xref: /openbmc/linux/fs/dcache.c (revision 0edbfea5)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 #define IN_LOOKUP_SHIFT 10
115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 
117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 					unsigned int hash)
119 {
120 	hash += (unsigned long) parent / L1_CACHE_BYTES;
121 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122 }
123 
124 
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 	.age_limit = 45,
128 };
129 
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 
133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 
135 /*
136  * Here we resort to our own counters instead of using generic per-cpu counters
137  * for consistency with what the vfs inode code does. We are expected to harvest
138  * better code and performance by having our own specialized counters.
139  *
140  * Please note that the loop is done over all possible CPUs, not over all online
141  * CPUs. The reason for this is that we don't want to play games with CPUs going
142  * on and off. If one of them goes off, we will just keep their counters.
143  *
144  * glommer: See cffbc8a for details, and if you ever intend to change this,
145  * please update all vfs counters to match.
146  */
147 static long get_nr_dentry(void)
148 {
149 	int i;
150 	long sum = 0;
151 	for_each_possible_cpu(i)
152 		sum += per_cpu(nr_dentry, i);
153 	return sum < 0 ? 0 : sum;
154 }
155 
156 static long get_nr_dentry_unused(void)
157 {
158 	int i;
159 	long sum = 0;
160 	for_each_possible_cpu(i)
161 		sum += per_cpu(nr_dentry_unused, i);
162 	return sum < 0 ? 0 : sum;
163 }
164 
165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
166 		   size_t *lenp, loff_t *ppos)
167 {
168 	dentry_stat.nr_dentry = get_nr_dentry();
169 	dentry_stat.nr_unused = get_nr_dentry_unused();
170 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 }
172 #endif
173 
174 /*
175  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176  * The strings are both count bytes long, and count is non-zero.
177  */
178 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 
180 #include <asm/word-at-a-time.h>
181 /*
182  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183  * aligned allocation for this particular component. We don't
184  * strictly need the load_unaligned_zeropad() safety, but it
185  * doesn't hurt either.
186  *
187  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188  * need the careful unaligned handling.
189  */
190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 {
192 	unsigned long a,b,mask;
193 
194 	for (;;) {
195 		a = *(unsigned long *)cs;
196 		b = load_unaligned_zeropad(ct);
197 		if (tcount < sizeof(unsigned long))
198 			break;
199 		if (unlikely(a != b))
200 			return 1;
201 		cs += sizeof(unsigned long);
202 		ct += sizeof(unsigned long);
203 		tcount -= sizeof(unsigned long);
204 		if (!tcount)
205 			return 0;
206 	}
207 	mask = bytemask_from_count(tcount);
208 	return unlikely(!!((a ^ b) & mask));
209 }
210 
211 #else
212 
213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 {
215 	do {
216 		if (*cs != *ct)
217 			return 1;
218 		cs++;
219 		ct++;
220 		tcount--;
221 	} while (tcount);
222 	return 0;
223 }
224 
225 #endif
226 
227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228 {
229 	const unsigned char *cs;
230 	/*
231 	 * Be careful about RCU walk racing with rename:
232 	 * use ACCESS_ONCE to fetch the name pointer.
233 	 *
234 	 * NOTE! Even if a rename will mean that the length
235 	 * was not loaded atomically, we don't care. The
236 	 * RCU walk will check the sequence count eventually,
237 	 * and catch it. And we won't overrun the buffer,
238 	 * because we're reading the name pointer atomically,
239 	 * and a dentry name is guaranteed to be properly
240 	 * terminated with a NUL byte.
