2791 } 2792 if (inode) { 2793 unsigned add_flags = d_flags_for_inode(inode); 2794 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2795 raw_write_seqcount_begin(&dentry->d_seq); 2796 __d_set_inode_and_type(dentry, inode, add_flags); 2797 raw_write_seqcount_end(&dentry->d_seq); 2798 fsnotify_update_flags(dentry); 2799 } 2800 __d_rehash(dentry); 2801 if (dir) 2802 end_dir_add(dir, n, d_wait); 2803 spin_unlock(&dentry->d_lock); 2804 if (inode) 2805 spin_unlock(&inode->i_lock); 2806 } 2807 2808 /** 2809 * d_add - add dentry to hash queues 2810 * @entry: dentry to add 2811 * @inode: The inode to attach to this dentry 2812 * 2813 * This adds the entry to the hash queues and initializes @inode. 2814 * The entry was actually filled in earlier during d_alloc(). 2815 */ 2816 2817 void d_add(struct dentry *entry, struct inode *inode) 2818 { 2819 if (inode) { 2820 security_d_instantiate(entry, inode); 2821 spin_lock(&inode->i_lock); 2822 } 2823 __d_add(entry, inode); 2824 } 2825 EXPORT_SYMBOL(d_add); 2826 2827 /** 2828 * d_exact_alias - find and hash an exact unhashed alias 2829 * @entry: dentry to add 2830 * @inode: The inode to go with this dentry 2831 * 2832 * If an unhashed dentry with the same name/parent and desired 2833 * inode already exists, hash and return it. Otherwise, return 2834 * NULL. 2835 * 2836 * Parent directory should be locked. 2837 */ 2838 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2839 { 2840 struct dentry *alias; 2841 unsigned int hash = entry->d_name.hash; 2842 2843 spin_lock(&inode->i_lock); 2844 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2845 /* 2846 * Don't need alias->d_lock here, because aliases with 2847 * d_parent == entry->d_parent are not subject to name or 2848 * parent changes, because the parent inode i_mutex is held. 2849 */ 2850 if (alias->d_name.hash != hash) 2851 continue; 2852 if (alias->d_parent != entry->d_parent) 2853 continue; 2854 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2855 continue; 2856 spin_lock(&alias->d_lock); 2857 if (!d_unhashed(alias)) { 2858 spin_unlock(&alias->d_lock); 2859 alias = NULL; 2860 } else { 2861 __dget_dlock(alias); 2862 __d_rehash(alias); 2863 spin_unlock(&alias->d_lock); 2864 } 2865 spin_unlock(&inode->i_lock); 2866 return alias; 2867 } 2868 spin_unlock(&inode->i_lock); 2869 return NULL; 2870 } 2871 EXPORT_SYMBOL(d_exact_alias); 2872 2873 static void swap_names(struct dentry *dentry, struct dentry *target) 2874 { 2875 if (unlikely(dname_external(target))) { 2876 if (unlikely(dname_external(dentry))) { 2877 /* 2878 * Both external: swap the pointers 2879 */ 2880 swap(target->d_name.name, dentry->d_name.name); 2881 } else { 2882 /* 2883 * dentry:internal, target:external. Steal target's 2884 * storage and make target internal. 2885 */ 2886 memcpy(target->d_iname, dentry->d_name.name, 2887 dentry->d_name.len + 1); 2888 dentry->d_name.name = target->d_name.name; 2889 target->d_name.name = target->d_iname; 2890 } 2891 } else { 2892 if (unlikely(dname_external(dentry))) { 2893 /* 2894 * dentry:external, target:internal. Give dentry's 2895 * storage to target and make dentry internal 2896 */ 2897 memcpy(dentry->d_iname, target->d_name.name, 2898 target->d_name.len + 1); 2899 target->d_name.name = dentry->d_name.name; 2900 dentry->d_name.name = dentry->d_iname; 2901 } else { 2902 /* 2903 * Both are internal. 2904 */ 2905 unsigned int i; 2906 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2907 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2908 swap(((long *) &dentry->d_iname)[i], 2909 ((long *) &target->d_iname)[i]); 2910 } 2911 } 2912 } 2913 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2914 } 2915 2916 static void copy_name(struct dentry *dentry, struct dentry *target) 2917 { 2918 struct external_name *old_name = NULL; 2919 if (unlikely(dname_external(dentry))) 2920 old_name = external_name(dentry); 2921 if (unlikely(dname_external(target))) { 2922 atomic_inc(&external_name(target)->u.count); 2923 dentry->d_name = target->d_name; 2924 } else { 2925 memcpy(dentry->d_iname, target->d_name.name, 2926 target->d_name.len + 1); 2927 dentry->d_name.name = dentry->d_iname; 2928 