xref: /openbmc/linux/fs/dcache.c (revision 239480ab)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 					  struct inode *inode,
282 					  unsigned type_flags)
283 {
284 	unsigned flags;
285 
286 	dentry->d_inode = inode;
287 	flags = READ_ONCE(dentry->d_flags);
288 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 	flags |= type_flags;
290 	WRITE_ONCE(dentry->d_flags, flags);
291 }
292 
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 	unsigned flags = READ_ONCE(dentry->d_flags);
296 
297 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 	WRITE_ONCE(dentry->d_flags, flags);
299 	dentry->d_inode = NULL;
300 }
301 
302 static void dentry_free(struct dentry *dentry)
303 {
304 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 	if (unlikely(dname_external(dentry))) {
306 		struct external_name *p = external_name(dentry);
307 		if (likely(atomic_dec_and_test(&p->u.count))) {
308 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 			return;
310 		}
311 	}
312 	/* if dentry was never visible to RCU, immediate free is OK */
313 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 		__d_free(&dentry->d_u.d_rcu);
315 	else
316 		call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318 
319 /*
320  * Release the dentry's inode, using the filesystem
321  * d_iput() operation if defined.
322  */
323 static void dentry_unlink_inode(struct dentry * dentry)
324 	__releases(dentry->d_lock)
325 	__releases(dentry->d_inode->i_lock)
326 {
327 	struct inode *inode = dentry->d_inode;
328 	bool hashed = !d_unhashed(dentry);
329 
330 	if (hashed)
331 		raw_write_seqcount_begin(&dentry->d_seq);
332 	__d_clear_type_and_inode(dentry);
333 	hlist_del_init(&dentry->d_u.d_alias);
334 	if (hashed)
335 		raw_write_seqcount_end(&dentry->d_seq);
336 	spin_unlock(&dentry->d_lock);
337 	spin_unlock(&inode->i_lock);
338 	if (!inode->i_nlink)
339 		fsnotify_inoderemove(inode);
340 	if (dentry->d_op && dentry->d_op->d_iput)
341 		dentry->d_op->d_iput(dentry, inode);
342 	else
343 		iput(inode);
344 }
345 
346 /*
347  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348  * is in use - which includes both the "real" per-superblock
349  * LRU list _and_ the DCACHE_SHRINK_LIST use.
350  *
351  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352  * on the shrink list (ie not on the superblock LRU list).
353  *
354  * The per-cpu "nr_dentry_unused" counters are updated with
355  * the DCACHE_LRU_LIST bit.
356  *
357  * These helper functions make sure we always follow the
358  * rules. d_lock must be held by the caller.
359  */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 	D_FLAG_VERIFY(dentry, 0);
364 	dentry->d_flags |= DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368 
369 static void d_lru_del(struct dentry *dentry)
370 {
371 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 	dentry->d_flags &= ~DCACHE_LRU_LIST;
373 	this_cpu_dec(nr_dentry_unused);
374 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376 
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 	list_del_init(&dentry->d_lru);
381 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 	this_cpu_dec(nr_dentry_unused);
383 }
384 
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 	D_FLAG_VERIFY(dentry, 0);
388 	list_add(&dentry->d_lru, list);
389 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 	this_cpu_inc(nr_dentry_unused);
391 }
392 
393 /*
394  * These can only be called under the global LRU lock, ie during the
395  * callback for freeing the LRU list. "isolate" removes it from the
396  * LRU lists entirely, while shrink_move moves it to the indicated
397  * private list.
398  */
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	list_lru_isolate(lru, &dentry->d_lru);
405 }
406 
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 			      struct list_head *list)
409 {
410 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 	dentry->d_flags |= DCACHE_SHRINK_LIST;
412 	list_lru_isolate_move(lru, &dentry->d_lru, list);
413 }
414 
415 /*
416  * dentry_lru_(add|del)_list) must be called with d_lock held.
417  */
418 static void dentry_lru_add(struct dentry *dentry)
419 {
420 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 		d_lru_add(dentry);
422 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
423 		dentry->d_flags |= DCACHE_REFERENCED;
424 }
425 
426 /**
427  * d_drop - drop a dentry
428  * @dentry: dentry to drop
429  *
430  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
431  * be found through a VFS lookup any more. Note that this is different from
432  * deleting the dentry - d_delete will try to mark the dentry negative if
433  * possible, giving a successful _negative_ lookup, while d_drop will
434  * just make the cache lookup fail.
435  *
436  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
437  * reason (NFS timeouts or autofs deletes).
438  *
439  * __d_drop requires dentry->d_lock.
440  */
441 void __d_drop(struct dentry *dentry)
442 {
443 	if (!d_unhashed(dentry)) {
444 		struct hlist_bl_head *b;
445 		/*
446 		 * Hashed dentries are normally on the dentry hashtable,
447 		 * with the exception of those newly allocated by
448 		 * d_obtain_alias, which are always IS_ROOT:
449 		 */
450 		if (unlikely(IS_ROOT(dentry)))
451 			b = &dentry->d_sb->s_anon;
452 		else
453 			b = d_hash(dentry->d_name.hash);
454 
455 		hlist_bl_lock(b);
456 		__hlist_bl_del(&dentry->d_hash);
457 		dentry->d_hash.pprev = NULL;
458 		hlist_bl_unlock(b);
459 		/* After this call, in-progress rcu-walk path lookup will fail. */
460 		write_seqcount_invalidate(&dentry->d_seq);
461 	}
462 }
463 EXPORT_SYMBOL(__d_drop);
464 
465 void d_drop(struct dentry *dentry)
466 {
467 	spin_lock(&dentry->d_lock);
468 	__d_drop(dentry);
469 	spin_unlock(&dentry->d_lock);
470 }
471 EXPORT_SYMBOL(d_drop);
472 
473 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
474 {
475 	struct dentry *next;
476 	/*
477 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
478 	 * attached to the dentry tree
479 	 */
480 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
481 	if (unlikely(list_empty(&dentry->d_child)))
482 		return;
483 	__list_del_entry(&dentry->d_child);
484 	/*
485 	 * Cursors can move around the list of children.  While we'd been
486 	 * a normal list member, it didn't matter - ->d_child.next would've
487 	 * been updated.  However, from now on it won't be and for the
488 	 * things like d_walk() it might end up with a nasty surprise.
489 	 * Normally d_walk() doesn't care about cursors moving around -
490 	 * ->d_lock on parent prevents that and since a cursor has no children
491 	 * of its own, we get through it without ever unlocking the parent.
492 	 * There is one exception, though - if we ascend from a child that
493 	 * gets killed as soon as we unlock it, the next sibling is found
494 	 * using the value left in its ->d_child.next.  And if _that_
495 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
496 	 * before d_walk() regains parent->d_lock, we'll end up skipping
497 	 * everything the cursor had been moved past.
498 	 *
499 	 * Solution: make sure that the pointer left behind in ->d_child.next
500 	 * points to something that won't be moving around.  I.e. skip the
501 	 * cursors.
502 	 */
503 	while (dentry->d_child.next != &parent->d_subdirs) {
504 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
505 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
506 			break;
507 		dentry->d_child.next = next->d_child.next;
508 	}
509 }
510 
511 static void __dentry_kill(struct dentry *dentry)
512 {
513 	struct dentry *parent = NULL;
514 	bool can_free = true;
515 	if (!IS_ROOT(dentry))
516 		parent = dentry->d_parent;
517 
518 	/*
519 	 * The dentry is now unrecoverably dead to the world.
520 	 */
521 	lockref_mark_dead(&dentry->d_lockref);
522 
523 	/*
524 	 * inform the fs via d_prune that this dentry is about to be
525 	 * unhashed and destroyed.
526 	 */
527 	if (dentry->d_flags & DCACHE_OP_PRUNE)
528 		dentry->d_op->d_prune(dentry);
529 
530 	if (dentry->d_flags & DCACHE_LRU_LIST) {
531 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
532 			d_lru_del(dentry);
533 	}
534 	/* if it was on the hash then remove it */
535 	__d_drop(dentry);
536 	dentry_unlist(dentry, parent);
537 	if (parent)
538 		spin_unlock(&parent->d_lock);
539 	if (dentry->d_inode)
540 		dentry_unlink_inode(dentry);
541 	else
542 		spin_unlock(&dentry->d_lock);
543 	this_cpu_dec(nr_dentry);
544 	if (dentry->d_op && dentry->d_op->d_release)
545 		dentry->d_op->d_release(dentry);
546 
547 	spin_lock(&dentry->d_lock);
548 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
549 		dentry->d_flags |= DCACHE_MAY_FREE;
550 		can_free = false;
551 	}
552 	spin_unlock(&dentry->d_lock);
553 	if (likely(can_free))
554 		dentry_free(dentry);
555 }
556 
557 /*
558  * Finish off a dentry we've decided to kill.
559  * dentry->d_lock must be held, returns with it unlocked.
560  * If ref is non-zero, then decrement the refcount too.
561  * Returns dentry requiring refcount drop, or NULL if we're done.
562  */
563 static struct dentry *dentry_kill(struct dentry *dentry)
564 	__releases(dentry->d_lock)
565 {
566 	struct inode *inode = dentry->d_inode;
567 	struct dentry *parent = NULL;
568 
569 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
570 		goto failed;
571 
572 	if (!IS_ROOT(dentry)) {
573 		parent = dentry->d_parent;
574 		if (unlikely(!spin_trylock(&parent->d_lock))) {
575 			if (inode)
576 				spin_unlock(&inode->i_lock);
577 			goto failed;
578 		}
579 	}
580 
581 	__dentry_kill(dentry);
582 	return parent;
583 
584 failed:
585 	spin_unlock(&dentry->d_lock);
586 	return dentry; /* try again with same dentry */
587 }
588 
589 static inline struct dentry *lock_parent(struct dentry *dentry)
590 {
591 	struct dentry *parent = dentry->d_parent;
592 	if (IS_ROOT(dentry))
593 		return NULL;
594 	if (unlikely(dentry->d_lockref.count < 0))
595 		return NULL;
596 	if (likely(spin_trylock(&parent->d_lock)))
597 		return parent;
598 	rcu_read_lock();
599 	spin_unlock(&dentry->d_lock);
600 again:
601 	parent = ACCESS_ONCE(dentry->d_parent);
602 	spin_lock(&parent->d_lock);
603 	/*
604 	 * We can't blindly lock dentry until we are sure
605 	 * that we won't violate the locking order.
606 	 * Any changes of dentry->d_parent must have
607 	 * been done with parent->d_lock held, so
608 	 * spin_lock() above is enough of a barrier
609 	 * for checking if it's still our child.
610 	 */
611 	if (unlikely(parent != dentry->d_parent)) {
612 		spin_unlock(&parent->d_lock);
613 		goto again;
614 	}
615 	rcu_read_unlock();
616 	if (parent != dentry)
617 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
618 	else
619 		parent = NULL;
620 	return parent;
621 }
622 
623 /*
624  * Try to do a lockless dput(), and return whether that was successful.
625  *
626  * If unsuccessful, we return false, having already taken the dentry lock.
627  *
628  * The caller needs to hold the RCU read lock, so that the dentry is
629  * guaranteed to stay around even if the refcount goes down to zero!
630  */
631 static inline bool fast_dput(struct dentry *dentry)
632 {
633 	int ret;
634 	unsigned int d_flags;
635 
636 	/*
637 	 * If we have a d_op->d_delete() operation, we sould not
638 	 * let the dentry count go to zero, so use "put_or_lock".
639 	 */
640 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
641 		return lockref_put_or_lock(&dentry->d_lockref);
642 
643 	/*
644 	 * .. otherwise, we can try to just decrement the
645 	 * lockref optimistically.
646 	 */
647 	ret = lockref_put_return(&dentry->d_lockref);
648 
649 	/*
650 	 * If the lockref_put_return() failed due to the lock being held
651 	 * by somebody else, the fast path has failed. We will need to
652 	 * get the lock, and then check the count again.
653 	 */
654 	if (unlikely(ret < 0)) {
655 		spin_lock(&dentry->d_lock);
656 		if (dentry->d_lockref.count > 1) {
657 			dentry->d_lockref.count--;
658 			spin_unlock(&dentry->d_lock);
659 			return 1;
660 		}
661 		return 0;
662 	}
663 
664 	/*
665 	 * If we weren't the last ref, we're done.
666 	 */
667 	if (ret)
668 		return 1;
669 
670 	/*
671 	 * Careful, careful. The reference count went down
672 	 * to zero, but we don't hold the dentry lock, so
673 	 * somebody else could get it again, and do another
674 	 * dput(), and we need to not race with that.
675 	 *
676 	 * However, there is a very special and common case
677 	 * where we don't care, because there is nothing to
678 	 * do: the dentry is still hashed, it does not have
679 	 * a 'delete' op, and it's referenced and already on
680 	 * the LRU list.
681 	 *
682 	 * NOTE! Since we aren't locked, these values are
683 	 * not "stable". However, it is sufficient that at
684 	 * some point after we dropped the reference the
685 	 * dentry was hashed and the flags had the proper
686 	 * value. Other dentry users may have re-gotten
687 	 * a reference to the dentry and change that, but
688 	 * our work is done - we can leave the dentry
689 	 * around with a zero refcount.
