xref: /openbmc/linux/fs/dcache.c (revision 22fd411a)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_anon bl list spinlock protects:
47  *   - the s_anon list (see __d_drop)
48  * dcache_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_subdirs
57  *   - childrens' d_child and d_parent
58  *   - d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dcache_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_anon lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * if (dentry1 < dentry2)
75  *   dentry1->d_lock
76  *     dentry2->d_lock
77  */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80 
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83 
84 EXPORT_SYMBOL(rename_lock);
85 
86 static struct kmem_cache *dentry_cache __read_mostly;
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 #define D_HASHBITS     d_hash_shift
97 #define D_HASHMASK     d_hash_mask
98 
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101 
102 struct dcache_hash_bucket {
103 	struct hlist_bl_head head;
104 };
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106 
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 					unsigned long hash)
109 {
110 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116 {
117 	bit_spin_lock(0, (unsigned long *)&b->head.first);
118 }
119 
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121 {
122 	__bit_spin_unlock(0, (unsigned long *)&b->head.first);
123 }
124 
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 	.age_limit = 45,
128 };
129 
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
131 
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
134 {
135 	int i;
136 	int sum = 0;
137 	for_each_possible_cpu(i)
138 		sum += per_cpu(nr_dentry, i);
139 	return sum < 0 ? 0 : sum;
140 }
141 
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 		   size_t *lenp, loff_t *ppos)
144 {
145 	dentry_stat.nr_dentry = get_nr_dentry();
146 	return proc_dointvec(table, write, buffer, lenp, ppos);
147 }
148 #endif
149 
150 static void __d_free(struct rcu_head *head)
151 {
152 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153 
154 	WARN_ON(!list_empty(&dentry->d_alias));
155 	if (dname_external(dentry))
156 		kfree(dentry->d_name.name);
157 	kmem_cache_free(dentry_cache, dentry);
158 }
159 
160 /*
161  * no locks, please.
162  */
163 static void d_free(struct dentry *dentry)
164 {
165 	BUG_ON(dentry->d_count);
166 	this_cpu_dec(nr_dentry);
167 	if (dentry->d_op && dentry->d_op->d_release)
168 		dentry->d_op->d_release(dentry);
169 
170 	/* if dentry was never inserted into hash, immediate free is OK */
171 	if (hlist_bl_unhashed(&dentry->d_hash))
172 		__d_free(&dentry->d_u.d_rcu);
173 	else
174 		call_rcu(&dentry->d_u.d_rcu, __d_free);
175 }
176 
177 /**
178  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179  * @dentry: the target dentry
180  * After this call, in-progress rcu-walk path lookup will fail. This
181  * should be called after unhashing, and after changing d_inode (if
182  * the dentry has not already been unhashed).
183  */
184 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
185 {
186 	assert_spin_locked(&dentry->d_lock);
187 	/* Go through a barrier */
188 	write_seqcount_barrier(&dentry->d_seq);
189 }
190 
191 /*
192  * Release the dentry's inode, using the filesystem
193  * d_iput() operation if defined. Dentry has no refcount
194  * and is unhashed.
195  */
196 static void dentry_iput(struct dentry * dentry)
197 	__releases(dentry->d_lock)
198 	__releases(dentry->d_inode->i_lock)
199 {
200 	struct inode *inode = dentry->d_inode;
201 	if (inode) {
202 		dentry->d_inode = NULL;
203 		list_del_init(&dentry->d_alias);
204 		spin_unlock(&dentry->d_lock);
205 		spin_unlock(&inode->i_lock);
206 		if (!inode->i_nlink)
207 			fsnotify_inoderemove(inode);
208 		if (dentry->d_op && dentry->d_op->d_iput)
209 			dentry->d_op->d_iput(dentry, inode);
210 		else
211 			iput(inode);
212 	} else {
213 		spin_unlock(&dentry->d_lock);
214 	}
215 }
216 
217 /*
218  * Release the dentry's inode, using the filesystem
219  * d_iput() operation if defined. dentry remains in-use.
220  */
221 static void dentry_unlink_inode(struct dentry * dentry)
222 	__releases(dentry->d_lock)
223 	__releases(dentry->d_inode->i_lock)
224 {
225 	struct inode *inode = dentry->d_inode;
226 	dentry->d_inode = NULL;
227 	list_del_init(&dentry->d_alias);
228 	dentry_rcuwalk_barrier(dentry);
229 	spin_unlock(&dentry->d_lock);
230 	spin_unlock(&inode->i_lock);
231 	if (!inode->i_nlink)
232 		fsnotify_inoderemove(inode);
233 	if (dentry->d_op && dentry->d_op->d_iput)
234 		dentry->d_op->d_iput(dentry, inode);
235 	else
236 		iput(inode);
237 }
238 
239 /*
240  * dentry_lru_(add|del|move_tail) must be called with d_lock held.
241  */
242 static void dentry_lru_add(struct dentry *dentry)
243 {
244 	if (list_empty(&dentry->d_lru)) {
245 		spin_lock(&dcache_lru_lock);
246 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
247 		dentry->d_sb->s_nr_dentry_unused++;
248 		dentry_stat.nr_unused++;
249 		spin_unlock(&dcache_lru_lock);
250 	}
251 }
252 
253 static void __dentry_lru_del(struct dentry *dentry)
254 {
255 	list_del_init(&dentry->d_lru);
256 	dentry->d_sb->s_nr_dentry_unused--;
257 	dentry_stat.nr_unused--;
258 }
259 
260 static void dentry_lru_del(struct dentry *dentry)
261 {
262 	if (!list_empty(&dentry->d_lru)) {
263 		spin_lock(&dcache_lru_lock);
264 		__dentry_lru_del(dentry);
265 		spin_unlock(&dcache_lru_lock);
266 	}
267 }
268 
269 static void dentry_lru_move_tail(struct dentry *dentry)
270 {
271 	spin_lock(&dcache_lru_lock);
272 	if (list_empty(&dentry->d_lru)) {
273 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
274 		dentry->d_sb->s_nr_dentry_unused++;
275 		dentry_stat.nr_unused++;
276 	} else {
277 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
278 	}
279 	spin_unlock(&dcache_lru_lock);
280 }
281 
282 /**
283  * d_kill - kill dentry and return parent
284  * @dentry: dentry to kill
285  * @parent: parent dentry
286  *
287  * The dentry must already be unhashed and removed from the LRU.
288  *
289  * If this is the root of the dentry tree, return NULL.
290  *
291  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
292  * d_kill.
293  */
294 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
295 	__releases(dentry->d_lock)
296 	__releases(parent->d_lock)
297 	__releases(dentry->d_inode->i_lock)
298 {
299 	dentry->d_parent = NULL;
300 	list_del(&dentry->d_u.d_child);
301 	if (parent)
302 		spin_unlock(&parent->d_lock);
303 	dentry_iput(dentry);
304 	/*
305 	 * dentry_iput drops the locks, at which point nobody (except
306 	 * transient RCU lookups) can reach this dentry.
307 	 */
308 	d_free(dentry);
309 	return parent;
310 }
311 
312 /**
313  * d_drop - drop a dentry
314  * @dentry: dentry to drop
315  *
316  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
317  * be found through a VFS lookup any more. Note that this is different from
318  * deleting the dentry - d_delete will try to mark the dentry negative if
319  * possible, giving a successful _negative_ lookup, while d_drop will
320  * just make the cache lookup fail.
321  *
322  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
323  * reason (NFS timeouts or autofs deletes).
324  *
325  * __d_drop requires dentry->d_lock.
326  */
327 void __d_drop(struct dentry *dentry)
328 {
329 	if (!(dentry->d_flags & DCACHE_UNHASHED)) {
330 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
331 			bit_spin_lock(0,
332 				(unsigned long *)&dentry->d_sb->s_anon.first);
333 			dentry->d_flags |= DCACHE_UNHASHED;
334 			hlist_bl_del_init(&dentry->d_hash);
335 			__bit_spin_unlock(0,
336 				(unsigned long *)&dentry->d_sb->s_anon.first);
337 		} else {
338 			struct dcache_hash_bucket *b;
339 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 			spin_lock_bucket(b);
341 			/*
342 			 * We may not actually need to put DCACHE_UNHASHED
343 			 * manipulations under the hash lock, but follow
344 			 * the principle of least surprise.
345 			 */
346 			dentry->d_flags |= DCACHE_UNHASHED;
347 			hlist_bl_del_rcu(&dentry->d_hash);
348 			spin_unlock_bucket(b);
349 			dentry_rcuwalk_barrier(dentry);
350 		}
351 	}
352 }
353 EXPORT_SYMBOL(__d_drop);
354 
355 void d_drop(struct dentry *dentry)
356 {
357 	spin_lock(&dentry->d_lock);
358 	__d_drop(dentry);
359 	spin_unlock(&dentry->d_lock);
360 }
361 EXPORT_SYMBOL(d_drop);
362 
363 /*
364  * Finish off a dentry we've decided to kill.
365  * dentry->d_lock must be held, returns with it unlocked.
366  * If ref is non-zero, then decrement the refcount too.
367  * Returns dentry requiring refcount drop, or NULL if we're done.
368  */
369 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
370 	__releases(dentry->d_lock)
371 {
372 	struct inode *inode;
373 	struct dentry *parent;
374 
375 	inode = dentry->d_inode;
376 	if (inode && !spin_trylock(&inode->i_lock)) {
377 relock:
378 		spin_unlock(&dentry->d_lock);
379 		cpu_relax();
380 		return dentry; /* try again with same dentry */
381 	}
382 	if (IS_ROOT(dentry))
383 		parent = NULL;
384 	else
385 		parent = dentry->d_parent;
386 	if (parent && !spin_trylock(&parent->d_lock)) {
387 		if (inode)
388 			spin_unlock(&inode->i_lock);
389 		goto relock;
390 	}
391 
392 	if (ref)
393 		dentry->d_count--;
394 	/* if dentry was on the d_lru list delete it from there */
395 	dentry_lru_del(dentry);
396 	/* if it was on the hash then remove it */
397 	__d_drop(dentry);
398 	return d_kill(dentry, parent);
399 }
400 
401 /*
402  * This is dput
403  *
404  * This is complicated by the fact that we do not want to put
405  * dentries that are no longer on any hash chain on the unused
406  * list: we'd much rather just get rid of them immediately.
407  *
408  * However, that implies that we have to traverse the dentry
409  * tree upwards to the parents which might _also_ now be
410  * scheduled for deletion (it may have been only waiting for
411  * its last child to go away).
412  *
413  * This tail recursion is done by hand as we don't want to depend
414  * on the compiler to always get this right (gcc generally doesn't).
415  * Real recursion would eat up our stack space.
416  */
417 
418 /*
419  * dput - release a dentry
420  * @dentry: dentry to release
421  *
422  * Release a dentry. This will drop the usage count and if appropriate
423  * call the dentry unlink method as well as removing it from the queues and
424  * releasing its resources. If the parent dentries were scheduled for release
425  * they too may now get deleted.
426  */
427 void dput(struct dentry *dentry)
428 {
429 	if (!dentry)
430 		return;
431 
432 repeat:
433 	if (dentry->d_count == 1)
434 		might_sleep();
435 	spin_lock(&dentry->d_lock);
436 	BUG_ON(!dentry->d_count);
437 	if (dentry->d_count > 1) {
438 		dentry->d_count--;
439 		spin_unlock(&dentry->d_lock);
440 		return;
441 	}
442 
443 	if (dentry->d_flags & DCACHE_OP_DELETE) {
444 		if (dentry->d_op->d_delete(dentry))
445 			goto kill_it;
446 	}
447 
448 	/* Unreachable? Get rid of it */
449  	if (d_unhashed(dentry))
450 		goto kill_it;
451 
452 	/* Otherwise leave it cached and ensure it's on the LRU */
453 	dentry->d_flags |= DCACHE_REFERENCED;
454 	dentry_lru_add(dentry);
455 
456 	dentry->d_count--;
457 	spin_unlock(&dentry->d_lock);
458 	return;
459 
460 kill_it:
461 	dentry = dentry_kill(dentry, 1);
462 	if (dentry)
463 		goto repeat;
464 }
465 EXPORT_SYMBOL(dput);
466 
467 /**
468  * d_invalidate - invalidate a dentry
469  * @dentry: dentry to invalidate
470  *
471  * Try to invalidate the dentry if it turns out to be
472  * possible. If there are other dentries that can be
473  * reached through this one we can't delete it and we
474  * return -EBUSY. On success we return 0.
