xref: /openbmc/linux/fs/dcache.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __read_mostly;
100 
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 	{ }
195 };
196 
197 static int __init init_fs_dcache_sysctls(void)
198 {
199 	register_sysctl_init("fs", fs_dcache_sysctls);
200 	return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204 
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210 
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223 	unsigned long a,b,mask;
224 
225 	for (;;) {
226 		a = read_word_at_a_time(cs);
227 		b = load_unaligned_zeropad(ct);
228 		if (tcount < sizeof(unsigned long))
229 			break;
230 		if (unlikely(a != b))
231 			return 1;
232 		cs += sizeof(unsigned long);
233 		ct += sizeof(unsigned long);
234 		tcount -= sizeof(unsigned long);
235 		if (!tcount)
236 			return 0;
237 	}
238 	mask = bytemask_from_count(tcount);
239 	return unlikely(!!((a ^ b) & mask));
240 }
241 
242 #else
243 
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246 	do {
247 		if (*cs != *ct)
248 			return 1;
249 		cs++;
250 		ct++;
251 		tcount--;
252 	} while (tcount);
253 	return 0;
254 }
255 
256 #endif
257 
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260 	/*
261 	 * Be careful about RCU walk racing with rename:
262 	 * use 'READ_ONCE' to fetch the name pointer.
263 	 *
264 	 * NOTE! Even if a rename will mean that the length
265 	 * was not loaded atomically, we don't care. The
266 	 * RCU walk will check the sequence count eventually,
267 	 * and catch it. And we won't overrun the buffer,
268 	 * because we're reading the name pointer atomically,
269 	 * and a dentry name is guaranteed to be properly
270 	 * terminated with a NUL byte.
271 	 *
272 	 * End result: even if 'len' is wrong, we'll exit
273 	 * early because the data cannot match (there can
274 	 * be no NUL in the ct/tcount data)
275 	 */
276 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277 
278 	return dentry_string_cmp(cs, ct, tcount);
279 }
280 
281 struct external_name {
282 	union {
283 		atomic_t count;
284 		struct rcu_head head;
285 	} u;
286 	unsigned char name[];
287 };
288 
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291 	return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293 
294 static void __d_free(struct rcu_head *head)
295 {
296 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297 
298 	kmem_cache_free(dentry_cache, dentry);
299 }
300 
301 static void __d_free_external(struct rcu_head *head)
302 {
303 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 	kfree(external_name(dentry));
305 	kmem_cache_free(dentry_cache, dentry);
306 }
307 
308 static inline int dname_external(const struct dentry *dentry)
309 {
310 	return dentry->d_name.name != dentry->d_iname;
311 }
312 
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315 	spin_lock(&dentry->d_lock);
316 	name->name = dentry->d_name;
317 	if (unlikely(dname_external(dentry))) {
318 		atomic_inc(&external_name(dentry)->u.count);
319 	} else {
320 		memcpy(name->inline_name, dentry->d_iname,
321 		       dentry->d_name.len + 1);
322 		name->name.name = name->inline_name;
323 	}
324 	spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327 
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330 	if (unlikely(name->name.name != name->inline_name)) {
331 		struct external_name *p;
332 		p = container_of(name->name.name, struct external_name, name[0]);
333 		if (unlikely(atomic_dec_and_test(&p->u.count)))
334 			kfree_rcu(p, u.head);
335 	}
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338 
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340 					  struct inode *inode,
341 					  unsigned type_flags)
342 {
343 	unsigned flags;
344 
345 	dentry->d_inode = inode;
346 	flags = READ_ONCE(dentry->d_flags);
347 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 	flags |= type_flags;
349 	smp_store_release(&dentry->d_flags, flags);
350 }
351 
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354 	unsigned flags = READ_ONCE(dentry->d_flags);
355 
356 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 	WRITE_ONCE(dentry->d_flags, flags);
358 	dentry->d_inode = NULL;
359 	/*
360 	 * The negative counter only tracks dentries on the LRU. Don't inc if
361 	 * d_lru is on another list.
362 	 */
363 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
364 		this_cpu_inc(nr_dentry_negative);
365 }
366 
367 static void dentry_free(struct dentry *dentry)
368 {
369 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
370 	if (unlikely(dname_external(dentry))) {
371 		struct external_name *p = external_name(dentry);
372 		if (likely(atomic_dec_and_test(&p->u.count))) {
373 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
374 			return;
375 		}
376 	}
377 	/* if dentry was never visible to RCU, immediate free is OK */
378 	if (dentry->d_flags & DCACHE_NORCU)
379 		__d_free(&dentry->d_u.d_rcu);
380 	else
381 		call_rcu(&dentry->d_u.d_rcu, __d_free);
382 }
383 
384 /*
385  * Release the dentry's inode, using the filesystem
386  * d_iput() operation if defined.
387  */
388 static void dentry_unlink_inode(struct dentry * dentry)
389 	__releases(dentry->d_lock)
390 	__releases(dentry->d_inode->i_lock)
391 {
392 	struct inode *inode = dentry->d_inode;
393 
394 	raw_write_seqcount_begin(&dentry->d_seq);
395 	__d_clear_type_and_inode(dentry);
396 	hlist_del_init(&dentry->d_u.d_alias);
397 	raw_write_seqcount_end(&dentry->d_seq);
398 	spin_unlock(&dentry->d_lock);
399 	spin_unlock(&inode->i_lock);
400 	if (!inode->i_nlink)
401 		fsnotify_inoderemove(inode);
402 	if (dentry->d_op && dentry->d_op->d_iput)
403 		dentry->d_op->d_iput(dentry, inode);
404 	else
405 		iput(inode);
406 }
407 
408 /*
409  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
410  * is in use - which includes both the "real" per-superblock
411  * LRU list _and_ the DCACHE_SHRINK_LIST use.
412  *
413  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
414  * on the shrink list (ie not on the superblock LRU list).
415  *
416  * The per-cpu "nr_dentry_unused" counters are updated with
417  * the DCACHE_LRU_LIST bit.
418  *
419  * The per-cpu "nr_dentry_negative" counters are only updated
420  * when deleted from or added to the per-superblock LRU list, not
421  * from/to the shrink list. That is to avoid an unneeded dec/inc
422  * pair when moving from LRU to shrink list in select_collect().
423  *
424  * These helper functions make sure we always follow the
425  * rules. d_lock must be held by the caller.
426  */
427 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
428 static void d_lru_add(struct dentry *dentry)
429 {
430 	D_FLAG_VERIFY(dentry, 0);
431 	dentry->d_flags |= DCACHE_LRU_LIST;
432 	this_cpu_inc(nr_dentry_unused);
433 	if (d_is_negative(dentry))
434 		this_cpu_inc(nr_dentry_negative);
435 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
436 }
437 
438 static void d_lru_del(struct dentry *dentry)
439 {
440 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 	dentry->d_flags &= ~DCACHE_LRU_LIST;
442 	this_cpu_dec(nr_dentry_unused);
443 	if (d_is_negative(dentry))
444 		this_cpu_dec(nr_dentry_negative);
445 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
446 }
447 
448 static void d_shrink_del(struct dentry *dentry)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
451 	list_del_init(&dentry->d_lru);
452 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
453 	this_cpu_dec(nr_dentry_unused);
454 }
455 
456 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
457 {
458 	D_FLAG_VERIFY(dentry, 0);
459 	list_add(&dentry->d_lru, list);
460 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
461 	this_cpu_inc(nr_dentry_unused);
462 }
463 
464 /*
465  * These can only be called under the global LRU lock, ie during the
466  * callback for freeing the LRU list. "isolate" removes it from the
467  * LRU lists entirely, while shrink_move moves it to the indicated
468  * private list.
469  */
470 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
471 {
472 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
473 	dentry->d_flags &= ~DCACHE_LRU_LIST;
474 	this_cpu_dec(nr_dentry_unused);
475 	if (d_is_negative(dentry))
476 		this_cpu_dec(nr_dentry_negative);
477 	list_lru_isolate(lru, &dentry->d_lru);
478 }
479 
480 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
481 			      struct list_head *list)
482 {
483 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
484 	dentry->d_flags |= DCACHE_SHRINK_LIST;
485 	if (d_is_negative(dentry))
486 		this_cpu_dec(nr_dentry_negative);
487 	list_lru_isolate_move(lru, &dentry->d_lru, list);
488 }
489 
490 static void ___d_drop(struct dentry *dentry)
491 {
492 	struct hlist_bl_head *b;
493 	/*
494 	 * Hashed dentries are normally on the dentry hashtable,
495 	 * with the exception of those newly allocated by
496 	 * d_obtain_root, which are always IS_ROOT:
497 	 */
498 	if (unlikely(IS_ROOT(dentry)))
499 		b = &dentry->d_sb->s_roots;
500 	else
501 		b = d_hash(dentry->d_name.hash);
502 
503 	hlist_bl_lock(b);
504 	__hlist_bl_del(&dentry->d_hash);
505 	hlist_bl_unlock(b);
506 }
507 
508 void __d_drop(struct dentry *dentry)
509 {
510 	if (!d_unhashed(dentry)) {
511 		___d_drop(dentry);
512 		dentry->d_hash.pprev = NULL;
513 		write_seqcount_invalidate(&dentry->d_seq);
514 	}
515 }
516 EXPORT_SYMBOL(__d_drop);
517 
518 /**
519  * d_drop - drop a dentry
520  * @dentry: dentry to drop
521  *
522  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
523  * be found through a VFS lookup any more. Note that this is different from
524  * deleting the dentry - d_delete will try to mark the dentry negative if
525  * possible, giving a successful _negative_ lookup, while d_drop will
526  * just make the cache lookup fail.
527  *
528  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
529  * reason (NFS timeouts or autofs deletes).
530  *
531  * __d_drop requires dentry->d_lock
532  *
533  * ___d_drop doesn't mark dentry as "unhashed"
534  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
535  */
536 void d_drop(struct dentry *dentry)
537 {
538 	spin_lock(&dentry->d_lock);
539 	__d_drop(dentry);
540 	spin_unlock(&dentry->d_lock);
541 }
542 EXPORT_SYMBOL(d_drop);
543 
544 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
545 {
546 	struct dentry *next;
547 	/*
548 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
549 	 * attached to the dentry tree
550 	 */
551 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
552 	if (unlikely(list_empty(&dentry->d_child)))
553 		return;
554 	__list_del_entry(&dentry->d_child);
555 	/*
556 	 * Cursors can move around the list of children.  While we'd been
557 	 * a normal list member, it didn't matter - ->d_child.next would've
558 	 * been updated.  However, from now on it won't be and for the
559 	 * things like d_walk() it might end up with a nasty surprise.
560 	 * Normally d_walk() doesn't care about cursors moving around -
561 	 * ->d_lock on parent prevents that and since a cursor has no children
562 	 * of its own, we get through it without ever unlocking the parent.
563 	 * There is one exception, though - if we ascend from a child that
564 	 * gets killed as soon as we unlock it, the next sibling is found
565 	 * using the value left in its ->d_child.next.  And if _that_
566 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
567 	 * before d_walk() regains parent->d_lock, we'll end up skipping
568 	 * everything the cursor had been moved past.
569 	 *
570 	 * Solution: make sure that the pointer left behind in ->d_child.next
571 	 * points to something that won't be moving around.  I.e. skip the
572 	 * cursors.
573 	 */
574 	while (dentry->d_child.next != &parent->d_subdirs) {
575 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
576 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
577 			break;
578 		dentry->d_child.next = next->d_child.next;
579 	}
580 }
581 
582 static void __dentry_kill(struct dentry *dentry)
583 {
584 	struct dentry *parent = NULL;
585 	bool can_free = true;
586 	if (!IS_ROOT(dentry))
587 		parent = dentry->d_parent;
588 
589 	/*
590 	 * The dentry is now unrecoverably dead to the world.
591 	 */
592 	lockref_mark_dead(&dentry->d_lockref);
593 
594 	/*
595 	 * inform the fs via d_prune that this dentry is about to be
596 	 * unhashed and destroyed.
597 	 */
598 	if (dentry->d_flags & DCACHE_OP_PRUNE)
599 		dentry->d_op->d_prune(dentry);
600 
601 	if (dentry->d_flags & DCACHE_LRU_LIST) {
602 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
603 			d_lru_del(dentry);
604 	}
605 	/* if it was on the hash then remove it */
606 	__d_drop(dentry);
607 	dentry_unlist(dentry, parent);
608 	if (parent)
609 		spin_unlock(&parent->d_lock);
610 	if (dentry->d_inode)
611 		dentry_unlink_inode(dentry);
612 	else
613 		spin_unlock(&dentry->d_lock);
614 	this_cpu_dec(nr_dentry);
615 	if (dentry->d_op && dentry->d_op->d_release)
616 		dentry->d_op->d_release(dentry);
617 
618 	spin_lock(&dentry->d_lock);
619 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
620 		dentry->d_flags |= DCACHE_MAY_FREE;
621 		can_free = false;
622 	}
623 	spin_unlock(&dentry->d_lock);
624 	if (likely(can_free))
625 		dentry_free(dentry);
626 	cond_resched();
627 }
628 
629 static struct dentry *__lock_parent(struct dentry *dentry)
630 {
631 	struct dentry *parent;
632 	rcu_read_lock();
633 	spin_unlock(&dentry->d_lock);
634 again:
635 	parent = READ_ONCE(dentry->d_parent);
636 	spin_lock(&parent->d_lock);
637 	/*
638 	 * We can't blindly lock dentry until we are sure
639 	 * that we won't violate the locking order.