dentry->d_name.hash_len = target->d_name.hash_len; 2929 } 2930 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2931 kfree_rcu(old_name, u.head); 2932 } 2933 2934 /* 2935 * __d_move - move a dentry 2936 * @dentry: entry to move 2937 * @target: new dentry 2938 * @exchange: exchange the two dentries 2939 * 2940 * Update the dcache to reflect the move of a file name. Negative 2941 * dcache entries should not be moved in this way. Caller must hold 2942 * rename_lock, the i_mutex of the source and target directories, 2943 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2944 */ 2945 static void __d_move(struct dentry *dentry, struct dentry *target, 2946 bool exchange) 2947 { 2948 struct dentry *old_parent, *p; 2949 wait_queue_head_t *d_wait; 2950 struct inode *dir = NULL; 2951 unsigned n; 2952 2953 WARN_ON(!dentry->d_inode); 2954 if (WARN_ON(dentry == target)) 2955 return; 2956 2957 BUG_ON(d_ancestor(target, dentry)); 2958 old_parent = dentry->d_parent; 2959 p = d_ancestor(old_parent, target); 2960 if (IS_ROOT(dentry)) { 2961 BUG_ON(p); 2962 spin_lock(&target->d_parent->d_lock); 2963 } else if (!p) { 2964 /* target is not a descendent of dentry->d_parent */ 2965 spin_lock(&target->d_parent->d_lock); 2966 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2967 } else { 2968 BUG_ON(p == dentry); 2969 spin_lock(&old_parent->d_lock); 2970 if (p != target) 2971 spin_lock_nested(&target->d_parent->d_lock, 2972 DENTRY_D_LOCK_NESTED); 2973 } 2974 spin_lock_nested(&dentry->d_lock, 2); 2975 spin_lock_nested(&target->d_lock, 3); 2976 2977 if (unlikely(d_in_lookup(target))) { 2978 dir = target->d_parent->d_inode; 2979 n = start_dir_add(dir); 2980 d_wait = __d_lookup_unhash(target); 2981 } 2982 2983 write_seqcount_begin(&dentry->d_seq); 2984 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2985 2986 /* unhash both */ 2987 if (!d_unhashed(dentry)) 2988 ___d_drop(dentry); 2989 if (!d_unhashed(target)) 2990 ___d_drop(target); 2991 2992 /* ... and switch them in the tree */ 2993 dentry->d_parent = target->d_parent; 2994 if (!exchange) { 2995 copy_name(dentry, target); 2996 target->d_hash.pprev = NULL; 2997 dentry->d_parent->d_lockref.count++; 2998 if (dentry != old_parent) /* wasn't IS_ROOT */ 2999 WARN_ON(!--old_parent->d_lockref.count); 3000 } else { 3001 target->d_parent = old_parent; 3002 swap_names(dentry, target); 3003 list_move(&target->d_child, &target->d_parent->d_subdirs); 3004 __d_rehash(target); 3005 fsnotify_update_flags(target); 3006 } 3007 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 3008 __d_rehash(dentry); 3009 fsnotify_update_flags(dentry); 3010 fscrypt_handle_d_move(dentry); 3011 3012 write_seqcount_end(&target->d_seq); 3013 write_seqcount_end(&dentry->d_seq); 3014 3015 if (dir) 3016 end_dir_add(dir, n, d_wait); 3017 3018 if (dentry->d_parent != old_parent) 3019 spin_unlock(&dentry->d_parent->d_lock); 3020 if (dentry != old_parent) 3021 spin_unlock(&old_parent->d_lock); 3022 spin_unlock(&target->d_lock); 3023 spin_unlock(&dentry->d_lock); 3024 } 3025 3026 /* 3027 * d_move - move a dentry 3028 * @dentry: entry to move 3029 * @target: new dentry 3030 * 3031 * Update the dcache to reflect the move of a file name. Negative 3032 * dcache entries should not be moved in this way. See the locking 3033 * requirements for __d_move. 3034 */ 3035 void d_move(struct dentry *dentry, struct dentry *target) 3036 { 3037 write_seqlock(&rename_lock); 3038 __d_move(dentry, target, false); 3039 write_sequnlock(&rename_lock); 3040 } 3041 EXPORT_SYMBOL(d_move); 3042 3043 /* 3044 * d_exchange - exchange two dentries 3045 * @dentry1: first dentry 3046 * @dentry2: second dentry 3047 */ 3048 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 3049 { 3050 write_seqlock(&rename_lock); 3051 3052 WARN_ON(!dentry1->d_inode); 3053 WARN_ON(!dentry2->d_inode); 3054 WARN_ON(IS_ROOT(dentry1)); 3055 WARN_ON(IS_ROOT(dentry2)); 3056 3057 __d_move(dentry1, dentry2, true); 3058 3059 write_sequnlock(&rename_lock); 3060 } 3061 3062 /** 3063 * d_ancestor - search for an ancestor 3064 * @p1: ancestor dentry 3065 * @p2: child dentry 3066 * 3067 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 3068 * an ancestor of