241 	 *
242 	 * End result: even if 'len' is wrong, we'll exit
243 	 * early because the data cannot match (there can
244 	 * be no NUL in the ct/tcount data)
245 	 */
246 	cs = ACCESS_ONCE(dentry->d_name.name);
247 	smp_read_barrier_depends();
248 	return dentry_string_cmp(cs, ct, tcount);
249 }
250 
251 struct external_name {
252 	union {
253 		atomic_t count;
254 		struct rcu_head head;
255 	} u;
256 	unsigned char name[];
257 };
258 
259 static inline struct external_name *external_name(struct dentry *dentry)
260 {
261 	return container_of(dentry->d_name.name, struct external_name, name[0]);
262 }
263 
264 static void __d_free(struct rcu_head *head)
265 {
266 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
267 
268 	kmem_cache_free(dentry_cache, dentry);
269 }
270 
271 static void __d_free_external(struct rcu_head *head)
272 {
273 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 	kfree(external_name(dentry));
275 	kmem_cache_free(dentry_cache, dentry);
276 }
277 
278 static inline int dname_external(const struct dentry *dentry)
279 {
280 	return dentry->d_name.name != dentry->d_iname;
281 }
282 
283 static inline void __d_set_inode_and_type(struct dentry *dentry,
284 					  struct inode *inode,
285 					  unsigned type_flags)
286 {
287 	unsigned flags;
288 
289 	dentry->d_inode = inode;
290 	flags = READ_ONCE(dentry->d_flags);
291 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
292 	flags |= type_flags;
293 	WRITE_ONCE(dentry->d_flags, flags);
294 }
295 
296 static inline void __d_clear_type_and_inode(struct dentry *dentry)
297 {
298 	unsigned flags = READ_ONCE(dentry->d_flags);
299 
300 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
301 	WRITE_ONCE(dentry->d_flags, flags);
302 	dentry->d_inode = NULL;
303 }
304 
305 static void dentry_free(struct dentry *dentry)
306 {
307 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
308 	if (unlikely(dname_external(dentry))) {
309 		struct external_name *p = external_name(dentry);
310 		if (likely(atomic_dec_and_test(&p->u.count))) {
311 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
312 			return;
313 		}
314 	}
315 	/* if dentry was never visible to RCU, immediate free is OK */
316 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
317 		__d_free(&dentry->d_u.d_rcu);
318 	else
319 		call_rcu(&dentry->d_u.d_rcu, __d_free);
320 }
321 
322 /**
323  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
324  * @dentry: the target dentry
325  * After this call, in-progress rcu-walk path lookup will fail. This
326  * should be called after unhashing, and after changing d_inode (if
327  * the dentry has not already been unhashed).
328  */
329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
330 {
331 	lockdep_assert_held(&dentry->d_lock);
332 	/* Go through am invalidation barrier */
333 	write_seqcount_invalidate(&dentry->d_seq);
334 }
335 
336 /*
337  * Release the dentry's inode, using the filesystem
338  * d_iput() operation if defined. Dentry has no refcount
339  * and is unhashed.
340  */
341 static void dentry_iput(struct dentry * dentry)
342 	__releases(dentry->d_lock)
343 	__releases(dentry->d_inode->i_lock)
344 {
345 	struct inode *inode = dentry->d_inode;
346 	if (inode) {
347 		__d_clear_type_and_inode(dentry);
348 		hlist_del_init(&dentry->d_u.d_alias);
349 		spin_unlock(&dentry->d_lock);
350 		spin_unlock(&inode->i_lock);
351 		if (!inode->i_nlink)
352 			fsnotify_inoderemove(inode);
353 		if (dentry->d_op && dentry->d_op->d_iput)
354 			dentry->d_op->d_iput(dentry, inode);
355 		else
356 			iput(inode);
357 	} else {
358 		spin_unlock(&dentry->d_lock);
359 	}
360 }
361 
362 /*
363  * Release the dentry's inode, using the filesystem
364  * d_iput() operation if defined. dentry remains in-use.
365  */
366 static void dentry_unlink_inode(struct dentry * dentry)
367 	__releases(dentry->d_lock)
368 	__releases(dentry->d_inode->i_lock)
369 {
370 	struct inode *inode = dentry->d_inode;
371 
372 	raw_write_seqcount_begin(&dentry->d_seq);
373 	__d_clear_type_and_inode(dentry);
374 	hlist_del_init(&dentry->d_u.d_alias);
375 	raw_write_seqcount_end(&dentry->d_seq);
376 	spin_unlock(&dentry->d_lock);
377 	spin_unlock(&inode->i_lock);
378 	if (!inode->i_nlink)
379 		fsnotify_inoderemove(inode);
380 	if (dentry->d_op && dentry->d_op->d_iput)
381 		dentry->d_op->d_iput(dentry, inode);
382 	else
383 		iput(inode);
384 }
385 
386 /*
387  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388  * is in use - which includes both the "real" per-superblock
389  * LRU list _and_ the DCACHE_SHRINK_LIST use.
390  *
391  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392  * on the shrink list (ie not on the superblock LRU list).
393  *
394  * The per-cpu "nr_dentry_unused" counters are updated with
395  * the DCACHE_LRU_LIST bit.
396  *
397  * These helper functions make sure we always follow the
398  * rules. d_lock must be held by the caller.