640 	 * Any changes of dentry->d_parent must have
641 	 * been done with parent->d_lock held, so
642 	 * spin_lock() above is enough of a barrier
643 	 * for checking if it's still our child.
644 	 */
645 	if (unlikely(parent != dentry->d_parent)) {
646 		spin_unlock(&parent->d_lock);
647 		goto again;
648 	}
649 	rcu_read_unlock();
650 	if (parent != dentry)
651 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
652 	else
653 		parent = NULL;
654 	return parent;
655 }
656 
657 static inline struct dentry *lock_parent(struct dentry *dentry)
658 {
659 	struct dentry *parent = dentry->d_parent;
660 	if (IS_ROOT(dentry))
661 		return NULL;
662 	if (likely(spin_trylock(&parent->d_lock)))
663 		return parent;
664 	return __lock_parent(dentry);
665 }
666 
667 static inline bool retain_dentry(struct dentry *dentry)
668 {
669 	WARN_ON(d_in_lookup(dentry));
670 
671 	/* Unreachable? Get rid of it */
672 	if (unlikely(d_unhashed(dentry)))
673 		return false;
674 
675 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
676 		return false;
677 
678 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
679 		if (dentry->d_op->d_delete(dentry))
680 			return false;
681 	}
682 
683 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
684 		return false;
685 
686 	/* retain; LRU fodder */
687 	dentry->d_lockref.count--;
688 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
689 		d_lru_add(dentry);
690 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
691 		dentry->d_flags |= DCACHE_REFERENCED;
692 	return true;
693 }
694 
695 void d_mark_dontcache(struct inode *inode)
696 {
697 	struct dentry *de;
698 
699 	spin_lock(&inode->i_lock);
700 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
701 		spin_lock(&de->d_lock);
702 		de->d_flags |= DCACHE_DONTCACHE;
703 		spin_unlock(&de->d_lock);
704 	}
705 	inode->i_state |= I_DONTCACHE;
706 	spin_unlock(&inode->i_lock);
707 }
708 EXPORT_SYMBOL(d_mark_dontcache);
709 
710 /*
711  * Finish off a dentry we've decided to kill.
712  * dentry->d_lock must be held, returns with it unlocked.
713  * Returns dentry requiring refcount drop, or NULL if we're done.
714  */
715 static struct dentry *dentry_kill(struct dentry *dentry)
716 	__releases(dentry->d_lock)
717 {
718 	struct inode *inode = dentry->d_inode;
719 	struct dentry *parent = NULL;
720 
721 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
722 		goto slow_positive;
723 
724 	if (!IS_ROOT(dentry)) {
725 		parent = dentry->d_parent;
726 		if (unlikely(!spin_trylock(&parent->d_lock))) {
727 			parent = __lock_parent(dentry);
728 			if (likely(inode || !dentry->d_inode))
729 				goto got_locks;
730 			/* negative that became positive */
731 			if (parent)
732 				spin_unlock(&parent->d_lock);
733 			inode = dentry->d_inode;
734 			goto slow_positive;
735 		}
736 	}
737 	__dentry_kill(dentry);
738 	return parent;
739 
740 slow_positive:
741 	spin_unlock(&dentry->d_lock);
742 	spin_lock(&inode->i_lock);
743 	spin_lock(&dentry->d_lock);
744 	parent = lock_parent(dentry);
745 got_locks:
746 	if (unlikely(dentry->d_lockref.count != 1)) {
747 		dentry->d_lockref.count--;
748 	} else if (likely(!retain_dentry(dentry))) {
749 		__dentry_kill(dentry);
750 		return parent;
751 	}
752 	/* we are keeping it, after all */
753 	if (inode)
754 		spin_unlock(&inode->i_lock);
755 	if (parent)
756 		spin_unlock(&parent->d_lock);
757 	spin_unlock(&dentry->d_lock);
758 	return NULL;
759 }
760 
761 /*
762  * Try to do a lockless dput(), and return whether that was successful.
763  *
764  * If unsuccessful, we return false, having already taken the dentry lock.
765  *
766  * The caller needs to hold the RCU read lock, so that the dentry is
767  * guaranteed to stay around even if the refcount goes down to zero!
768  */
769 static inline bool fast_dput(struct dentry *dentry)
770 {
771 	int ret;
772 	unsigned int d_flags;
773 
774 	/*
775 	 * If we have a d_op->d_delete() operation, we sould not
776 	 * let the dentry count go to zero, so use "put_or_lock".
777 	 */
778 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
779 		return lockref_put_or_lock(&dentry->d_lockref);
780 
781 	/*
782 	 * .. otherwise, we can try to just decrement the
783 	 * lockref optimistically.
784 	 */
785 	ret = lockref_put_return(&dentry->d_lockref);
786 
787 	/*
788 	 * If the lockref_put_return() failed due to the lock being held
789 	 * by somebody else, the fast path has failed. We will need to
790 	 * get the lock, and then check the count again.
791 	 */
792 	if (unlikely(ret < 0)) {
793 		spin_lock(&dentry->d_lock);
794 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
795 			spin_unlock(&dentry->d_lock);
796 			return true;
797 		}
798 		dentry->d_lockref.count--;
799 		goto locked;
800 	}
801 
802 	/*
803 	 * If we weren't the last ref, we're done.
804 	 */
805 	if (ret)
806 		return true;
807 
808 	/*
809 	 * Careful, careful. The reference count went down
810 	 * to zero, but we don't hold the dentry lock, so
811 	 * somebody else could get it again, and do another
812 	 * dput(), and we need to not race with that.
813 	 *
814 	 * However, there is a very special and common case
815 	 * where we don't care, because there is nothing to
816 	 * do: the dentry is still hashed, it does not have
817 	 * a 'delete' op, and it's referenced and already on
818 	 * the LRU list.
819 	 *
820 	 * NOTE! Since we aren't locked, these values are
821 	 * not "stable". However, it is sufficient that at
822 	 * some point after we dropped the reference the
823 	 * dentry was hashed and the flags had the proper
824 	 * value. Other dentry users may have re-gotten
825 	 * a reference to the dentry and change that, but
826 	 * our work is done - we can leave the dentry
827 	 * around with a zero refcount.
828 	 *
829 	 * Nevertheless, there are two cases that we should kill
830 	 * the dentry anyway.
831 	 * 1. free disconnected dentries as soon as their refcount
832 	 *    reached zero.
833 	 * 2. free dentries if they should not be cached.
834 	 */
835 	smp_rmb();
836 	d_flags = READ_ONCE(dentry->d_flags);
837 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
838 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
839 
840 	/* Nothing to do? Dropping the reference was all we needed? */
841 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
842 		return true;
843 
844 	/*
845 	 * Not the fast normal case? Get the lock. We've already decremented
846 	 * the refcount, but we'll need to re-check the situation after
847 	 * getting the lock.
848 	 */
849 	spin_lock(&dentry->d_lock);
850 
851 	/*
852 	 * Did somebody else grab a reference to it in the meantime, and
853 	 * we're no longer the last user after all? Alternatively, somebody
854 	 * else could have killed it and marked it dead. Either way, we
855 	 * don't need to do anything else.
856 	 */
857 locked:
858 	if (dentry->d_lockref.count) {
859 		spin_unlock(&dentry->d_lock);
860 		return true;
861 	}
862 
863 	/*
864 	 * Re-get the reference we optimistically dropped. We hold the
865 	 * lock, and we just tested that it was zero, so we can just
866 	 * set it to 1.
867 	 */
868 	dentry->d_lockref.count = 1;
869 	return false;
870 }
871 
872 
873 /*
874  * This is dput
875  *
876  * This is complicated by the fact that we do not want to put
877  * dentries that are no longer on any hash chain on the unused
878  * list: we'd much rather just get rid of them immediately.
879  *
880  * However, that implies that we have to traverse the dentry
881  * tree upwards to the parents which might _also_ now be
882  * scheduled for deletion (it may have been only waiting for
883  * its last child to go away).
884  *
885  * This tail recursion is done by hand as we don't want to depend
886  * on the compiler to always get this right (gcc generally doesn't).
887  * Real recursion would eat up our stack space.
888  */
889 
890 /*
891  * dput - release a dentry
892  * @dentry: dentry to release
893  *
894  * Release a dentry. This will drop the usage count and if appropriate
895  * call the dentry unlink method as well as removing it from the queues and
896  * releasing its resources. If the parent dentries were scheduled for release
897  * they too may now get deleted.
898  */
899 void dput(struct dentry *dentry)
900 {
901 	while (dentry) {
902 		might_sleep();
903 
904 		rcu_read_lock();
905 		if (likely(fast_dput(dentry))) {
906 			rcu_read_unlock();
907 			return;
908 		}
909 
910 		/* Slow case: now with the dentry lock held */
911 		rcu_read_unlock();
912 
913 		if (likely(retain_dentry(dentry))) {
914 			spin_unlock(&dentry->d_lock);
915 			return;
916 		}
917 
918 		dentry = dentry_kill(dentry);
919 	}
920 }
921 EXPORT_SYMBOL(dput);
922 
923 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
924 __must_hold(&dentry->d_lock)
925 {
926 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
927 		/* let the owner of the list it's on deal with it */
928 		--dentry->d_lockref.count;
929 	} else {
930 		if (dentry->d_flags & DCACHE_LRU_LIST)
931 			d_lru_del(dentry);
932 		if (!--dentry->d_lockref.count)
933 			d_shrink_add(dentry, list);
934 	}
935 }
936 
937 void dput_to_list(struct dentry *dentry, struct list_head *list)
938 {
939 	rcu_read_lock();
940 	if (likely(fast_dput(dentry))) {
941 		rcu_read_unlock();
942 		return;
943 	}
944 	rcu_read_unlock();
945 	if (!retain_dentry(dentry))
946 		__dput_to_list(dentry, list);
947 	spin_unlock(&dentry->d_lock);
948 }
949 
950 /* This must be called with d_lock held */
951 static inline void __dget_dlock(struct dentry *dentry)
952 {
953 	dentry->d_lockref.count++;
954 }
955 
956 static inline void __dget(struct dentry *dentry)
957 {
958 	lockref_get(&dentry->d_lockref);
959 }
960 
961 struct dentry *dget_parent(struct dentry *dentry)
962 {
963 	int gotref;
964 	struct dentry *ret;
965 	unsigned seq;
966 
967 	/*
968 	 * Do optimistic parent lookup without any
969 	 * locking.
970 	 */
971 	rcu_read_lock();
972 	seq = raw_seqcount_begin(&dentry->d_seq);
973 	ret = READ_ONCE(dentry->d_parent);
974 	gotref = lockref_get_not_zero(&ret->d_lockref);
975 	rcu_read_unlock();
976 	if (likely(gotref)) {
977 		if (!read_seqcount_retry(&dentry->d_seq, seq))
978 			return ret;
979 		dput(ret);
980 	}
981 
982 repeat:
983 	/*
984 	 * Don't need rcu_dereference because we re-check it was correct under
985 	 * the lock.
986 	 */
987 	rcu_read_lock();
988 	ret = dentry->d_parent;
989 	spin_lock(&ret->d_lock);
990 	if (unlikely(ret != dentry->d_parent)) {
991 		spin_unlock(&ret->d_lock);
992 		rcu_read_unlock();
993 		goto repeat;
994 	}
995 	rcu_read_unlock();
996 	BUG_ON(!ret->d_lockref.count);
997 	ret->d_lockref.count++;
998 	spin_unlock(&ret->d_lock);
999 	return ret;
1000 }
1001 EXPORT_SYMBOL(dget_parent);
1002 
1003 static struct dentry * __d_find_any_alias(struct inode *inode)
1004 {
1005 	struct dentry *alias;
1006 
1007 	if (hlist_empty(&inode->i_dentry))
1008 		return NULL;
1009 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1010 	__dget(alias);
1011 	return alias;
1012 }
1013 
1014 /**
1015  * d_find_any_alias - find any alias for a given inode
1016  * @inode: inode to find an alias for
1017  *
1018  * If any aliases exist for the given inode, take and return a
1019  * reference for one of them.  If no aliases exist, return %NULL.