690 	 */
691 	smp_rmb();
692 	d_flags = ACCESS_ONCE(dentry->d_flags);
693 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
694 
695 	/* Nothing to do? Dropping the reference was all we needed? */
696 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
697 		return 1;
698 
699 	/*
700 	 * Not the fast normal case? Get the lock. We've already decremented
701 	 * the refcount, but we'll need to re-check the situation after
702 	 * getting the lock.
703 	 */
704 	spin_lock(&dentry->d_lock);
705 
706 	/*
707 	 * Did somebody else grab a reference to it in the meantime, and
708 	 * we're no longer the last user after all? Alternatively, somebody
709 	 * else could have killed it and marked it dead. Either way, we
710 	 * don't need to do anything else.
711 	 */
712 	if (dentry->d_lockref.count) {
713 		spin_unlock(&dentry->d_lock);
714 		return 1;
715 	}
716 
717 	/*
718 	 * Re-get the reference we optimistically dropped. We hold the
719 	 * lock, and we just tested that it was zero, so we can just
720 	 * set it to 1.
721 	 */
722 	dentry->d_lockref.count = 1;
723 	return 0;
724 }
725 
726 
727 /*
728  * This is dput
729  *
730  * This is complicated by the fact that we do not want to put
731  * dentries that are no longer on any hash chain on the unused
732  * list: we'd much rather just get rid of them immediately.
733  *
734  * However, that implies that we have to traverse the dentry
735  * tree upwards to the parents which might _also_ now be
736  * scheduled for deletion (it may have been only waiting for
737  * its last child to go away).
738  *
739  * This tail recursion is done by hand as we don't want to depend
740  * on the compiler to always get this right (gcc generally doesn't).
741  * Real recursion would eat up our stack space.
742  */
743 
744 /*
745  * dput - release a dentry
746  * @dentry: dentry to release
747  *
748  * Release a dentry. This will drop the usage count and if appropriate
749  * call the dentry unlink method as well as removing it from the queues and
750  * releasing its resources. If the parent dentries were scheduled for release
751  * they too may now get deleted.
752  */
753 void dput(struct dentry *dentry)
754 {
755 	if (unlikely(!dentry))
756 		return;
757 
758 repeat:
759 	might_sleep();
760 
761 	rcu_read_lock();
762 	if (likely(fast_dput(dentry))) {
763 		rcu_read_unlock();
764 		return;
765 	}
766 
767 	/* Slow case: now with the dentry lock held */
768 	rcu_read_unlock();
769 
770 	WARN_ON(d_in_lookup(dentry));
771 
772 	/* Unreachable? Get rid of it */
773 	if (unlikely(d_unhashed(dentry)))
774 		goto kill_it;
775 
776 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
777 		goto kill_it;
778 
779 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
780 		if (dentry->d_op->d_delete(dentry))
781 			goto kill_it;
782 	}
783 
784 	dentry_lru_add(dentry);
785 
786 	dentry->d_lockref.count--;
787 	spin_unlock(&dentry->d_lock);
788 	return;
789 
790 kill_it:
791 	dentry = dentry_kill(dentry);
792 	if (dentry) {
793 		cond_resched();
794 		goto repeat;
795 	}
796 }
797 EXPORT_SYMBOL(dput);
798 
799 
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 	dentry->d_lockref.count++;
804 }
805 
806 static inline void __dget(struct dentry *dentry)
807 {
808 	lockref_get(&dentry->d_lockref);
809 }
810 
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 	int gotref;
814 	struct dentry *ret;
815 
816 	/*
817 	 * Do optimistic parent lookup without any
818 	 * locking.
819 	 */
820 	rcu_read_lock();
821 	ret = ACCESS_ONCE(dentry->d_parent);
822 	gotref = lockref_get_not_zero(&ret->d_lockref);
823 	rcu_read_unlock();
824 	if (likely(gotref)) {
825 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 			return ret;
827 		dput(ret);
828 	}
829 
830 repeat:
831 	/*
832 	 * Don't need rcu_dereference because we re-check it was correct under
833 	 * the lock.
834 	 */
835 	rcu_read_lock();
836 	ret = dentry->d_parent;
837 	spin_lock(&ret->d_lock);
838 	if (unlikely(ret != dentry->d_parent)) {
839 		spin_unlock(&ret->d_lock);
840 		rcu_read_unlock();
841 		goto repeat;
842 	}
843 	rcu_read_unlock();
844 	BUG_ON(!ret->d_lockref.count);
845 	ret->d_lockref.count++;
846 	spin_unlock(&ret->d_lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850 
851 /**
852  * d_find_alias - grab a hashed alias of inode
853  * @inode: inode in question
854  *
855  * If inode has a hashed alias, or is a directory and has any alias,
856  * acquire the reference to alias and return it. Otherwise return NULL.
857  * Notice that if inode is a directory there can be only one alias and
858  * it can be unhashed only if it has no children, or if it is the root
859  * of a filesystem, or if the directory was renamed and d_revalidate
860  * was the first vfs operation to notice.
861  *
862  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863  * any other hashed alias over that one.
864  */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 	struct dentry *alias, *discon_alias;
868 
869 again:
870 	discon_alias = NULL;
871 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 		spin_lock(&alias->d_lock);
873  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 			if (IS_ROOT(alias) &&
875 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
876 				discon_alias = alias;
877 			} else {
878 				__dget_dlock(alias);
879 				spin_unlock(&alias->d_lock);
880 				return alias;
881 			}
882 		}
883 		spin_unlock(&alias->d_lock);
884 	}
885 	if (discon_alias) {
886 		alias = discon_alias;
887 		spin_lock(&alias->d_lock);
888 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 			__dget_dlock(alias);
890 			spin_unlock(&alias->d_lock);
891 			return alias;
892 		}
893 		spin_unlock(&alias->d_lock);
894 		goto again;
895 	}
896 	return NULL;
897 }
898 
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 	struct dentry *de = NULL;
902 
903 	if (!hlist_empty(&inode->i_dentry)) {
904 		spin_lock(&inode->i_lock);
905 		de = __d_find_alias(inode);
906 		spin_unlock(&inode->i_lock);
907 	}
908 	return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911 
912 /*
913  *	Try to kill dentries associated with this inode.
914  * WARNING: you must own a reference to inode.
915  */
916 void d_prune_aliases(struct inode *inode)
917 {
918 	struct dentry *dentry;
919 restart:
920 	spin_lock(&inode->i_lock);
921 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 		spin_lock(&dentry->d_lock);
923 		if (!dentry->d_lockref.count) {
924 			struct dentry *parent = lock_parent(dentry);
925 			if (likely(!dentry->d_lockref.count)) {
926 				__dentry_kill(dentry);
927 				dput(parent);
928 				goto restart;
929 			}
930 			if (parent)
931 				spin_unlock(&parent->d_lock);
932 		}
933 		spin_unlock(&dentry->d_lock);
934 	}
935 	spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938 
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 	struct dentry *dentry, *parent;
942 
943 	while (!list_empty(list)) {
944 		struct inode *inode;
945 		dentry = list_entry(list->prev, struct dentry, d_lru);
946 		spin_lock(&dentry->d_lock);
947 		parent = lock_parent(dentry);
948 
949 		/*
950 		 * The dispose list is isolated and dentries are not accounted
951 		 * to the LRU here, so we can simply remove it from the list
952 		 * here regardless of whether it is referenced or not.
953 		 */
954 		d_shrink_del(dentry);
955 
956 		/*
957 		 * We found an inuse dentry which was not removed from
958 		 * the LRU because of laziness during lookup. Do not free it.
959 		 */
960 		if (dentry->d_lockref.count > 0) {
961 			spin_unlock(&dentry->d_lock);
962 			if (parent)
963 				spin_unlock(&parent->d_lock);
964 			continue;
965 		}
966 
967 
968 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 			spin_unlock(&dentry->d_lock);
971 			if (parent)
972 				spin_unlock(&parent->d_lock);
973 			if (can_free)
974 				dentry_free(dentry);
975 			continue;
976 		}
977 
978 		inode = dentry->d_inode;
979 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 			d_shrink_add(dentry, list);
981 			spin_unlock(&dentry->d_lock);
982 			if (parent)
983 				spin_unlock(&parent->d_lock);
984 			continue;
985 		}
986 
987 		__dentry_kill(dentry);
988 
989 		/*
990 		 * We need to prune ancestors too. This is necessary to prevent
991 		 * quadratic behavior of shrink_dcache_parent(), but is also
992 		 * expected to be beneficial in reducing dentry cache
993 		 * fragmentation.
994 		 */
995 		dentry = parent;
996 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 			parent = lock_parent(dentry);
998 			if (dentry->d_lockref.count != 1) {
999 				dentry->d_lockref.count--;
1000 				spin_unlock(&dentry->d_lock);
1001 				if (parent)
1002 					spin_unlock(&parent->d_lock);
1003 				break;
1004 			}
1005 			inode = dentry->d_inode;	/* can't be NULL */
1006 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 				spin_unlock(&dentry->d_lock);
1008 				if (parent)
1009 					spin_unlock(&parent->d_lock);
1010 				cpu_relax();
1011 				continue;
1012 			}
1013 			__dentry_kill(dentry);
1014 			dentry = parent;
1015 		}
1016 	}
1017 }
1018 
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 	struct list_head *freeable = arg;
1023 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1024 
1025 
1026 	/*
1027 	 * we are inverting the lru lock/dentry->d_lock here,
1028 	 * so use a trylock. If we fail to get the lock, just skip
1029 	 * it
1030 	 */
1031 	if (!spin_trylock(&dentry->d_lock))
1032 		return LRU_SKIP;
1033 
1034 	/*
1035 	 * Referenced dentries are still in use. If they have active
1036 	 * counts, just remove them from the LRU. Otherwise give them
1037 	 * another pass through the LRU.
1038 	 */
1039 	if (dentry->d_lockref.count) {
1040 		d_lru_isolate(lru, dentry);
1041 		spin_unlock(&dentry->d_lock);
1042 		return LRU_REMOVED;
1043 	}
1044 
1045 	if (dentry->d_flags & DCACHE_REFERENCED) {
1046 		dentry->d_flags &= ~DCACHE_REFERENCED;
1047 		spin_unlock(&dentry->d_lock);
1048 
1049 		/*
1050 		 * The list move itself will be made by the common LRU code. At
1051 		 * this point, we've dropped the dentry->d_lock but keep the
1052 		 * lru lock. This is safe to do, since every list movement is
1053 		 * protected by the lru lock even if both locks are held.
1054 		 *
1055 		 * This is guaranteed by the fact that all LRU management
1056 		 * functions are intermediated by the LRU API calls like
1057 		 * list_lru_add and list_lru_del. List movement in this file
1058 		 * only ever occur through this functions or through callbacks
1059 		 * like this one, that are called from the LRU API.
1060 		 *
1061 		 * The only exceptions to this are functions like
1062 		 * shrink_dentry_list, and code that first checks for the
1063 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1064 		 * operating only with stack provided lists after they are
1065 		 * properly isolated from the main list.  It is thus, always a
1066 		 * local access.
1067 		 */
1068 		return LRU_ROTATE;
1069 	}
1070 
1071 	d_lru_shrink_move(lru, dentry, freeable);
1072 	spin_unlock(&dentry->d_lock);
1073 
1074 	return LRU_REMOVED;
1075 }
1076 
1077 /**
1078  * prune_dcache_sb - shrink the dcache
1079  * @sb: superblock
1080  * @sc: shrink control, passed to list_lru_shrink_walk()
1081  *
1082  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083  * is done when we need more memory and called from the superblock shrinker
1084  * function.
1085  *
1086  * This function may fail to free any resources if all the dentries are in
1087  * use.
1088  */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 	LIST_HEAD(dispose);
1092 	long freed;
1093 
1094 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 				     dentry_lru_isolate, &dispose);
1096 	shrink_dentry_list(&dispose);
1097 	return freed;
1098 }
1099 
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 	struct list_head *freeable = arg;
1104 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1105 
1106 	/*
1107 	 * we are inverting the lru lock/dentry->d_lock here,
1108 	 * so use a trylock. If we fail to get the lock, just skip
1109 	 * it
1110 	 */
1111 	if (!spin_trylock(&dentry->d_lock))
1112 		return LRU_SKIP;
1113 
1114 	d_lru_shrink_move(lru, dentry, freeable);
1115 	spin_unlock(&dentry->d_lock);
1116 
1117 	return LRU_REMOVED;
1118 }
1119 
1120 
1121 /**
1122  * shrink_dcache_sb - shrink dcache for a superblock
1123  * @sb: superblock
1124  *
1125  * Shrink the dcache for the specified super block. This is used to free
1126  * the dcache before unmounting a file system.
1127  */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 	long freed;
1131 
1132 	do {
1133 		LIST_HEAD(dispose);
1134 
1135 		freed = list_lru_walk(&sb->s_dentry_lru,
1136 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137 
1138 		this_cpu_sub(nr_dentry_unused, freed);
1139 		shrink_dentry_list(&dispose);
1140 	} while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143 
1144 /**
1145  * enum d_walk_ret - action to talke during tree walk
1146  * @D_WALK_CONTINUE:	contrinue walk
1147  * @D_WALK_QUIT:	quit walk
1148  * @D_WALK_NORETRY:	quit when retry is needed
1149  * @D_WALK_SKIP:	skip this dentry and its children
1150  */
1151 enum d_walk_ret {
1152 	D_WALK_CONTINUE,
1153 	D_WALK_QUIT,
1154 	D_WALK_NORETRY,
1155 	D_WALK_SKIP,
1156 };
1157 
1158 /**
1159  * d_walk - walk the dentry tree
1160  * @parent:	start of walk
1161  * @data:	data passed to @enter() and @finish()
1162  * @enter:	callback when first entering the dentry
1163  * @finish:	callback when successfully finished the walk
1164  *
1165  * The @enter() and @finish() callbacks are called with d_lock held.