475  *
476  * no dcache lock.
477  */
478 
479 int d_invalidate(struct dentry * dentry)
480 {
481 	/*
482 	 * If it's already been dropped, return OK.
483 	 */
484 	spin_lock(&dentry->d_lock);
485 	if (d_unhashed(dentry)) {
486 		spin_unlock(&dentry->d_lock);
487 		return 0;
488 	}
489 	/*
490 	 * Check whether to do a partial shrink_dcache
491 	 * to get rid of unused child entries.
492 	 */
493 	if (!list_empty(&dentry->d_subdirs)) {
494 		spin_unlock(&dentry->d_lock);
495 		shrink_dcache_parent(dentry);
496 		spin_lock(&dentry->d_lock);
497 	}
498 
499 	/*
500 	 * Somebody else still using it?
501 	 *
502 	 * If it's a directory, we can't drop it
503 	 * for fear of somebody re-populating it
504 	 * with children (even though dropping it
505 	 * would make it unreachable from the root,
506 	 * we might still populate it if it was a
507 	 * working directory or similar).
508 	 */
509 	if (dentry->d_count > 1) {
510 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
511 			spin_unlock(&dentry->d_lock);
512 			return -EBUSY;
513 		}
514 	}
515 
516 	__d_drop(dentry);
517 	spin_unlock(&dentry->d_lock);
518 	return 0;
519 }
520 EXPORT_SYMBOL(d_invalidate);
521 
522 /* This must be called with d_lock held */
523 static inline void __dget_dlock(struct dentry *dentry)
524 {
525 	dentry->d_count++;
526 }
527 
528 static inline void __dget(struct dentry *dentry)
529 {
530 	spin_lock(&dentry->d_lock);
531 	__dget_dlock(dentry);
532 	spin_unlock(&dentry->d_lock);
533 }
534 
535 struct dentry *dget_parent(struct dentry *dentry)
536 {
537 	struct dentry *ret;
538 
539 repeat:
540 	/*
541 	 * Don't need rcu_dereference because we re-check it was correct under
542 	 * the lock.
543 	 */
544 	rcu_read_lock();
545 	ret = dentry->d_parent;
546 	if (!ret) {
547 		rcu_read_unlock();
548 		goto out;
549 	}
550 	spin_lock(&ret->d_lock);
551 	if (unlikely(ret != dentry->d_parent)) {
552 		spin_unlock(&ret->d_lock);
553 		rcu_read_unlock();
554 		goto repeat;
555 	}
556 	rcu_read_unlock();
557 	BUG_ON(!ret->d_count);
558 	ret->d_count++;
559 	spin_unlock(&ret->d_lock);
560 out:
561 	return ret;
562 }
563 EXPORT_SYMBOL(dget_parent);
564 
565 /**
566  * d_find_alias - grab a hashed alias of inode
567  * @inode: inode in question
568  * @want_discon:  flag, used by d_splice_alias, to request
569  *          that only a DISCONNECTED alias be returned.
570  *
571  * If inode has a hashed alias, or is a directory and has any alias,
572  * acquire the reference to alias and return it. Otherwise return NULL.
573  * Notice that if inode is a directory there can be only one alias and
574  * it can be unhashed only if it has no children, or if it is the root
575  * of a filesystem.
576  *
577  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
578  * any other hashed alias over that one unless @want_discon is set,
579  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
580  */
581 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
582 {
583 	struct dentry *alias, *discon_alias;
584 
585 again:
586 	discon_alias = NULL;
587 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
588 		spin_lock(&alias->d_lock);
589  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
590 			if (IS_ROOT(alias) &&
591 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
592 				discon_alias = alias;
593 			} else if (!want_discon) {
594 				__dget_dlock(alias);
595 				spin_unlock(&alias->d_lock);
596 				return alias;
597 			}
598 		}
599 		spin_unlock(&alias->d_lock);
600 	}
601 	if (discon_alias) {
602 		alias = discon_alias;
603 		spin_lock(&alias->d_lock);
604 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
605 			if (IS_ROOT(alias) &&
606 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
607 				__dget_dlock(alias);
608 				spin_unlock(&alias->d_lock);
609 				return alias;
610 			}
611 		}
612 		spin_unlock(&alias->d_lock);
613 		goto again;
614 	}
615 	return NULL;
616 }
617 
618 struct dentry *d_find_alias(struct inode *inode)
619 {
620 	struct dentry *de = NULL;
621 
622 	if (!list_empty(&inode->i_dentry)) {
623 		spin_lock(&inode->i_lock);
624 		de = __d_find_alias(inode, 0);
625 		spin_unlock(&inode->i_lock);
626 	}
627 	return de;
628 }
629 EXPORT_SYMBOL(d_find_alias);
630 
631 /*
632  *	Try to kill dentries associated with this inode.
633  * WARNING: you must own a reference to inode.
634  */
635 void d_prune_aliases(struct inode *inode)
636 {
637 	struct dentry *dentry;
638 restart:
639 	spin_lock(&inode->i_lock);
640 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
641 		spin_lock(&dentry->d_lock);
642 		if (!dentry->d_count) {
643 			__dget_dlock(dentry);
644 			__d_drop(dentry);
645 			spin_unlock(&dentry->d_lock);
646 			spin_unlock(&inode->i_lock);
647 			dput(dentry);
648 			goto restart;
649 		}
650 		spin_unlock(&dentry->d_lock);
651 	}
652 	spin_unlock(&inode->i_lock);
653 }
654 EXPORT_SYMBOL(d_prune_aliases);
655 
656 /*
657  * Try to throw away a dentry - free the inode, dput the parent.
658  * Requires dentry->d_lock is held, and dentry->d_count == 0.
659  * Releases dentry->d_lock.
660  *
661  * This may fail if locks cannot be acquired no problem, just try again.
662  */
663 static void try_prune_one_dentry(struct dentry *dentry)
664 	__releases(dentry->d_lock)
665 {
666 	struct dentry *parent;
667 
668 	parent = dentry_kill(dentry, 0);
669 	/*
670 	 * If dentry_kill returns NULL, we have nothing more to do.
671 	 * if it returns the same dentry, trylocks failed. In either
672 	 * case, just loop again.
673 	 *
674 	 * Otherwise, we need to prune ancestors too. This is necessary
675 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
676 	 * is also expected to be beneficial in reducing dentry cache
677 	 * fragmentation.
678 	 */
679 	if (!parent)
680 		return;
681 	if (parent == dentry)
682 		return;
683 
684 	/* Prune ancestors. */
685 	dentry = parent;
686 	while (dentry) {
687 		spin_lock(&dentry->d_lock);
688 		if (dentry->d_count > 1) {
689 			dentry->d_count--;
690 			spin_unlock(&dentry->d_lock);
691 			return;
692 		}
693 		dentry = dentry_kill(dentry, 1);
694 	}
695 }
696 
697 static void shrink_dentry_list(struct list_head *list)
698 {
699 	struct dentry *dentry;
700 
701 	rcu_read_lock();
702 	for (;;) {
703 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
704 		if (&dentry->d_lru == list)
705 			break; /* empty */
706 		spin_lock(&dentry->d_lock);
707 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
708 			spin_unlock(&dentry->d_lock);
709 			continue;
710 		}
711 
712 		/*
713 		 * We found an inuse dentry which was not removed from
714 		 * the LRU because of laziness during lookup.  Do not free
715 		 * it - just keep it off the LRU list.
716 		 */
717 		if (dentry->d_count) {
718 			dentry_lru_del(dentry);
719 			spin_unlock(&dentry->d_lock);
720 			continue;
721 		}
722 
723 		rcu_read_unlock();
724 
725 		try_prune_one_dentry(dentry);
726 
727 		rcu_read_lock();
728 	}
729 	rcu_read_unlock();
730 }
731 
732 /**
733  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
734  * @sb:		superblock to shrink dentry LRU.
735  * @count:	number of entries to prune
736  * @flags:	flags to control the dentry processing
737  *
738  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
739  */
740 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
741 {
742 	/* called from prune_dcache() and shrink_dcache_parent() */
743 	struct dentry *dentry;
744 	LIST_HEAD(referenced);
745 	LIST_HEAD(tmp);
746 	int cnt = *count;
747 
748 relock:
749 	spin_lock(&dcache_lru_lock);
750 	while (!list_empty(&sb->s_dentry_lru)) {
751 		dentry = list_entry(sb->s_dentry_lru.prev,
752 				struct dentry, d_lru);
753 		BUG_ON(dentry->d_sb != sb);
754 
755 		if (!spin_trylock(&dentry->d_lock)) {
756 			spin_unlock(&dcache_lru_lock);
757 			cpu_relax();
758 			goto relock;
759 		}
760 
761 		/*
762 		 * If we are honouring the DCACHE_REFERENCED flag and the
763 		 * dentry has this flag set, don't free it.  Clear the flag
764 		 * and put it back on the LRU.
765 		 */
766 		if (flags & DCACHE_REFERENCED &&
767 				dentry->d_flags & DCACHE_REFERENCED) {
768 			dentry->d_flags &= ~DCACHE_REFERENCED;
769 			list_move(&dentry->d_lru, &referenced);
770 			spin_unlock(&dentry->d_lock);
771 		} else {
772 			list_move_tail(&dentry->d_lru, &tmp);
773 			spin_unlock(&dentry->d_lock);
774 			if (!--cnt)
775 				break;
776 		}
777 		cond_resched_lock(&dcache_lru_lock);
778 	}
779 	if (!list_empty(&referenced))
780 		list_splice(&referenced, &sb->s_dentry_lru);
781 	spin_unlock(&dcache_lru_lock);
782 
783 	shrink_dentry_list(&tmp);
784 
785 	*count = cnt;
786 }
787 
788 /**
789  * prune_dcache - shrink the dcache
790  * @count: number of entries to try to free
791  *
792  * Shrink the dcache. This is done when we need more memory, or simply when we
793  * need to unmount something (at which point we need to unuse all dentries).
794  *
795  * This function may fail to free any resources if all the dentries are in use.
796  */
797 static void prune_dcache(int count)
798 {
799 	struct super_block *sb, *p = NULL;
800 	int w_count;
801 	int unused = dentry_stat.nr_unused;
802 	int prune_ratio;
803 	int pruned;
804 
805 	if (unused == 0 || count == 0)
806 		return;
807 	if (count >= unused)
808 		prune_ratio = 1;
809 	else
810 		prune_ratio = unused / count;
811 	spin_lock(&sb_lock);
812 	list_for_each_entry(sb, &super_blocks, s_list) {
813 		if (list_empty(&sb->s_instances))
814 			continue;
815 		if (sb->s_nr_dentry_unused == 0)
816 			continue;
817 		sb->s_count++;
818 		/* Now, we reclaim unused dentrins with fairness.
819 		 * We reclaim them same percentage from each superblock.
820 		 * We calculate number of dentries to scan on this sb
821 		 * as follows, but the implementation is arranged to avoid
822 		 * overflows:
823 		 * number of dentries to scan on this sb =
824 		 * count * (number of dentries on this sb /
825 		 * number of dentries in the machine)
826 		 */
827 		spin_unlock(&sb_lock);
828 		if (prune_ratio != 1)
829 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
830 		else
831 			w_count = sb->s_nr_dentry_unused;
832 		pruned = w_count;
833 		/*
834 		 * We need to be sure this filesystem isn't being unmounted,
835 		 * otherwise we could race with generic_shutdown_super(), and
836 		 * end up holding a reference to an inode while the filesystem
837 		 * is unmounted.  So we try to get s_umount, and make sure
838 		 * s_root isn't NULL.