p2, else NULL. 3069 */ 3070 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 3071 { 3072 struct dentry *p; 3073 3074 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 3075 if (p->d_parent == p1) 3076 return p; 3077 } 3078 return NULL; 3079 } 3080 3081 /* 3082 * This helper attempts to cope with remotely renamed directories 3083 * 3084 * It assumes that the caller is already holding 3085 * dentry->d_parent->d_inode->i_mutex, and rename_lock 3086 * 3087 * Note: If ever the locking in lock_rename() changes, then please 3088 * remember to update this too... 3089 */ 3090 static int __d_unalias(struct inode *inode, 3091 struct dentry *dentry, struct dentry *alias) 3092 { 3093 struct mutex *m1 = NULL; 3094 struct rw_semaphore *m2 = NULL; 3095 int ret = -ESTALE; 3096 3097 /* If alias and dentry share a parent, then no extra locks required */ 3098 if (alias->d_parent == dentry->d_parent) 3099 goto out_unalias; 3100 3101 /* See lock_rename() */ 3102 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 3103 goto out_err; 3104 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3105 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3106 goto out_err; 3107 m2 = &alias->d_parent->d_inode->i_rwsem; 3108 out_unalias: 3109 __d_move(alias, dentry, false); 3110 ret = 0; 3111 out_err: 3112 if (m2) 3113 up_read(m2); 3114 if (m1) 3115 mutex_unlock(m1); 3116 return ret; 3117 } 3118 3119 /** 3120 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3121 * @inode: the inode which may have a disconnected dentry 3122 * @dentry: a negative dentry which we want to point to the inode. 3123 * 3124 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3125 * place of the given dentry and return it, else simply d_add the inode 3126 * to the dentry and return NULL. 3127 * 3128 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3129 * we should error out: directories can't have multiple aliases. 3130 * 3131 * This is needed in the lookup routine of any filesystem that is exportable 3132 * (via knfsd) so that we can build dcache paths to directories effectively. 3133 * 3134 * If a dentry was found and moved, then it is returned. Otherwise NULL 3135 * is returned. This matches the expected return value of ->lookup. 3136 * 3137 * Cluster filesystems may call this function with a negative, hashed dentry. 3138 * In that case, we know that the inode will be a regular file, and also this 3139 * will only occur during atomic_open. So we need to check for the dentry 3140 * being already hashed only in the final case. 3141 */ 3142 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3143 { 3144 if (IS_ERR(inode)) 3145 return ERR_CAST(inode); 3146 3147 BUG_ON(!d_unhashed(dentry)); 3148 3149 if (!inode) 3150 goto out; 3151 3152 security_d_instantiate(dentry, inode); 3153 spin_lock(&inode->i_lock); 3154 if (S_ISDIR(inode->i_mode)) { 3155 struct dentry *new = __d_find_any_alias(inode); 3156 if (unlikely(new)) { 3157 /* The reference to new ensures it remains an alias */ 3158 spin_unlock(&inode->i_lock); 3159 write_seqlock(&rename_lock); 3160 if (unlikely(d_ancestor(new, dentry))) { 3161 write_sequnlock(&rename_lock); 3162 dput(new); 3163 new = ERR_PTR(-ELOOP); 3164 pr_warn_ratelimited( 3165 "VFS: Lookup of '%s' in %s %s" 3166 " would have caused loop\n", 3167 dentry->d_name.name, 3168 inode->i_sb->s_type->name, 3169 inode->i_sb->s_id); 3170 } else if (!IS_ROOT(new)) { 3171 struct dentry *old_parent = dget(new->d_parent); 3172 int err = __d_unalias(inode, dentry, new); 3173 write_sequnlock(&rename_lock); 3174 if (err) { 3175 dput(new); 3176 new = ERR_PTR(err); 3177 } 3178 dput(old_parent); 3179 } else { 3180 __d_move(new, dentry, false); 3181 write_sequnlock(&rename_lock); 3182 } 3183 iput(inode); 3184 return new; 3185 } 3186 } 3187 out: 3188 __d_add(dentry, inode); 3189 return NULL; 3190 } 3191 EXPORT_SYMBOL(d_splice_alias); 3192 3193 /* 3194 * Test whether new_dentry is a subdirectory of old_dentry. 3195 * 3196 * Trivially implemented using the dcache structure 3197 */ 3198 3199 /** 3200 * is_subdir - is new dentry a subdirectory of old_dentry 3201 * @new_dentry: new dentry 3202 * @old_dentry: old dentry 3203 * 3204 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3205 * Returns false otherwise. 