1166  */
1167 static void d_walk(struct dentry *parent, void *data,
1168 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1169 		   void (*finish)(void *))
1170 {
1171 	struct dentry *this_parent;
1172 	struct list_head *next;
1173 	unsigned seq = 0;
1174 	enum d_walk_ret ret;
1175 	bool retry = true;
1176 
1177 again:
1178 	read_seqbegin_or_lock(&rename_lock, &seq);
1179 	this_parent = parent;
1180 	spin_lock(&this_parent->d_lock);
1181 
1182 	ret = enter(data, this_parent);
1183 	switch (ret) {
1184 	case D_WALK_CONTINUE:
1185 		break;
1186 	case D_WALK_QUIT:
1187 	case D_WALK_SKIP:
1188 		goto out_unlock;
1189 	case D_WALK_NORETRY:
1190 		retry = false;
1191 		break;
1192 	}
1193 repeat:
1194 	next = this_parent->d_subdirs.next;
1195 resume:
1196 	while (next != &this_parent->d_subdirs) {
1197 		struct list_head *tmp = next;
1198 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 		next = tmp->next;
1200 
1201 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 			continue;
1203 
1204 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205 
1206 		ret = enter(data, dentry);
1207 		switch (ret) {
1208 		case D_WALK_CONTINUE:
1209 			break;
1210 		case D_WALK_QUIT:
1211 			spin_unlock(&dentry->d_lock);
1212 			goto out_unlock;
1213 		case D_WALK_NORETRY:
1214 			retry = false;
1215 			break;
1216 		case D_WALK_SKIP:
1217 			spin_unlock(&dentry->d_lock);
1218 			continue;
1219 		}
1220 
1221 		if (!list_empty(&dentry->d_subdirs)) {
1222 			spin_unlock(&this_parent->d_lock);
1223 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 			this_parent = dentry;
1225 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 			goto repeat;
1227 		}
1228 		spin_unlock(&dentry->d_lock);
1229 	}
1230 	/*
1231 	 * All done at this level ... ascend and resume the search.
1232 	 */
1233 	rcu_read_lock();
1234 ascend:
1235 	if (this_parent != parent) {
1236 		struct dentry *child = this_parent;
1237 		this_parent = child->d_parent;
1238 
1239 		spin_unlock(&child->d_lock);
1240 		spin_lock(&this_parent->d_lock);
1241 
1242 		/* might go back up the wrong parent if we have had a rename. */
1243 		if (need_seqretry(&rename_lock, seq))
1244 			goto rename_retry;
1245 		/* go into the first sibling still alive */
1246 		do {
1247 			next = child->d_child.next;
1248 			if (next == &this_parent->d_subdirs)
1249 				goto ascend;
1250 			child = list_entry(next, struct dentry, d_child);
1251 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 		rcu_read_unlock();
1253 		goto resume;
1254 	}
1255 	if (need_seqretry(&rename_lock, seq))
1256 		goto rename_retry;
1257 	rcu_read_unlock();
1258 	if (finish)
1259 		finish(data);
1260 
1261 out_unlock:
1262 	spin_unlock(&this_parent->d_lock);
1263 	done_seqretry(&rename_lock, seq);
1264 	return;
1265 
1266 rename_retry:
1267 	spin_unlock(&this_parent->d_lock);
1268 	rcu_read_unlock();
1269 	BUG_ON(seq & 1);
1270 	if (!retry)
1271 		return;
1272 	seq = 1;
1273 	goto again;
1274 }
1275 
1276 struct check_mount {
1277 	struct vfsmount *mnt;
1278 	unsigned int mounted;
1279 };
1280 
1281 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1282 {
1283 	struct check_mount *info = data;
1284 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1285 
1286 	if (likely(!d_mountpoint(dentry)))
1287 		return D_WALK_CONTINUE;
1288 	if (__path_is_mountpoint(&path)) {
1289 		info->mounted = 1;
1290 		return D_WALK_QUIT;
1291 	}
1292 	return D_WALK_CONTINUE;
1293 }
1294 
1295 /**
1296  * path_has_submounts - check for mounts over a dentry in the
1297  *                      current namespace.
1298  * @parent: path to check.
1299  *
1300  * Return true if the parent or its subdirectories contain
1301  * a mount point in the current namespace.
1302  */
1303 int path_has_submounts(const struct path *parent)
1304 {
1305 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1306 
1307 	read_seqlock_excl(&mount_lock);
1308 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1309 	read_sequnlock_excl(&mount_lock);
1310 
1311 	return data.mounted;
1312 }
1313 EXPORT_SYMBOL(path_has_submounts);
1314 
1315 /*
1316  * Called by mount code to set a mountpoint and check if the mountpoint is
1317  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1318  * subtree can become unreachable).
1319  *
1320  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1321  * this reason take rename_lock and d_lock on dentry and ancestors.
1322  */
1323 int d_set_mounted(struct dentry *dentry)
1324 {
1325 	struct dentry *p;
1326 	int ret = -ENOENT;
1327 	write_seqlock(&rename_lock);
1328 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1329 		/* Need exclusion wrt. d_invalidate() */
1330 		spin_lock(&p->d_lock);
1331 		if (unlikely(d_unhashed(p))) {
1332 			spin_unlock(&p->d_lock);
1333 			goto out;
1334 		}
1335 		spin_unlock(&p->d_lock);
1336 	}
1337 	spin_lock(&dentry->d_lock);
1338 	if (!d_unlinked(dentry)) {
1339 		ret = -EBUSY;
1340 		if (!d_mountpoint(dentry)) {
1341 			dentry->d_flags |= DCACHE_MOUNTED;
1342 			ret = 0;
1343 		}
1344 	}
1345  	spin_unlock(&dentry->d_lock);
1346 out:
1347 	write_sequnlock(&rename_lock);
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Search the dentry child list of the specified parent,
1353  * and move any unused dentries to the end of the unused
1354  * list for prune_dcache(). We descend to the next level
1355  * whenever the d_subdirs list is non-empty and continue
1356  * searching.
1357  *
1358  * It returns zero iff there are no unused children,
1359  * otherwise  it returns the number of children moved to
1360  * the end of the unused list. This may not be the total
1361  * number of unused children, because select_parent can
1362  * drop the lock and return early due to latency
1363  * constraints.
1364  */
1365 
1366 struct select_data {
1367 	struct dentry *start;
1368 	struct list_head dispose;
1369 	int found;
1370 };
1371 
1372 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1373 {
1374 	struct select_data *data = _data;
1375 	enum d_walk_ret ret = D_WALK_CONTINUE;
1376 
1377 	if (data->start == dentry)
1378 		goto out;
1379 
1380 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1381 		data->found++;
1382 	} else {
1383 		if (dentry->d_flags & DCACHE_LRU_LIST)
1384 			d_lru_del(dentry);
1385 		if (!dentry->d_lockref.count) {
1386 			d_shrink_add(dentry, &data->dispose);
1387 			data->found++;
1388 		}
1389 	}
1390 	/*
1391 	 * We can return to the caller if we have found some (this
1392 	 * ensures forward progress). We'll be coming back to find
1393 	 * the rest.
1394 	 */
1395 	if (!list_empty(&data->dispose))
1396 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1397 out:
1398 	return ret;
1399 }
1400 
1401 /**
1402  * shrink_dcache_parent - prune dcache
1403  * @parent: parent of entries to prune
1404  *
1405  * Prune the dcache to remove unused children of the parent dentry.
1406  */
1407 void shrink_dcache_parent(struct dentry *parent)
1408 {
1409 	for (;;) {
1410 		struct select_data data;
1411 
1412 		INIT_LIST_HEAD(&data.dispose);
1413 		data.start = parent;
1414 		data.found = 0;
1415 
1416 		d_walk(parent, &data, select_collect, NULL);
1417 		if (!data.found)
1418 			break;
1419 
1420 		shrink_dentry_list(&data.dispose);
1421 		cond_resched();
1422 	}
1423 }
1424 EXPORT_SYMBOL(shrink_dcache_parent);
1425 
1426 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1427 {
1428 	/* it has busy descendents; complain about those instead */
1429 	if (!list_empty(&dentry->d_subdirs))
1430 		return D_WALK_CONTINUE;
1431 
1432 	/* root with refcount 1 is fine */
1433 	if (dentry == _data && dentry->d_lockref.count == 1)
1434 		return D_WALK_CONTINUE;
1435 
1436 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1437 			" still in use (%d) [unmount of %s %s]\n",
1438 		       dentry,
1439 		       dentry->d_inode ?
1440 		       dentry->d_inode->i_ino : 0UL,
1441 		       dentry,
1442 		       dentry->d_lockref.count,
1443 		       dentry->d_sb->s_type->name,
1444 		       dentry->d_sb->s_id);
1445 	WARN_ON(1);
1446 	return D_WALK_CONTINUE;
1447 }
1448 
1449 static void do_one_tree(struct dentry *dentry)
1450 {
1451 	shrink_dcache_parent(dentry);
1452 	d_walk(dentry, dentry, umount_check, NULL);
1453 	d_drop(dentry);
1454 	dput(dentry);
1455 }
1456 
1457 /*
1458  * destroy the dentries attached to a superblock on unmounting
1459  */
1460 void shrink_dcache_for_umount(struct super_block *sb)
1461 {
1462 	struct dentry *dentry;
1463 
1464 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1465 
1466 	dentry = sb->s_root;
1467 	sb->s_root = NULL;
1468 	do_one_tree(dentry);
1469 
1470 	while (!hlist_bl_empty(&sb->s_anon)) {
1471 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1472 		do_one_tree(dentry);
1473 	}
1474 }
1475 
1476 struct detach_data {
1477 	struct select_data select;
1478 	struct dentry *mountpoint;
1479 };
1480 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1481 {
1482 	struct detach_data *data = _data;
1483 
1484 	if (d_mountpoint(dentry)) {
1485 		__dget_dlock(dentry);
1486 		data->mountpoint = dentry;
1487 		return D_WALK_QUIT;
1488 	}
1489 
1490 	return select_collect(&data->select, dentry);
1491 }
1492 
1493 static void check_and_drop(void *_data)
1494 {
1495 	struct detach_data *data = _data;
1496 
1497 	if (!data->mountpoint && !data->select.found)
1498 		__d_drop(data->select.start);
1499 }
1500 
1501 /**
1502  * d_invalidate - detach submounts, prune dcache, and drop
1503  * @dentry: dentry to invalidate (aka detach, prune and drop)
1504  *
1505  * no dcache lock.
1506  *
1507  * The final d_drop is done as an atomic operation relative to
1508  * rename_lock ensuring there are no races with d_set_mounted.  This
1509  * ensures there are no unhashed dentries on the path to a mountpoint.
1510  */
1511 void d_invalidate(struct dentry *dentry)
1512 {
1513 	/*
1514 	 * If it's already been dropped, return OK.
1515 	 */
1516 	spin_lock(&dentry->d_lock);
1517 	if (d_unhashed(dentry)) {
1518 		spin_unlock(&dentry->d_lock);
1519 		return;
1520 	}
1521 	spin_unlock(&dentry->d_lock);
1522 
1523 	/* Negative dentries can be dropped without further checks */
1524 	if (!dentry->d_inode) {
1525 		d_drop(dentry);
1526 		return;
1527 	}
1528 
1529 	for (;;) {
1530 		struct detach_data data;
1531 
1532 		data.mountpoint = NULL;
1533 		INIT_LIST_HEAD(&data.select.dispose);
1534 		data.select.start = dentry;
1535 		data.select.found = 0;
1536 
1537 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1538 
1539 		if (data.select.found)
1540 			shrink_dentry_list(&data.select.dispose);
1541 
1542 		if (data.mountpoint) {
1543 			detach_mounts(data.mountpoint);
1544 			dput(data.mountpoint);
1545 		}
1546 
1547 		if (!data.mountpoint && !data.select.found)
1548 			break;
1549 
1550 		cond_resched();
1551 	}
1552 }
1553 EXPORT_SYMBOL(d_invalidate);
1554 
1555 /**
1556  * __d_alloc	-	allocate a dcache entry
1557  * @sb: filesystem it will belong to
1558  * @name: qstr of the name
1559  *
1560  * Allocates a dentry. It returns %NULL if there is insufficient memory
1561  * available. On a success the dentry is returned. The name passed in is
1562  * copied and the copy passed in may be reused after this call.
1563  */
1564 
1565 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1566 {
1567 	struct dentry *dentry;
1568 	char *dname;
1569 	int err;
1570 
1571 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1572 	if (!dentry)
1573 		return NULL;
1574 
1575 	/*
1576 	 * We guarantee that the inline name is always NUL-terminated.