399  */
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, 0);
404 	dentry->d_flags |= DCACHE_LRU_LIST;
405 	this_cpu_inc(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	list_lru_isolate(lru, &dentry->d_lru);
445 }
446 
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 			      struct list_head *list)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 	dentry->d_flags |= DCACHE_SHRINK_LIST;
452 	list_lru_isolate_move(lru, &dentry->d_lru, list);
453 }
454 
455 /*
456  * dentry_lru_(add|del)_list) must be called with d_lock held.
457  */
458 static void dentry_lru_add(struct dentry *dentry)
459 {
460 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 		d_lru_add(dentry);
462 }
463 
464 /**
465  * d_drop - drop a dentry
466  * @dentry: dentry to drop
467  *
468  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469  * be found through a VFS lookup any more. Note that this is different from
470  * deleting the dentry - d_delete will try to mark the dentry negative if
471  * possible, giving a successful _negative_ lookup, while d_drop will
472  * just make the cache lookup fail.
473  *
474  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475  * reason (NFS timeouts or autofs deletes).
476  *
477  * __d_drop requires dentry->d_lock.
478  */
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		struct hlist_bl_head *b;
483 		/*
484 		 * Hashed dentries are normally on the dentry hashtable,
485 		 * with the exception of those newly allocated by
486 		 * d_obtain_alias, which are always IS_ROOT:
487 		 */
488 		if (unlikely(IS_ROOT(dentry)))
489 			b = &dentry->d_sb->s_anon;
490 		else
491 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
492 
493 		hlist_bl_lock(b);
494 		__hlist_bl_del(&dentry->d_hash);
495 		dentry->d_hash.pprev = NULL;
496 		hlist_bl_unlock(b);
497 		dentry_rcuwalk_invalidate(dentry);
498 	}
499 }
500 EXPORT_SYMBOL(__d_drop);
501 
502 void d_drop(struct dentry *dentry)
503 {
504 	spin_lock(&dentry->d_lock);
505 	__d_drop(dentry);
506 	spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509 
510 static void __dentry_kill(struct dentry *dentry)
511 {
512 	struct dentry *parent = NULL;
513 	bool can_free = true;
514 	if (!IS_ROOT(dentry))
515 		parent = dentry->d_parent;
516 
517 	/*
518 	 * The dentry is now unrecoverably dead to the world.
519 	 */
520 	lockref_mark_dead(&dentry->d_lockref);
521 
522 	/*
523 	 * inform the fs via d_prune that this dentry is about to be
524 	 * unhashed and destroyed.
525 	 */
526 	if (dentry->d_flags & DCACHE_OP_PRUNE)
527 		dentry->d_op->d_prune(dentry);
528 
529 	if (dentry->d_flags & DCACHE_LRU_LIST) {
530 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
531 			d_lru_del(dentry);
532 	}
533 	/* if it was on the hash then remove it */
534 	__d_drop(dentry);
535 	__list_del_entry(&dentry->d_child);
536 	/*
537 	 * Inform d_walk() that we are no longer attached to the
538 	 * dentry tree
539 	 */
540 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
541 	if (parent)
542 		spin_unlock(&parent->d_lock);
543 	dentry_iput(dentry);
544 	/*
545 	 * dentry_iput drops the locks, at which point nobody (except
546 	 * transient RCU lookups) can reach this dentry.
547 	 */
548 	BUG_ON(dentry->d_lockref.count > 0);
549 	this_cpu_dec(nr_dentry);
550 	if (dentry->d_op && dentry->d_op->d_release)
551 		dentry->d_op->d_release(dentry);
552 
553 	spin_lock(&dentry->d_lock);
554 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
555 		dentry->d_flags |= DCACHE_MAY_FREE;
556 		can_free = false;
557 	}
558 	spin_unlock(&dentry->d_lock);
559 	if (likely(can_free))
560 		dentry_free(dentry);
561 }
562 
563 /*
564  * Finish off a dentry we've decided to kill.
565  * dentry->d_lock must be held, returns with it unlocked.
566  * If ref is non-zero, then decrement the refcount too.
567  * Returns dentry requiring refcount drop, or NULL if we're done.