839 		 */
840 		if (down_read_trylock(&sb->s_umount)) {
841 			if ((sb->s_root != NULL) &&
842 			    (!list_empty(&sb->s_dentry_lru))) {
843 				__shrink_dcache_sb(sb, &w_count,
844 						DCACHE_REFERENCED);
845 				pruned -= w_count;
846 			}
847 			up_read(&sb->s_umount);
848 		}
849 		spin_lock(&sb_lock);
850 		if (p)
851 			__put_super(p);
852 		count -= pruned;
853 		p = sb;
854 		/* more work left to do? */
855 		if (count <= 0)
856 			break;
857 	}
858 	if (p)
859 		__put_super(p);
860 	spin_unlock(&sb_lock);
861 }
862 
863 /**
864  * shrink_dcache_sb - shrink dcache for a superblock
865  * @sb: superblock
866  *
867  * Shrink the dcache for the specified super block. This is used to free
868  * the dcache before unmounting a file system.
869  */
870 void shrink_dcache_sb(struct super_block *sb)
871 {
872 	LIST_HEAD(tmp);
873 
874 	spin_lock(&dcache_lru_lock);
875 	while (!list_empty(&sb->s_dentry_lru)) {
876 		list_splice_init(&sb->s_dentry_lru, &tmp);
877 		spin_unlock(&dcache_lru_lock);
878 		shrink_dentry_list(&tmp);
879 		spin_lock(&dcache_lru_lock);
880 	}
881 	spin_unlock(&dcache_lru_lock);
882 }
883 EXPORT_SYMBOL(shrink_dcache_sb);
884 
885 /*
886  * destroy a single subtree of dentries for unmount
887  * - see the comments on shrink_dcache_for_umount() for a description of the
888  *   locking
889  */
890 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
891 {
892 	struct dentry *parent;
893 	unsigned detached = 0;
894 
895 	BUG_ON(!IS_ROOT(dentry));
896 
897 	/* detach this root from the system */
898 	spin_lock(&dentry->d_lock);
899 	dentry_lru_del(dentry);
900 	__d_drop(dentry);
901 	spin_unlock(&dentry->d_lock);
902 
903 	for (;;) {
904 		/* descend to the first leaf in the current subtree */
905 		while (!list_empty(&dentry->d_subdirs)) {
906 			struct dentry *loop;
907 
908 			/* this is a branch with children - detach all of them
909 			 * from the system in one go */
910 			spin_lock(&dentry->d_lock);
911 			list_for_each_entry(loop, &dentry->d_subdirs,
912 					    d_u.d_child) {
913 				spin_lock_nested(&loop->d_lock,
914 						DENTRY_D_LOCK_NESTED);
915 				dentry_lru_del(loop);
916 				__d_drop(loop);
917 				spin_unlock(&loop->d_lock);
918 			}
919 			spin_unlock(&dentry->d_lock);
920 
921 			/* move to the first child */
922 			dentry = list_entry(dentry->d_subdirs.next,
923 					    struct dentry, d_u.d_child);
924 		}
925 
926 		/* consume the dentries from this leaf up through its parents
927 		 * until we find one with children or run out altogether */
928 		do {
929 			struct inode *inode;
930 
931 			if (dentry->d_count != 0) {
932 				printk(KERN_ERR
933 				       "BUG: Dentry %p{i=%lx,n=%s}"
934 				       " still in use (%d)"
935 				       " [unmount of %s %s]\n",
936 				       dentry,
937 				       dentry->d_inode ?
938 				       dentry->d_inode->i_ino : 0UL,
939 				       dentry->d_name.name,
940 				       dentry->d_count,
941 				       dentry->d_sb->s_type->name,
942 				       dentry->d_sb->s_id);
943 				BUG();
944 			}
945 
946 			if (IS_ROOT(dentry)) {
947 				parent = NULL;
948 				list_del(&dentry->d_u.d_child);
949 			} else {
950 				parent = dentry->d_parent;
951 				spin_lock(&parent->d_lock);
952 				parent->d_count--;
953 				list_del(&dentry->d_u.d_child);
954 				spin_unlock(&parent->d_lock);
955 			}
956 
957 			detached++;
958 
959 			inode = dentry->d_inode;
960 			if (inode) {
961 				dentry->d_inode = NULL;
962 				list_del_init(&dentry->d_alias);
963 				if (dentry->d_op && dentry->d_op->d_iput)
964 					dentry->d_op->d_iput(dentry, inode);
965 				else
966 					iput(inode);
967 			}
968 
969 			d_free(dentry);
970 
971 			/* finished when we fall off the top of the tree,
972 			 * otherwise we ascend to the parent and move to the
973 			 * next sibling if there is one */
974 			if (!parent)
975 				return;
976 			dentry = parent;
977 		} while (list_empty(&dentry->d_subdirs));
978 
979 		dentry = list_entry(dentry->d_subdirs.next,
980 				    struct dentry, d_u.d_child);
981 	}
982 }
983 
984 /*
985  * destroy the dentries attached to a superblock on unmounting
986  * - we don't need to use dentry->d_lock because:
987  *   - the superblock is detached from all mountings and open files, so the
988  *     dentry trees will not be rearranged by the VFS
989  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
990  *     any dentries belonging to this superblock that it comes across
991  *   - the filesystem itself is no longer permitted to rearrange the dentries
992  *     in this superblock
993  */
994 void shrink_dcache_for_umount(struct super_block *sb)
995 {
996 	struct dentry *dentry;
997 
998 	if (down_read_trylock(&sb->s_umount))
999 		BUG();
1000 
1001 	dentry = sb->s_root;
1002 	sb->s_root = NULL;
1003 	spin_lock(&dentry->d_lock);
1004 	dentry->d_count--;
1005 	spin_unlock(&dentry->d_lock);
1006 	shrink_dcache_for_umount_subtree(dentry);
1007 
1008 	while (!hlist_bl_empty(&sb->s_anon)) {
1009 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1010 		shrink_dcache_for_umount_subtree(dentry);
1011 	}
1012 }
1013 
1014 /*
1015  * Search for at least 1 mount point in the dentry's subdirs.
1016  * We descend to the next level whenever the d_subdirs
1017  * list is non-empty and continue searching.
1018  */
1019 
1020 /**
1021  * have_submounts - check for mounts over a dentry
1022  * @parent: dentry to check.
1023  *
1024  * Return true if the parent or its subdirectories contain
1025  * a mount point
1026  */
1027 int have_submounts(struct dentry *parent)
1028 {
1029 	struct dentry *this_parent;
1030 	struct list_head *next;
1031 	unsigned seq;
1032 	int locked = 0;
1033 
1034 	seq = read_seqbegin(&rename_lock);
1035 again:
1036 	this_parent = parent;
1037 
1038 	if (d_mountpoint(parent))
1039 		goto positive;
1040 	spin_lock(&this_parent->d_lock);
1041 repeat:
1042 	next = this_parent->d_subdirs.next;
1043 resume:
1044 	while (next != &this_parent->d_subdirs) {
1045 		struct list_head *tmp = next;
1046 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1047 		next = tmp->next;
1048 
1049 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1050 		/* Have we found a mount point ? */
1051 		if (d_mountpoint(dentry)) {
1052 			spin_unlock(&dentry->d_lock);
1053 			spin_unlock(&this_parent->d_lock);
1054 			goto positive;
1055 		}
1056 		if (!list_empty(&dentry->d_subdirs)) {
1057 			spin_unlock(&this_parent->d_lock);
1058 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1059 			this_parent = dentry;
1060 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1061 			goto repeat;
1062 		}
1063 		spin_unlock(&dentry->d_lock);
1064 	}
1065 	/*
1066 	 * All done at this level ... ascend and resume the search.
1067 	 */
1068 	if (this_parent != parent) {
1069 		struct dentry *tmp;
1070 		struct dentry *child;
1071 
1072 		tmp = this_parent->d_parent;
1073 		rcu_read_lock();
1074 		spin_unlock(&this_parent->d_lock);
1075 		child = this_parent;
1076 		this_parent = tmp;
1077 		spin_lock(&this_parent->d_lock);
1078 		/* might go back up the wrong parent if we have had a rename
1079 		 * or deletion */
1080 		if (this_parent != child->d_parent ||
1081 			 (!locked && read_seqretry(&rename_lock, seq))) {
1082 			spin_unlock(&this_parent->d_lock);
1083 			rcu_read_unlock();
1084 			goto rename_retry;
1085 		}
1086 		rcu_read_unlock();
1087 		next = child->d_u.d_child.next;
1088 		goto resume;
1089 	}
1090 	spin_unlock(&this_parent->d_lock);
1091 	if (!locked && read_seqretry(&rename_lock, seq))
1092 		goto rename_retry;
1093 	if (locked)
1094 		write_sequnlock(&rename_lock);
1095 	return 0; /* No mount points found in tree */
1096 positive:
1097 	if (!locked && read_seqretry(&rename_lock, seq))
1098 		goto rename_retry;
1099 	if (locked)
1100 		write_sequnlock(&rename_lock);
1101 	return 1;
1102 
1103 rename_retry:
1104 	locked = 1;
1105 	write_seqlock(&rename_lock);
1106 	goto again;
1107 }
1108 EXPORT_SYMBOL(have_submounts);
1109 
1110 /*
1111  * Search the dentry child list for the specified parent,
1112  * and move any unused dentries to the end of the unused
1113  * list for prune_dcache(). We descend to the next level
1114  * whenever the d_subdirs list is non-empty and continue
1115  * searching.
1116  *
1117  * It returns zero iff there are no unused children,
1118  * otherwise  it returns the number of children moved to
1119  * the end of the unused list. This may not be the total
1120  * number of unused children, because select_parent can
1121  * drop the lock and return early due to latency
1122  * constraints.
1123  */
1124 static int select_parent(struct dentry * parent)
1125 {
1126 	struct dentry *this_parent;
1127 	struct list_head *next;
1128 	unsigned seq;
1129 	int found = 0;
1130 	int locked = 0;
1131 
1132 	seq = read_seqbegin(&rename_lock);
1133 again:
1134 	this_parent = parent;
1135 	spin_lock(&this_parent->d_lock);
1136 repeat:
1137 	next = this_parent->d_subdirs.next;
1138 resume:
1139 	while (next != &this_parent->d_subdirs) {
1140 		struct list_head *tmp = next;
1141 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1142 		next = tmp->next;
1143 
1144 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145 
1146 		/*
1147 		 * move only zero ref count dentries to the end
1148 		 * of the unused list for prune_dcache
1149 		 */
1150 		if (!dentry->d_count) {
1151 			dentry_lru_move_tail(dentry);
1152 			found++;
1153 		} else {
1154 			dentry_lru_del(dentry);
1155 		}
1156 
1157 		/*
1158 		 * We can return to the caller if we have found some (this
1159 		 * ensures forward progress). We'll be coming back to find
1160 		 * the rest.
1161 		 */
1162 		if (found && need_resched()) {
1163 			spin_unlock(&dentry->d_lock);
1164 			goto out;
1165 		}
1166 
1167 		/*
1168 		 * Descend a level if the d_subdirs list is non-empty.
1169 		 */
1170 		if (!list_empty(&dentry->d_subdirs)) {
1171 			spin_unlock(&this_parent->d_lock);
1172 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1173 			this_parent = dentry;
1174 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1175 			goto repeat;
1176 		}
1177 
1178 		spin_unlock(&dentry->d_lock);
1179 	}
1180 	/*
1181 	 * All done at this level ... ascend and resume the search.
1182 	 */
1183 	if (this_parent != parent) {
1184 		struct dentry *tmp;
1185 		struct dentry *child;
1186 
1187 		tmp = this_parent->d_parent;
1188 		rcu_read_lock();
1189 		spin_unlock(&this_parent->d_lock);
1190 		child = this_parent;
1191 		this_parent = tmp;
1192 		spin_lock(&this_parent->d_lock);
1193 		/* might go back up the wrong parent if we have had a rename
1194 		 * or deletion */
1195 		if (this_parent != child->d_parent ||
1196 			(!locked && read_seqretry(&rename_lock, seq))) {
1197 			spin_unlock(&this_parent->d_lock);
1198 			rcu_read_unlock();
1199 			goto rename_retry;
1200 		}
1201 		rcu_read_unlock();
1202 		next = child->d_u.d_child.next;
1203 		goto resume;
1204 	}
1205 out:
1206 	spin_unlock(&this_parent->d_lock);
1207 	if (!locked && read_seqretry(&rename_lock, seq))
1208 		goto rename_retry;
1209 	if (locked)
1210 		write_sequnlock(&rename_lock);
1211 	return found;
1212 
1213 rename_retry:
1214 	if (found)
1215 		return found;
1216 	locked = 1;
1217 	write_seqlock(&rename_lock);
1218 	goto again;
1219 }
1220 
1221 /**
1222  * shrink_dcache_parent - prune dcache
1223  * @parent: parent of entries to prune
1224  *
1225  * Prune the dcache to remove unused children of the parent dentry.