1577 	 * This way the memcpy() done by the name switching in rename
1578 	 * will still always have a NUL at the end, even if we might
1579 	 * be overwriting an internal NUL character
1580 	 */
1581 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1582 	if (unlikely(!name)) {
1583 		static const struct qstr anon = QSTR_INIT("/", 1);
1584 		name = &anon;
1585 		dname = dentry->d_iname;
1586 	} else if (name->len > DNAME_INLINE_LEN-1) {
1587 		size_t size = offsetof(struct external_name, name[1]);
1588 		struct external_name *p = kmalloc(size + name->len,
1589 						  GFP_KERNEL_ACCOUNT);
1590 		if (!p) {
1591 			kmem_cache_free(dentry_cache, dentry);
1592 			return NULL;
1593 		}
1594 		atomic_set(&p->u.count, 1);
1595 		dname = p->name;
1596 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1597 			kasan_unpoison_shadow(dname,
1598 				round_up(name->len + 1,	sizeof(unsigned long)));
1599 	} else  {
1600 		dname = dentry->d_iname;
1601 	}
1602 
1603 	dentry->d_name.len = name->len;
1604 	dentry->d_name.hash = name->hash;
1605 	memcpy(dname, name->name, name->len);
1606 	dname[name->len] = 0;
1607 
1608 	/* Make sure we always see the terminating NUL character */
1609 	smp_wmb();
1610 	dentry->d_name.name = dname;
1611 
1612 	dentry->d_lockref.count = 1;
1613 	dentry->d_flags = 0;
1614 	spin_lock_init(&dentry->d_lock);
1615 	seqcount_init(&dentry->d_seq);
1616 	dentry->d_inode = NULL;
1617 	dentry->d_parent = dentry;
1618 	dentry->d_sb = sb;
1619 	dentry->d_op = NULL;
1620 	dentry->d_fsdata = NULL;
1621 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1622 	INIT_LIST_HEAD(&dentry->d_lru);
1623 	INIT_LIST_HEAD(&dentry->d_subdirs);
1624 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1625 	INIT_LIST_HEAD(&dentry->d_child);
1626 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1627 
1628 	if (dentry->d_op && dentry->d_op->d_init) {
1629 		err = dentry->d_op->d_init(dentry);
1630 		if (err) {
1631 			if (dname_external(dentry))
1632 				kfree(external_name(dentry));
1633 			kmem_cache_free(dentry_cache, dentry);
1634 			return NULL;
1635 		}
1636 	}
1637 
1638 	this_cpu_inc(nr_dentry);
1639 
1640 	return dentry;
1641 }
1642 
1643 /**
1644  * d_alloc	-	allocate a dcache entry
1645  * @parent: parent of entry to allocate
1646  * @name: qstr of the name
1647  *
1648  * Allocates a dentry. It returns %NULL if there is insufficient memory
1649  * available. On a success the dentry is returned. The name passed in is
1650  * copied and the copy passed in may be reused after this call.
1651  */
1652 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1653 {
1654 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1655 	if (!dentry)
1656 		return NULL;
1657 	dentry->d_flags |= DCACHE_RCUACCESS;
1658 	spin_lock(&parent->d_lock);
1659 	/*
1660 	 * don't need child lock because it is not subject
1661 	 * to concurrency here
1662 	 */
1663 	__dget_dlock(parent);
1664 	dentry->d_parent = parent;
1665 	list_add(&dentry->d_child, &parent->d_subdirs);
1666 	spin_unlock(&parent->d_lock);
1667 
1668 	return dentry;
1669 }
1670 EXPORT_SYMBOL(d_alloc);
1671 
1672 struct dentry *d_alloc_cursor(struct dentry * parent)
1673 {
1674 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1675 	if (dentry) {
1676 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1677 		dentry->d_parent = dget(parent);
1678 	}
1679 	return dentry;
1680 }
1681 
1682 /**
1683  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1684  * @sb: the superblock
1685  * @name: qstr of the name
1686  *
1687  * For a filesystem that just pins its dentries in memory and never
1688  * performs lookups at all, return an unhashed IS_ROOT dentry.
1689  */
1690 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1691 {
1692 	return __d_alloc(sb, name);
1693 }
1694 EXPORT_SYMBOL(d_alloc_pseudo);
1695 
1696 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1697 {
1698 	struct qstr q;
1699 
1700 	q.name = name;
1701 	q.hash_len = hashlen_string(parent, name);
1702 	return d_alloc(parent, &q);
1703 }
1704 EXPORT_SYMBOL(d_alloc_name);
1705 
1706 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1707 {
1708 	WARN_ON_ONCE(dentry->d_op);
1709 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1710 				DCACHE_OP_COMPARE	|
1711 				DCACHE_OP_REVALIDATE	|
1712 				DCACHE_OP_WEAK_REVALIDATE	|
1713 				DCACHE_OP_DELETE	|
1714 				DCACHE_OP_REAL));
1715 	dentry->d_op = op;
1716 	if (!op)
1717 		return;
1718 	if (op->d_hash)
1719 		dentry->d_flags |= DCACHE_OP_HASH;
1720 	if (op->d_compare)
1721 		dentry->d_flags |= DCACHE_OP_COMPARE;
1722 	if (op->d_revalidate)
1723 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1724 	if (op->d_weak_revalidate)
1725 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1726 	if (op->d_delete)
1727 		dentry->d_flags |= DCACHE_OP_DELETE;
1728 	if (op->d_prune)
1729 		dentry->d_flags |= DCACHE_OP_PRUNE;
1730 	if (op->d_real)
1731 		dentry->d_flags |= DCACHE_OP_REAL;
1732 
1733 }
1734 EXPORT_SYMBOL(d_set_d_op);
1735 
1736 
1737 /*
1738  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1739  * @dentry - The dentry to mark
1740  *
1741  * Mark a dentry as falling through to the lower layer (as set with
1742  * d_pin_lower()).  This flag may be recorded on the medium.
1743  */
1744 void d_set_fallthru(struct dentry *dentry)
1745 {
1746 	spin_lock(&dentry->d_lock);
1747 	dentry->d_flags |= DCACHE_FALLTHRU;
1748 	spin_unlock(&dentry->d_lock);
1749 }
1750 EXPORT_SYMBOL(d_set_fallthru);
1751 
1752 static unsigned d_flags_for_inode(struct inode *inode)
1753 {
1754 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1755 
1756 	if (!inode)
1757 		return DCACHE_MISS_TYPE;
1758 
1759 	if (S_ISDIR(inode->i_mode)) {
1760 		add_flags = DCACHE_DIRECTORY_TYPE;
1761 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1762 			if (unlikely(!inode->i_op->lookup))
1763 				add_flags = DCACHE_AUTODIR_TYPE;
1764 			else
1765 				inode->i_opflags |= IOP_LOOKUP;
1766 		}
1767 		goto type_determined;
1768 	}
1769 
1770 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1771 		if (unlikely(inode->i_op->get_link)) {
1772 			add_flags = DCACHE_SYMLINK_TYPE;
1773 			goto type_determined;
1774 		}
1775 		inode->i_opflags |= IOP_NOFOLLOW;
1776 	}
1777 
1778 	if (unlikely(!S_ISREG(inode->i_mode)))
1779 		add_flags = DCACHE_SPECIAL_TYPE;
1780 
1781 type_determined:
1782 	if (unlikely(IS_AUTOMOUNT(inode)))
1783 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1784 	return add_flags;
1785 }
1786 
1787 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1788 {
1789 	unsigned add_flags = d_flags_for_inode(inode);
1790 	WARN_ON(d_in_lookup(dentry));
1791 
1792 	spin_lock(&dentry->d_lock);
1793 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1794 	raw_write_seqcount_begin(&dentry->d_seq);
1795 	__d_set_inode_and_type(dentry, inode, add_flags);
1796 	raw_write_seqcount_end(&dentry->d_seq);
1797 	fsnotify_update_flags(dentry);
1798 	spin_unlock(&dentry->d_lock);
1799 }
1800 
1801 /**
1802  * d_instantiate - fill in inode information for a dentry
1803  * @entry: dentry to complete
1804  * @inode: inode to attach to this dentry
1805  *
1806  * Fill in inode information in the entry.
1807  *
1808  * This turns negative dentries into productive full members
1809  * of society.
1810  *
1811  * NOTE! This assumes that the inode count has been incremented
1812  * (or otherwise set) by the caller to indicate that it is now
1813  * in use by the dcache.
1814  */
1815 
1816 void d_instantiate(struct dentry *entry, struct inode * inode)
1817 {
1818 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1819 	if (inode) {
1820 		security_d_instantiate(entry, inode);
1821 		spin_lock(&inode->i_lock);
1822 		__d_instantiate(entry, inode);
1823 		spin_unlock(&inode->i_lock);
1824 	}
1825 }
1826 EXPORT_SYMBOL(d_instantiate);
1827 
1828 /**
1829  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1830  * @entry: dentry to complete
1831  * @inode: inode to attach to this dentry
1832  *
1833  * Fill in inode information in the entry.  If a directory alias is found, then
1834  * return an error (and drop inode).  Together with d_materialise_unique() this
1835  * guarantees that a directory inode may never have more than one alias.
1836  */
1837 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1838 {
1839 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1840 
1841 	security_d_instantiate(entry, inode);
1842 	spin_lock(&inode->i_lock);
1843 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1844 		spin_unlock(&inode->i_lock);
1845 		iput(inode);
1846 		return -EBUSY;
1847 	}
1848 	__d_instantiate(entry, inode);
1849 	spin_unlock(&inode->i_lock);
1850 
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL(d_instantiate_no_diralias);
1854 
1855 struct dentry *d_make_root(struct inode *root_inode)
1856 {
1857 	struct dentry *res = NULL;
1858 
1859 	if (root_inode) {
1860 		res = __d_alloc(root_inode->i_sb, NULL);
1861 		if (res)
1862 			d_instantiate(res, root_inode);
1863 		else
1864 			iput(root_inode);
1865 	}
1866 	return res;
1867 }
1868 EXPORT_SYMBOL(d_make_root);
1869 
1870 static struct dentry * __d_find_any_alias(struct inode *inode)
1871 {
1872 	struct dentry *alias;
1873 
1874 	if (hlist_empty(&inode->i_dentry))
1875 		return NULL;
1876 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1877 	__dget(alias);
1878 	return alias;
1879 }
1880 
1881 /**
1882  * d_find_any_alias - find any alias for a given inode
1883  * @inode: inode to find an alias for
1884  *
1885  * If any aliases exist for the given inode, take and return a
1886  * reference for one of them.  If no aliases exist, return %NULL.
1887  */
1888 struct dentry *d_find_any_alias(struct inode *inode)
1889 {
1890 	struct dentry *de;
1891 
1892 	spin_lock(&inode->i_lock);
1893 	de = __d_find_any_alias(inode);
1894 	spin_unlock(&inode->i_lock);
1895 	return de;
1896 }
1897 EXPORT_SYMBOL(d_find_any_alias);
1898 
1899 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1900 {
1901 	struct dentry *tmp;
1902 	struct dentry *res;
1903 	unsigned add_flags;
1904 
1905 	if (!inode)
1906 		return ERR_PTR(-ESTALE);
1907 	if (IS_ERR(inode))
1908 		return ERR_CAST(inode);
1909 
1910 	res = d_find_any_alias(inode);
1911 	if (res)
1912 		goto out_iput;
1913 
1914 	tmp = __d_alloc(inode->i_sb, NULL);
1915 	if (!tmp) {
1916 		res = ERR_PTR(-ENOMEM);
1917 		goto out_iput;
1918 	}
1919 
1920 	security_d_instantiate(tmp, inode);
1921 	spin_lock(&inode->i_lock);
1922 	res = __d_find_any_alias(inode);
1923 	if (res) {
1924 		spin_unlock(&inode->i_lock);
1925 		dput(tmp);
1926 		goto out_iput;
1927 	}
1928 
1929 	/* attach a disconnected dentry */
1930 	add_flags = d_flags_for_inode(inode);
1931 
1932 	if (disconnected)
1933 		add_flags |= DCACHE_DISCONNECTED;
1934 
1935 	spin_lock(&tmp->d_lock);
1936 	__d_set_inode_and_type(tmp, inode, add_flags);
1937 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1938 	hlist_bl_lock(&tmp->d_sb->s_anon);
1939 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1940 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1941 	spin_unlock(&tmp->d_lock);
1942 	spin_unlock(&inode->i_lock);
1943 
1944 	return tmp;
1945 
1946  out_iput:
1947 	iput(inode);
1948 	return res;
1949 }
1950 
1951 /**
1952  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1953  * @inode: inode to allocate the dentry for
1954  *
1955  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1956  * similar open by handle operations.  The returned dentry may be anonymous,
1957  * or may have a full name (if the inode was already in the cache).
1958  *
1959  * When called on a directory inode, we must ensure that the inode only ever
1960  * has one dentry.  If a dentry is found, that is returned instead of
1961  * allocating a new one.
1962  *
1963  * On successful return, the reference to the inode has been transferred
1964  * to the dentry.  In case of an error the reference on the inode is released.
1965  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1966  * be passed in and the error will be propagated to the return value,
1967  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1968  */
1969 struct dentry *d_obtain_alias(struct inode *inode)
1970 {
1971 	return __d_obtain_alias(inode, 1);
1972 }
1973 EXPORT_SYMBOL(d_obtain_alias);
1974 
1975 /**
1976  * d_obtain_root - find or allocate a dentry for a given inode
1977  * @inode: inode to allocate the dentry for
1978  *
1979  * Obtain an IS_ROOT dentry for the root of a filesystem.
1980  *
1981  * We must ensure that directory inodes only ever have one dentry.  If a
1982  * dentry is found, that is returned instead of allocating a new one.