1020  */
1021 struct dentry *d_find_any_alias(struct inode *inode)
1022 {
1023 	struct dentry *de;
1024 
1025 	spin_lock(&inode->i_lock);
1026 	de = __d_find_any_alias(inode);
1027 	spin_unlock(&inode->i_lock);
1028 	return de;
1029 }
1030 EXPORT_SYMBOL(d_find_any_alias);
1031 
1032 static struct dentry *__d_find_alias(struct inode *inode)
1033 {
1034 	struct dentry *alias;
1035 
1036 	if (S_ISDIR(inode->i_mode))
1037 		return __d_find_any_alias(inode);
1038 
1039 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1040 		spin_lock(&alias->d_lock);
1041  		if (!d_unhashed(alias)) {
1042 			__dget_dlock(alias);
1043 			spin_unlock(&alias->d_lock);
1044 			return alias;
1045 		}
1046 		spin_unlock(&alias->d_lock);
1047 	}
1048 	return NULL;
1049 }
1050 
1051 /**
1052  * d_find_alias - grab a hashed alias of inode
1053  * @inode: inode in question
1054  *
1055  * If inode has a hashed alias, or is a directory and has any alias,
1056  * acquire the reference to alias and return it. Otherwise return NULL.
1057  * Notice that if inode is a directory there can be only one alias and
1058  * it can be unhashed only if it has no children, or if it is the root
1059  * of a filesystem, or if the directory was renamed and d_revalidate
1060  * was the first vfs operation to notice.
1061  *
1062  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1063  * any other hashed alias over that one.
1064  */
1065 struct dentry *d_find_alias(struct inode *inode)
1066 {
1067 	struct dentry *de = NULL;
1068 
1069 	if (!hlist_empty(&inode->i_dentry)) {
1070 		spin_lock(&inode->i_lock);
1071 		de = __d_find_alias(inode);
1072 		spin_unlock(&inode->i_lock);
1073 	}
1074 	return de;
1075 }
1076 EXPORT_SYMBOL(d_find_alias);
1077 
1078 /*
1079  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1080  *  that inode won't get freed until rcu_read_unlock().
1081  */
1082 struct dentry *d_find_alias_rcu(struct inode *inode)
1083 {
1084 	struct hlist_head *l = &inode->i_dentry;
1085 	struct dentry *de = NULL;
1086 
1087 	spin_lock(&inode->i_lock);
1088 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1089 	// used without having I_FREEING set, which means no aliases left
1090 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1091 		if (S_ISDIR(inode->i_mode)) {
1092 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1093 		} else {
1094 			hlist_for_each_entry(de, l, d_u.d_alias)
1095 				if (!d_unhashed(de))
1096 					break;
1097 		}
1098 	}
1099 	spin_unlock(&inode->i_lock);
1100 	return de;
1101 }
1102 
1103 /*
1104  *	Try to kill dentries associated with this inode.
1105  * WARNING: you must own a reference to inode.
1106  */
1107 void d_prune_aliases(struct inode *inode)
1108 {
1109 	struct dentry *dentry;
1110 restart:
1111 	spin_lock(&inode->i_lock);
1112 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1113 		spin_lock(&dentry->d_lock);
1114 		if (!dentry->d_lockref.count) {
1115 			struct dentry *parent = lock_parent(dentry);
1116 			if (likely(!dentry->d_lockref.count)) {
1117 				__dentry_kill(dentry);
1118 				dput(parent);
1119 				goto restart;
1120 			}
1121 			if (parent)
1122 				spin_unlock(&parent->d_lock);
1123 		}
1124 		spin_unlock(&dentry->d_lock);
1125 	}
1126 	spin_unlock(&inode->i_lock);
1127 }
1128 EXPORT_SYMBOL(d_prune_aliases);
1129 
1130 /*
1131  * Lock a dentry from shrink list.
1132  * Called under rcu_read_lock() and dentry->d_lock; the former
1133  * guarantees that nothing we access will be freed under us.
1134  * Note that dentry is *not* protected from concurrent dentry_kill(),
1135  * d_delete(), etc.
1136  *
1137  * Return false if dentry has been disrupted or grabbed, leaving
1138  * the caller to kick it off-list.  Otherwise, return true and have
1139  * that dentry's inode and parent both locked.
1140  */
1141 static bool shrink_lock_dentry(struct dentry *dentry)
1142 {
1143 	struct inode *inode;
1144 	struct dentry *parent;
1145 
1146 	if (dentry->d_lockref.count)
1147 		return false;
1148 
1149 	inode = dentry->d_inode;
1150 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1151 		spin_unlock(&dentry->d_lock);
1152 		spin_lock(&inode->i_lock);
1153 		spin_lock(&dentry->d_lock);
1154 		if (unlikely(dentry->d_lockref.count))
1155 			goto out;
1156 		/* changed inode means that somebody had grabbed it */
1157 		if (unlikely(inode != dentry->d_inode))
1158 			goto out;
1159 	}
1160 
1161 	parent = dentry->d_parent;
1162 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1163 		return true;
1164 
1165 	spin_unlock(&dentry->d_lock);
1166 	spin_lock(&parent->d_lock);
1167 	if (unlikely(parent != dentry->d_parent)) {
1168 		spin_unlock(&parent->d_lock);
1169 		spin_lock(&dentry->d_lock);
1170 		goto out;
1171 	}
1172 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1173 	if (likely(!dentry->d_lockref.count))
1174 		return true;
1175 	spin_unlock(&parent->d_lock);
1176 out:
1177 	if (inode)
1178 		spin_unlock(&inode->i_lock);
1179 	return false;
1180 }
1181 
1182 void shrink_dentry_list(struct list_head *list)
1183 {
1184 	while (!list_empty(list)) {
1185 		struct dentry *dentry, *parent;
1186 
1187 		dentry = list_entry(list->prev, struct dentry, d_lru);
1188 		spin_lock(&dentry->d_lock);
1189 		rcu_read_lock();
1190 		if (!shrink_lock_dentry(dentry)) {
1191 			bool can_free = false;
1192 			rcu_read_unlock();
1193 			d_shrink_del(dentry);
1194 			if (dentry->d_lockref.count < 0)
1195 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1196 			spin_unlock(&dentry->d_lock);
1197 			if (can_free)
1198 				dentry_free(dentry);
1199 			continue;
1200 		}
1201 		rcu_read_unlock();
1202 		d_shrink_del(dentry);
1203 		parent = dentry->d_parent;
1204 		if (parent != dentry)
1205 			__dput_to_list(parent, list);
1206 		__dentry_kill(dentry);
1207 	}
1208 }
1209 
1210 static enum lru_status dentry_lru_isolate(struct list_head *item,
1211 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1212 {
1213 	struct list_head *freeable = arg;
1214 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1215 
1216 
1217 	/*
1218 	 * we are inverting the lru lock/dentry->d_lock here,
1219 	 * so use a trylock. If we fail to get the lock, just skip
1220 	 * it
1221 	 */
1222 	if (!spin_trylock(&dentry->d_lock))
1223 		return LRU_SKIP;
1224 
1225 	/*
1226 	 * Referenced dentries are still in use. If they have active
1227 	 * counts, just remove them from the LRU. Otherwise give them
1228 	 * another pass through the LRU.
1229 	 */
1230 	if (dentry->d_lockref.count) {
1231 		d_lru_isolate(lru, dentry);
1232 		spin_unlock(&dentry->d_lock);
1233 		return LRU_REMOVED;
1234 	}
1235 
1236 	if (dentry->d_flags & DCACHE_REFERENCED) {
1237 		dentry->d_flags &= ~DCACHE_REFERENCED;
1238 		spin_unlock(&dentry->d_lock);
1239 
1240 		/*
1241 		 * The list move itself will be made by the common LRU code. At
1242 		 * this point, we've dropped the dentry->d_lock but keep the
1243 		 * lru lock. This is safe to do, since every list movement is
1244 		 * protected by the lru lock even if both locks are held.
1245 		 *
1246 		 * This is guaranteed by the fact that all LRU management
1247 		 * functions are intermediated by the LRU API calls like
1248 		 * list_lru_add and list_lru_del. List movement in this file
1249 		 * only ever occur through this functions or through callbacks
1250 		 * like this one, that are called from the LRU API.
1251 		 *
1252 		 * The only exceptions to this are functions like
1253 		 * shrink_dentry_list, and code that first checks for the
1254 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1255 		 * operating only with stack provided lists after they are
1256 		 * properly isolated from the main list.  It is thus, always a
1257 		 * local access.
1258 		 */
1259 		return LRU_ROTATE;
1260 	}
1261 
1262 	d_lru_shrink_move(lru, dentry, freeable);
1263 	spin_unlock(&dentry->d_lock);
1264 
1265 	return LRU_REMOVED;
1266 }
1267 
1268 /**
1269  * prune_dcache_sb - shrink the dcache
1270  * @sb: superblock
1271  * @sc: shrink control, passed to list_lru_shrink_walk()
1272  *
1273  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1274  * is done when we need more memory and called from the superblock shrinker
1275  * function.
1276  *
1277  * This function may fail to free any resources if all the dentries are in
1278  * use.
1279  */
1280 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1281 {
1282 	LIST_HEAD(dispose);
1283 	long freed;
1284 
1285 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1286 				     dentry_lru_isolate, &dispose);
1287 	shrink_dentry_list(&dispose);
1288 	return freed;
1289 }
1290 
1291 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1292 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1293 {
1294 	struct list_head *freeable = arg;
1295 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1296 
1297 	/*
1298 	 * we are inverting the lru lock/dentry->d_lock here,
1299 	 * so use a trylock. If we fail to get the lock, just skip
1300 	 * it
1301 	 */
1302 	if (!spin_trylock(&dentry->d_lock))
1303 		return LRU_SKIP;
1304 
1305 	d_lru_shrink_move(lru, dentry, freeable);
1306 	spin_unlock(&dentry->d_lock);
1307 
1308 	return LRU_REMOVED;
1309 }
1310 
1311 
1312 /**
1313  * shrink_dcache_sb - shrink dcache for a superblock
1314  * @sb: superblock
1315  *
1316  * Shrink the dcache for the specified super block. This is used to free
1317  * the dcache before unmounting a file system.
1318  */
1319 void shrink_dcache_sb(struct super_block *sb)
1320 {
1321 	do {
1322 		LIST_HEAD(dispose);
1323 
1324 		list_lru_walk(&sb->s_dentry_lru,
1325 			dentry_lru_isolate_shrink, &dispose, 1024);
1326 		shrink_dentry_list(&dispose);
1327 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1328 }
1329 EXPORT_SYMBOL(shrink_dcache_sb);
1330 
1331 /**
1332  * enum d_walk_ret - action to talke during tree walk
1333  * @D_WALK_CONTINUE:	contrinue walk
1334  * @D_WALK_QUIT:	quit walk
1335  * @D_WALK_NORETRY:	quit when retry is needed
1336  * @D_WALK_SKIP:	skip this dentry and its children
1337  */
1338 enum d_walk_ret {
1339 	D_WALK_CONTINUE,
1340 	D_WALK_QUIT,
1341 	D_WALK_NORETRY,
1342 	D_WALK_SKIP,
1343 };
1344 
1345 /**
1346  * d_walk - walk the dentry tree
1347  * @parent:	start of walk
1348  * @data:	data passed to @enter() and @finish()
1349  * @enter:	callback when first entering the dentry
1350  *
1351  * The @enter() callbacks are called with d_lock held.
1352  */
1353 static void d_walk(struct dentry *parent, void *data,
1354 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1355 {
1356 	struct dentry *this_parent;
1357 	struct list_head *next;
1358 	unsigned seq = 0;
1359 	enum d_walk_ret ret;
1360 	bool retry = true;
1361 
1362 again:
1363 	read_seqbegin_or_lock(&rename_lock, &seq);
1364 	this_parent = parent;
1365 	spin_lock(&this_parent->d_lock);
1366 
1367 	ret = enter(data, this_parent);
1368 	switch (ret) {
1369 	case D_WALK_CONTINUE:
1370 		break;
1371 	case D_WALK_QUIT:
1372 	case D_WALK_SKIP:
1373 		goto out_unlock;
1374 	case D_WALK_NORETRY:
1375 		retry = false;
1376 		break;
1377 	}
1378 repeat:
1379 	next = this_parent->d_subdirs.next;
1380 resume:
1381 	while (next != &this_parent->d_subdirs) {
1382 		struct list_head *tmp = next;
1383 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1384 		next = tmp->next;
1385 
1386 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1387 			continue;
1388 
1389 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1390 
1391 		ret = enter(data, dentry);
1392 		switch (ret) {
1393 		case D_WALK_CONTINUE:
1394 			break;
1395 		case D_WALK_QUIT:
1396 			spin_unlock(&dentry->d_lock);
1397 			goto out_unlock;
1398 		case D_WALK_NORETRY:
1399 			retry = false;
1400 			break;
1401 		case D_WALK_SKIP:
1402 			spin_unlock(&dentry->d_lock);
1403 			continue;
1404 		}
1405 
1406 		if (!list_empty(&dentry->d_subdirs)) {
1407 			spin_unlock(&this_parent->d_lock);
1408 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1409 			this_parent = dentry;
1410 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1411 			goto repeat;
1412 		}
1413 		spin_unlock(&dentry->d_lock);
1414 	}
1415 	/*
1416 	 * All done at this level ... ascend and resume the search.