1226  */
1227 
1228 void shrink_dcache_parent(struct dentry * parent)
1229 {
1230 	struct super_block *sb = parent->d_sb;
1231 	int found;
1232 
1233 	while ((found = select_parent(parent)) != 0)
1234 		__shrink_dcache_sb(sb, &found, 0);
1235 }
1236 EXPORT_SYMBOL(shrink_dcache_parent);
1237 
1238 /*
1239  * Scan `nr' dentries and return the number which remain.
1240  *
1241  * We need to avoid reentering the filesystem if the caller is performing a
1242  * GFP_NOFS allocation attempt.  One example deadlock is:
1243  *
1244  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1245  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1246  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1247  *
1248  * In this case we return -1 to tell the caller that we baled.
1249  */
1250 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1251 {
1252 	if (nr) {
1253 		if (!(gfp_mask & __GFP_FS))
1254 			return -1;
1255 		prune_dcache(nr);
1256 	}
1257 
1258 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1259 }
1260 
1261 static struct shrinker dcache_shrinker = {
1262 	.shrink = shrink_dcache_memory,
1263 	.seeks = DEFAULT_SEEKS,
1264 };
1265 
1266 /**
1267  * d_alloc	-	allocate a dcache entry
1268  * @parent: parent of entry to allocate
1269  * @name: qstr of the name
1270  *
1271  * Allocates a dentry. It returns %NULL if there is insufficient memory
1272  * available. On a success the dentry is returned. The name passed in is
1273  * copied and the copy passed in may be reused after this call.
1274  */
1275 
1276 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1277 {
1278 	struct dentry *dentry;
1279 	char *dname;
1280 
1281 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1282 	if (!dentry)
1283 		return NULL;
1284 
1285 	if (name->len > DNAME_INLINE_LEN-1) {
1286 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1287 		if (!dname) {
1288 			kmem_cache_free(dentry_cache, dentry);
1289 			return NULL;
1290 		}
1291 	} else  {
1292 		dname = dentry->d_iname;
1293 	}
1294 	dentry->d_name.name = dname;
1295 
1296 	dentry->d_name.len = name->len;
1297 	dentry->d_name.hash = name->hash;
1298 	memcpy(dname, name->name, name->len);
1299 	dname[name->len] = 0;
1300 
1301 	dentry->d_count = 1;
1302 	dentry->d_flags = DCACHE_UNHASHED;
1303 	spin_lock_init(&dentry->d_lock);
1304 	seqcount_init(&dentry->d_seq);
1305 	dentry->d_inode = NULL;
1306 	dentry->d_parent = NULL;
1307 	dentry->d_sb = NULL;
1308 	dentry->d_op = NULL;
1309 	dentry->d_fsdata = NULL;
1310 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1311 	INIT_LIST_HEAD(&dentry->d_lru);
1312 	INIT_LIST_HEAD(&dentry->d_subdirs);
1313 	INIT_LIST_HEAD(&dentry->d_alias);
1314 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1315 
1316 	if (parent) {
1317 		spin_lock(&parent->d_lock);
1318 		/*
1319 		 * don't need child lock because it is not subject
1320 		 * to concurrency here
1321 		 */
1322 		__dget_dlock(parent);
1323 		dentry->d_parent = parent;
1324 		dentry->d_sb = parent->d_sb;
1325 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1326 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1327 		spin_unlock(&parent->d_lock);
1328 	}
1329 
1330 	this_cpu_inc(nr_dentry);
1331 
1332 	return dentry;
1333 }
1334 EXPORT_SYMBOL(d_alloc);
1335 
1336 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1337 {
1338 	struct dentry *dentry = d_alloc(NULL, name);
1339 	if (dentry) {
1340 		dentry->d_sb = sb;
1341 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1342 		dentry->d_parent = dentry;
1343 		dentry->d_flags |= DCACHE_DISCONNECTED;
1344 	}
1345 	return dentry;
1346 }
1347 EXPORT_SYMBOL(d_alloc_pseudo);
1348 
1349 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1350 {
1351 	struct qstr q;
1352 
1353 	q.name = name;
1354 	q.len = strlen(name);
1355 	q.hash = full_name_hash(q.name, q.len);
1356 	return d_alloc(parent, &q);
1357 }
1358 EXPORT_SYMBOL(d_alloc_name);
1359 
1360 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1361 {
1362 	WARN_ON_ONCE(dentry->d_op);
1363 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1364 				DCACHE_OP_COMPARE	|
1365 				DCACHE_OP_REVALIDATE	|
1366 				DCACHE_OP_DELETE ));
1367 	dentry->d_op = op;
1368 	if (!op)
1369 		return;
1370 	if (op->d_hash)
1371 		dentry->d_flags |= DCACHE_OP_HASH;
1372 	if (op->d_compare)
1373 		dentry->d_flags |= DCACHE_OP_COMPARE;
1374 	if (op->d_revalidate)
1375 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1376 	if (op->d_delete)
1377 		dentry->d_flags |= DCACHE_OP_DELETE;
1378 
1379 }
1380 EXPORT_SYMBOL(d_set_d_op);
1381 
1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1383 {
1384 	spin_lock(&dentry->d_lock);
1385 	if (inode) {
1386 		if (unlikely(IS_AUTOMOUNT(inode)))
1387 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1388 		list_add(&dentry->d_alias, &inode->i_dentry);
1389 	}
1390 	dentry->d_inode = inode;
1391 	dentry_rcuwalk_barrier(dentry);
1392 	spin_unlock(&dentry->d_lock);
1393 	fsnotify_d_instantiate(dentry, inode);
1394 }
1395 
1396 /**
1397  * d_instantiate - fill in inode information for a dentry
1398  * @entry: dentry to complete
1399  * @inode: inode to attach to this dentry
1400  *
1401  * Fill in inode information in the entry.
1402  *
1403  * This turns negative dentries into productive full members
1404  * of society.
1405  *
1406  * NOTE! This assumes that the inode count has been incremented
1407  * (or otherwise set) by the caller to indicate that it is now
1408  * in use by the dcache.
1409  */
1410 
1411 void d_instantiate(struct dentry *entry, struct inode * inode)
1412 {
1413 	BUG_ON(!list_empty(&entry->d_alias));
1414 	if (inode)
1415 		spin_lock(&inode->i_lock);
1416 	__d_instantiate(entry, inode);
1417 	if (inode)
1418 		spin_unlock(&inode->i_lock);
1419 	security_d_instantiate(entry, inode);
1420 }
1421 EXPORT_SYMBOL(d_instantiate);
1422 
1423 /**
1424  * d_instantiate_unique - instantiate a non-aliased dentry
1425  * @entry: dentry to instantiate
1426  * @inode: inode to attach to this dentry
1427  *
1428  * Fill in inode information in the entry. On success, it returns NULL.
1429  * If an unhashed alias of "entry" already exists, then we return the
1430  * aliased dentry instead and drop one reference to inode.
1431  *
1432  * Note that in order to avoid conflicts with rename() etc, the caller
1433  * had better be holding the parent directory semaphore.
1434  *
1435  * This also assumes that the inode count has been incremented
1436  * (or otherwise set) by the caller to indicate that it is now
1437  * in use by the dcache.
1438  */
1439 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1440 					     struct inode *inode)
1441 {
1442 	struct dentry *alias;
1443 	int len = entry->d_name.len;
1444 	const char *name = entry->d_name.name;
1445 	unsigned int hash = entry->d_name.hash;
1446 
1447 	if (!inode) {
1448 		__d_instantiate(entry, NULL);
1449 		return NULL;
1450 	}
1451 
1452 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1453 		struct qstr *qstr = &alias->d_name;
1454 
1455 		/*
1456 		 * Don't need alias->d_lock here, because aliases with
1457 		 * d_parent == entry->d_parent are not subject to name or
1458 		 * parent changes, because the parent inode i_mutex is held.
1459 		 */
1460 		if (qstr->hash != hash)
1461 			continue;
1462 		if (alias->d_parent != entry->d_parent)
1463 			continue;
1464 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1465 			continue;
1466 		__dget(alias);
1467 		return alias;
1468 	}
1469 
1470 	__d_instantiate(entry, inode);
1471 	return NULL;
1472 }
1473 
1474 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1475 {
1476 	struct dentry *result;
1477 
1478 	BUG_ON(!list_empty(&entry->d_alias));
1479 
1480 	if (inode)
1481 		spin_lock(&inode->i_lock);
1482 	result = __d_instantiate_unique(entry, inode);
1483 	if (inode)
1484 		spin_unlock(&inode->i_lock);
1485 
1486 	if (!result) {
1487 		security_d_instantiate(entry, inode);
1488 		return NULL;
1489 	}
1490 
1491 	BUG_ON(!d_unhashed(result));
1492 	iput(inode);
1493 	return result;
1494 }
1495 
1496 EXPORT_SYMBOL(d_instantiate_unique);
1497 
1498 /**
1499  * d_alloc_root - allocate root dentry
1500  * @root_inode: inode to allocate the root for
1501  *
1502  * Allocate a root ("/") dentry for the inode given. The inode is
1503  * instantiated and returned. %NULL is returned if there is insufficient
1504  * memory or the inode passed is %NULL.
1505  */
1506 
1507 struct dentry * d_alloc_root(struct inode * root_inode)
1508 {
1509 	struct dentry *res = NULL;
1510 
1511 	if (root_inode) {
1512 		static const struct qstr name = { .name = "/", .len = 1 };
1513 
1514 		res = d_alloc(NULL, &name);
1515 		if (res) {
1516 			res->d_sb = root_inode->i_sb;
1517 			d_set_d_op(res, res->d_sb->s_d_op);
1518 			res->d_parent = res;
1519 			d_instantiate(res, root_inode);
1520 		}
1521 	}
1522 	return res;
1523 }
1524 EXPORT_SYMBOL(d_alloc_root);
1525 
1526 /**
1527  * d_obtain_alias - find or allocate a dentry for a given inode
1528  * @inode: inode to allocate the dentry for
1529  *
1530  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1531  * similar open by handle operations.  The returned dentry may be anonymous,
1532  * or may have a full name (if the inode was already in the cache).
1533  *
1534  * When called on a directory inode, we must ensure that the inode only ever
1535  * has one dentry.  If a dentry is found, that is returned instead of
1536  * allocating a new one.
1537  *
1538  * On successful return, the reference to the inode has been transferred
1539  * to the dentry.  In case of an error the reference on the inode is released.
1540  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1541  * be passed in and will be the error will be propagate to the return value,
1542  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1543  */
1544 struct dentry *d_obtain_alias(struct inode *inode)
1545 {
1546 	static const struct qstr anonstring = { .name = "" };
1547 	struct dentry *tmp;
1548 	struct dentry *res;
1549 
1550 	if (!inode)
1551 		return ERR_PTR(-ESTALE);
1552 	if (IS_ERR(inode))
1553 		return ERR_CAST(inode);
1554 
1555 	res = d_find_alias(inode);
1556 	if (res)
1557 		goto out_iput;
1558 
1559 	tmp = d_alloc(NULL, &anonstring);
1560 	if (!tmp) {
1561 		res = ERR_PTR(-ENOMEM);
1562 		goto out_iput;
1563 	}
1564 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1565 
1566 
1567 	spin_lock(&inode->i_lock);
1568 	res = __d_find_alias(inode, 0);
1569 	if (res) {
1570 		spin_unlock(&inode->i_lock);
1571 		dput(tmp);
1572 		goto out_iput;
1573 	}
1574 
1575 	/* attach a disconnected dentry */
1576 	spin_lock(&tmp->d_lock);
1577 	tmp->d_sb = inode->i_sb;
1578 	d_set_d_op(tmp, tmp->d_sb->s_d_op);
1579 	tmp->d_inode = inode;
1580 	tmp->d_flags |= DCACHE_DISCONNECTED;
1581 	list_add(&tmp->d_alias, &inode->i_dentry);
1582 	bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1583 	tmp->d_flags &= ~DCACHE_UNHASHED;
1584 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1585 	__bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1586 	spin_unlock(&tmp->d_lock);
1587 	spin_unlock(&inode->i_lock);
1588 
1589 	return tmp;
1590 
1591  out_iput:
1592 	iput(inode);
1593 	return res;
1594 }
1595 EXPORT_SYMBOL(d_obtain_alias);
1596 
1597 /**
1598  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1599  * @inode:  the inode which may have a disconnected dentry
1600  * @dentry: a negative dentry which we want to point to the inode.