1983  *
1984  * On successful return, the reference to the inode has been transferred
1985  * to the dentry.  In case of an error the reference on the inode is
1986  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1987  * error will be propagate to the return value, with a %NULL @inode
1988  * replaced by ERR_PTR(-ESTALE).
1989  */
1990 struct dentry *d_obtain_root(struct inode *inode)
1991 {
1992 	return __d_obtain_alias(inode, 0);
1993 }
1994 EXPORT_SYMBOL(d_obtain_root);
1995 
1996 /**
1997  * d_add_ci - lookup or allocate new dentry with case-exact name
1998  * @inode:  the inode case-insensitive lookup has found
1999  * @dentry: the negative dentry that was passed to the parent's lookup func
2000  * @name:   the case-exact name to be associated with the returned dentry
2001  *
2002  * This is to avoid filling the dcache with case-insensitive names to the
2003  * same inode, only the actual correct case is stored in the dcache for
2004  * case-insensitive filesystems.
2005  *
2006  * For a case-insensitive lookup match and if the the case-exact dentry
2007  * already exists in in the dcache, use it and return it.
2008  *
2009  * If no entry exists with the exact case name, allocate new dentry with
2010  * the exact case, and return the spliced entry.
2011  */
2012 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2013 			struct qstr *name)
2014 {
2015 	struct dentry *found, *res;
2016 
2017 	/*
2018 	 * First check if a dentry matching the name already exists,
2019 	 * if not go ahead and create it now.
2020 	 */
2021 	found = d_hash_and_lookup(dentry->d_parent, name);
2022 	if (found) {
2023 		iput(inode);
2024 		return found;
2025 	}
2026 	if (d_in_lookup(dentry)) {
2027 		found = d_alloc_parallel(dentry->d_parent, name,
2028 					dentry->d_wait);
2029 		if (IS_ERR(found) || !d_in_lookup(found)) {
2030 			iput(inode);
2031 			return found;
2032 		}
2033 	} else {
2034 		found = d_alloc(dentry->d_parent, name);
2035 		if (!found) {
2036 			iput(inode);
2037 			return ERR_PTR(-ENOMEM);
2038 		}
2039 	}
2040 	res = d_splice_alias(inode, found);
2041 	if (res) {
2042 		dput(found);
2043 		return res;
2044 	}
2045 	return found;
2046 }
2047 EXPORT_SYMBOL(d_add_ci);
2048 
2049 
2050 static inline bool d_same_name(const struct dentry *dentry,
2051 				const struct dentry *parent,
2052 				const struct qstr *name)
2053 {
2054 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2055 		if (dentry->d_name.len != name->len)
2056 			return false;
2057 		return dentry_cmp(dentry, name->name, name->len) == 0;
2058 	}
2059 	return parent->d_op->d_compare(dentry,
2060 				       dentry->d_name.len, dentry->d_name.name,
2061 				       name) == 0;
2062 }
2063 
2064 /**
2065  * __d_lookup_rcu - search for a dentry (racy, store-free)
2066  * @parent: parent dentry
2067  * @name: qstr of name we wish to find
2068  * @seqp: returns d_seq value at the point where the dentry was found
2069  * Returns: dentry, or NULL
2070  *
2071  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2072  * resolution (store-free path walking) design described in
2073  * Documentation/filesystems/path-lookup.txt.
2074  *
2075  * This is not to be used outside core vfs.
2076  *
2077  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2078  * held, and rcu_read_lock held. The returned dentry must not be stored into
2079  * without taking d_lock and checking d_seq sequence count against @seq
2080  * returned here.
2081  *
2082  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2083  * function.
2084  *
2085  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2086  * the returned dentry, so long as its parent's seqlock is checked after the
2087  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2088  * is formed, giving integrity down the path walk.
2089  *
2090  * NOTE! The caller *has* to check the resulting dentry against the sequence
2091  * number we've returned before using any of the resulting dentry state!
2092  */
2093 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2094 				const struct qstr *name,
2095 				unsigned *seqp)
2096 {
2097 	u64 hashlen = name->hash_len;
2098 	const unsigned char *str = name->name;
2099 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2100 	struct hlist_bl_node *node;
2101 	struct dentry *dentry;
2102 
2103 	/*
2104 	 * Note: There is significant duplication with __d_lookup_rcu which is
2105 	 * required to prevent single threaded performance regressions
2106 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2107 	 * Keep the two functions in sync.
2108 	 */
2109 
2110 	/*
2111 	 * The hash list is protected using RCU.
2112 	 *
2113 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2114 	 * races with d_move().
2115 	 *
2116 	 * It is possible that concurrent renames can mess up our list
2117 	 * walk here and result in missing our dentry, resulting in the
2118 	 * false-negative result. d_lookup() protects against concurrent
2119 	 * renames using rename_lock seqlock.
2120 	 *
2121 	 * See Documentation/filesystems/path-lookup.txt for more details.
2122 	 */
2123 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2124 		unsigned seq;
2125 
2126 seqretry:
2127 		/*
2128 		 * The dentry sequence count protects us from concurrent
2129 		 * renames, and thus protects parent and name fields.
2130 		 *
2131 		 * The caller must perform a seqcount check in order
2132 		 * to do anything useful with the returned dentry.
2133 		 *
2134 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2135 		 * we don't wait for the sequence count to stabilize if it
2136 		 * is in the middle of a sequence change. If we do the slow
2137 		 * dentry compare, we will do seqretries until it is stable,
2138 		 * and if we end up with a successful lookup, we actually
2139 		 * want to exit RCU lookup anyway.
2140 		 *
2141 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2142 		 * we are still guaranteed NUL-termination of ->d_name.name.
2143 		 */
2144 		seq = raw_seqcount_begin(&dentry->d_seq);
2145 		if (dentry->d_parent != parent)
2146 			continue;
2147 		if (d_unhashed(dentry))
2148 			continue;
2149 
2150 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2151 			int tlen;
2152 			const char *tname;
2153 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2154 				continue;
2155 			tlen = dentry->d_name.len;
2156 			tname = dentry->d_name.name;
2157 			/* we want a consistent (name,len) pair */
2158 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2159 				cpu_relax();
2160 				goto seqretry;
2161 			}
2162 			if (parent->d_op->d_compare(dentry,
2163 						    tlen, tname, name) != 0)
2164 				continue;
2165 		} else {
2166 			if (dentry->d_name.hash_len != hashlen)
2167 				continue;
2168 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2169 				continue;
2170 		}
2171 		*seqp = seq;
2172 		return dentry;
2173 	}
2174 	return NULL;
2175 }
2176 
2177 /**
2178  * d_lookup - search for a dentry
2179  * @parent: parent dentry
2180  * @name: qstr of name we wish to find
2181  * Returns: dentry, or NULL
2182  *
2183  * d_lookup searches the children of the parent dentry for the name in
2184  * question. If the dentry is found its reference count is incremented and the
2185  * dentry is returned. The caller must use dput to free the entry when it has
2186  * finished using it. %NULL is returned if the dentry does not exist.
2187  */
2188 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2189 {
2190 	struct dentry *dentry;
2191 	unsigned seq;
2192 
2193 	do {
2194 		seq = read_seqbegin(&rename_lock);
2195 		dentry = __d_lookup(parent, name);
2196 		if (dentry)
2197 			break;
2198 	} while (read_seqretry(&rename_lock, seq));
2199 	return dentry;
2200 }
2201 EXPORT_SYMBOL(d_lookup);
2202 
2203 /**
2204  * __d_lookup - search for a dentry (racy)
2205  * @parent: parent dentry
2206  * @name: qstr of name we wish to find
2207  * Returns: dentry, or NULL
2208  *
2209  * __d_lookup is like d_lookup, however it may (rarely) return a
2210  * false-negative result due to unrelated rename activity.
2211  *
2212  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2213  * however it must be used carefully, eg. with a following d_lookup in
2214  * the case of failure.
2215  *
2216  * __d_lookup callers must be commented.
2217  */
2218 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2219 {
2220 	unsigned int hash = name->hash;
2221 	struct hlist_bl_head *b = d_hash(hash);
2222 	struct hlist_bl_node *node;
2223 	struct dentry *found = NULL;
2224 	struct dentry *dentry;
2225 
2226 	/*
2227 	 * Note: There is significant duplication with __d_lookup_rcu which is
2228 	 * required to prevent single threaded performance regressions
2229 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2230 	 * Keep the two functions in sync.
2231 	 */
2232 
2233 	/*
2234 	 * The hash list is protected using RCU.
2235 	 *
2236 	 * Take d_lock when comparing a candidate dentry, to avoid races
2237 	 * with d_move().
2238 	 *
2239 	 * It is possible that concurrent renames can mess up our list
2240 	 * walk here and result in missing our dentry, resulting in the
2241 	 * false-negative result. d_lookup() protects against concurrent
2242 	 * renames using rename_lock seqlock.
2243 	 *
2244 	 * See Documentation/filesystems/path-lookup.txt for more details.
2245 	 */
2246 	rcu_read_lock();
2247 
2248 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2249 
2250 		if (dentry->d_name.hash != hash)
2251 			continue;
2252 
2253 		spin_lock(&dentry->d_lock);
2254 		if (dentry->d_parent != parent)
2255 			goto next;
2256 		if (d_unhashed(dentry))
2257 			goto next;
2258 
2259 		if (!d_same_name(dentry, parent, name))
2260 			goto next;
2261 
2262 		dentry->d_lockref.count++;
2263 		found = dentry;
2264 		spin_unlock(&dentry->d_lock);
2265 		break;
2266 next:
2267 		spin_unlock(&dentry->d_lock);
2268  	}
2269  	rcu_read_unlock();
2270 
2271  	return found;
2272 }
2273 
2274 /**
2275  * d_hash_and_lookup - hash the qstr then search for a dentry
2276  * @dir: Directory to search in
2277  * @name: qstr of name we wish to find
2278  *
2279  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2280  */
2281 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2282 {
2283 	/*
2284 	 * Check for a fs-specific hash function. Note that we must
2285 	 * calculate the standard hash first, as the d_op->d_hash()
2286 	 * routine may choose to leave the hash value unchanged.
2287 	 */
2288 	name->hash = full_name_hash(dir, name->name, name->len);
2289 	if (dir->d_flags & DCACHE_OP_HASH) {
2290 		int err = dir->d_op->d_hash(dir, name);
2291 		if (unlikely(err < 0))
2292 			return ERR_PTR(err);
2293 	}
2294 	return d_lookup(dir, name);
2295 }
2296 EXPORT_SYMBOL(d_hash_and_lookup);
2297 
2298 /*
2299  * When a file is deleted, we have two options:
2300  * - turn this dentry into a negative dentry
2301  * - unhash this dentry and free it.
2302  *
2303  * Usually, we want to just turn this into
2304  * a negative dentry, but if anybody else is
2305  * currently using the dentry or the inode
2306  * we can't do that and we fall back on removing
2307  * it from the hash queues and waiting for
2308  * it to be deleted later when it has no users
2309  */
2310 
2311 /**
2312  * d_delete - delete a dentry
2313  * @dentry: The dentry to delete
2314  *
2315  * Turn the dentry into a negative dentry if possible, otherwise
2316  * remove it from the hash queues so it can be deleted later
2317  */
2318 
2319 void d_delete(struct dentry * dentry)
2320 {
2321 	struct inode *inode;
2322 	int isdir = 0;
2323 	/*
2324 	 * Are we the only user?
2325 	 */
2326 again:
2327 	spin_lock(&dentry->d_lock);
2328 	inode = dentry->d_inode;
2329 	isdir = S_ISDIR(inode->i_mode);
2330 	if (dentry->d_lockref.count == 1) {
2331 		if (!spin_trylock(&inode->i_lock)) {
2332 			spin_unlock(&dentry->d_lock);
2333 			cpu_relax();
2334 			goto again;
2335 		}
2336 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2337 		dentry_unlink_inode(dentry);
2338 		fsnotify_nameremove(dentry, isdir);
2339 		return;
2340 	}
2341 
2342 	if (!d_unhashed(dentry))
2343 		__d_drop(dentry);
2344 
2345 	spin_unlock(&dentry->d_lock);
2346 
2347 	fsnotify_nameremove(dentry, isdir);
2348 }
2349 EXPORT_SYMBOL(d_delete);
2350 
2351 static void __d_rehash(struct dentry *entry)
2352 {
2353 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2354 	BUG_ON(!d_unhashed(entry));
2355 	hlist_bl_lock(b);
2356 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2357 	hlist_bl_unlock(b);
2358 }
2359 
2360 /**
2361  * d_rehash	- add an entry back to the hash
2362  * @entry: dentry to add to the hash
2363  *
2364  * Adds a dentry to the hash according to its name.