1417 	 */
1418 	rcu_read_lock();
1419 ascend:
1420 	if (this_parent != parent) {
1421 		struct dentry *child = this_parent;
1422 		this_parent = child->d_parent;
1423 
1424 		spin_unlock(&child->d_lock);
1425 		spin_lock(&this_parent->d_lock);
1426 
1427 		/* might go back up the wrong parent if we have had a rename. */
1428 		if (need_seqretry(&rename_lock, seq))
1429 			goto rename_retry;
1430 		/* go into the first sibling still alive */
1431 		do {
1432 			next = child->d_child.next;
1433 			if (next == &this_parent->d_subdirs)
1434 				goto ascend;
1435 			child = list_entry(next, struct dentry, d_child);
1436 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1437 		rcu_read_unlock();
1438 		goto resume;
1439 	}
1440 	if (need_seqretry(&rename_lock, seq))
1441 		goto rename_retry;
1442 	rcu_read_unlock();
1443 
1444 out_unlock:
1445 	spin_unlock(&this_parent->d_lock);
1446 	done_seqretry(&rename_lock, seq);
1447 	return;
1448 
1449 rename_retry:
1450 	spin_unlock(&this_parent->d_lock);
1451 	rcu_read_unlock();
1452 	BUG_ON(seq & 1);
1453 	if (!retry)
1454 		return;
1455 	seq = 1;
1456 	goto again;
1457 }
1458 
1459 struct check_mount {
1460 	struct vfsmount *mnt;
1461 	unsigned int mounted;
1462 };
1463 
1464 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1465 {
1466 	struct check_mount *info = data;
1467 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1468 
1469 	if (likely(!d_mountpoint(dentry)))
1470 		return D_WALK_CONTINUE;
1471 	if (__path_is_mountpoint(&path)) {
1472 		info->mounted = 1;
1473 		return D_WALK_QUIT;
1474 	}
1475 	return D_WALK_CONTINUE;
1476 }
1477 
1478 /**
1479  * path_has_submounts - check for mounts over a dentry in the
1480  *                      current namespace.
1481  * @parent: path to check.
1482  *
1483  * Return true if the parent or its subdirectories contain
1484  * a mount point in the current namespace.
1485  */
1486 int path_has_submounts(const struct path *parent)
1487 {
1488 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1489 
1490 	read_seqlock_excl(&mount_lock);
1491 	d_walk(parent->dentry, &data, path_check_mount);
1492 	read_sequnlock_excl(&mount_lock);
1493 
1494 	return data.mounted;
1495 }
1496 EXPORT_SYMBOL(path_has_submounts);
1497 
1498 /*
1499  * Called by mount code to set a mountpoint and check if the mountpoint is
1500  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1501  * subtree can become unreachable).
1502  *
1503  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1504  * this reason take rename_lock and d_lock on dentry and ancestors.
1505  */
1506 int d_set_mounted(struct dentry *dentry)
1507 {
1508 	struct dentry *p;
1509 	int ret = -ENOENT;
1510 	write_seqlock(&rename_lock);
1511 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1512 		/* Need exclusion wrt. d_invalidate() */
1513 		spin_lock(&p->d_lock);
1514 		if (unlikely(d_unhashed(p))) {
1515 			spin_unlock(&p->d_lock);
1516 			goto out;
1517 		}
1518 		spin_unlock(&p->d_lock);
1519 	}
1520 	spin_lock(&dentry->d_lock);
1521 	if (!d_unlinked(dentry)) {
1522 		ret = -EBUSY;
1523 		if (!d_mountpoint(dentry)) {
1524 			dentry->d_flags |= DCACHE_MOUNTED;
1525 			ret = 0;
1526 		}
1527 	}
1528  	spin_unlock(&dentry->d_lock);
1529 out:
1530 	write_sequnlock(&rename_lock);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Search the dentry child list of the specified parent,
1536  * and move any unused dentries to the end of the unused
1537  * list for prune_dcache(). We descend to the next level
1538  * whenever the d_subdirs list is non-empty and continue
1539  * searching.
1540  *
1541  * It returns zero iff there are no unused children,
1542  * otherwise  it returns the number of children moved to
1543  * the end of the unused list. This may not be the total
1544  * number of unused children, because select_parent can
1545  * drop the lock and return early due to latency
1546  * constraints.
1547  */
1548 
1549 struct select_data {
1550 	struct dentry *start;
1551 	union {
1552 		long found;
1553 		struct dentry *victim;
1554 	};
1555 	struct list_head dispose;
1556 };
1557 
1558 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1559 {
1560 	struct select_data *data = _data;
1561 	enum d_walk_ret ret = D_WALK_CONTINUE;
1562 
1563 	if (data->start == dentry)
1564 		goto out;
1565 
1566 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1567 		data->found++;
1568 	} else {
1569 		if (dentry->d_flags & DCACHE_LRU_LIST)
1570 			d_lru_del(dentry);
1571 		if (!dentry->d_lockref.count) {
1572 			d_shrink_add(dentry, &data->dispose);
1573 			data->found++;
1574 		}
1575 	}
1576 	/*
1577 	 * We can return to the caller if we have found some (this
1578 	 * ensures forward progress). We'll be coming back to find
1579 	 * the rest.
1580 	 */
1581 	if (!list_empty(&data->dispose))
1582 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1583 out:
1584 	return ret;
1585 }
1586 
1587 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1588 {
1589 	struct select_data *data = _data;
1590 	enum d_walk_ret ret = D_WALK_CONTINUE;
1591 
1592 	if (data->start == dentry)
1593 		goto out;
1594 
1595 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1596 		if (!dentry->d_lockref.count) {
1597 			rcu_read_lock();
1598 			data->victim = dentry;
1599 			return D_WALK_QUIT;
1600 		}
1601 	} else {
1602 		if (dentry->d_flags & DCACHE_LRU_LIST)
1603 			d_lru_del(dentry);
1604 		if (!dentry->d_lockref.count)
1605 			d_shrink_add(dentry, &data->dispose);
1606 	}
1607 	/*
1608 	 * We can return to the caller if we have found some (this
1609 	 * ensures forward progress). We'll be coming back to find
1610 	 * the rest.
1611 	 */
1612 	if (!list_empty(&data->dispose))
1613 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1614 out:
1615 	return ret;
1616 }
1617 
1618 /**
1619  * shrink_dcache_parent - prune dcache
1620  * @parent: parent of entries to prune
1621  *
1622  * Prune the dcache to remove unused children of the parent dentry.
1623  */
1624 void shrink_dcache_parent(struct dentry *parent)
1625 {
1626 	for (;;) {
1627 		struct select_data data = {.start = parent};
1628 
1629 		INIT_LIST_HEAD(&data.dispose);
1630 		d_walk(parent, &data, select_collect);
1631 
1632 		if (!list_empty(&data.dispose)) {
1633 			shrink_dentry_list(&data.dispose);
1634 			continue;
1635 		}
1636 
1637 		cond_resched();
1638 		if (!data.found)
1639 			break;
1640 		data.victim = NULL;
1641 		d_walk(parent, &data, select_collect2);
1642 		if (data.victim) {
1643 			struct dentry *parent;
1644 			spin_lock(&data.victim->d_lock);
1645 			if (!shrink_lock_dentry(data.victim)) {
1646 				spin_unlock(&data.victim->d_lock);
1647 				rcu_read_unlock();
1648 			} else {
1649 				rcu_read_unlock();
1650 				parent = data.victim->d_parent;
1651 				if (parent != data.victim)
1652 					__dput_to_list(parent, &data.dispose);
1653 				__dentry_kill(data.victim);
1654 			}
1655 		}
1656 		if (!list_empty(&data.dispose))
1657 			shrink_dentry_list(&data.dispose);
1658 	}
1659 }
1660 EXPORT_SYMBOL(shrink_dcache_parent);
1661 
1662 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1663 {
1664 	/* it has busy descendents; complain about those instead */
1665 	if (!list_empty(&dentry->d_subdirs))
1666 		return D_WALK_CONTINUE;
1667 
1668 	/* root with refcount 1 is fine */
1669 	if (dentry == _data && dentry->d_lockref.count == 1)
1670 		return D_WALK_CONTINUE;
1671 
1672 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1673 			" still in use (%d) [unmount of %s %s]\n",
1674 		       dentry,
1675 		       dentry->d_inode ?
1676 		       dentry->d_inode->i_ino : 0UL,
1677 		       dentry,
1678 		       dentry->d_lockref.count,
1679 		       dentry->d_sb->s_type->name,
1680 		       dentry->d_sb->s_id);
1681 	return D_WALK_CONTINUE;
1682 }
1683 
1684 static void do_one_tree(struct dentry *dentry)
1685 {
1686 	shrink_dcache_parent(dentry);
1687 	d_walk(dentry, dentry, umount_check);
1688 	d_drop(dentry);
1689 	dput(dentry);
1690 }
1691 
1692 /*
1693  * destroy the dentries attached to a superblock on unmounting
1694  */
1695 void shrink_dcache_for_umount(struct super_block *sb)
1696 {
1697 	struct dentry *dentry;
1698 
1699 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1700 
1701 	dentry = sb->s_root;
1702 	sb->s_root = NULL;
1703 	do_one_tree(dentry);
1704 
1705 	while (!hlist_bl_empty(&sb->s_roots)) {
1706 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1707 		do_one_tree(dentry);
1708 	}
1709 }
1710 
1711 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1712 {
1713 	struct dentry **victim = _data;
1714 	if (d_mountpoint(dentry)) {
1715 		__dget_dlock(dentry);
1716 		*victim = dentry;
1717 		return D_WALK_QUIT;
1718 	}
1719 	return D_WALK_CONTINUE;
1720 }
1721 
1722 /**
1723  * d_invalidate - detach submounts, prune dcache, and drop
1724  * @dentry: dentry to invalidate (aka detach, prune and drop)
1725  */
1726 void d_invalidate(struct dentry *dentry)
1727 {
1728 	bool had_submounts = false;
1729 	spin_lock(&dentry->d_lock);
1730 	if (d_unhashed(dentry)) {
1731 		spin_unlock(&dentry->d_lock);
1732 		return;
1733 	}
1734 	__d_drop(dentry);
1735 	spin_unlock(&dentry->d_lock);
1736 
1737 	/* Negative dentries can be dropped without further checks */
1738 	if (!dentry->d_inode)
1739 		return;
1740 
1741 	shrink_dcache_parent(dentry);
1742 	for (;;) {
1743 		struct dentry *victim = NULL;
1744 		d_walk(dentry, &victim, find_submount);
1745 		if (!victim) {
1746 			if (had_submounts)
1747 				shrink_dcache_parent(dentry);
1748 			return;
1749 		}
1750 		had_submounts = true;
1751 		detach_mounts(victim);
1752 		dput(victim);
1753 	}
1754 }
1755 EXPORT_SYMBOL(d_invalidate);
1756 
1757 /**
1758  * __d_alloc	-	allocate a dcache entry
1759  * @sb: filesystem it will belong to
1760  * @name: qstr of the name
1761  *
1762  * Allocates a dentry. It returns %NULL if there is insufficient memory
1763  * available. On a success the dentry is returned. The name passed in is
1764  * copied and the copy passed in may be reused after this call.
1765  */
1766 
1767 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1768 {
1769 	struct dentry *dentry;
1770 	char *dname;
1771 	int err;
1772 
1773 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1774 				      GFP_KERNEL);
1775 	if (!dentry)
1776 		return NULL;
1777 
1778 	/*
1779 	 * We guarantee that the inline name is always NUL-terminated.