1601  *
1602  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1603  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1604  * and return it, else simply d_add the inode to the dentry and return NULL.
1605  *
1606  * This is needed in the lookup routine of any filesystem that is exportable
1607  * (via knfsd) so that we can build dcache paths to directories effectively.
1608  *
1609  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1610  * is returned.  This matches the expected return value of ->lookup.
1611  *
1612  */
1613 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1614 {
1615 	struct dentry *new = NULL;
1616 
1617 	if (inode && S_ISDIR(inode->i_mode)) {
1618 		spin_lock(&inode->i_lock);
1619 		new = __d_find_alias(inode, 1);
1620 		if (new) {
1621 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1622 			spin_unlock(&inode->i_lock);
1623 			security_d_instantiate(new, inode);
1624 			d_move(new, dentry);
1625 			iput(inode);
1626 		} else {
1627 			/* already taking inode->i_lock, so d_add() by hand */
1628 			__d_instantiate(dentry, inode);
1629 			spin_unlock(&inode->i_lock);
1630 			security_d_instantiate(dentry, inode);
1631 			d_rehash(dentry);
1632 		}
1633 	} else
1634 		d_add(dentry, inode);
1635 	return new;
1636 }
1637 EXPORT_SYMBOL(d_splice_alias);
1638 
1639 /**
1640  * d_add_ci - lookup or allocate new dentry with case-exact name
1641  * @inode:  the inode case-insensitive lookup has found
1642  * @dentry: the negative dentry that was passed to the parent's lookup func
1643  * @name:   the case-exact name to be associated with the returned dentry
1644  *
1645  * This is to avoid filling the dcache with case-insensitive names to the
1646  * same inode, only the actual correct case is stored in the dcache for
1647  * case-insensitive filesystems.
1648  *
1649  * For a case-insensitive lookup match and if the the case-exact dentry
1650  * already exists in in the dcache, use it and return it.
1651  *
1652  * If no entry exists with the exact case name, allocate new dentry with
1653  * the exact case, and return the spliced entry.
1654  */
1655 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1656 			struct qstr *name)
1657 {
1658 	int error;
1659 	struct dentry *found;
1660 	struct dentry *new;
1661 
1662 	/*
1663 	 * First check if a dentry matching the name already exists,
1664 	 * if not go ahead and create it now.
1665 	 */
1666 	found = d_hash_and_lookup(dentry->d_parent, name);
1667 	if (!found) {
1668 		new = d_alloc(dentry->d_parent, name);
1669 		if (!new) {
1670 			error = -ENOMEM;
1671 			goto err_out;
1672 		}
1673 
1674 		found = d_splice_alias(inode, new);
1675 		if (found) {
1676 			dput(new);
1677 			return found;
1678 		}
1679 		return new;
1680 	}
1681 
1682 	/*
1683 	 * If a matching dentry exists, and it's not negative use it.
1684 	 *
1685 	 * Decrement the reference count to balance the iget() done
1686 	 * earlier on.
1687 	 */
1688 	if (found->d_inode) {
1689 		if (unlikely(found->d_inode != inode)) {
1690 			/* This can't happen because bad inodes are unhashed. */
1691 			BUG_ON(!is_bad_inode(inode));
1692 			BUG_ON(!is_bad_inode(found->d_inode));
1693 		}
1694 		iput(inode);
1695 		return found;
1696 	}
1697 
1698 	/*
1699 	 * Negative dentry: instantiate it unless the inode is a directory and
1700 	 * already has a dentry.
1701 	 */
1702 	spin_lock(&inode->i_lock);
1703 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1704 		__d_instantiate(found, inode);
1705 		spin_unlock(&inode->i_lock);
1706 		security_d_instantiate(found, inode);
1707 		return found;
1708 	}
1709 
1710 	/*
1711 	 * In case a directory already has a (disconnected) entry grab a
1712 	 * reference to it, move it in place and use it.
1713 	 */
1714 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1715 	__dget(new);
1716 	spin_unlock(&inode->i_lock);
1717 	security_d_instantiate(found, inode);
1718 	d_move(new, found);
1719 	iput(inode);
1720 	dput(found);
1721 	return new;
1722 
1723 err_out:
1724 	iput(inode);
1725 	return ERR_PTR(error);
1726 }
1727 EXPORT_SYMBOL(d_add_ci);
1728 
1729 /**
1730  * __d_lookup_rcu - search for a dentry (racy, store-free)
1731  * @parent: parent dentry
1732  * @name: qstr of name we wish to find
1733  * @seq: returns d_seq value at the point where the dentry was found
1734  * @inode: returns dentry->d_inode when the inode was found valid.
1735  * Returns: dentry, or NULL
1736  *
1737  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1738  * resolution (store-free path walking) design described in
1739  * Documentation/filesystems/path-lookup.txt.
1740  *
1741  * This is not to be used outside core vfs.
1742  *
1743  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1744  * held, and rcu_read_lock held. The returned dentry must not be stored into
1745  * without taking d_lock and checking d_seq sequence count against @seq
1746  * returned here.
1747  *
1748  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1749  * function.
1750  *
1751  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1752  * the returned dentry, so long as its parent's seqlock is checked after the
1753  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1754  * is formed, giving integrity down the path walk.
1755  */
1756 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1757 				unsigned *seq, struct inode **inode)
1758 {
1759 	unsigned int len = name->len;
1760 	unsigned int hash = name->hash;
1761 	const unsigned char *str = name->name;
1762 	struct dcache_hash_bucket *b = d_hash(parent, hash);
1763 	struct hlist_bl_node *node;
1764 	struct dentry *dentry;
1765 
1766 	/*
1767 	 * Note: There is significant duplication with __d_lookup_rcu which is
1768 	 * required to prevent single threaded performance regressions
1769 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1770 	 * Keep the two functions in sync.
1771 	 */
1772 
1773 	/*
1774 	 * The hash list is protected using RCU.
1775 	 *
1776 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1777 	 * races with d_move().
1778 	 *
1779 	 * It is possible that concurrent renames can mess up our list
1780 	 * walk here and result in missing our dentry, resulting in the
1781 	 * false-negative result. d_lookup() protects against concurrent
1782 	 * renames using rename_lock seqlock.
1783 	 *
1784 	 * See Documentation/vfs/dcache-locking.txt for more details.
1785 	 */
1786 	hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1787 		struct inode *i;
1788 		const char *tname;
1789 		int tlen;
1790 
1791 		if (dentry->d_name.hash != hash)
1792 			continue;
1793 
1794 seqretry:
1795 		*seq = read_seqcount_begin(&dentry->d_seq);
1796 		if (dentry->d_parent != parent)
1797 			continue;
1798 		if (d_unhashed(dentry))
1799 			continue;
1800 		tlen = dentry->d_name.len;
1801 		tname = dentry->d_name.name;
1802 		i = dentry->d_inode;
1803 		prefetch(tname);
1804 		if (i)
1805 			prefetch(i);
1806 		/*
1807 		 * This seqcount check is required to ensure name and
1808 		 * len are loaded atomically, so as not to walk off the
1809 		 * edge of memory when walking. If we could load this
1810 		 * atomically some other way, we could drop this check.
1811 		 */
1812 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1813 			goto seqretry;
1814 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1815 			if (parent->d_op->d_compare(parent, *inode,
1816 						dentry, i,
1817 						tlen, tname, name))
1818 				continue;
1819 		} else {
1820 			if (dentry_cmp(tname, tlen, str, len))
1821 				continue;
1822 		}
1823 		/*
1824 		 * No extra seqcount check is required after the name
1825 		 * compare. The caller must perform a seqcount check in
1826 		 * order to do anything useful with the returned dentry
1827 		 * anyway.
1828 		 */
1829 		*inode = i;
1830 		return dentry;
1831 	}
1832 	return NULL;
1833 }
1834 
1835 /**
1836  * d_lookup - search for a dentry
1837  * @parent: parent dentry
1838  * @name: qstr of name we wish to find
1839  * Returns: dentry, or NULL
1840  *
1841  * d_lookup searches the children of the parent dentry for the name in
1842  * question. If the dentry is found its reference count is incremented and the
1843  * dentry is returned. The caller must use dput to free the entry when it has
1844  * finished using it. %NULL is returned if the dentry does not exist.
1845  */
1846 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1847 {
1848 	struct dentry *dentry;
1849 	unsigned seq;
1850 
1851         do {
1852                 seq = read_seqbegin(&rename_lock);
1853                 dentry = __d_lookup(parent, name);
1854                 if (dentry)
1855 			break;
1856 	} while (read_seqretry(&rename_lock, seq));
1857 	return dentry;
1858 }
1859 EXPORT_SYMBOL(d_lookup);
1860 
1861 /**
1862  * __d_lookup - search for a dentry (racy)
1863  * @parent: parent dentry
1864  * @name: qstr of name we wish to find
1865  * Returns: dentry, or NULL
1866  *
1867  * __d_lookup is like d_lookup, however it may (rarely) return a
1868  * false-negative result due to unrelated rename activity.
1869  *
1870  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1871  * however it must be used carefully, eg. with a following d_lookup in
1872  * the case of failure.
1873  *
1874  * __d_lookup callers must be commented.
1875  */
1876 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1877 {
1878 	unsigned int len = name->len;
1879 	unsigned int hash = name->hash;
1880 	const unsigned char *str = name->name;
1881 	struct dcache_hash_bucket *b = d_hash(parent, hash);
1882 	struct hlist_bl_node *node;
1883 	struct dentry *found = NULL;
1884 	struct dentry *dentry;
1885 
1886 	/*
1887 	 * Note: There is significant duplication with __d_lookup_rcu which is
1888 	 * required to prevent single threaded performance regressions
1889 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1890 	 * Keep the two functions in sync.
1891 	 */
1892 
1893 	/*
1894 	 * The hash list is protected using RCU.
1895 	 *
1896 	 * Take d_lock when comparing a candidate dentry, to avoid races
1897 	 * with d_move().
1898 	 *
1899 	 * It is possible that concurrent renames can mess up our list
1900 	 * walk here and result in missing our dentry, resulting in the
1901 	 * false-negative result. d_lookup() protects against concurrent
1902 	 * renames using rename_lock seqlock.
1903 	 *
1904 	 * See Documentation/vfs/dcache-locking.txt for more details.
1905 	 */
1906 	rcu_read_lock();
1907 
1908 	hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1909 		const char *tname;
1910 		int tlen;
1911 
1912 		if (dentry->d_name.hash != hash)
1913 			continue;
1914 
1915 		spin_lock(&dentry->d_lock);
1916 		if (dentry->d_parent != parent)
1917 			goto next;
1918 		if (d_unhashed(dentry))
1919 			goto next;
1920 
1921 		/*
1922 		 * It is safe to compare names since d_move() cannot
1923 		 * change the qstr (protected by d_lock).
1924 		 */
1925 		tlen = dentry->d_name.len;
1926 		tname = dentry->d_name.name;
1927 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1928 			if (parent->d_op->d_compare(parent, parent->d_inode,
1929 						dentry, dentry->d_inode,
1930 						tlen, tname, name))
1931 				goto next;
1932 		} else {
1933 			if (dentry_cmp(tname, tlen, str, len))
1934 				goto next;
1935 		}
1936 
1937 		dentry->d_count++;
1938 		found = dentry;
1939 		spin_unlock(&dentry->d_lock);
1940 		break;
1941 next:
1942 		spin_unlock(&dentry->d_lock);
1943  	}
1944  	rcu_read_unlock();
1945 
1946  	return found;
1947 }
1948 
1949 /**
1950  * d_hash_and_lookup - hash the qstr then search for a dentry
1951  * @dir: Directory to search in
1952  * @name: qstr of name we wish to find
1953  *
1954  * On hash failure or on lookup failure NULL is returned.