2365  */
2366 
2367 void d_rehash(struct dentry * entry)
2368 {
2369 	spin_lock(&entry->d_lock);
2370 	__d_rehash(entry);
2371 	spin_unlock(&entry->d_lock);
2372 }
2373 EXPORT_SYMBOL(d_rehash);
2374 
2375 static inline unsigned start_dir_add(struct inode *dir)
2376 {
2377 
2378 	for (;;) {
2379 		unsigned n = dir->i_dir_seq;
2380 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2381 			return n;
2382 		cpu_relax();
2383 	}
2384 }
2385 
2386 static inline void end_dir_add(struct inode *dir, unsigned n)
2387 {
2388 	smp_store_release(&dir->i_dir_seq, n + 2);
2389 }
2390 
2391 static void d_wait_lookup(struct dentry *dentry)
2392 {
2393 	if (d_in_lookup(dentry)) {
2394 		DECLARE_WAITQUEUE(wait, current);
2395 		add_wait_queue(dentry->d_wait, &wait);
2396 		do {
2397 			set_current_state(TASK_UNINTERRUPTIBLE);
2398 			spin_unlock(&dentry->d_lock);
2399 			schedule();
2400 			spin_lock(&dentry->d_lock);
2401 		} while (d_in_lookup(dentry));
2402 	}
2403 }
2404 
2405 struct dentry *d_alloc_parallel(struct dentry *parent,
2406 				const struct qstr *name,
2407 				wait_queue_head_t *wq)
2408 {
2409 	unsigned int hash = name->hash;
2410 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2411 	struct hlist_bl_node *node;
2412 	struct dentry *new = d_alloc(parent, name);
2413 	struct dentry *dentry;
2414 	unsigned seq, r_seq, d_seq;
2415 
2416 	if (unlikely(!new))
2417 		return ERR_PTR(-ENOMEM);
2418 
2419 retry:
2420 	rcu_read_lock();
2421 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2422 	r_seq = read_seqbegin(&rename_lock);
2423 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2424 	if (unlikely(dentry)) {
2425 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2426 			rcu_read_unlock();
2427 			goto retry;
2428 		}
2429 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2430 			rcu_read_unlock();
2431 			dput(dentry);
2432 			goto retry;
2433 		}
2434 		rcu_read_unlock();
2435 		dput(new);
2436 		return dentry;
2437 	}
2438 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2439 		rcu_read_unlock();
2440 		goto retry;
2441 	}
2442 	hlist_bl_lock(b);
2443 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2444 		hlist_bl_unlock(b);
2445 		rcu_read_unlock();
2446 		goto retry;
2447 	}
2448 	/*
2449 	 * No changes for the parent since the beginning of d_lookup().
2450 	 * Since all removals from the chain happen with hlist_bl_lock(),
2451 	 * any potential in-lookup matches are going to stay here until
2452 	 * we unlock the chain.  All fields are stable in everything
2453 	 * we encounter.
2454 	 */
2455 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2456 		if (dentry->d_name.hash != hash)
2457 			continue;
2458 		if (dentry->d_parent != parent)
2459 			continue;
2460 		if (!d_same_name(dentry, parent, name))
2461 			continue;
2462 		hlist_bl_unlock(b);
2463 		/* now we can try to grab a reference */
2464 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2465 			rcu_read_unlock();
2466 			goto retry;
2467 		}
2468 
2469 		rcu_read_unlock();
2470 		/*
2471 		 * somebody is likely to be still doing lookup for it;
2472 		 * wait for them to finish
2473 		 */
2474 		spin_lock(&dentry->d_lock);
2475 		d_wait_lookup(dentry);
2476 		/*
2477 		 * it's not in-lookup anymore; in principle we should repeat
2478 		 * everything from dcache lookup, but it's likely to be what
2479 		 * d_lookup() would've found anyway.  If it is, just return it;
2480 		 * otherwise we really have to repeat the whole thing.
2481 		 */
2482 		if (unlikely(dentry->d_name.hash != hash))
2483 			goto mismatch;
2484 		if (unlikely(dentry->d_parent != parent))
2485 			goto mismatch;
2486 		if (unlikely(d_unhashed(dentry)))
2487 			goto mismatch;
2488 		if (unlikely(!d_same_name(dentry, parent, name)))
2489 			goto mismatch;
2490 		/* OK, it *is* a hashed match; return it */
2491 		spin_unlock(&dentry->d_lock);
2492 		dput(new);
2493 		return dentry;
2494 	}
2495 	rcu_read_unlock();
2496 	/* we can't take ->d_lock here; it's OK, though. */
2497 	new->d_flags |= DCACHE_PAR_LOOKUP;
2498 	new->d_wait = wq;
2499 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2500 	hlist_bl_unlock(b);
2501 	return new;
2502 mismatch:
2503 	spin_unlock(&dentry->d_lock);
2504 	dput(dentry);
2505 	goto retry;
2506 }
2507 EXPORT_SYMBOL(d_alloc_parallel);
2508 
2509 void __d_lookup_done(struct dentry *dentry)
2510 {
2511 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2512 						 dentry->d_name.hash);
2513 	hlist_bl_lock(b);
2514 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2515 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2516 	wake_up_all(dentry->d_wait);
2517 	dentry->d_wait = NULL;
2518 	hlist_bl_unlock(b);
2519 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2520 	INIT_LIST_HEAD(&dentry->d_lru);
2521 }
2522 EXPORT_SYMBOL(__d_lookup_done);
2523 
2524 /* inode->i_lock held if inode is non-NULL */
2525 
2526 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2527 {
2528 	struct inode *dir = NULL;
2529 	unsigned n;
2530 	spin_lock(&dentry->d_lock);
2531 	if (unlikely(d_in_lookup(dentry))) {
2532 		dir = dentry->d_parent->d_inode;
2533 		n = start_dir_add(dir);
2534 		__d_lookup_done(dentry);
2535 	}
2536 	if (inode) {
2537 		unsigned add_flags = d_flags_for_inode(inode);
2538 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2539 		raw_write_seqcount_begin(&dentry->d_seq);
2540 		__d_set_inode_and_type(dentry, inode, add_flags);
2541 		raw_write_seqcount_end(&dentry->d_seq);
2542 		fsnotify_update_flags(dentry);
2543 	}
2544 	__d_rehash(dentry);
2545 	if (dir)
2546 		end_dir_add(dir, n);
2547 	spin_unlock(&dentry->d_lock);
2548 	if (inode)
2549 		spin_unlock(&inode->i_lock);
2550 }
2551 
2552 /**
2553  * d_add - add dentry to hash queues
2554  * @entry: dentry to add
2555  * @inode: The inode to attach to this dentry
2556  *
2557  * This adds the entry to the hash queues and initializes @inode.
2558  * The entry was actually filled in earlier during d_alloc().
2559  */
2560 
2561 void d_add(struct dentry *entry, struct inode *inode)
2562 {
2563 	if (inode) {
2564 		security_d_instantiate(entry, inode);
2565 		spin_lock(&inode->i_lock);
2566 	}
2567 	__d_add(entry, inode);
2568 }
2569 EXPORT_SYMBOL(d_add);
2570 
2571 /**
2572  * d_exact_alias - find and hash an exact unhashed alias
2573  * @entry: dentry to add
2574  * @inode: The inode to go with this dentry
2575  *
2576  * If an unhashed dentry with the same name/parent and desired
2577  * inode already exists, hash and return it.  Otherwise, return
2578  * NULL.
2579  *
2580  * Parent directory should be locked.
2581  */
2582 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2583 {
2584 	struct dentry *alias;
2585 	unsigned int hash = entry->d_name.hash;
2586 
2587 	spin_lock(&inode->i_lock);
2588 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2589 		/*
2590 		 * Don't need alias->d_lock here, because aliases with
2591 		 * d_parent == entry->d_parent are not subject to name or
2592 		 * parent changes, because the parent inode i_mutex is held.
2593 		 */
2594 		if (alias->d_name.hash != hash)
2595 			continue;
2596 		if (alias->d_parent != entry->d_parent)
2597 			continue;
2598 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2599 			continue;
2600 		spin_lock(&alias->d_lock);
2601 		if (!d_unhashed(alias)) {
2602 			spin_unlock(&alias->d_lock);
2603 			alias = NULL;
2604 		} else {
2605 			__dget_dlock(alias);
2606 			__d_rehash(alias);
2607 			spin_unlock(&alias->d_lock);
2608 		}
2609 		spin_unlock(&inode->i_lock);
2610 		return alias;
2611 	}
2612 	spin_unlock(&inode->i_lock);
2613 	return NULL;
2614 }
2615 EXPORT_SYMBOL(d_exact_alias);
2616 
2617 /**
2618  * dentry_update_name_case - update case insensitive dentry with a new name
2619  * @dentry: dentry to be updated
2620  * @name: new name
2621  *
2622  * Update a case insensitive dentry with new case of name.
2623  *
2624  * dentry must have been returned by d_lookup with name @name. Old and new
2625  * name lengths must match (ie. no d_compare which allows mismatched name
2626  * lengths).
2627  *
2628  * Parent inode i_mutex must be held over d_lookup and into this call (to
2629  * keep renames and concurrent inserts, and readdir(2) away).
2630  */
2631 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2632 {
2633 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2634 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2635 
2636 	spin_lock(&dentry->d_lock);
2637 	write_seqcount_begin(&dentry->d_seq);
2638 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2639 	write_seqcount_end(&dentry->d_seq);
2640 	spin_unlock(&dentry->d_lock);
2641 }
2642 EXPORT_SYMBOL(dentry_update_name_case);
2643 
2644 static void swap_names(struct dentry *dentry, struct dentry *target)
2645 {
2646 	if (unlikely(dname_external(target))) {
2647 		if (unlikely(dname_external(dentry))) {
2648 			/*
2649 			 * Both external: swap the pointers
2650 			 */
2651 			swap(target->d_name.name, dentry->d_name.name);
2652 		} else {
2653 			/*
2654 			 * dentry:internal, target:external.  Steal target's
2655 			 * storage and make target internal.
2656 			 */
2657 			memcpy(target->d_iname, dentry->d_name.name,
2658 					dentry->d_name.len + 1);
2659 			dentry->d_name.name = target->d_name.name;
2660 			target->d_name.name = target->d_iname;
2661 		}
2662 	} else {
2663 		if (unlikely(dname_external(dentry))) {
2664 			/*
2665 			 * dentry:external, target:internal.  Give dentry's
2666 			 * storage to target and make dentry internal
2667 			 */
2668 			memcpy(dentry->d_iname, target->d_name.name,
2669 					target->d_name.len + 1);
2670 			target->d_name.name = dentry->d_name.name;
2671 			dentry->d_name.name = dentry->d_iname;
2672 		} else {
2673 			/*
2674 			 * Both are internal.
2675 			 */
2676 			unsigned int i;
2677 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2678 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2679 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2680 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2681 				swap(((long *) &dentry->d_iname)[i],
2682 				     ((long *) &target->d_iname)[i]);
2683 			}
2684 		}
2685 	}
2686 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2687 }
2688 
2689 static void copy_name(struct dentry *dentry, struct dentry *target)
2690 {
2691 	struct external_name *old_name = NULL;
2692 	if (unlikely(dname_external(dentry)))
2693 		old_name = external_name(dentry);
2694 	if (unlikely(dname_external(target))) {
2695 		atomic_inc(&external_name(target)->u.count);
2696 		dentry->d_name = target->d_name;
2697 	} else {
2698 		memcpy(dentry->d_iname, target->d_name.name,
2699 				target->d_name.len + 1);
2700 		dentry->d_name.name = dentry->d_iname;
2701 		dentry->d_name.hash_len = target->d_name.hash_len;
2702 	}
2703 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2704 		kfree_rcu(old_name, u.head);
2705 }
2706 
2707 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2708 {
2709 	/*
2710 	 * XXXX: do we really need to take target->d_lock?
2711 	 */
2712 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2713 		spin_lock(&target->d_parent->d_lock);
2714 	else {
2715 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2716 			spin_lock(&dentry->d_parent->d_lock);
2717 			spin_lock_nested(&target->d_parent->d_lock,
2718 						DENTRY_D_LOCK_NESTED);
2719 		} else {
2720 			spin_lock(&target->d_parent->d_lock);
2721 			spin_lock_nested(&dentry->d_parent->d_lock,
2722 						DENTRY_D_LOCK_NESTED);
2723 		}
2724 	}
2725 	if (target < dentry) {
2726 		spin_lock_nested(&target->d_lock, 2);
2727 		spin_lock_nested(&dentry->d_lock, 3);
2728 	} else {
2729 		spin_lock_nested(&dentry->d_lock, 2);
2730 		spin_lock_nested(&target->d_lock, 3);
2731 	}
2732 }
2733 
2734 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2735 {
2736 	if (target->d_parent != dentry->d_parent)
2737 		spin_unlock(&dentry->d_parent->d_lock);
2738 	if (target->d_parent != target)
2739 		spin_unlock(&target->d_parent->d_lock);
2740 	spin_unlock(&target->d_lock);
2741 	spin_unlock(&dentry->d_lock);
2742 }
2743 
2744 /*
2745  * When switching names, the actual string doesn't strictly have to
2746  * be preserved in the target - because we're dropping the target
2747  * anyway. As such, we can just do a simple memcpy() to copy over
2748  * the new name before we switch, unless we are going to rehash
2749  * it.  Note that if we *do* unhash the target, we are not allowed
2750  * to rehash it without giving it a new name/hash key - whether
2751  * we swap or overwrite the names here, resulting name won't match
2752  * the reality in filesystem; it's only there for d_path() purposes.
2753  * Note that all of this is happening under rename_lock, so the
2754  * any hash lookup seeing it in the middle of manipulations will
2755  * be discarded anyway.  So we do not care what happens to the hash
2756  * key in that case.