1780 	 * This way the memcpy() done by the name switching in rename
1781 	 * will still always have a NUL at the end, even if we might
1782 	 * be overwriting an internal NUL character
1783 	 */
1784 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1785 	if (unlikely(!name)) {
1786 		name = &slash_name;
1787 		dname = dentry->d_iname;
1788 	} else if (name->len > DNAME_INLINE_LEN-1) {
1789 		size_t size = offsetof(struct external_name, name[1]);
1790 		struct external_name *p = kmalloc(size + name->len,
1791 						  GFP_KERNEL_ACCOUNT |
1792 						  __GFP_RECLAIMABLE);
1793 		if (!p) {
1794 			kmem_cache_free(dentry_cache, dentry);
1795 			return NULL;
1796 		}
1797 		atomic_set(&p->u.count, 1);
1798 		dname = p->name;
1799 	} else  {
1800 		dname = dentry->d_iname;
1801 	}
1802 
1803 	dentry->d_name.len = name->len;
1804 	dentry->d_name.hash = name->hash;
1805 	memcpy(dname, name->name, name->len);
1806 	dname[name->len] = 0;
1807 
1808 	/* Make sure we always see the terminating NUL character */
1809 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1810 
1811 	dentry->d_lockref.count = 1;
1812 	dentry->d_flags = 0;
1813 	spin_lock_init(&dentry->d_lock);
1814 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1815 	dentry->d_inode = NULL;
1816 	dentry->d_parent = dentry;
1817 	dentry->d_sb = sb;
1818 	dentry->d_op = NULL;
1819 	dentry->d_fsdata = NULL;
1820 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1821 	INIT_LIST_HEAD(&dentry->d_lru);
1822 	INIT_LIST_HEAD(&dentry->d_subdirs);
1823 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1824 	INIT_LIST_HEAD(&dentry->d_child);
1825 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1826 
1827 	if (dentry->d_op && dentry->d_op->d_init) {
1828 		err = dentry->d_op->d_init(dentry);
1829 		if (err) {
1830 			if (dname_external(dentry))
1831 				kfree(external_name(dentry));
1832 			kmem_cache_free(dentry_cache, dentry);
1833 			return NULL;
1834 		}
1835 	}
1836 
1837 	this_cpu_inc(nr_dentry);
1838 
1839 	return dentry;
1840 }
1841 
1842 /**
1843  * d_alloc	-	allocate a dcache entry
1844  * @parent: parent of entry to allocate
1845  * @name: qstr of the name
1846  *
1847  * Allocates a dentry. It returns %NULL if there is insufficient memory
1848  * available. On a success the dentry is returned. The name passed in is
1849  * copied and the copy passed in may be reused after this call.
1850  */
1851 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1852 {
1853 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1854 	if (!dentry)
1855 		return NULL;
1856 	spin_lock(&parent->d_lock);
1857 	/*
1858 	 * don't need child lock because it is not subject
1859 	 * to concurrency here
1860 	 */
1861 	__dget_dlock(parent);
1862 	dentry->d_parent = parent;
1863 	list_add(&dentry->d_child, &parent->d_subdirs);
1864 	spin_unlock(&parent->d_lock);
1865 
1866 	return dentry;
1867 }
1868 EXPORT_SYMBOL(d_alloc);
1869 
1870 struct dentry *d_alloc_anon(struct super_block *sb)
1871 {
1872 	return __d_alloc(sb, NULL);
1873 }
1874 EXPORT_SYMBOL(d_alloc_anon);
1875 
1876 struct dentry *d_alloc_cursor(struct dentry * parent)
1877 {
1878 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1879 	if (dentry) {
1880 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1881 		dentry->d_parent = dget(parent);
1882 	}
1883 	return dentry;
1884 }
1885 
1886 /**
1887  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1888  * @sb: the superblock
1889  * @name: qstr of the name
1890  *
1891  * For a filesystem that just pins its dentries in memory and never
1892  * performs lookups at all, return an unhashed IS_ROOT dentry.
1893  * This is used for pipes, sockets et.al. - the stuff that should
1894  * never be anyone's children or parents.  Unlike all other
1895  * dentries, these will not have RCU delay between dropping the
1896  * last reference and freeing them.
1897  *
1898  * The only user is alloc_file_pseudo() and that's what should
1899  * be considered a public interface.  Don't use directly.
1900  */
1901 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1902 {
1903 	struct dentry *dentry = __d_alloc(sb, name);
1904 	if (likely(dentry))
1905 		dentry->d_flags |= DCACHE_NORCU;
1906 	return dentry;
1907 }
1908 
1909 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1910 {
1911 	struct qstr q;
1912 
1913 	q.name = name;
1914 	q.hash_len = hashlen_string(parent, name);
1915 	return d_alloc(parent, &q);
1916 }
1917 EXPORT_SYMBOL(d_alloc_name);
1918 
1919 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1920 {
1921 	WARN_ON_ONCE(dentry->d_op);
1922 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1923 				DCACHE_OP_COMPARE	|
1924 				DCACHE_OP_REVALIDATE	|
1925 				DCACHE_OP_WEAK_REVALIDATE	|
1926 				DCACHE_OP_DELETE	|
1927 				DCACHE_OP_REAL));
1928 	dentry->d_op = op;
1929 	if (!op)
1930 		return;
1931 	if (op->d_hash)
1932 		dentry->d_flags |= DCACHE_OP_HASH;
1933 	if (op->d_compare)
1934 		dentry->d_flags |= DCACHE_OP_COMPARE;
1935 	if (op->d_revalidate)
1936 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1937 	if (op->d_weak_revalidate)
1938 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1939 	if (op->d_delete)
1940 		dentry->d_flags |= DCACHE_OP_DELETE;
1941 	if (op->d_prune)
1942 		dentry->d_flags |= DCACHE_OP_PRUNE;
1943 	if (op->d_real)
1944 		dentry->d_flags |= DCACHE_OP_REAL;
1945 
1946 }
1947 EXPORT_SYMBOL(d_set_d_op);
1948 
1949 
1950 /*
1951  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1952  * @dentry - The dentry to mark
1953  *
1954  * Mark a dentry as falling through to the lower layer (as set with
1955  * d_pin_lower()).  This flag may be recorded on the medium.
1956  */
1957 void d_set_fallthru(struct dentry *dentry)
1958 {
1959 	spin_lock(&dentry->d_lock);
1960 	dentry->d_flags |= DCACHE_FALLTHRU;
1961 	spin_unlock(&dentry->d_lock);
1962 }
1963 EXPORT_SYMBOL(d_set_fallthru);
1964 
1965 static unsigned d_flags_for_inode(struct inode *inode)
1966 {
1967 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1968 
1969 	if (!inode)
1970 		return DCACHE_MISS_TYPE;
1971 
1972 	if (S_ISDIR(inode->i_mode)) {
1973 		add_flags = DCACHE_DIRECTORY_TYPE;
1974 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1975 			if (unlikely(!inode->i_op->lookup))
1976 				add_flags = DCACHE_AUTODIR_TYPE;
1977 			else
1978 				inode->i_opflags |= IOP_LOOKUP;
1979 		}
1980 		goto type_determined;
1981 	}
1982 
1983 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1984 		if (unlikely(inode->i_op->get_link)) {
1985 			add_flags = DCACHE_SYMLINK_TYPE;
1986 			goto type_determined;
1987 		}
1988 		inode->i_opflags |= IOP_NOFOLLOW;
1989 	}
1990 
1991 	if (unlikely(!S_ISREG(inode->i_mode)))
1992 		add_flags = DCACHE_SPECIAL_TYPE;
1993 
1994 type_determined:
1995 	if (unlikely(IS_AUTOMOUNT(inode)))
1996 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1997 	return add_flags;
1998 }
1999 
2000 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
2001 {
2002 	unsigned add_flags = d_flags_for_inode(inode);
2003 	WARN_ON(d_in_lookup(dentry));
2004 
2005 	spin_lock(&dentry->d_lock);
2006 	/*
2007 	 * The negative counter only tracks dentries on the LRU. Don't dec if
2008 	 * d_lru is on another list.
2009 	 */
2010 	if ((dentry->d_flags &
2011 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
2012 		this_cpu_dec(nr_dentry_negative);
2013 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2014 	raw_write_seqcount_begin(&dentry->d_seq);
2015 	__d_set_inode_and_type(dentry, inode, add_flags);
2016 	raw_write_seqcount_end(&dentry->d_seq);
2017 	fsnotify_update_flags(dentry);
2018 	spin_unlock(&dentry->d_lock);
2019 }
2020 
2021 /**
2022  * d_instantiate - fill in inode information for a dentry
2023  * @entry: dentry to complete
2024  * @inode: inode to attach to this dentry
2025  *
2026  * Fill in inode information in the entry.
2027  *
2028  * This turns negative dentries into productive full members
2029  * of society.
2030  *
2031  * NOTE! This assumes that the inode count has been incremented
2032  * (or otherwise set) by the caller to indicate that it is now
2033  * in use by the dcache.
2034  */
2035 
2036 void d_instantiate(struct dentry *entry, struct inode * inode)
2037 {
2038 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2039 	if (inode) {
2040 		security_d_instantiate(entry, inode);
2041 		spin_lock(&inode->i_lock);
2042 		__d_instantiate(entry, inode);
2043 		spin_unlock(&inode->i_lock);
2044 	}
2045 }
2046 EXPORT_SYMBOL(d_instantiate);
2047 
2048 /*
2049  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2050  * with lockdep-related part of unlock_new_inode() done before
2051  * anything else.  Use that instead of open-coding d_instantiate()/
2052  * unlock_new_inode() combinations.
2053  */
2054 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2055 {
2056 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2057 	BUG_ON(!inode);
2058 	lockdep_annotate_inode_mutex_key(inode);
2059 	security_d_instantiate(entry, inode);
2060 	spin_lock(&inode->i_lock);
2061 	__d_instantiate(entry, inode);
2062 	WARN_ON(!(inode->i_state & I_NEW));
2063 	inode->i_state &= ~I_NEW & ~I_CREATING;
2064 	smp_mb();
2065 	wake_up_bit(&inode->i_state, __I_NEW);
2066 	spin_unlock(&inode->i_lock);
2067 }
2068 EXPORT_SYMBOL(d_instantiate_new);
2069 
2070 struct dentry *d_make_root(struct inode *root_inode)
2071 {
2072 	struct dentry *res = NULL;
2073 
2074 	if (root_inode) {
2075 		res = d_alloc_anon(root_inode->i_sb);
2076 		if (res)
2077 			d_instantiate(res, root_inode);
2078 		else
2079 			iput(root_inode);
2080 	}
2081 	return res;
2082 }
2083 EXPORT_SYMBOL(d_make_root);
2084 
2085 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2086 					   struct inode *inode,
2087 					   bool disconnected)
2088 {
2089 	struct dentry *res;
2090 	unsigned add_flags;
2091 
2092 	security_d_instantiate(dentry, inode);
2093 	spin_lock(&inode->i_lock);
2094 	res = __d_find_any_alias(inode);
2095 	if (res) {
2096 		spin_unlock(&inode->i_lock);
2097 		dput(dentry);
2098 		goto out_iput;
2099 	}
2100 
2101 	/* attach a disconnected dentry */
2102 	add_flags = d_flags_for_inode(inode);
2103 
2104 	if (disconnected)
2105 		add_flags |= DCACHE_DISCONNECTED;
2106 
2107 	spin_lock(&dentry->d_lock);
2108 	__d_set_inode_and_type(dentry, inode, add_flags);
2109 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2110 	if (!disconnected) {
2111 		hlist_bl_lock(&dentry->d_sb->s_roots);
2112 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2113 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2114 	}
2115 	spin_unlock(&dentry->d_lock);
2116 	spin_unlock(&inode->i_lock);
2117 
2118 	return dentry;
2119 
2120  out_iput:
2121 	iput(inode);
2122 	return res;
2123 }
2124 
2125 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2126 {
2127 	return __d_instantiate_anon(dentry, inode, true);
2128 }
2129 EXPORT_SYMBOL(d_instantiate_anon);
2130 
2131 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2132 {
2133 	struct dentry *tmp;
2134 	struct dentry *res;
2135 
2136 	if (!inode)
2137 		return ERR_PTR(-ESTALE);
2138 	if (IS_ERR(inode))
2139 		return ERR_CAST(inode);
2140 
2141 	res = d_find_any_alias(inode);
2142 	if (res)
2143 		goto out_iput;
2144 
2145 	tmp = d_alloc_anon(inode->i_sb);
2146 	if (!tmp) {
2147 		res = ERR_PTR(-ENOMEM);
2148 		goto out_iput;
2149 	}
2150 
2151 	return __d_instantiate_anon(tmp, inode, disconnected);
2152 
2153 out_iput:
2154 	iput(inode);
2155 	return res;
2156 }
2157 
2158 /**
2159  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2160  * @inode: inode to allocate the dentry for
2161  *
2162  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2163  * similar open by handle operations.  The returned dentry may be anonymous,
2164  * or may have a full name (if the inode was already in the cache).
2165  *
2166  * When called on a directory inode, we must ensure that the inode only ever
2167  * has one dentry.  If a dentry is found, that is returned instead of
2168  * allocating a new one.
2169  *
2170  * On successful return, the reference to the inode has been transferred
2171  * to the dentry.  In case of an error the reference on the inode is released.
2172  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2173  * be passed in and the error will be propagated to the return value,
2174  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2175  */
2176 struct dentry *d_obtain_alias(struct inode *inode)
2177 {
2178 	return __d_obtain_alias(inode, true);
2179 }
2180 EXPORT_SYMBOL(d_obtain_alias);
2181 
2182 /**
2183  * d_obtain_root - find or allocate a dentry for a given inode
2184  * @inode: inode to allocate the dentry for
2185  *
2186  * Obtain an IS_ROOT dentry for the root of a filesystem.
2187  *
2188  * We must ensure that directory inodes only ever have one dentry.  If a
2189  * dentry is found, that is returned instead of allocating a new one.
2190  *
2191  * On successful return, the reference to the inode has been transferred
2192  * to the dentry.  In case of an error the reference on the inode is
2193  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2194  * error will be propagate to the return value, with a %NULL @inode
2195  * replaced by ERR_PTR(-ESTALE).