1955  */
1956 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1957 {
1958 	struct dentry *dentry = NULL;
1959 
1960 	/*
1961 	 * Check for a fs-specific hash function. Note that we must
1962 	 * calculate the standard hash first, as the d_op->d_hash()
1963 	 * routine may choose to leave the hash value unchanged.
1964 	 */
1965 	name->hash = full_name_hash(name->name, name->len);
1966 	if (dir->d_flags & DCACHE_OP_HASH) {
1967 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1968 			goto out;
1969 	}
1970 	dentry = d_lookup(dir, name);
1971 out:
1972 	return dentry;
1973 }
1974 
1975 /**
1976  * d_validate - verify dentry provided from insecure source (deprecated)
1977  * @dentry: The dentry alleged to be valid child of @dparent
1978  * @dparent: The parent dentry (known to be valid)
1979  *
1980  * An insecure source has sent us a dentry, here we verify it and dget() it.
1981  * This is used by ncpfs in its readdir implementation.
1982  * Zero is returned in the dentry is invalid.
1983  *
1984  * This function is slow for big directories, and deprecated, do not use it.
1985  */
1986 int d_validate(struct dentry *dentry, struct dentry *dparent)
1987 {
1988 	struct dentry *child;
1989 
1990 	spin_lock(&dparent->d_lock);
1991 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1992 		if (dentry == child) {
1993 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1994 			__dget_dlock(dentry);
1995 			spin_unlock(&dentry->d_lock);
1996 			spin_unlock(&dparent->d_lock);
1997 			return 1;
1998 		}
1999 	}
2000 	spin_unlock(&dparent->d_lock);
2001 
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL(d_validate);
2005 
2006 /*
2007  * When a file is deleted, we have two options:
2008  * - turn this dentry into a negative dentry
2009  * - unhash this dentry and free it.
2010  *
2011  * Usually, we want to just turn this into
2012  * a negative dentry, but if anybody else is
2013  * currently using the dentry or the inode
2014  * we can't do that and we fall back on removing
2015  * it from the hash queues and waiting for
2016  * it to be deleted later when it has no users
2017  */
2018 
2019 /**
2020  * d_delete - delete a dentry
2021  * @dentry: The dentry to delete
2022  *
2023  * Turn the dentry into a negative dentry if possible, otherwise
2024  * remove it from the hash queues so it can be deleted later
2025  */
2026 
2027 void d_delete(struct dentry * dentry)
2028 {
2029 	struct inode *inode;
2030 	int isdir = 0;
2031 	/*
2032 	 * Are we the only user?
2033 	 */
2034 again:
2035 	spin_lock(&dentry->d_lock);
2036 	inode = dentry->d_inode;
2037 	isdir = S_ISDIR(inode->i_mode);
2038 	if (dentry->d_count == 1) {
2039 		if (inode && !spin_trylock(&inode->i_lock)) {
2040 			spin_unlock(&dentry->d_lock);
2041 			cpu_relax();
2042 			goto again;
2043 		}
2044 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2045 		dentry_unlink_inode(dentry);
2046 		fsnotify_nameremove(dentry, isdir);
2047 		return;
2048 	}
2049 
2050 	if (!d_unhashed(dentry))
2051 		__d_drop(dentry);
2052 
2053 	spin_unlock(&dentry->d_lock);
2054 
2055 	fsnotify_nameremove(dentry, isdir);
2056 }
2057 EXPORT_SYMBOL(d_delete);
2058 
2059 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2060 {
2061 	BUG_ON(!d_unhashed(entry));
2062 	spin_lock_bucket(b);
2063  	entry->d_flags &= ~DCACHE_UNHASHED;
2064 	hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2065 	spin_unlock_bucket(b);
2066 }
2067 
2068 static void _d_rehash(struct dentry * entry)
2069 {
2070 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2071 }
2072 
2073 /**
2074  * d_rehash	- add an entry back to the hash
2075  * @entry: dentry to add to the hash
2076  *
2077  * Adds a dentry to the hash according to its name.
2078  */
2079 
2080 void d_rehash(struct dentry * entry)
2081 {
2082 	spin_lock(&entry->d_lock);
2083 	_d_rehash(entry);
2084 	spin_unlock(&entry->d_lock);
2085 }
2086 EXPORT_SYMBOL(d_rehash);
2087 
2088 /**
2089  * dentry_update_name_case - update case insensitive dentry with a new name
2090  * @dentry: dentry to be updated
2091  * @name: new name
2092  *
2093  * Update a case insensitive dentry with new case of name.
2094  *
2095  * dentry must have been returned by d_lookup with name @name. Old and new
2096  * name lengths must match (ie. no d_compare which allows mismatched name
2097  * lengths).
2098  *
2099  * Parent inode i_mutex must be held over d_lookup and into this call (to
2100  * keep renames and concurrent inserts, and readdir(2) away).
2101  */
2102 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2103 {
2104 	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2105 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2106 
2107 	spin_lock(&dentry->d_lock);
2108 	write_seqcount_begin(&dentry->d_seq);
2109 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2110 	write_seqcount_end(&dentry->d_seq);
2111 	spin_unlock(&dentry->d_lock);
2112 }
2113 EXPORT_SYMBOL(dentry_update_name_case);
2114 
2115 static void switch_names(struct dentry *dentry, struct dentry *target)
2116 {
2117 	if (dname_external(target)) {
2118 		if (dname_external(dentry)) {
2119 			/*
2120 			 * Both external: swap the pointers
2121 			 */
2122 			swap(target->d_name.name, dentry->d_name.name);
2123 		} else {
2124 			/*
2125 			 * dentry:internal, target:external.  Steal target's
2126 			 * storage and make target internal.
2127 			 */
2128 			memcpy(target->d_iname, dentry->d_name.name,
2129 					dentry->d_name.len + 1);
2130 			dentry->d_name.name = target->d_name.name;
2131 			target->d_name.name = target->d_iname;
2132 		}
2133 	} else {
2134 		if (dname_external(dentry)) {
2135 			/*
2136 			 * dentry:external, target:internal.  Give dentry's
2137 			 * storage to target and make dentry internal
2138 			 */
2139 			memcpy(dentry->d_iname, target->d_name.name,
2140 					target->d_name.len + 1);
2141 			target->d_name.name = dentry->d_name.name;
2142 			dentry->d_name.name = dentry->d_iname;
2143 		} else {
2144 			/*
2145 			 * Both are internal.  Just copy target to dentry
2146 			 */
2147 			memcpy(dentry->d_iname, target->d_name.name,
2148 					target->d_name.len + 1);
2149 			dentry->d_name.len = target->d_name.len;
2150 			return;
2151 		}
2152 	}
2153 	swap(dentry->d_name.len, target->d_name.len);
2154 }
2155 
2156 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2157 {
2158 	/*
2159 	 * XXXX: do we really need to take target->d_lock?
2160 	 */
2161 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2162 		spin_lock(&target->d_parent->d_lock);
2163 	else {
2164 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2165 			spin_lock(&dentry->d_parent->d_lock);
2166 			spin_lock_nested(&target->d_parent->d_lock,
2167 						DENTRY_D_LOCK_NESTED);
2168 		} else {
2169 			spin_lock(&target->d_parent->d_lock);
2170 			spin_lock_nested(&dentry->d_parent->d_lock,
2171 						DENTRY_D_LOCK_NESTED);
2172 		}
2173 	}
2174 	if (target < dentry) {
2175 		spin_lock_nested(&target->d_lock, 2);
2176 		spin_lock_nested(&dentry->d_lock, 3);
2177 	} else {
2178 		spin_lock_nested(&dentry->d_lock, 2);
2179 		spin_lock_nested(&target->d_lock, 3);
2180 	}
2181 }
2182 
2183 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2184 					struct dentry *target)
2185 {
2186 	if (target->d_parent != dentry->d_parent)
2187 		spin_unlock(&dentry->d_parent->d_lock);
2188 	if (target->d_parent != target)
2189 		spin_unlock(&target->d_parent->d_lock);
2190 }
2191 
2192 /*
2193  * When switching names, the actual string doesn't strictly have to
2194  * be preserved in the target - because we're dropping the target
2195  * anyway. As such, we can just do a simple memcpy() to copy over
2196  * the new name before we switch.
2197  *
2198  * Note that we have to be a lot more careful about getting the hash
2199  * switched - we have to switch the hash value properly even if it
2200  * then no longer matches the actual (corrupted) string of the target.
2201  * The hash value has to match the hash queue that the dentry is on..
2202  */
2203 /*
2204  * d_move - move a dentry
2205  * @dentry: entry to move
2206  * @target: new dentry
2207  *
2208  * Update the dcache to reflect the move of a file name. Negative
2209  * dcache entries should not be moved in this way.
2210  */
2211 void d_move(struct dentry * dentry, struct dentry * target)
2212 {
2213 	if (!dentry->d_inode)
2214 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2215 
2216 	BUG_ON(d_ancestor(dentry, target));
2217 	BUG_ON(d_ancestor(target, dentry));
2218 
2219 	write_seqlock(&rename_lock);
2220 
2221 	dentry_lock_for_move(dentry, target);
2222 
2223 	write_seqcount_begin(&dentry->d_seq);
2224 	write_seqcount_begin(&target->d_seq);
2225 
2226 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2227 
2228 	/*
2229 	 * Move the dentry to the target hash queue. Don't bother checking
2230 	 * for the same hash queue because of how unlikely it is.
2231 	 */
2232 	__d_drop(dentry);
2233 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2234 
2235 	/* Unhash the target: dput() will then get rid of it */
2236 	__d_drop(target);
2237 
2238 	list_del(&dentry->d_u.d_child);
2239 	list_del(&target->d_u.d_child);
2240 
2241 	/* Switch the names.. */
2242 	switch_names(dentry, target);
2243 	swap(dentry->d_name.hash, target->d_name.hash);
2244 
2245 	/* ... and switch the parents */
2246 	if (IS_ROOT(dentry)) {
2247 		dentry->d_parent = target->d_parent;
2248 		target->d_parent = target;
2249 		INIT_LIST_HEAD(&target->d_u.d_child);
2250 	} else {
2251 		swap(dentry->d_parent, target->d_parent);
2252 
2253 		/* And add them back to the (new) parent lists */
2254 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2255 	}
2256 
2257 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2258 
2259 	write_seqcount_end(&target->d_seq);
2260 	write_seqcount_end(&dentry->d_seq);
2261 
2262 	dentry_unlock_parents_for_move(dentry, target);
2263 	spin_unlock(&target->d_lock);
2264 	fsnotify_d_move(dentry);
2265 	spin_unlock(&dentry->d_lock);
2266 	write_sequnlock(&rename_lock);
2267 }
2268 EXPORT_SYMBOL(d_move);
2269 
2270 /**
2271  * d_ancestor - search for an ancestor
2272  * @p1: ancestor dentry
2273  * @p2: child dentry
2274  *
2275  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2276  * an ancestor of p2, else NULL.
2277  */
2278 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2279 {
2280 	struct dentry *p;
2281 
2282 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2283 		if (p->d_parent == p1)
2284 			return p;
2285 	}
2286 	return NULL;
2287 }
2288 
2289 /*
2290  * This helper attempts to cope with remotely renamed directories
2291  *
2292  * It assumes that the caller is already holding
2293  * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2294  *
2295  * Note: If ever the locking in lock_rename() changes, then please
2296  * remember to update this too...