568  */
569 static struct dentry *dentry_kill(struct dentry *dentry)
570 	__releases(dentry->d_lock)
571 {
572 	struct inode *inode = dentry->d_inode;
573 	struct dentry *parent = NULL;
574 
575 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
576 		goto failed;
577 
578 	if (!IS_ROOT(dentry)) {
579 		parent = dentry->d_parent;
580 		if (unlikely(!spin_trylock(&parent->d_lock))) {
581 			if (inode)
582 				spin_unlock(&inode->i_lock);
583 			goto failed;
584 		}
585 	}
586 
587 	__dentry_kill(dentry);
588 	return parent;
589 
590 failed:
591 	spin_unlock(&dentry->d_lock);
592 	cpu_relax();
593 	return dentry; /* try again with same dentry */
594 }
595 
596 static inline struct dentry *lock_parent(struct dentry *dentry)
597 {
598 	struct dentry *parent = dentry->d_parent;
599 	if (IS_ROOT(dentry))
600 		return NULL;
601 	if (unlikely(dentry->d_lockref.count < 0))
602 		return NULL;
603 	if (likely(spin_trylock(&parent->d_lock)))
604 		return parent;
605 	rcu_read_lock();
606 	spin_unlock(&dentry->d_lock);
607 again:
608 	parent = ACCESS_ONCE(dentry->d_parent);
609 	spin_lock(&parent->d_lock);
610 	/*
611 	 * We can't blindly lock dentry until we are sure
612 	 * that we won't violate the locking order.
613 	 * Any changes of dentry->d_parent must have
614 	 * been done with parent->d_lock held, so
615 	 * spin_lock() above is enough of a barrier
616 	 * for checking if it's still our child.
617 	 */
618 	if (unlikely(parent != dentry->d_parent)) {
619 		spin_unlock(&parent->d_lock);
620 		goto again;
621 	}
622 	rcu_read_unlock();
623 	if (parent != dentry)
624 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
625 	else
626 		parent = NULL;
627 	return parent;
628 }
629 
630 /*
631  * Try to do a lockless dput(), and return whether that was successful.
632  *
633  * If unsuccessful, we return false, having already taken the dentry lock.
634  *
635  * The caller needs to hold the RCU read lock, so that the dentry is
636  * guaranteed to stay around even if the refcount goes down to zero!
637  */
638 static inline bool fast_dput(struct dentry *dentry)
639 {
640 	int ret;
641 	unsigned int d_flags;
642 
643 	/*
644 	 * If we have a d_op->d_delete() operation, we sould not
645 	 * let the dentry count go to zero, so use "put_or_lock".
646 	 */
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
648 		return lockref_put_or_lock(&dentry->d_lockref);
649 
650 	/*
651 	 * .. otherwise, we can try to just decrement the
652 	 * lockref optimistically.
653 	 */
654 	ret = lockref_put_return(&dentry->d_lockref);
655 
656 	/*
657 	 * If the lockref_put_return() failed due to the lock being held
658 	 * by somebody else, the fast path has failed. We will need to
659 	 * get the lock, and then check the count again.
660 	 */
661 	if (unlikely(ret < 0)) {
662 		spin_lock(&dentry->d_lock);
663 		if (dentry->d_lockref.count > 1) {
664 			dentry->d_lockref.count--;
665 			spin_unlock(&dentry->d_lock);
666 			return 1;
667 		}
668 		return 0;
669 	}
670 
671 	/*
672 	 * If we weren't the last ref, we're done.
673 	 */
674 	if (ret)
675 		return 1;
676 
677 	/*
678 	 * Careful, careful. The reference count went down
679 	 * to zero, but we don't hold the dentry lock, so
680 	 * somebody else could get it again, and do another
681 	 * dput(), and we need to not race with that.
682 	 *
683 	 * However, there is a very special and common case
684 	 * where we don't care, because there is nothing to
685 	 * do: the dentry is still hashed, it does not have
686 	 * a 'delete' op, and it's referenced and already on
687 	 * the LRU list.
688 	 *
689 	 * NOTE! Since we aren't locked, these values are
690 	 * not "stable". However, it is sufficient that at
691 	 * some point after we dropped the reference the
692 	 * dentry was hashed and the flags had the proper
693 	 * value. Other dentry users may have re-gotten
694 	 * a reference to the dentry and change that, but
695 	 * our work is done - we can leave the dentry
696 	 * around with a zero refcount.
697 	 */
698 	smp_rmb();
699 	d_flags = ACCESS_ONCE(dentry->d_flags);
700 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
701 
702 	/* Nothing to do? Dropping the reference was all we needed? */
703 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
704 		return 1;
705 
706 	/*
707 	 * Not the fast normal case? Get the lock. We've already decremented
708 	 * the refcount, but we'll need to re-check the situation after
709 	 * getting the lock.