2196  */
2197 struct dentry *d_obtain_root(struct inode *inode)
2198 {
2199 	return __d_obtain_alias(inode, false);
2200 }
2201 EXPORT_SYMBOL(d_obtain_root);
2202 
2203 /**
2204  * d_add_ci - lookup or allocate new dentry with case-exact name
2205  * @inode:  the inode case-insensitive lookup has found
2206  * @dentry: the negative dentry that was passed to the parent's lookup func
2207  * @name:   the case-exact name to be associated with the returned dentry
2208  *
2209  * This is to avoid filling the dcache with case-insensitive names to the
2210  * same inode, only the actual correct case is stored in the dcache for
2211  * case-insensitive filesystems.
2212  *
2213  * For a case-insensitive lookup match and if the case-exact dentry
2214  * already exists in the dcache, use it and return it.
2215  *
2216  * If no entry exists with the exact case name, allocate new dentry with
2217  * the exact case, and return the spliced entry.
2218  */
2219 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2220 			struct qstr *name)
2221 {
2222 	struct dentry *found, *res;
2223 
2224 	/*
2225 	 * First check if a dentry matching the name already exists,
2226 	 * if not go ahead and create it now.
2227 	 */
2228 	found = d_hash_and_lookup(dentry->d_parent, name);
2229 	if (found) {
2230 		iput(inode);
2231 		return found;
2232 	}
2233 	if (d_in_lookup(dentry)) {
2234 		found = d_alloc_parallel(dentry->d_parent, name,
2235 					dentry->d_wait);
2236 		if (IS_ERR(found) || !d_in_lookup(found)) {
2237 			iput(inode);
2238 			return found;
2239 		}
2240 	} else {
2241 		found = d_alloc(dentry->d_parent, name);
2242 		if (!found) {
2243 			iput(inode);
2244 			return ERR_PTR(-ENOMEM);
2245 		}
2246 	}
2247 	res = d_splice_alias(inode, found);
2248 	if (res) {
2249 		d_lookup_done(found);
2250 		dput(found);
2251 		return res;
2252 	}
2253 	return found;
2254 }
2255 EXPORT_SYMBOL(d_add_ci);
2256 
2257 /**
2258  * d_same_name - compare dentry name with case-exact name
2259  * @parent: parent dentry
2260  * @dentry: the negative dentry that was passed to the parent's lookup func
2261  * @name:   the case-exact name to be associated with the returned dentry
2262  *
2263  * Return: true if names are same, or false
2264  */
2265 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2266 		 const struct qstr *name)
2267 {
2268 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2269 		if (dentry->d_name.len != name->len)
2270 			return false;
2271 		return dentry_cmp(dentry, name->name, name->len) == 0;
2272 	}
2273 	return parent->d_op->d_compare(dentry,
2274 				       dentry->d_name.len, dentry->d_name.name,
2275 				       name) == 0;
2276 }
2277 EXPORT_SYMBOL_GPL(d_same_name);
2278 
2279 /*
2280  * This is __d_lookup_rcu() when the parent dentry has
2281  * DCACHE_OP_COMPARE, which makes things much nastier.
2282  */
2283 static noinline struct dentry *__d_lookup_rcu_op_compare(
2284 	const struct dentry *parent,
2285 	const struct qstr *name,
2286 	unsigned *seqp)
2287 {
2288 	u64 hashlen = name->hash_len;
2289 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2290 	struct hlist_bl_node *node;
2291 	struct dentry *dentry;
2292 
2293 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2294 		int tlen;
2295 		const char *tname;
2296 		unsigned seq;
2297 
2298 seqretry:
2299 		seq = raw_seqcount_begin(&dentry->d_seq);
2300 		if (dentry->d_parent != parent)
2301 			continue;
2302 		if (d_unhashed(dentry))
2303 			continue;
2304 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2305 			continue;
2306 		tlen = dentry->d_name.len;
2307 		tname = dentry->d_name.name;
2308 		/* we want a consistent (name,len) pair */
2309 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2310 			cpu_relax();
2311 			goto seqretry;
2312 		}
2313 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2314 			continue;
2315 		*seqp = seq;
2316 		return dentry;
2317 	}
2318 	return NULL;
2319 }
2320 
2321 /**
2322  * __d_lookup_rcu - search for a dentry (racy, store-free)
2323  * @parent: parent dentry
2324  * @name: qstr of name we wish to find
2325  * @seqp: returns d_seq value at the point where the dentry was found
2326  * Returns: dentry, or NULL
2327  *
2328  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2329  * resolution (store-free path walking) design described in
2330  * Documentation/filesystems/path-lookup.txt.
2331  *
2332  * This is not to be used outside core vfs.
2333  *
2334  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2335  * held, and rcu_read_lock held. The returned dentry must not be stored into
2336  * without taking d_lock and checking d_seq sequence count against @seq
2337  * returned here.
2338  *
2339  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2340  * function.
2341  *
2342  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2343  * the returned dentry, so long as its parent's seqlock is checked after the
2344  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2345  * is formed, giving integrity down the path walk.
2346  *
2347  * NOTE! The caller *has* to check the resulting dentry against the sequence
2348  * number we've returned before using any of the resulting dentry state!
2349  */
2350 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2351 				const struct qstr *name,
2352 				unsigned *seqp)
2353 {
2354 	u64 hashlen = name->hash_len;
2355 	const unsigned char *str = name->name;
2356 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2357 	struct hlist_bl_node *node;
2358 	struct dentry *dentry;
2359 
2360 	/*
2361 	 * Note: There is significant duplication with __d_lookup_rcu which is
2362 	 * required to prevent single threaded performance regressions
2363 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2364 	 * Keep the two functions in sync.
2365 	 */
2366 
2367 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2368 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2369 
2370 	/*
2371 	 * The hash list is protected using RCU.
2372 	 *
2373 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2374 	 * races with d_move().
2375 	 *
2376 	 * It is possible that concurrent renames can mess up our list
2377 	 * walk here and result in missing our dentry, resulting in the
2378 	 * false-negative result. d_lookup() protects against concurrent
2379 	 * renames using rename_lock seqlock.
2380 	 *
2381 	 * See Documentation/filesystems/path-lookup.txt for more details.
2382 	 */
2383 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2384 		unsigned seq;
2385 
2386 		/*
2387 		 * The dentry sequence count protects us from concurrent
2388 		 * renames, and thus protects parent and name fields.
2389 		 *
2390 		 * The caller must perform a seqcount check in order
2391 		 * to do anything useful with the returned dentry.
2392 		 *
2393 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2394 		 * we don't wait for the sequence count to stabilize if it
2395 		 * is in the middle of a sequence change. If we do the slow
2396 		 * dentry compare, we will do seqretries until it is stable,
2397 		 * and if we end up with a successful lookup, we actually
2398 		 * want to exit RCU lookup anyway.
2399 		 *
2400 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2401 		 * we are still guaranteed NUL-termination of ->d_name.name.
2402 		 */
2403 		seq = raw_seqcount_begin(&dentry->d_seq);
2404 		if (dentry->d_parent != parent)
2405 			continue;
2406 		if (d_unhashed(dentry))
2407 			continue;
2408 		if (dentry->d_name.hash_len != hashlen)
2409 			continue;
2410 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2411 			continue;
2412 		*seqp = seq;
2413 		return dentry;
2414 	}
2415 	return NULL;
2416 }
2417 
2418 /**
2419  * d_lookup - search for a dentry
2420  * @parent: parent dentry
2421  * @name: qstr of name we wish to find
2422  * Returns: dentry, or NULL
2423  *
2424  * d_lookup searches the children of the parent dentry for the name in
2425  * question. If the dentry is found its reference count is incremented and the
2426  * dentry is returned. The caller must use dput to free the entry when it has
2427  * finished using it. %NULL is returned if the dentry does not exist.
2428  */
2429 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2430 {
2431 	struct dentry *dentry;
2432 	unsigned seq;
2433 
2434 	do {
2435 		seq = read_seqbegin(&rename_lock);
2436 		dentry = __d_lookup(parent, name);
2437 		if (dentry)
2438 			break;
2439 	} while (read_seqretry(&rename_lock, seq));
2440 	return dentry;
2441 }
2442 EXPORT_SYMBOL(d_lookup);
2443 
2444 /**
2445  * __d_lookup - search for a dentry (racy)
2446  * @parent: parent dentry
2447  * @name: qstr of name we wish to find
2448  * Returns: dentry, or NULL
2449  *
2450  * __d_lookup is like d_lookup, however it may (rarely) return a
2451  * false-negative result due to unrelated rename activity.
2452  *
2453  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2454  * however it must be used carefully, eg. with a following d_lookup in
2455  * the case of failure.
2456  *
2457  * __d_lookup callers must be commented.
2458  */
2459 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2460 {
2461 	unsigned int hash = name->hash;
2462 	struct hlist_bl_head *b = d_hash(hash);
2463 	struct hlist_bl_node *node;
2464 	struct dentry *found = NULL;
2465 	struct dentry *dentry;
2466 
2467 	/*
2468 	 * Note: There is significant duplication with __d_lookup_rcu which is
2469 	 * required to prevent single threaded performance regressions
2470 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2471 	 * Keep the two functions in sync.
2472 	 */
2473 
2474 	/*
2475 	 * The hash list is protected using RCU.
2476 	 *
2477 	 * Take d_lock when comparing a candidate dentry, to avoid races
2478 	 * with d_move().
2479 	 *
2480 	 * It is possible that concurrent renames can mess up our list
2481 	 * walk here and result in missing our dentry, resulting in the
2482 	 * false-negative result. d_lookup() protects against concurrent
2483 	 * renames using rename_lock seqlock.
2484 	 *
2485 	 * See Documentation/filesystems/path-lookup.txt for more details.
2486 	 */
2487 	rcu_read_lock();
2488 
2489 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2490 
2491 		if (dentry->d_name.hash != hash)
2492 			continue;
2493 
2494 		spin_lock(&dentry->d_lock);
2495 		if (dentry->d_parent != parent)
2496 			goto next;
2497 		if (d_unhashed(dentry))
2498 			goto next;
2499 
2500 		if (!d_same_name(dentry, parent, name))
2501 			goto next;
2502 
2503 		dentry->d_lockref.count++;
2504 		found = dentry;
2505 		spin_unlock(&dentry->d_lock);
2506 		break;
2507 next:
2508 		spin_unlock(&dentry->d_lock);
2509  	}
2510  	rcu_read_unlock();
2511 
2512  	return found;
2513 }
2514 
2515 /**
2516  * d_hash_and_lookup - hash the qstr then search for a dentry
2517  * @dir: Directory to search in
2518  * @name: qstr of name we wish to find
2519  *
2520  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2521  */
2522 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2523 {
2524 	/*
2525 	 * Check for a fs-specific hash function. Note that we must
2526 	 * calculate the standard hash first, as the d_op->d_hash()
2527 	 * routine may choose to leave the hash value unchanged.
2528 	 */
2529 	name->hash = full_name_hash(dir, name->name, name->len);
2530 	if (dir->d_flags & DCACHE_OP_HASH) {
2531 		int err = dir->d_op->d_hash(dir, name);
2532 		if (unlikely(err < 0))
2533 			return ERR_PTR(err);
2534 	}
2535 	return d_lookup(dir, name);
2536 }
2537 EXPORT_SYMBOL(d_hash_and_lookup);
2538 
2539 /*
2540  * When a file is deleted, we have two options:
2541  * - turn this dentry into a negative dentry
2542  * - unhash this dentry and free it.
2543  *
2544  * Usually, we want to just turn this into
2545  * a negative dentry, but if anybody else is
2546  * currently using the dentry or the inode
2547  * we can't do that and we fall back on removing
2548  * it from the hash queues and waiting for
2549  * it to be deleted later when it has no users
2550  */
2551 
2552 /**
2553  * d_delete - delete a dentry
2554  * @dentry: The dentry to delete
2555  *
2556  * Turn the dentry into a negative dentry if possible, otherwise
2557  * remove it from the hash queues so it can be deleted later
2558  */
2559 
2560 void d_delete(struct dentry * dentry)
2561 {
2562 	struct inode *inode = dentry->d_inode;
2563 
2564 	spin_lock(&inode->i_lock);
2565 	spin_lock(&dentry->d_lock);
2566 	/*
2567 	 * Are we the only user?
2568 	 */
2569 	if (dentry->d_lockref.count == 1) {
2570 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2571 		dentry_unlink_inode(dentry);
2572 	} else {
2573 		__d_drop(dentry);
2574 		spin_unlock(&dentry->d_lock);
2575 		spin_unlock(&inode->i_lock);
2576 	}
2577 }
2578 EXPORT_SYMBOL(d_delete);
2579 
2580 static void __d_rehash(struct dentry *entry)
2581 {
2582 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2583 
2584 	hlist_bl_lock(b);
2585 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2586 	hlist_bl_unlock(b);
2587 }
2588 
2589 /**
2590  * d_rehash	- add an entry back to the hash
2591  * @entry: dentry to add to the hash
2592  *
2593  * Adds a dentry to the hash according to its name.