2297  */
2298 static struct dentry *__d_unalias(struct inode *inode,
2299 		struct dentry *dentry, struct dentry *alias)
2300 {
2301 	struct mutex *m1 = NULL, *m2 = NULL;
2302 	struct dentry *ret;
2303 
2304 	/* If alias and dentry share a parent, then no extra locks required */
2305 	if (alias->d_parent == dentry->d_parent)
2306 		goto out_unalias;
2307 
2308 	/* Check for loops */
2309 	ret = ERR_PTR(-ELOOP);
2310 	if (d_ancestor(alias, dentry))
2311 		goto out_err;
2312 
2313 	/* See lock_rename() */
2314 	ret = ERR_PTR(-EBUSY);
2315 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2316 		goto out_err;
2317 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2318 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2319 		goto out_err;
2320 	m2 = &alias->d_parent->d_inode->i_mutex;
2321 out_unalias:
2322 	d_move(alias, dentry);
2323 	ret = alias;
2324 out_err:
2325 	spin_unlock(&inode->i_lock);
2326 	if (m2)
2327 		mutex_unlock(m2);
2328 	if (m1)
2329 		mutex_unlock(m1);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2335  * named dentry in place of the dentry to be replaced.
2336  * returns with anon->d_lock held!
2337  */
2338 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2339 {
2340 	struct dentry *dparent, *aparent;
2341 
2342 	dentry_lock_for_move(anon, dentry);
2343 
2344 	write_seqcount_begin(&dentry->d_seq);
2345 	write_seqcount_begin(&anon->d_seq);
2346 
2347 	dparent = dentry->d_parent;
2348 	aparent = anon->d_parent;
2349 
2350 	switch_names(dentry, anon);
2351 	swap(dentry->d_name.hash, anon->d_name.hash);
2352 
2353 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2354 	list_del(&dentry->d_u.d_child);
2355 	if (!IS_ROOT(dentry))
2356 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2357 	else
2358 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2359 
2360 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2361 	list_del(&anon->d_u.d_child);
2362 	if (!IS_ROOT(anon))
2363 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2364 	else
2365 		INIT_LIST_HEAD(&anon->d_u.d_child);
2366 
2367 	write_seqcount_end(&dentry->d_seq);
2368 	write_seqcount_end(&anon->d_seq);
2369 
2370 	dentry_unlock_parents_for_move(anon, dentry);
2371 	spin_unlock(&dentry->d_lock);
2372 
2373 	/* anon->d_lock still locked, returns locked */
2374 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2375 }
2376 
2377 /**
2378  * d_materialise_unique - introduce an inode into the tree
2379  * @dentry: candidate dentry
2380  * @inode: inode to bind to the dentry, to which aliases may be attached
2381  *
2382  * Introduces an dentry into the tree, substituting an extant disconnected
2383  * root directory alias in its place if there is one
2384  */
2385 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2386 {
2387 	struct dentry *actual;
2388 
2389 	BUG_ON(!d_unhashed(dentry));
2390 
2391 	if (!inode) {
2392 		actual = dentry;
2393 		__d_instantiate(dentry, NULL);
2394 		d_rehash(actual);
2395 		goto out_nolock;
2396 	}
2397 
2398 	spin_lock(&inode->i_lock);
2399 
2400 	if (S_ISDIR(inode->i_mode)) {
2401 		struct dentry *alias;
2402 
2403 		/* Does an aliased dentry already exist? */
2404 		alias = __d_find_alias(inode, 0);
2405 		if (alias) {
2406 			actual = alias;
2407 			/* Is this an anonymous mountpoint that we could splice
2408 			 * into our tree? */
2409 			if (IS_ROOT(alias)) {
2410 				__d_materialise_dentry(dentry, alias);
2411 				__d_drop(alias);
2412 				goto found;
2413 			}
2414 			/* Nope, but we must(!) avoid directory aliasing */
2415 			actual = __d_unalias(inode, dentry, alias);
2416 			if (IS_ERR(actual))
2417 				dput(alias);
2418 			goto out_nolock;
2419 		}
2420 	}
2421 
2422 	/* Add a unique reference */
2423 	actual = __d_instantiate_unique(dentry, inode);
2424 	if (!actual)
2425 		actual = dentry;
2426 	else
2427 		BUG_ON(!d_unhashed(actual));
2428 
2429 	spin_lock(&actual->d_lock);
2430 found:
2431 	_d_rehash(actual);
2432 	spin_unlock(&actual->d_lock);
2433 	spin_unlock(&inode->i_lock);
2434 out_nolock:
2435 	if (actual == dentry) {
2436 		security_d_instantiate(dentry, inode);
2437 		return NULL;
2438 	}
2439 
2440 	iput(inode);
2441 	return actual;
2442 }
2443 EXPORT_SYMBOL_GPL(d_materialise_unique);
2444 
2445 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2446 {
2447 	*buflen -= namelen;
2448 	if (*buflen < 0)
2449 		return -ENAMETOOLONG;
2450 	*buffer -= namelen;
2451 	memcpy(*buffer, str, namelen);
2452 	return 0;
2453 }
2454 
2455 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2456 {
2457 	return prepend(buffer, buflen, name->name, name->len);
2458 }
2459 
2460 /**
2461  * prepend_path - Prepend path string to a buffer
2462  * @path: the dentry/vfsmount to report
2463  * @root: root vfsmnt/dentry (may be modified by this function)
2464  * @buffer: pointer to the end of the buffer
2465  * @buflen: pointer to buffer length
2466  *
2467  * Caller holds the rename_lock.
2468  *
2469  * If path is not reachable from the supplied root, then the value of
2470  * root is changed (without modifying refcounts).
2471  */
2472 static int prepend_path(const struct path *path, struct path *root,
2473 			char **buffer, int *buflen)
2474 {
2475 	struct dentry *dentry = path->dentry;
2476 	struct vfsmount *vfsmnt = path->mnt;
2477 	bool slash = false;
2478 	int error = 0;
2479 
2480 	br_read_lock(vfsmount_lock);
2481 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2482 		struct dentry * parent;
2483 
2484 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2485 			/* Global root? */
2486 			if (vfsmnt->mnt_parent == vfsmnt) {
2487 				goto global_root;
2488 			}
2489 			dentry = vfsmnt->mnt_mountpoint;
2490 			vfsmnt = vfsmnt->mnt_parent;
2491 			continue;
2492 		}
2493 		parent = dentry->d_parent;
2494 		prefetch(parent);
2495 		spin_lock(&dentry->d_lock);
2496 		error = prepend_name(buffer, buflen, &dentry->d_name);
2497 		spin_unlock(&dentry->d_lock);
2498 		if (!error)
2499 			error = prepend(buffer, buflen, "/", 1);
2500 		if (error)
2501 			break;
2502 
2503 		slash = true;
2504 		dentry = parent;
2505 	}
2506 
2507 out:
2508 	if (!error && !slash)
2509 		error = prepend(buffer, buflen, "/", 1);
2510 
2511 	br_read_unlock(vfsmount_lock);
2512 	return error;
2513 
2514 global_root:
2515 	/*
2516 	 * Filesystems needing to implement special "root names"
2517 	 * should do so with ->d_dname()
2518 	 */
2519 	if (IS_ROOT(dentry) &&
2520 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2521 		WARN(1, "Root dentry has weird name <%.*s>\n",
2522 		     (int) dentry->d_name.len, dentry->d_name.name);
2523 	}
2524 	root->mnt = vfsmnt;
2525 	root->dentry = dentry;
2526 	goto out;
2527 }
2528 
2529 /**
2530  * __d_path - return the path of a dentry
2531  * @path: the dentry/vfsmount to report
2532  * @root: root vfsmnt/dentry (may be modified by this function)
2533  * @buf: buffer to return value in
2534  * @buflen: buffer length
2535  *
2536  * Convert a dentry into an ASCII path name.
2537  *
2538  * Returns a pointer into the buffer or an error code if the
2539  * path was too long.
2540  *
2541  * "buflen" should be positive.
2542  *
2543  * If path is not reachable from the supplied root, then the value of
2544  * root is changed (without modifying refcounts).
2545  */
2546 char *__d_path(const struct path *path, struct path *root,
2547 	       char *buf, int buflen)
2548 {
2549 	char *res = buf + buflen;
2550 	int error;
2551 
2552 	prepend(&res, &buflen, "\0", 1);
2553 	write_seqlock(&rename_lock);
2554 	error = prepend_path(path, root, &res, &buflen);
2555 	write_sequnlock(&rename_lock);
2556 
2557 	if (error)
2558 		return ERR_PTR(error);
2559 	return res;
2560 }
2561 
2562 /*
2563  * same as __d_path but appends "(deleted)" for unlinked files.
2564  */
2565 static int path_with_deleted(const struct path *path, struct path *root,
2566 				 char **buf, int *buflen)
2567 {
2568 	prepend(buf, buflen, "\0", 1);
2569 	if (d_unlinked(path->dentry)) {
2570 		int error = prepend(buf, buflen, " (deleted)", 10);
2571 		if (error)
2572 			return error;
2573 	}
2574 
2575 	return prepend_path(path, root, buf, buflen);
2576 }
2577 
2578 static int prepend_unreachable(char **buffer, int *buflen)
2579 {
2580 	return prepend(buffer, buflen, "(unreachable)", 13);
2581 }
2582 
2583 /**
2584  * d_path - return the path of a dentry
2585  * @path: path to report
2586  * @buf: buffer to return value in
2587  * @buflen: buffer length
2588  *
2589  * Convert a dentry into an ASCII path name. If the entry has been deleted
2590  * the string " (deleted)" is appended. Note that this is ambiguous.
2591  *
2592  * Returns a pointer into the buffer or an error code if the path was
2593  * too long. Note: Callers should use the returned pointer, not the passed
2594  * in buffer, to use the name! The implementation often starts at an offset
2595  * into the buffer, and may leave 0 bytes at the start.
2596  *
2597  * "buflen" should be positive.
2598  */
2599 char *d_path(const struct path *path, char *buf, int buflen)
2600 {
2601 	char *res = buf + buflen;
2602 	struct path root;
2603 	struct path tmp;
2604 	int error;
2605 
2606 	/*
2607 	 * We have various synthetic filesystems that never get mounted.  On
2608 	 * these filesystems dentries are never used for lookup purposes, and
2609 	 * thus don't need to be hashed.  They also don't need a name until a
2610 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2611 	 * below allows us to generate a name for these objects on demand:
2612 	 */
2613 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2614 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2615 
2616 	get_fs_root(current->fs, &root);
2617 	write_seqlock(&rename_lock);
2618 	tmp = root;
2619 	error = path_with_deleted(path, &tmp, &res, &buflen);
2620 	if (error)
2621 		res = ERR_PTR(error);
2622 	write_sequnlock(&rename_lock);
2623 	path_put(&root);
2624 	return res;
2625 }
2626 EXPORT_SYMBOL(d_path);
2627 
2628 /**
2629  * d_path_with_unreachable - return the path of a dentry
2630  * @path: path to report
2631  * @buf: buffer to return value in
2632  * @buflen: buffer length
2633  *
2634  * The difference from d_path() is that this prepends "(unreachable)"
2635  * to paths which are unreachable from the current process' root.
2636  */
2637 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2638 {
2639 	char *res = buf + buflen;
2640 	struct path root;
2641 	struct path tmp;
2642 	int error;
2643 
2644 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2645 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2646 
2647 	get_fs_root(current->fs, &root);
2648 	write_seqlock(&rename_lock);
2649 	tmp = root;
2650 	error = path_with_deleted(path, &tmp, &res, &buflen);
2651 	if (!error && !path_equal(&tmp, &root))
2652 		error = prepend_unreachable(&res, &buflen);
2653 	write_sequnlock(&rename_lock);
2654 	path_put(&root);
2655 	if (error)
2656 		res =  ERR_PTR(error);
2657 
2658 	return res;
2659 }
2660 
2661 /*
2662  * Helper function for dentry_operations.d_dname() members
2663  */
2664 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2665 			const char *fmt, ...)
2666 {
2667 	va_list args;
2668 	char temp[64];
2669 	int sz;
2670 
2671 	va_start(args, fmt);
2672 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2673 	va_end(args);
2674 
2675 	if (sz > sizeof(temp) || sz > buflen)
2676 		return ERR_PTR(-ENAMETOOLONG);
2677 
2678 	buffer += buflen - sz;
2679 	return memcpy(buffer, temp, sz);
2680 }
2681 
2682 /*
2683  * Write full pathname from the root of the filesystem into the buffer.