710 	 */
711 	spin_lock(&dentry->d_lock);
712 
713 	/*
714 	 * Did somebody else grab a reference to it in the meantime, and
715 	 * we're no longer the last user after all? Alternatively, somebody
716 	 * else could have killed it and marked it dead. Either way, we
717 	 * don't need to do anything else.
718 	 */
719 	if (dentry->d_lockref.count) {
720 		spin_unlock(&dentry->d_lock);
721 		return 1;
722 	}
723 
724 	/*
725 	 * Re-get the reference we optimistically dropped. We hold the
726 	 * lock, and we just tested that it was zero, so we can just
727 	 * set it to 1.
728 	 */
729 	dentry->d_lockref.count = 1;
730 	return 0;
731 }
732 
733 
734 /*
735  * This is dput
736  *
737  * This is complicated by the fact that we do not want to put
738  * dentries that are no longer on any hash chain on the unused
739  * list: we'd much rather just get rid of them immediately.
740  *
741  * However, that implies that we have to traverse the dentry
742  * tree upwards to the parents which might _also_ now be
743  * scheduled for deletion (it may have been only waiting for
744  * its last child to go away).
745  *
746  * This tail recursion is done by hand as we don't want to depend
747  * on the compiler to always get this right (gcc generally doesn't).
748  * Real recursion would eat up our stack space.
749  */
750 
751 /*
752  * dput - release a dentry
753  * @dentry: dentry to release
754  *
755  * Release a dentry. This will drop the usage count and if appropriate
756  * call the dentry unlink method as well as removing it from the queues and
757  * releasing its resources. If the parent dentries were scheduled for release
758  * they too may now get deleted.
759  */
760 void dput(struct dentry *dentry)
761 {
762 	if (unlikely(!dentry))
763 		return;
764 
765 repeat:
766 	rcu_read_lock();
767 	if (likely(fast_dput(dentry))) {
768 		rcu_read_unlock();
769 		return;
770 	}
771 
772 	/* Slow case: now with the dentry lock held */
773 	rcu_read_unlock();
774 
775 	WARN_ON(d_in_lookup(dentry));
776 
777 	/* Unreachable? Get rid of it */
778 	if (unlikely(d_unhashed(dentry)))
779 		goto kill_it;
780 
781 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
782 		goto kill_it;
783 
784 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
785 		if (dentry->d_op->d_delete(dentry))
786 			goto kill_it;
787 	}
788 
789 	if (!(dentry->d_flags & DCACHE_REFERENCED))
790 		dentry->d_flags |= DCACHE_REFERENCED;
791 	dentry_lru_add(dentry);
792 
793 	dentry->d_lockref.count--;
794 	spin_unlock(&dentry->d_lock);
795 	return;
796 
797 kill_it:
798 	dentry = dentry_kill(dentry);
799 	if (dentry)
800 		goto repeat;
801 }
802 EXPORT_SYMBOL(dput);
803 
804 
805 /* This must be called with d_lock held */
806 static inline void __dget_dlock(struct dentry *dentry)
807 {
808 	dentry->d_lockref.count++;
809 }
810 
811 static inline void __dget(struct dentry *dentry)
812 {
813 	lockref_get(&dentry->d_lockref);
814 }
815 
816 struct dentry *dget_parent(struct dentry *dentry)
817 {
818 	int gotref;
819 	struct dentry *ret;
820 
821 	/*
822 	 * Do optimistic parent lookup without any
823 	 * locking.
824 	 */
825 	rcu_read_lock();
826 	ret = ACCESS_ONCE(dentry->d_parent);
827 	gotref = lockref_get_not_zero(&ret->d_lockref);
828 	rcu_read_unlock();
829 	if (likely(gotref)) {
830 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
831 			return ret;
832 		dput(ret);
833 	}
834 
835 repeat:
836 	/*
837 	 * Don't need rcu_dereference because we re-check it was correct under
838 	 * the lock.
839 	 */
840 	rcu_read_lock();
841 	ret = dentry->d_parent;
842 	spin_lock(&ret->d_lock);
843 	if (unlikely(ret != dentry->d_parent)) {
844 		spin_unlock(&ret->d_lock);
845 		rcu_read_unlock();
846 		goto repeat;
847 	}
848 	rcu_read_unlock();
849 	BUG_ON(!ret->d_lockref.count);
850 	ret->d_lockref.count++;
851 	spin_unlock(&ret->d_lock);
852 	return ret;
853 }
854 EXPORT_SYMBOL(dget_parent);
855 
856 /**
857  * d_find_alias - grab a hashed alias of inode
858  * @inode: inode in question
859  *
860  * If inode has a hashed alias, or is a directory and has any alias,
861  * acquire the reference to alias and return it. Otherwise return NULL.