2594  */
2595 
2596 void d_rehash(struct dentry * entry)
2597 {
2598 	spin_lock(&entry->d_lock);
2599 	__d_rehash(entry);
2600 	spin_unlock(&entry->d_lock);
2601 }
2602 EXPORT_SYMBOL(d_rehash);
2603 
2604 static inline unsigned start_dir_add(struct inode *dir)
2605 {
2606 	preempt_disable_nested();
2607 	for (;;) {
2608 		unsigned n = dir->i_dir_seq;
2609 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2610 			return n;
2611 		cpu_relax();
2612 	}
2613 }
2614 
2615 static inline void end_dir_add(struct inode *dir, unsigned int n,
2616 			       wait_queue_head_t *d_wait)
2617 {
2618 	smp_store_release(&dir->i_dir_seq, n + 2);
2619 	preempt_enable_nested();
2620 	wake_up_all(d_wait);
2621 }
2622 
2623 static void d_wait_lookup(struct dentry *dentry)
2624 {
2625 	if (d_in_lookup(dentry)) {
2626 		DECLARE_WAITQUEUE(wait, current);
2627 		add_wait_queue(dentry->d_wait, &wait);
2628 		do {
2629 			set_current_state(TASK_UNINTERRUPTIBLE);
2630 			spin_unlock(&dentry->d_lock);
2631 			schedule();
2632 			spin_lock(&dentry->d_lock);
2633 		} while (d_in_lookup(dentry));
2634 	}
2635 }
2636 
2637 struct dentry *d_alloc_parallel(struct dentry *parent,
2638 				const struct qstr *name,
2639 				wait_queue_head_t *wq)
2640 {
2641 	unsigned int hash = name->hash;
2642 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2643 	struct hlist_bl_node *node;
2644 	struct dentry *new = d_alloc(parent, name);
2645 	struct dentry *dentry;
2646 	unsigned seq, r_seq, d_seq;
2647 
2648 	if (unlikely(!new))
2649 		return ERR_PTR(-ENOMEM);
2650 
2651 retry:
2652 	rcu_read_lock();
2653 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2654 	r_seq = read_seqbegin(&rename_lock);
2655 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2656 	if (unlikely(dentry)) {
2657 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2658 			rcu_read_unlock();
2659 			goto retry;
2660 		}
2661 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2662 			rcu_read_unlock();
2663 			dput(dentry);
2664 			goto retry;
2665 		}
2666 		rcu_read_unlock();
2667 		dput(new);
2668 		return dentry;
2669 	}
2670 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2671 		rcu_read_unlock();
2672 		goto retry;
2673 	}
2674 
2675 	if (unlikely(seq & 1)) {
2676 		rcu_read_unlock();
2677 		goto retry;
2678 	}
2679 
2680 	hlist_bl_lock(b);
2681 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2682 		hlist_bl_unlock(b);
2683 		rcu_read_unlock();
2684 		goto retry;
2685 	}
2686 	/*
2687 	 * No changes for the parent since the beginning of d_lookup().
2688 	 * Since all removals from the chain happen with hlist_bl_lock(),
2689 	 * any potential in-lookup matches are going to stay here until
2690 	 * we unlock the chain.  All fields are stable in everything
2691 	 * we encounter.
2692 	 */
2693 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2694 		if (dentry->d_name.hash != hash)
2695 			continue;
2696 		if (dentry->d_parent != parent)
2697 			continue;
2698 		if (!d_same_name(dentry, parent, name))
2699 			continue;
2700 		hlist_bl_unlock(b);
2701 		/* now we can try to grab a reference */
2702 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2703 			rcu_read_unlock();
2704 			goto retry;
2705 		}
2706 
2707 		rcu_read_unlock();
2708 		/*
2709 		 * somebody is likely to be still doing lookup for it;
2710 		 * wait for them to finish
2711 		 */
2712 		spin_lock(&dentry->d_lock);
2713 		d_wait_lookup(dentry);
2714 		/*
2715 		 * it's not in-lookup anymore; in principle we should repeat
2716 		 * everything from dcache lookup, but it's likely to be what
2717 		 * d_lookup() would've found anyway.  If it is, just return it;
2718 		 * otherwise we really have to repeat the whole thing.
2719 		 */
2720 		if (unlikely(dentry->d_name.hash != hash))
2721 			goto mismatch;
2722 		if (unlikely(dentry->d_parent != parent))
2723 			goto mismatch;
2724 		if (unlikely(d_unhashed(dentry)))
2725 			goto mismatch;
2726 		if (unlikely(!d_same_name(dentry, parent, name)))
2727 			goto mismatch;
2728 		/* OK, it *is* a hashed match; return it */
2729 		spin_unlock(&dentry->d_lock);
2730 		dput(new);
2731 		return dentry;
2732 	}
2733 	rcu_read_unlock();
2734 	/* we can't take ->d_lock here; it's OK, though. */
2735 	new->d_flags |= DCACHE_PAR_LOOKUP;
2736 	new->d_wait = wq;
2737 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2738 	hlist_bl_unlock(b);
2739 	return new;
2740 mismatch:
2741 	spin_unlock(&dentry->d_lock);
2742 	dput(dentry);
2743 	goto retry;
2744 }
2745 EXPORT_SYMBOL(d_alloc_parallel);
2746 
2747 /*
2748  * - Unhash the dentry
2749  * - Retrieve and clear the waitqueue head in dentry
2750  * - Return the waitqueue head
2751  */
2752 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2753 {
2754 	wait_queue_head_t *d_wait;
2755 	struct hlist_bl_head *b;
2756 
2757 	lockdep_assert_held(&dentry->d_lock);
2758 
2759 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2760 	hlist_bl_lock(b);
2761 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2762 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2763 	d_wait = dentry->d_wait;
2764 	dentry->d_wait = NULL;
2765 	hlist_bl_unlock(b);
2766 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2767 	INIT_LIST_HEAD(&dentry->d_lru);
2768 	return d_wait;
2769 }
2770 
2771 void __d_lookup_unhash_wake(struct dentry *dentry)
2772 {
2773 	spin_lock(&dentry->d_lock);
2774 	wake_up_all(__d_lookup_unhash(dentry));
2775 	spin_unlock(&dentry->d_lock);
2776 }
2777 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2778 
2779 /* inode->i_lock held if inode is non-NULL */
2780 
2781 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2782 {
2783 	wait_queue_head_t *d_wait;
2784 	struct inode *dir = NULL;
2785 	unsigned n;
2786 	spin_lock(&dentry->d_lock);
2787 	if (unlikely(d_in_lookup(dentry))) {
2788 		dir = dentry->d_parent->d_inode;
2789 		n = start_dir_add(dir);
2790 		d_wait = __d_lookup_unhash(dentry);
2791 	}
2792 	if (inode) {
2793 		unsigned add_flags = d_flags_for_inode(inode);
2794 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2795 		raw_write_seqcount_begin(&dentry->d_seq);
2796 		__d_set_inode_and_type(dentry, inode, add_flags);
2797 		raw_write_seqcount_end(&dentry->d_seq);
2798 		fsnotify_update_flags(dentry);
2799 	}
2800 	__d_rehash(dentry);
2801 	if (dir)
2802 		end_dir_add(dir, n, d_wait);
2803 	spin_unlock(&dentry->d_lock);
2804 	if (inode)
2805 		spin_unlock(&inode->i_lock);
2806 }
2807 
2808 /**
2809  * d_add - add dentry to hash queues
2810  * @entry: dentry to add
2811  * @inode: The inode to attach to this dentry
2812  *
2813  * This adds the entry to the hash queues and initializes @inode.
2814  * The entry was actually filled in earlier during d_alloc().
2815  */
2816 
2817 void d_add(struct dentry *entry, struct inode *inode)
2818 {
2819 	if (inode) {
2820 		security_d_instantiate(entry, inode);
2821 		spin_lock(&inode->i_lock);
2822 	}
2823 	__d_add(entry, inode);
2824 }
2825 EXPORT_SYMBOL(d_add);
2826 
2827 /**
2828  * d_exact_alias - find and hash an exact unhashed alias
2829  * @entry: dentry to add
2830  * @inode: The inode to go with this dentry
2831  *
2832  * If an unhashed dentry with the same name/parent and desired
2833  * inode already exists, hash and return it.  Otherwise, return
2834  * NULL.
2835  *
2836  * Parent directory should be locked.
2837  */
2838 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2839 {
2840 	struct dentry *alias;
2841 	unsigned int hash = entry->d_name.hash;
2842 
2843 	spin_lock(&inode->i_lock);
2844 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2845 		/*
2846 		 * Don't need alias->d_lock here, because aliases with
2847 		 * d_parent == entry->d_parent are not subject to name or
2848 		 * parent changes, because the parent inode i_mutex is held.
2849 		 */
2850 		if (alias->d_name.hash != hash)
2851 			continue;
2852 		if (alias->d_parent != entry->d_parent)
2853 			continue;
2854 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2855 			continue;
2856 		spin_lock(&alias->d_lock);
2857 		if (!d_unhashed(alias)) {
2858 			spin_unlock(&alias->d_lock);
2859 			alias = NULL;
2860 		} else {
2861 			__dget_dlock(alias);
2862 			__d_rehash(alias);
2863 			spin_unlock(&alias->d_lock);
2864 		}
2865 		spin_unlock(&inode->i_lock);
2866 		return alias;
2867 	}
2868 	spin_unlock(&inode->i_lock);
2869 	return NULL;
2870 }
2871 EXPORT_SYMBOL(d_exact_alias);
2872 
2873 static void swap_names(struct dentry *dentry, struct dentry *target)
2874 {
2875 	if (unlikely(dname_external(target))) {
2876 		if (unlikely(dname_external(dentry))) {
2877 			/*
2878 			 * Both external: swap the pointers
2879 			 */
2880 			swap(target->d_name.name, dentry->d_name.name);
2881 		} else {
2882 			/*
2883 			 * dentry:internal, target:external.  Steal target's
2884 			 * storage and make target internal.
2885 			 */
2886 			memcpy(target->d_iname, dentry->d_name.name,
2887 					dentry->d_name.len + 1);
2888 			dentry->d_name.name = target->d_name.name;
2889 			target->d_name.name = target->d_iname;
2890 		}
2891 	} else {
2892 		if (unlikely(dname_external(dentry))) {
2893 			/*
2894 			 * dentry:external, target:internal.  Give dentry's
2895 			 * storage to target and make dentry internal
2896 			 */
2897 			memcpy(dentry->d_iname, target->d_name.name,
2898 					target->d_name.len + 1);
2899 			target->d_name.name = dentry->d_name.name;
2900 			dentry->d_name.name = dentry->d_iname;
2901 		} else {
2902 			/*
2903 			 * Both are internal.