2684  */
2685 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2686 {
2687 	char *end = buf + buflen;
2688 	char *retval;
2689 
2690 	prepend(&end, &buflen, "\0", 1);
2691 	if (buflen < 1)
2692 		goto Elong;
2693 	/* Get '/' right */
2694 	retval = end-1;
2695 	*retval = '/';
2696 
2697 	while (!IS_ROOT(dentry)) {
2698 		struct dentry *parent = dentry->d_parent;
2699 		int error;
2700 
2701 		prefetch(parent);
2702 		spin_lock(&dentry->d_lock);
2703 		error = prepend_name(&end, &buflen, &dentry->d_name);
2704 		spin_unlock(&dentry->d_lock);
2705 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2706 			goto Elong;
2707 
2708 		retval = end;
2709 		dentry = parent;
2710 	}
2711 	return retval;
2712 Elong:
2713 	return ERR_PTR(-ENAMETOOLONG);
2714 }
2715 
2716 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2717 {
2718 	char *retval;
2719 
2720 	write_seqlock(&rename_lock);
2721 	retval = __dentry_path(dentry, buf, buflen);
2722 	write_sequnlock(&rename_lock);
2723 
2724 	return retval;
2725 }
2726 EXPORT_SYMBOL(dentry_path_raw);
2727 
2728 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2729 {
2730 	char *p = NULL;
2731 	char *retval;
2732 
2733 	write_seqlock(&rename_lock);
2734 	if (d_unlinked(dentry)) {
2735 		p = buf + buflen;
2736 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2737 			goto Elong;
2738 		buflen++;
2739 	}
2740 	retval = __dentry_path(dentry, buf, buflen);
2741 	write_sequnlock(&rename_lock);
2742 	if (!IS_ERR(retval) && p)
2743 		*p = '/';	/* restore '/' overriden with '\0' */
2744 	return retval;
2745 Elong:
2746 	return ERR_PTR(-ENAMETOOLONG);
2747 }
2748 
2749 /*
2750  * NOTE! The user-level library version returns a
2751  * character pointer. The kernel system call just
2752  * returns the length of the buffer filled (which
2753  * includes the ending '\0' character), or a negative
2754  * error value. So libc would do something like
2755  *
2756  *	char *getcwd(char * buf, size_t size)
2757  *	{
2758  *		int retval;
2759  *
2760  *		retval = sys_getcwd(buf, size);
2761  *		if (retval >= 0)
2762  *			return buf;
2763  *		errno = -retval;
2764  *		return NULL;
2765  *	}
2766  */
2767 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2768 {
2769 	int error;
2770 	struct path pwd, root;
2771 	char *page = (char *) __get_free_page(GFP_USER);
2772 
2773 	if (!page)
2774 		return -ENOMEM;
2775 
2776 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2777 
2778 	error = -ENOENT;
2779 	write_seqlock(&rename_lock);
2780 	if (!d_unlinked(pwd.dentry)) {
2781 		unsigned long len;
2782 		struct path tmp = root;
2783 		char *cwd = page + PAGE_SIZE;
2784 		int buflen = PAGE_SIZE;
2785 
2786 		prepend(&cwd, &buflen, "\0", 1);
2787 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2788 		write_sequnlock(&rename_lock);
2789 
2790 		if (error)
2791 			goto out;
2792 
2793 		/* Unreachable from current root */
2794 		if (!path_equal(&tmp, &root)) {
2795 			error = prepend_unreachable(&cwd, &buflen);
2796 			if (error)
2797 				goto out;
2798 		}
2799 
2800 		error = -ERANGE;
2801 		len = PAGE_SIZE + page - cwd;
2802 		if (len <= size) {
2803 			error = len;
2804 			if (copy_to_user(buf, cwd, len))
2805 				error = -EFAULT;
2806 		}
2807 	} else {
2808 		write_sequnlock(&rename_lock);
2809 	}
2810 
2811 out:
2812 	path_put(&pwd);
2813 	path_put(&root);
2814 	free_page((unsigned long) page);
2815 	return error;
2816 }
2817 
2818 /*
2819  * Test whether new_dentry is a subdirectory of old_dentry.
2820  *
2821  * Trivially implemented using the dcache structure
2822  */
2823 
2824 /**
2825  * is_subdir - is new dentry a subdirectory of old_dentry
2826  * @new_dentry: new dentry
2827  * @old_dentry: old dentry
2828  *
2829  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2830  * Returns 0 otherwise.
2831  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2832  */
2833 
2834 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2835 {
2836 	int result;
2837 	unsigned seq;
2838 
2839 	if (new_dentry == old_dentry)
2840 		return 1;
2841 
2842 	do {
2843 		/* for restarting inner loop in case of seq retry */
2844 		seq = read_seqbegin(&rename_lock);
2845 		/*
2846 		 * Need rcu_readlock to protect against the d_parent trashing
2847 		 * due to d_move
2848 		 */
2849 		rcu_read_lock();
2850 		if (d_ancestor(old_dentry, new_dentry))
2851 			result = 1;
2852 		else
2853 			result = 0;
2854 		rcu_read_unlock();
2855 	} while (read_seqretry(&rename_lock, seq));
2856 
2857 	return result;
2858 }
2859 
2860 int path_is_under(struct path *path1, struct path *path2)
2861 {
2862 	struct vfsmount *mnt = path1->mnt;
2863 	struct dentry *dentry = path1->dentry;
2864 	int res;
2865 
2866 	br_read_lock(vfsmount_lock);
2867 	if (mnt != path2->mnt) {
2868 		for (;;) {
2869 			if (mnt->mnt_parent == mnt) {
2870 				br_read_unlock(vfsmount_lock);
2871 				return 0;
2872 			}
2873 			if (mnt->mnt_parent == path2->mnt)
2874 				break;
2875 			mnt = mnt->mnt_parent;
2876 		}
2877 		dentry = mnt->mnt_mountpoint;
2878 	}
2879 	res = is_subdir(dentry, path2->dentry);
2880 	br_read_unlock(vfsmount_lock);
2881 	return res;
2882 }
2883 EXPORT_SYMBOL(path_is_under);
2884 
2885 void d_genocide(struct dentry *root)
2886 {
2887 	struct dentry *this_parent;
2888 	struct list_head *next;
2889 	unsigned seq;
2890 	int locked = 0;
2891 
2892 	seq = read_seqbegin(&rename_lock);
2893 again:
2894 	this_parent = root;
2895 	spin_lock(&this_parent->d_lock);
2896 repeat:
2897 	next = this_parent->d_subdirs.next;
2898 resume:
2899 	while (next != &this_parent->d_subdirs) {
2900 		struct list_head *tmp = next;
2901 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2902 		next = tmp->next;
2903 
2904 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2905 		if (d_unhashed(dentry) || !dentry->d_inode) {
2906 			spin_unlock(&dentry->d_lock);
2907 			continue;
2908 		}
2909 		if (!list_empty(&dentry->d_subdirs)) {
2910 			spin_unlock(&this_parent->d_lock);
2911 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2912 			this_parent = dentry;
2913 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2914 			goto repeat;
2915 		}
2916 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2917 			dentry->d_flags |= DCACHE_GENOCIDE;
2918 			dentry->d_count--;
2919 		}
2920 		spin_unlock(&dentry->d_lock);
2921 	}
2922 	if (this_parent != root) {
2923 		struct dentry *tmp;
2924 		struct dentry *child;
2925 
2926 		tmp = this_parent->d_parent;
2927 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2928 			this_parent->d_flags |= DCACHE_GENOCIDE;
2929 			this_parent->d_count--;
2930 		}
2931 		rcu_read_lock();
2932 		spin_unlock(&this_parent->d_lock);
2933 		child = this_parent;
2934 		this_parent = tmp;
2935 		spin_lock(&this_parent->d_lock);
2936 		/* might go back up the wrong parent if we have had a rename
2937 		 * or deletion */
2938 		if (this_parent != child->d_parent ||
2939 			 (!locked && read_seqretry(&rename_lock, seq))) {
2940 			spin_unlock(&this_parent->d_lock);
2941 			rcu_read_unlock();
2942 			goto rename_retry;
2943 		}
2944 		rcu_read_unlock();
2945 		next = child->d_u.d_child.next;
2946 		goto resume;
2947 	}
2948 	spin_unlock(&this_parent->d_lock);
2949 	if (!locked && read_seqretry(&rename_lock, seq))
2950 		goto rename_retry;
2951 	if (locked)
2952 		write_sequnlock(&rename_lock);
2953 	return;
2954 
2955 rename_retry:
2956 	locked = 1;
2957 	write_seqlock(&rename_lock);
2958 	goto again;
2959 }
2960 
2961 /**
2962  * find_inode_number - check for dentry with name
2963  * @dir: directory to check
2964  * @name: Name to find.
2965  *
2966  * Check whether a dentry already exists for the given name,
2967  * and return the inode number if it has an inode. Otherwise
2968  * 0 is returned.
2969  *
2970  * This routine is used to post-process directory listings for
2971  * filesystems using synthetic inode numbers, and is necessary
2972  * to keep getcwd() working.
2973  */
2974 
2975 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2976 {
2977 	struct dentry * dentry;
2978 	ino_t ino = 0;
2979 
2980 	dentry = d_hash_and_lookup(dir, name);
2981 	if (dentry) {
2982 		if (dentry->d_inode)
2983 			ino = dentry->d_inode->i_ino;
2984 		dput(dentry);
2985 	}
2986 	return ino;
2987 }
2988 EXPORT_SYMBOL(find_inode_number);
2989 
2990 static __initdata unsigned long dhash_entries;
2991 static int __init set_dhash_entries(char *str)
2992 {
2993 	if (!str)
2994 		return 0;
2995 	dhash_entries = simple_strtoul(str, &str, 0);
2996 	return 1;
2997 }
2998 __setup("dhash_entries=", set_dhash_entries);
2999 
3000 static void __init dcache_init_early(void)
3001 {
3002 	int loop;
3003 
3004 	/* If hashes are distributed across NUMA nodes, defer
3005 	 * hash allocation until vmalloc space is available.
3006 	 */
3007 	if (hashdist)
3008 		return;
3009 
3010 	dentry_hashtable =
3011 		alloc_large_system_hash("Dentry cache",
3012 					sizeof(struct dcache_hash_bucket),
3013 					dhash_entries,
3014 					13,
3015 					HASH_EARLY,
3016 					&d_hash_shift,
3017 					&d_hash_mask,
3018 					0);
3019 
3020 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3021 		INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3022 }
3023 
3024 static void __init dcache_init(void)
3025 {
3026 	int loop;
3027 
3028 	/*
3029 	 * A constructor could be added for stable state like the lists,
3030 	 * but it is probably not worth it because of the cache nature
3031 	 * of the dcache.
3032 	 */
3033 	dentry_cache = KMEM_CACHE(dentry,
3034 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3035 
3036 	register_shrinker(&dcache_shrinker);
3037 
3038 	/* Hash may have been set up in dcache_init_early */
3039 	if (!hashdist)
3040 		return;
3041 
3042 	dentry_hashtable =
3043 		alloc_large_system_hash("Dentry cache",
3044 					sizeof(struct dcache_hash_bucket),
3045 					dhash_entries,
3046 					13,
3047 					0,
3048 					&d_hash_shift,
3049 					&d_hash_mask,
3050 					0);
3051 
3052 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3053 		INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3054 }
3055 
3056 /* SLAB cache for __getname() consumers */
3057 struct kmem_cache *names_cachep __read_mostly;
3058 EXPORT_SYMBOL(names_cachep);
3059 
3060 EXPORT_SYMBOL(d_genocide);
3061 
3062 void __init vfs_caches_init_early(void)
3063 {
3064 	dcache_init_early();
3065 	inode_init_early();
3066 }
3067 
3068 void __init vfs_caches_init(unsigned long mempages)
3069 {
3070 	unsigned long reserve;
3071 
3072 	/* Base hash sizes on available memory, with a reserve equal to
3073            150% of current kernel size */
3074 
3075 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3076 	mempages -= reserve;
3077 
3078 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3079 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3080 
3081 	dcache_init();
3082 	inode_init();
3083 	files_init(mempages);
3084 	mnt_init();
3085 	bdev_cache_init();
3086 	chrdev_init();
3087 }
3088