3206 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3207 */ 3208 3209 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3210 { 3211 bool subdir; 3212 unsigned seq; 3213 3214 if (new_dentry == old_dentry) 3215 return true; 3216 3217 /* Access d_parent under rcu as d_move() may change it. */ 3218 rcu_read_lock(); 3219 seq = read_seqbegin(&rename_lock); 3220 subdir = d_ancestor(old_dentry, new_dentry); 3221 /* Try lockless once... */ 3222 if (read_seqretry(&rename_lock, seq)) { 3223 /* ...else acquire lock for progress even on deep chains. */ 3224 read_seqlock_excl(&rename_lock); 3225 subdir = d_ancestor(old_dentry, new_dentry); 3226 read_sequnlock_excl(&rename_lock); 3227 } 3228 rcu_read_unlock(); 3229 return subdir; 3230 } 3231 EXPORT_SYMBOL(is_subdir); 3232 3233 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3234 { 3235 struct dentry *root = data; 3236 if (dentry != root) { 3237 if (d_unhashed(dentry) || !dentry->d_inode) 3238 return D_WALK_SKIP; 3239 3240 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3241 dentry->d_flags |= DCACHE_GENOCIDE; 3242 dentry->d_lockref.count--; 3243 } 3244 } 3245 return D_WALK_CONTINUE; 3246 } 3247 3248 void d_genocide(struct dentry *parent) 3249 { 3250 d_walk(parent, parent, d_genocide_kill); 3251 } 3252 3253 void d_tmpfile(struct file *file, struct inode *inode) 3254 { 3255 struct dentry *dentry = file->f_path.dentry; 3256 3257 inode_dec_link_count(inode); 3258 BUG_ON(dentry->d_name.name != dentry->d_iname || 3259 !hlist_unhashed(&dentry->d_u.d_alias) || 3260 !d_unlinked(dentry)); 3261 spin_lock(&dentry->d_parent->d_lock); 3262 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3263 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3264 (unsigned long long)inode->i_ino); 3265 spin_unlock(&dentry->d_lock); 3266 spin_unlock(&dentry->d_parent->d_lock); 3267 d_instantiate(dentry, inode); 3268 } 3269 EXPORT_SYMBOL(d_tmpfile); 3270 3271 static __initdata unsigned long dhash_entries; 3272 static int __init set_dhash_entries(char *str) 3273 { 3274 if (!str) 3275 return 0; 3276 dhash_entries = simple_strtoul(str, &str, 0); 3277 return 1; 3278 } 3279 __setup("dhash_entries=", set_dhash_entries); 3280 3281 static void __init dcache_init_early(void) 3282 { 3283 /* If hashes are distributed across NUMA nodes, defer 3284 * hash allocation until vmalloc space is available. 3285 */ 3286 if (hashdist) 3287 return; 3288 3289 dentry_hashtable = 3290 alloc_large_system_hash("Dentry cache", 3291 sizeof(struct hlist_bl_head), 3292 dhash_entries, 3293 13, 3294 HASH_EARLY | HASH_ZERO, 3295 &d_hash_shift, 3296 NULL, 3297 0, 3298 0); 3299 d_hash_shift = 32 - d_hash_shift; 3300 } 3301 3302 static void __init dcache_init(void) 3303 { 3304 /* 3305 * A constructor could be added for stable state like the lists, 3306 * but it is probably not worth it because of the cache nature 3307 * of the dcache. 3308 */ 3309 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3310 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3311 d_iname); 3312 3313 /* Hash may have been set up in dcache_init_early */ 3314 if (!hashdist) 3315 return; 3316 3317 dentry_hashtable = 3318 alloc_large_system_hash("Dentry cache", 3319 sizeof(struct hlist_bl_head), 3320 dhash_entries, 3321 13, 3322 HASH_ZERO, 3323 &d_hash_shift, 3324 NULL, 3325 0, 3326 0); 3327 d_hash_shift = 32 - d_hash_shift; 3328 } 3329 3330 /* SLAB cache for __getname() consumers */ 3331 struct kmem_cache *names_cachep __read_mostly; 3332 EXPORT_SYMBOL(names_cachep); 3333 3334 void __init vfs_caches_init_early(void) 3335 { 3336 int i; 3337 3338 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3339 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3340 3341 dcache_init_early(); 3342 inode_init_early(); 3343 } 3344 3345 void __init vfs_caches_init(void) 3346 { 3347 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3348 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3349 3350 dcache_init(); 3351 inode_init(); 3352 files_init(); 3353 files_maxfiles_init(); 3354 mnt_init(); 3355 bdev_cache_init(); 3356 chrdev_init(); 3357 } 3358