2904 			 */
2905 			unsigned int i;
2906 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2907 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2908 				swap(((long *) &dentry->d_iname)[i],
2909 				     ((long *) &target->d_iname)[i]);
2910 			}
2911 		}
2912 	}
2913 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2914 }
2915 
2916 static void copy_name(struct dentry *dentry, struct dentry *target)
2917 {
2918 	struct external_name *old_name = NULL;
2919 	if (unlikely(dname_external(dentry)))
2920 		old_name = external_name(dentry);
2921 	if (unlikely(dname_external(target))) {
2922 		atomic_inc(&external_name(target)->u.count);
2923 		dentry->d_name = target->d_name;
2924 	} else {
2925 		memcpy(dentry->d_iname, target->d_name.name,
2926 				target->d_name.len + 1);
2927 		dentry->d_name.name = dentry->d_iname;
2928 		dentry->d_name.hash_len = target->d_name.hash_len;
2929 	}
2930 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2931 		kfree_rcu(old_name, u.head);
2932 }
2933 
2934 /*
2935  * __d_move - move a dentry
2936  * @dentry: entry to move
2937  * @target: new dentry
2938  * @exchange: exchange the two dentries
2939  *
2940  * Update the dcache to reflect the move of a file name. Negative
2941  * dcache entries should not be moved in this way. Caller must hold
2942  * rename_lock, the i_mutex of the source and target directories,
2943  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2944  */
2945 static void __d_move(struct dentry *dentry, struct dentry *target,
2946 		     bool exchange)
2947 {
2948 	struct dentry *old_parent, *p;
2949 	wait_queue_head_t *d_wait;
2950 	struct inode *dir = NULL;
2951 	unsigned n;
2952 
2953 	WARN_ON(!dentry->d_inode);
2954 	if (WARN_ON(dentry == target))
2955 		return;
2956 
2957 	BUG_ON(d_ancestor(target, dentry));
2958 	old_parent = dentry->d_parent;
2959 	p = d_ancestor(old_parent, target);
2960 	if (IS_ROOT(dentry)) {
2961 		BUG_ON(p);
2962 		spin_lock(&target->d_parent->d_lock);
2963 	} else if (!p) {
2964 		/* target is not a descendent of dentry->d_parent */
2965 		spin_lock(&target->d_parent->d_lock);
2966 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2967 	} else {
2968 		BUG_ON(p == dentry);
2969 		spin_lock(&old_parent->d_lock);
2970 		if (p != target)
2971 			spin_lock_nested(&target->d_parent->d_lock,
2972 					DENTRY_D_LOCK_NESTED);
2973 	}
2974 	spin_lock_nested(&dentry->d_lock, 2);
2975 	spin_lock_nested(&target->d_lock, 3);
2976 
2977 	if (unlikely(d_in_lookup(target))) {
2978 		dir = target->d_parent->d_inode;
2979 		n = start_dir_add(dir);
2980 		d_wait = __d_lookup_unhash(target);
2981 	}
2982 
2983 	write_seqcount_begin(&dentry->d_seq);
2984 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2985 
2986 	/* unhash both */
2987 	if (!d_unhashed(dentry))
2988 		___d_drop(dentry);
2989 	if (!d_unhashed(target))
2990 		___d_drop(target);
2991 
2992 	/* ... and switch them in the tree */
2993 	dentry->d_parent = target->d_parent;
2994 	if (!exchange) {
2995 		copy_name(dentry, target);
2996 		target->d_hash.pprev = NULL;
2997 		dentry->d_parent->d_lockref.count++;
2998 		if (dentry != old_parent) /* wasn't IS_ROOT */
2999 			WARN_ON(!--old_parent->d_lockref.count);
3000 	} else {
3001 		target->d_parent = old_parent;
3002 		swap_names(dentry, target);
3003 		list_move(&target->d_child, &target->d_parent->d_subdirs);
3004 		__d_rehash(target);
3005 		fsnotify_update_flags(target);
3006 	}
3007 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3008 	__d_rehash(dentry);
3009 	fsnotify_update_flags(dentry);
3010 	fscrypt_handle_d_move(dentry);
3011 
3012 	write_seqcount_end(&target->d_seq);
3013 	write_seqcount_end(&dentry->d_seq);
3014 
3015 	if (dir)
3016 		end_dir_add(dir, n, d_wait);
3017 
3018 	if (dentry->d_parent != old_parent)
3019 		spin_unlock(&dentry->d_parent->d_lock);
3020 	if (dentry != old_parent)
3021 		spin_unlock(&old_parent->d_lock);
3022 	spin_unlock(&target->d_lock);
3023 	spin_unlock(&dentry->d_lock);
3024 }
3025 
3026 /*
3027  * d_move - move a dentry
3028  * @dentry: entry to move
3029  * @target: new dentry
3030  *
3031  * Update the dcache to reflect the move of a file name. Negative
3032  * dcache entries should not be moved in this way. See the locking
3033  * requirements for __d_move.
3034  */
3035 void d_move(struct dentry *dentry, struct dentry *target)
3036 {
3037 	write_seqlock(&rename_lock);
3038 	__d_move(dentry, target, false);
3039 	write_sequnlock(&rename_lock);
3040 }
3041 EXPORT_SYMBOL(d_move);
3042 
3043 /*
3044  * d_exchange - exchange two dentries
3045  * @dentry1: first dentry
3046  * @dentry2: second dentry
3047  */
3048 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3049 {
3050 	write_seqlock(&rename_lock);
3051 
3052 	WARN_ON(!dentry1->d_inode);
3053 	WARN_ON(!dentry2->d_inode);
3054 	WARN_ON(IS_ROOT(dentry1));
3055 	WARN_ON(IS_ROOT(dentry2));
3056 
3057 	__d_move(dentry1, dentry2, true);
3058 
3059 	write_sequnlock(&rename_lock);
3060 }
3061 
3062 /**
3063  * d_ancestor - search for an ancestor
3064  * @p1: ancestor dentry
3065  * @p2: child dentry
3066  *
3067  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3068  * an ancestor of p2, else NULL.
3069  */
3070 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3071 {
3072 	struct dentry *p;
3073 
3074 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3075 		if (p->d_parent == p1)
3076 			return p;
3077 	}
3078 	return NULL;
3079 }
3080 
3081 /*
3082  * This helper attempts to cope with remotely renamed directories
3083  *
3084  * It assumes that the caller is already holding
3085  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3086  *
3087  * Note: If ever the locking in lock_rename() changes, then please
3088  * remember to update this too...
3089  */
3090 static int __d_unalias(struct inode *inode,
3091 		struct dentry *dentry, struct dentry *alias)
3092 {
3093 	struct mutex *m1 = NULL;
3094 	struct rw_semaphore *m2 = NULL;
3095 	int ret = -ESTALE;
3096 
3097 	/* If alias and dentry share a parent, then no extra locks required */
3098 	if (alias->d_parent == dentry->d_parent)
3099 		goto out_unalias;
3100 
3101 	/* See lock_rename() */
3102 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3103 		goto out_err;
3104 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3105 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3106 		goto out_err;
3107 	m2 = &alias->d_parent->d_inode->i_rwsem;
3108 out_unalias:
3109 	__d_move(alias, dentry, false);
3110 	ret = 0;
3111 out_err:
3112 	if (m2)
3113 		up_read(m2);
3114 	if (m1)
3115 		mutex_unlock(m1);
3116 	return ret;
3117 }
3118 
3119 /**
3120  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3121  * @inode:  the inode which may have a disconnected dentry
3122  * @dentry: a negative dentry which we want to point to the inode.
3123  *
3124  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3125  * place of the given dentry and return it, else simply d_add the inode
3126  * to the dentry and return NULL.
3127  *
3128  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3129  * we should error out: directories can't have multiple aliases.
3130  *
3131  * This is needed in the lookup routine of any filesystem that is exportable
3132  * (via knfsd) so that we can build dcache paths to directories effectively.
3133  *
3134  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3135  * is returned.  This matches the expected return value of ->lookup.
3136  *
3137  * Cluster filesystems may call this function with a negative, hashed dentry.
3138  * In that case, we know that the inode will be a regular file, and also this
3139  * will only occur during atomic_open. So we need to check for the dentry
3140  * being already hashed only in the final case.
3141  */
3142 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3143 {
3144 	if (IS_ERR(inode))
3145 		return ERR_CAST(inode);
3146 
3147 	BUG_ON(!d_unhashed(dentry));
3148 
3149 	if (!inode)
3150 		goto out;
3151 
3152 	security_d_instantiate(dentry, inode);
3153 	spin_lock(&inode->i_lock);
3154 	if (S_ISDIR(inode->i_mode)) {
3155 		struct dentry *new = __d_find_any_alias(inode);
3156 		if (unlikely(new)) {
3157 			/* The reference to new ensures it remains an alias */
3158 			spin_unlock(&inode->i_lock);
3159 			write_seqlock(&rename_lock);
3160 			if (unlikely(d_ancestor(new, dentry))) {
3161 				write_sequnlock(&rename_lock);
3162 				dput(new);
3163 				new = ERR_PTR(-ELOOP);
3164 				pr_warn_ratelimited(
3165 					"VFS: Lookup of '%s' in %s %s"
3166 					" would have caused loop\n",
3167 					dentry->d_name.name,
3168 					inode->i_sb->s_type->name,
3169 					inode->i_sb->s_id);
3170 			} else if (!IS_ROOT(new)) {
3171 				struct dentry *old_parent = dget(new->d_parent);
3172 				int err = __d_unalias(inode, dentry, new);
3173 				write_sequnlock(&rename_lock);
3174 				if (err) {
3175 					dput(new);
3176 					new = ERR_PTR(err);
3177 				}
3178 				dput(old_parent);
3179 			} else {
3180 				__d_move(new, dentry, false);
3181 				write_sequnlock(&rename_lock);
3182 			}
3183 			iput(inode);
3184 			return new;
3185 		}
3186 	}
3187 out:
3188 	__d_add(dentry, inode);
3189 	return NULL;
3190 }
3191 EXPORT_SYMBOL(d_splice_alias);
3192 
3193 /*
3194  * Test whether new_dentry is a subdirectory of old_dentry.
3195  *
3196  * Trivially implemented using the dcache structure
3197  */
3198 
3199 /**
3200  * is_subdir - is new dentry a subdirectory of old_dentry
3201  * @new_dentry: new dentry
3202  * @old_dentry: old dentry
3203  *
3204  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3205  * Returns false otherwise.
3206  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3207  */
3208 
3209 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3210 {
3211 	bool subdir;
3212 	unsigned seq;
3213 
3214 	if (new_dentry == old_dentry)
3215 		return true;
3216 
3217 	/* Access d_parent under rcu as d_move() may change it. */
3218 	rcu_read_lock();
3219 	seq = read_seqbegin(&rename_lock);
3220 	subdir = d_ancestor(old_dentry, new_dentry);
3221 	 /* Try lockless once... */
3222 	if (read_seqretry(&rename_lock, seq)) {
3223 		/* ...else acquire lock for progress even on deep chains. */
3224 		read_seqlock_excl(&rename_lock);
3225 		subdir = d_ancestor(old_dentry, new_dentry);
3226 		read_sequnlock_excl(&rename_lock);
3227 	}
3228 	rcu_read_unlock();
3229 	return subdir;
3230 }
3231 EXPORT_SYMBOL(is_subdir);
3232 
3233 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3234 {
3235 	struct dentry *root = data;
3236 	if (dentry != root) {
3237 		if (d_unhashed(dentry) || !dentry->d_inode)
3238 			return D_WALK_SKIP;
3239 
3240 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3241 			dentry->d_flags |= DCACHE_GENOCIDE;
3242 			dentry->d_lockref.count--;
3243 		}
3244 	}
3245 	return D_WALK_CONTINUE;
3246 }
3247 
3248 void d_genocide(struct dentry *parent)
3249 {
3250 	d_walk(parent, parent, d_genocide_kill);
3251 }
3252 
3253 void d_tmpfile(struct file *file, struct inode *inode)
3254 {
3255 	struct dentry *dentry = file->f_path.dentry;
3256 
3257 	inode_dec_link_count(inode);
3258 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3259 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3260 		!d_unlinked(dentry));
3261 	spin_lock(&dentry->d_parent->d_lock);
3262 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3263 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3264 				(unsigned long long)inode->i_ino);
3265 	spin_unlock(&dentry->d_lock);
3266 	spin_unlock(&dentry->d_parent->d_lock);
3267 	d_instantiate(dentry, inode);
3268 }
3269 EXPORT_SYMBOL(d_tmpfile);
3270 
3271 static __initdata unsigned long dhash_entries;
3272 static int __init set_dhash_entries(char *str)
3273 {
3274 	if (!str)
3275 		return 0;
3276 	dhash_entries = simple_strtoul(str, &str, 0);
3277 	return 1;
3278 }
3279 __setup("dhash_entries=", set_dhash_entries);
3280 
3281 static void __init dcache_init_early(void)
3282 {
3283 	/* If hashes are distributed across NUMA nodes, defer
3284 	 * hash allocation until vmalloc space is available.
3285 	 */
3286 	if (hashdist)
3287 		return;
3288 
3289 	dentry_hashtable =
3290 		alloc_large_system_hash("Dentry cache",
3291 					sizeof(struct hlist_bl_head),
3292 					dhash_entries,
3293 					13,
3294 					HASH_EARLY | HASH_ZERO,
3295 					&d_hash_shift,
3296 					NULL,
3297 					0,
3298 					0);
3299 	d_hash_shift = 32 - d_hash_shift;
3300 }
3301 
3302 static void __init dcache_init(void)
3303 {
3304 	/*
3305 	 * A constructor could be added for stable state like the lists,
3306 	 * but it is probably not worth it because of the cache nature
3307 	 * of the dcache.
3308 	 */
3309 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3310 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3311 		d_iname);
3312 
3313 	/* Hash may have been set up in dcache_init_early */
3314 	if (!hashdist)
3315 		return;
3316 
3317 	dentry_hashtable =
3318 		alloc_large_system_hash("Dentry cache",
3319 					sizeof(struct hlist_bl_head),
3320 					dhash_entries,
3321 					13,
3322 					HASH_ZERO,
3323 					&d_hash_shift,
3324 					NULL,
3325 					0,
3326 					0);
3327 	d_hash_shift = 32 - d_hash_shift;
3328 }
3329 
3330 /* SLAB cache for __getname() consumers */
3331 struct kmem_cache *names_cachep __read_mostly;
3332 EXPORT_SYMBOL(names_cachep);
3333 
3334 void __init vfs_caches_init_early(void)
3335 {
3336 	int i;
3337 
3338 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3339 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3340 
3341 	dcache_init_early();
3342 	inode_init_early();
3343 }
3344 
3345 void __init vfs_caches_init(void)
3346 {
3347 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3348 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3349 
3350 	dcache_init();
3351 	inode_init();
3352 	files_init();
3353 	files_maxfiles_init();
3354 	mnt_init();
3355 	bdev_cache_init();
3356 	chrdev_init();
3357 }
3358