2757  */
2758 /*
2759  * __d_move - move a dentry
2760  * @dentry: entry to move
2761  * @target: new dentry
2762  * @exchange: exchange the two dentries
2763  *
2764  * Update the dcache to reflect the move of a file name. Negative
2765  * dcache entries should not be moved in this way. Caller must hold
2766  * rename_lock, the i_mutex of the source and target directories,
2767  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2768  */
2769 static void __d_move(struct dentry *dentry, struct dentry *target,
2770 		     bool exchange)
2771 {
2772 	struct inode *dir = NULL;
2773 	unsigned n;
2774 	if (!dentry->d_inode)
2775 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2776 
2777 	BUG_ON(d_ancestor(dentry, target));
2778 	BUG_ON(d_ancestor(target, dentry));
2779 
2780 	dentry_lock_for_move(dentry, target);
2781 	if (unlikely(d_in_lookup(target))) {
2782 		dir = target->d_parent->d_inode;
2783 		n = start_dir_add(dir);
2784 		__d_lookup_done(target);
2785 	}
2786 
2787 	write_seqcount_begin(&dentry->d_seq);
2788 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2789 
2790 	/* unhash both */
2791 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2792 	__d_drop(dentry);
2793 	__d_drop(target);
2794 
2795 	/* Switch the names.. */
2796 	if (exchange)
2797 		swap_names(dentry, target);
2798 	else
2799 		copy_name(dentry, target);
2800 
2801 	/* rehash in new place(s) */
2802 	__d_rehash(dentry);
2803 	if (exchange)
2804 		__d_rehash(target);
2805 
2806 	/* ... and switch them in the tree */
2807 	if (IS_ROOT(dentry)) {
2808 		/* splicing a tree */
2809 		dentry->d_flags |= DCACHE_RCUACCESS;
2810 		dentry->d_parent = target->d_parent;
2811 		target->d_parent = target;
2812 		list_del_init(&target->d_child);
2813 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2814 	} else {
2815 		/* swapping two dentries */
2816 		swap(dentry->d_parent, target->d_parent);
2817 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2818 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2819 		if (exchange)
2820 			fsnotify_update_flags(target);
2821 		fsnotify_update_flags(dentry);
2822 	}
2823 
2824 	write_seqcount_end(&target->d_seq);
2825 	write_seqcount_end(&dentry->d_seq);
2826 
2827 	if (dir)
2828 		end_dir_add(dir, n);
2829 	dentry_unlock_for_move(dentry, target);
2830 }
2831 
2832 /*
2833  * d_move - move a dentry
2834  * @dentry: entry to move
2835  * @target: new dentry
2836  *
2837  * Update the dcache to reflect the move of a file name. Negative
2838  * dcache entries should not be moved in this way. See the locking
2839  * requirements for __d_move.
2840  */
2841 void d_move(struct dentry *dentry, struct dentry *target)
2842 {
2843 	write_seqlock(&rename_lock);
2844 	__d_move(dentry, target, false);
2845 	write_sequnlock(&rename_lock);
2846 }
2847 EXPORT_SYMBOL(d_move);
2848 
2849 /*
2850  * d_exchange - exchange two dentries
2851  * @dentry1: first dentry
2852  * @dentry2: second dentry
2853  */
2854 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2855 {
2856 	write_seqlock(&rename_lock);
2857 
2858 	WARN_ON(!dentry1->d_inode);
2859 	WARN_ON(!dentry2->d_inode);
2860 	WARN_ON(IS_ROOT(dentry1));
2861 	WARN_ON(IS_ROOT(dentry2));
2862 
2863 	__d_move(dentry1, dentry2, true);
2864 
2865 	write_sequnlock(&rename_lock);
2866 }
2867 
2868 /**
2869  * d_ancestor - search for an ancestor
2870  * @p1: ancestor dentry
2871  * @p2: child dentry
2872  *
2873  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2874  * an ancestor of p2, else NULL.
2875  */
2876 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2877 {
2878 	struct dentry *p;
2879 
2880 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2881 		if (p->d_parent == p1)
2882 			return p;
2883 	}
2884 	return NULL;
2885 }
2886 
2887 /*
2888  * This helper attempts to cope with remotely renamed directories
2889  *
2890  * It assumes that the caller is already holding
2891  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2892  *
2893  * Note: If ever the locking in lock_rename() changes, then please
2894  * remember to update this too...
2895  */
2896 static int __d_unalias(struct inode *inode,
2897 		struct dentry *dentry, struct dentry *alias)
2898 {
2899 	struct mutex *m1 = NULL;
2900 	struct rw_semaphore *m2 = NULL;
2901 	int ret = -ESTALE;
2902 
2903 	/* If alias and dentry share a parent, then no extra locks required */
2904 	if (alias->d_parent == dentry->d_parent)
2905 		goto out_unalias;
2906 
2907 	/* See lock_rename() */
2908 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2909 		goto out_err;
2910 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2911 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2912 		goto out_err;
2913 	m2 = &alias->d_parent->d_inode->i_rwsem;
2914 out_unalias:
2915 	__d_move(alias, dentry, false);
2916 	ret = 0;
2917 out_err:
2918 	if (m2)
2919 		up_read(m2);
2920 	if (m1)
2921 		mutex_unlock(m1);
2922 	return ret;
2923 }
2924 
2925 /**
2926  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2927  * @inode:  the inode which may have a disconnected dentry
2928  * @dentry: a negative dentry which we want to point to the inode.
2929  *
2930  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2931  * place of the given dentry and return it, else simply d_add the inode
2932  * to the dentry and return NULL.
2933  *
2934  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2935  * we should error out: directories can't have multiple aliases.
2936  *
2937  * This is needed in the lookup routine of any filesystem that is exportable
2938  * (via knfsd) so that we can build dcache paths to directories effectively.
2939  *
2940  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2941  * is returned.  This matches the expected return value of ->lookup.
2942  *
2943  * Cluster filesystems may call this function with a negative, hashed dentry.
2944  * In that case, we know that the inode will be a regular file, and also this
2945  * will only occur during atomic_open. So we need to check for the dentry
2946  * being already hashed only in the final case.
2947  */
2948 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2949 {
2950 	if (IS_ERR(inode))
2951 		return ERR_CAST(inode);
2952 
2953 	BUG_ON(!d_unhashed(dentry));
2954 
2955 	if (!inode)
2956 		goto out;
2957 
2958 	security_d_instantiate(dentry, inode);
2959 	spin_lock(&inode->i_lock);
2960 	if (S_ISDIR(inode->i_mode)) {
2961 		struct dentry *new = __d_find_any_alias(inode);
2962 		if (unlikely(new)) {
2963 			/* The reference to new ensures it remains an alias */
2964 			spin_unlock(&inode->i_lock);
2965 			write_seqlock(&rename_lock);
2966 			if (unlikely(d_ancestor(new, dentry))) {
2967 				write_sequnlock(&rename_lock);
2968 				dput(new);
2969 				new = ERR_PTR(-ELOOP);
2970 				pr_warn_ratelimited(
2971 					"VFS: Lookup of '%s' in %s %s"
2972 					" would have caused loop\n",
2973 					dentry->d_name.name,
2974 					inode->i_sb->s_type->name,
2975 					inode->i_sb->s_id);
2976 			} else if (!IS_ROOT(new)) {
2977 				int err = __d_unalias(inode, dentry, new);
2978 				write_sequnlock(&rename_lock);
2979 				if (err) {
2980 					dput(new);
2981 					new = ERR_PTR(err);
2982 				}
2983 			} else {
2984 				__d_move(new, dentry, false);
2985 				write_sequnlock(&rename_lock);
2986 			}
2987 			iput(inode);
2988 			return new;
2989 		}
2990 	}
2991 out:
2992 	__d_add(dentry, inode);
2993 	return NULL;
2994 }
2995 EXPORT_SYMBOL(d_splice_alias);
2996 
2997 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2998 {
2999 	*buflen -= namelen;
3000 	if (*buflen < 0)
3001 		return -ENAMETOOLONG;
3002 	*buffer -= namelen;
3003 	memcpy(*buffer, str, namelen);
3004 	return 0;
3005 }
3006 
3007 /**
3008  * prepend_name - prepend a pathname in front of current buffer pointer
3009  * @buffer: buffer pointer
3010  * @buflen: allocated length of the buffer
3011  * @name:   name string and length qstr structure
3012  *
3013  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3014  * make sure that either the old or the new name pointer and length are
3015  * fetched. However, there may be mismatch between length and pointer.
3016  * The length cannot be trusted, we need to copy it byte-by-byte until
3017  * the length is reached or a null byte is found. It also prepends "/" at
3018  * the beginning of the name. The sequence number check at the caller will
3019  * retry it again when a d_move() does happen. So any garbage in the buffer
3020  * due to mismatched pointer and length will be discarded.
3021  *
3022  * Data dependency barrier is needed to make sure that we see that terminating
3023  * NUL.  Alpha strikes again, film at 11...
3024  */
3025 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3026 {
3027 	const char *dname = ACCESS_ONCE(name->name);
3028 	u32 dlen = ACCESS_ONCE(name->len);
3029 	char *p;
3030 
3031 	smp_read_barrier_depends();
3032 
3033 	*buflen -= dlen + 1;
3034 	if (*buflen < 0)
3035 		return -ENAMETOOLONG;
3036 	p = *buffer -= dlen + 1;
3037 	*p++ = '/';
3038 	while (dlen--) {
3039 		char c = *dname++;
3040 		if (!c)
3041 			break;
3042 		*p++ = c;
3043 	}
3044 	return 0;
3045 }
3046 
3047 /**
3048  * prepend_path - Prepend path string to a buffer
3049  * @path: the dentry/vfsmount to report
3050  * @root: root vfsmnt/dentry
3051  * @buffer: pointer to the end of the buffer
3052  * @buflen: pointer to buffer length
3053  *
3054  * The function will first try to write out the pathname without taking any
3055  * lock other than the RCU read lock to make sure that dentries won't go away.
3056  * It only checks the sequence number of the global rename_lock as any change
3057  * in the dentry's d_seq will be preceded by changes in the rename_lock
3058  * sequence number. If the sequence number had been changed, it will restart
3059  * the whole pathname back-tracing sequence again by taking the rename_lock.
3060  * In this case, there is no need to take the RCU read lock as the recursive
3061  * parent pointer references will keep the dentry chain alive as long as no
3062  * rename operation is performed.
3063  */
3064 static int prepend_path(const struct path *path,
3065 			const struct path *root,
3066 			char **buffer, int *buflen)
3067 {
3068 	struct dentry *dentry;
3069 	struct vfsmount *vfsmnt;
3070 	struct mount *mnt;
3071 	int error = 0;
3072 	unsigned seq, m_seq = 0;
3073 	char *bptr;
3074 	int blen;
3075 
3076 	rcu_read_lock();
3077 restart_mnt:
3078 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3079 	seq = 0;
3080 	rcu_read_lock();
3081 restart:
3082 	bptr = *buffer;
3083 	blen = *buflen;
3084 	error = 0;
3085 	dentry = path->dentry;
3086 	vfsmnt = path->mnt;
3087 	mnt = real_mount(vfsmnt);
3088 	read_seqbegin_or_lock(&rename_lock, &seq);
3089 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3090 		struct dentry * parent;
3091 
3092 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3093 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3094 			/* Escaped? */
3095 			if (dentry != vfsmnt->mnt_root) {
3096 				bptr = *buffer;
3097 				blen = *buflen;
3098 				error = 3;
3099 				break;
3100 			}
3101 			/* Global root? */
3102 			if (mnt != parent) {
3103 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3104 				mnt = parent;
3105 				vfsmnt = &mnt->mnt;
3106 				continue;
3107 			}
3108 			if (!error)
3109 				error = is_mounted(vfsmnt) ? 1 : 2;
3110 			break;
3111 		}
3112 		parent = dentry->d_parent;
3113 		prefetch(parent);
3114 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3115 		if (error)
3116 			break;
3117 
3118 		dentry = parent;
3119 	}
3120 	if (!(seq & 1))
3121 		rcu_read_unlock();
3122 	if (need_seqretry(&rename_lock, seq)) {
3123 		seq = 1;
3124 		goto restart;
3125 	}
3126 	done_seqretry(&rename_lock, seq);
3127 
3128 	if (!(m_seq & 1))
3129 		rcu_read_unlock();
3130 	if (need_seqretry(&mount_lock, m_seq)) {
3131 		m_seq = 1;
3132 		goto restart_mnt;
3133 	}
3134 	done_seqretry(&mount_lock, m_seq);
3135 
3136 	if (error >= 0 && bptr == *buffer) {
3137 		if (--blen < 0)
3138 			error = -ENAMETOOLONG;
3139 		else
3140 			*--bptr = '/';
3141 	}
3142 	*buffer = bptr;
3143 	*buflen = blen;
3144 	return error;
3145 }
3146 
3147 /**
3148  * __d_path - return the path of a dentry
3149  * @path: the dentry/vfsmount to report
3150  * @root: root vfsmnt/dentry
3151  * @buf: buffer to return value in
3152  * @buflen: buffer length
3153  *
3154  * Convert a dentry into an ASCII path name.
3155  *
3156  * Returns a pointer into the buffer or an error code if the
3157  * path was too long.
3158  *
3159  * "buflen" should be positive.
3160  *
3161  * If the path is not reachable from the supplied root, return %NULL.
3162  */
3163 char *__d_path(const struct path *path,
3164 	       const struct path *root,
3165 	       char *buf, int buflen)
3166 {
3167 	char *res = buf + buflen;
3168 	int error;
3169 
3170 	prepend(&res, &buflen, "\0", 1);
3171 	error = prepend_path(path, root, &res, &buflen);
3172 
3173 	if (error < 0)
3174 		return ERR_PTR(error);
3175 	if (error > 0)
3176 		return NULL;
3177 	return res;
3178 }
3179 
3180 char *d_absolute_path(const struct path *path,
3181 	       char *buf, int buflen)
3182 {
3183 	struct path root = {};
3184 	char *res = buf + buflen;
3185 	int error;
3186 
3187 	prepend(&res, &buflen, "\0", 1);
3188 	error = prepend_path(path, &root, &res, &buflen);
3189 
3190 	if (error > 1)
3191 		error = -EINVAL;
3192 	if (error < 0)
3193 		return ERR_PTR(error);
3194 	return res;
3195 }
3196 
3197 /*
3198  * same as __d_path but appends "(deleted)" for unlinked files.
3199  */
3200 static int path_with_deleted(const struct path *path,
3201 			     const struct path *root,
3202 			     char **buf, int *buflen)
3203 {
3204 	prepend(buf, buflen, "\0", 1);
3205 	if (d_unlinked(path->dentry)) {
3206 		int error = prepend(buf, buflen, " (deleted)", 10);
3207 		if (error)
3208 			return error;
3209 	}
3210 
3211 	return prepend_path(path, root, buf, buflen);
3212 }
3213 
3214 static int prepend_unreachable(char **buffer, int *buflen)
3215 {
3216 	return prepend(buffer, buflen, "(unreachable)", 13);
3217 }
3218 
3219 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3220 {
3221 	unsigned seq;
3222 
3223 	do {
3224 		seq = read_seqcount_begin(&fs->seq);
3225 		*root = fs->root;
3226 	} while (read_seqcount_retry(&fs->seq, seq));
3227 }
3228 
3229 /**
3230  * d_path - return the path of a dentry
3231  * @path: path to report
3232  * @buf: buffer to return value in
3233  * @buflen: buffer length
3234  *
3235  * Convert a dentry into an ASCII path name. If the entry has been deleted
3236  * the string " (deleted)" is appended. Note that this is ambiguous.
3237  *
3238  * Returns a pointer into the buffer or an error code if the path was
3239  * too long. Note: Callers should use the returned pointer, not the passed
3240  * in buffer, to use the name! The implementation often starts at an offset
3241  * into the buffer, and may leave 0 bytes at the start.
3242  *
3243  * "buflen" should be positive.
3244  */
3245 char *d_path(const struct path *path, char *buf, int buflen)
3246 {
3247 	char *res = buf + buflen;
3248 	struct path root;
3249 	int error;
3250 
3251 	/*
3252 	 * We have various synthetic filesystems that never get mounted.  On
3253 	 * these filesystems dentries are never used for lookup purposes, and
3254 	 * thus don't need to be hashed.  They also don't need a name until a
3255 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3256 	 * below allows us to generate a name for these objects on demand:
3257 	 *
3258 	 * Some pseudo inodes are mountable.  When they are mounted
3259 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3260 	 * and instead have d_path return the mounted path.
3261 	 */
3262 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3263 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3264 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3265 
3266 	rcu_read_lock();
3267 	get_fs_root_rcu(current->fs, &root);
3268 	error = path_with_deleted(path, &root, &res, &buflen);
3269 	rcu_read_unlock();
3270 
3271 	if (error < 0)
3272 		res = ERR_PTR(error);
3273 	return res;
3274 }
3275 EXPORT_SYMBOL(d_path);
3276 
3277 /*
3278  * Helper function for dentry_operations.d_dname() members
3279  */
3280 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3281 			const char *fmt, ...)
3282 {
3283 	va_list args;
3284 	char temp[64];
3285 	int sz;
3286 
3287 	va_start(args, fmt);
3288 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3289 	va_end(args);
3290 
3291 	if (sz > sizeof(temp) || sz > buflen)
3292 		return ERR_PTR(-ENAMETOOLONG);
3293 
3294 	buffer += buflen - sz;
3295 	return memcpy(buffer, temp, sz);
3296 }
3297 
3298 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3299 {
3300 	char *end = buffer + buflen;
3301 	/* these dentries are never renamed, so d_lock is not needed */
3302 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3303 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3304 	    prepend(&end, &buflen, "/", 1))
3305 		end = ERR_PTR(-ENAMETOOLONG);
3306 	return end;
3307 }
3308 EXPORT_SYMBOL(simple_dname);
3309 
3310 /*
3311  * Write full pathname from the root of the filesystem into the buffer.
3312  */
3313 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3314 {
3315 	struct dentry *dentry;
3316 	char *end, *retval;
3317 	int len, seq = 0;
3318 	int error = 0;
3319 
3320 	if (buflen < 2)
3321 		goto Elong;
3322 
3323 	rcu_read_lock();
3324 restart:
3325 	dentry = d;
3326 	end = buf + buflen;
3327 	len = buflen;
3328 	prepend(&end, &len, "\0", 1);
3329 	/* Get '/' right */
3330 	retval = end-1;
3331 	*retval = '/';
3332 	read_seqbegin_or_lock(&rename_lock, &seq);
3333 	while (!IS_ROOT(dentry)) {
3334 		struct dentry *parent = dentry->d_parent;
3335 
3336 		prefetch(parent);
3337 		error = prepend_name(&end, &len, &dentry->d_name);
3338 		if (error)
3339 			break;
3340 
3341 		retval = end;
3342 		dentry = parent;
3343 	}
3344 	if (!(seq & 1))
3345 		rcu_read_unlock();
3346 	if (need_seqretry(&rename_lock, seq)) {
3347 		seq = 1;
3348 		goto restart;
3349 	}
3350 	done_seqretry(&rename_lock, seq);
3351 	if (error)
3352 		goto Elong;
3353 	return retval;
3354 Elong:
3355 	return ERR_PTR(-ENAMETOOLONG);
3356 }
3357 
3358 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3359 {
3360 	return __dentry_path(dentry, buf, buflen);
3361 }
3362 EXPORT_SYMBOL(dentry_path_raw);
3363 
3364 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3365 {
3366 	char *p = NULL;
3367 	char *retval;
3368 
3369 	if (d_unlinked(dentry)) {
3370 		p = buf + buflen;
3371 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3372 			goto Elong;
3373 		buflen++;
3374 	}
3375 	retval = __dentry_path(dentry, buf, buflen);
3376 	if (!IS_ERR(retval) && p)
3377 		*p = '/';	/* restore '/' overriden with '\0' */
3378 	return retval;
3379 Elong:
3380 	return ERR_PTR(-ENAMETOOLONG);
3381 }
3382 
3383 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3384 				    struct path *pwd)
3385 {
3386 	unsigned seq;
3387 
3388 	do {
3389 		seq = read_seqcount_begin(&fs->seq);
3390 		*root = fs->root;
3391 		*pwd = fs->pwd;
3392 	} while (read_seqcount_retry(&fs->seq, seq));
3393 }
3394 
3395 /*
3396  * NOTE! The user-level library version returns a
3397  * character pointer. The kernel system call just
3398  * returns the length of the buffer filled (which
3399  * includes the ending '\0' character), or a negative
3400  * error value. So libc would do something like
3401  *
3402  *	char *getcwd(char * buf, size_t size)
3403  *	{
3404  *		int retval;
3405  *
3406  *		retval = sys_getcwd(buf, size);
3407  *		if (retval >= 0)
3408  *			return buf;
3409  *		errno = -retval;
3410  *		return NULL;
3411  *	}
3412  */
3413 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3414 {
3415 	int error;
3416 	struct path pwd, root;
3417 	char *page = __getname();
3418 
3419 	if (!page)
3420 		return -ENOMEM;
3421 
3422 	rcu_read_lock();
3423 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3424 
3425 	error = -ENOENT;
3426 	if (!d_unlinked(pwd.dentry)) {
3427 		unsigned long len;
3428 		char *cwd = page + PATH_MAX;
3429 		int buflen = PATH_MAX;
3430 
3431 		prepend(&cwd, &buflen, "\0", 1);
3432 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3433 		rcu_read_unlock();
3434 
3435 		if (error < 0)
3436 			goto out;
3437 
3438 		/* Unreachable from current root */
3439 		if (error > 0) {
3440 			error = prepend_unreachable(&cwd, &buflen);
3441 			if (error)
3442 				goto out;
3443 		}
3444 
3445 		error = -ERANGE;
3446 		len = PATH_MAX + page - cwd;
3447 		if (len <= size) {
3448 			error = len;
3449 			if (copy_to_user(buf, cwd, len))
3450 				error = -EFAULT;
3451 		}
3452 	} else {
3453 		rcu_read_unlock();
3454 	}
3455 
3456 out:
3457 	__putname(page);
3458 	return error;
3459 }
3460 
3461 /*
3462  * Test whether new_dentry is a subdirectory of old_dentry.
3463  *
3464  * Trivially implemented using the dcache structure
3465  */
3466 
3467 /**
3468  * is_subdir - is new dentry a subdirectory of old_dentry
3469  * @new_dentry: new dentry
3470  * @old_dentry: old dentry
3471  *
3472  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3473  * Returns false otherwise.
3474  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3475  */
3476 
3477 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3478 {
3479 	bool result;
3480 	unsigned seq;
3481 
3482 	if (new_dentry == old_dentry)
3483 		return true;
3484 
3485 	do {
3486 		/* for restarting inner loop in case of seq retry */
3487 		seq = read_seqbegin(&rename_lock);
3488 		/*
3489 		 * Need rcu_readlock to protect against the d_parent trashing
3490 		 * due to d_move
3491 		 */
3492 		rcu_read_lock();
3493 		if (d_ancestor(old_dentry, new_dentry))
3494 			result = true;
3495 		else
3496 			result = false;
3497 		rcu_read_unlock();
3498 	} while (read_seqretry(&rename_lock, seq));
3499 
3500 	return result;
3501 }
3502 
3503 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3504 {
3505 	struct dentry *root = data;
3506 	if (dentry != root) {
3507 		if (d_unhashed(dentry) || !dentry->d_inode)
3508 			return D_WALK_SKIP;
3509 
3510 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3511 			dentry->d_flags |= DCACHE_GENOCIDE;
3512 			dentry->d_lockref.count--;
3513 		}
3514 	}
3515 	return D_WALK_CONTINUE;
3516 }
3517 
3518 void d_genocide(struct dentry *parent)
3519 {
3520 	d_walk(parent, parent, d_genocide_kill, NULL);
3521 }
3522 
3523 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3524 {
3525 	inode_dec_link_count(inode);
3526 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3527 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3528 		!d_unlinked(dentry));
3529 	spin_lock(&dentry->d_parent->d_lock);
3530 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3531 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3532 				(unsigned long long)inode->i_ino);
3533 	spin_unlock(&dentry->d_lock);
3534 	spin_unlock(&dentry->d_parent->d_lock);
3535 	d_instantiate(dentry, inode);
3536 }
3537 EXPORT_SYMBOL(d_tmpfile);
3538 
3539 static __initdata unsigned long dhash_entries;
3540 static int __init set_dhash_entries(char *str)
3541 {
3542 	if (!str)
3543 		return 0;
3544 	dhash_entries = simple_strtoul(str, &str, 0);
3545 	return 1;
3546 }
3547 __setup("dhash_entries=", set_dhash_entries);
3548 
3549 static void __init dcache_init_early(void)
3550 {
3551 	unsigned int loop;
3552 
3553 	/* If hashes are distributed across NUMA nodes, defer
3554 	 * hash allocation until vmalloc space is available.
3555 	 */
3556 	if (hashdist)
3557 		return;
3558 
3559 	dentry_hashtable =
3560 		alloc_large_system_hash("Dentry cache",
3561 					sizeof(struct hlist_bl_head),
3562 					dhash_entries,
3563 					13,
3564 					HASH_EARLY,
3565 					&d_hash_shift,
3566 					&d_hash_mask,
3567 					0,
3568 					0);
3569 
3570 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3571 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3572 }
3573 
3574 static void __init dcache_init(void)
3575 {
3576 	unsigned int loop;
3577 
3578 	/*
3579 	 * A constructor could be added for stable state like the lists,
3580 	 * but it is probably not worth it because of the cache nature
3581 	 * of the dcache.
3582 	 */
3583 	dentry_cache = KMEM_CACHE(dentry,
3584 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3585 
3586 	/* Hash may have been set up in dcache_init_early */
3587 	if (!hashdist)
3588 		return;
3589 
3590 	dentry_hashtable =
3591 		alloc_large_system_hash("Dentry cache",
3592 					sizeof(struct hlist_bl_head),
3593 					dhash_entries,
3594 					13,
3595 					0,
3596 					&d_hash_shift,
3597 					&d_hash_mask,
3598 					0,
3599 					0);
3600 
3601 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3602 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3603 }
3604 
3605 /* SLAB cache for __getname() consumers */
3606 struct kmem_cache *names_cachep __read_mostly;
3607 EXPORT_SYMBOL(names_cachep);
3608 
3609 EXPORT_SYMBOL(d_genocide);
3610 
3611 void __init vfs_caches_init_early(void)
3612 {
3613 	dcache_init_early();
3614 	inode_init_early();
3615 }
3616 
3617 void __init vfs_caches_init(void)
3618 {
3619 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3620 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3621 
3622 	dcache_init();
3623 	inode_init();
3624 	files_init();
3625 	files_maxfiles_init();
3626 	mnt_init();
3627 	bdev_cache_init();
3628 	chrdev_init();
3629 }
3630