862  * Notice that if inode is a directory there can be only one alias and
863  * it can be unhashed only if it has no children, or if it is the root
864  * of a filesystem, or if the directory was renamed and d_revalidate
865  * was the first vfs operation to notice.
866  *
867  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
868  * any other hashed alias over that one.
869  */
870 static struct dentry *__d_find_alias(struct inode *inode)
871 {
872 	struct dentry *alias, *discon_alias;
873 
874 again:
875 	discon_alias = NULL;
876 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
877 		spin_lock(&alias->d_lock);
878  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
879 			if (IS_ROOT(alias) &&
880 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
881 				discon_alias = alias;
882 			} else {
883 				__dget_dlock(alias);
884 				spin_unlock(&alias->d_lock);
885 				return alias;
886 			}
887 		}
888 		spin_unlock(&alias->d_lock);
889 	}
890 	if (discon_alias) {
891 		alias = discon_alias;
892 		spin_lock(&alias->d_lock);
893 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
894 			__dget_dlock(alias);
895 			spin_unlock(&alias->d_lock);
896 			return alias;
897 		}
898 		spin_unlock(&alias->d_lock);
899 		goto again;
900 	}
901 	return NULL;
902 }
903 
904 struct dentry *d_find_alias(struct inode *inode)
905 {
906 	struct dentry *de = NULL;
907 
908 	if (!hlist_empty(&inode->i_dentry)) {
909 		spin_lock(&inode->i_lock);
910 		de = __d_find_alias(inode);
911 		spin_unlock(&inode->i_lock);
912 	}
913 	return de;
914 }
915 EXPORT_SYMBOL(d_find_alias);
916 
917 /*
918  *	Try to kill dentries associated with this inode.
919  * WARNING: you must own a reference to inode.
920  */
921 void d_prune_aliases(struct inode *inode)
922 {
923 	struct dentry *dentry;
924 restart:
925 	spin_lock(&inode->i_lock);
926 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
927 		spin_lock(&dentry->d_lock);
928 		if (!dentry->d_lockref.count) {
929 			struct dentry *parent = lock_parent(dentry);
930 			if (likely(!dentry->d_lockref.count)) {
931 				__dentry_kill(dentry);
932 				dput(parent);
933 				goto restart;
934 			}
935 			if (parent)
936 				spin_unlock(&parent->d_lock);
937 		}
938 		spin_unlock(&dentry->d_lock);
939 	}
940 	spin_unlock(&inode->i_lock);
941 }
942 EXPORT_SYMBOL(d_prune_aliases);
943 
944 static void shrink_dentry_list(struct list_head *list)
945 {
946 	struct dentry *dentry, *parent;
947 
948 	while (!list_empty(list)) {
949 		struct inode *inode;
950 		dentry = list_entry(list->prev, struct dentry, d_lru);
951 		spin_lock(&dentry->d_lock);
952 		parent = lock_parent(dentry);
953 
954 		/*
955 		 * The dispose list is isolated and dentries are not accounted
956 		 * to the LRU here, so we can simply remove it from the list
957 		 * here regardless of whether it is referenced or not.
958 		 */
959 		d_shrink_del(dentry);
960 
961 		/*
962 		 * We found an inuse dentry which was not removed from
963 		 * the LRU because of laziness during lookup. Do not free it.
964 		 */
965 		if (dentry->d_lockref.count > 0) {
966 			spin_unlock(&dentry->d_lock);
967 			if (parent)
968 				spin_unlock(&parent->d_lock);
969 			continue;
970 		}
971 
972 
973 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
974 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
975 			spin_unlock(&dentry->d_lock);
976 			if (parent)
977 				spin_unlock(&parent->d_lock);
978 			if (can_free)
979 				dentry_free(dentry);
980 			continue;
981 		}
982 
983 		inode = dentry->d_inode;
984 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
985 			d_shrink_add(dentry, list);
986 			spin_unlock(&dentry->d_lock);
987 			if (parent)
988 				spin_unlock(&parent->d_lock);
989 			continue;
990 		}
991 
992 		__dentry_kill(dentry);
993 
994 		/*
995 		 * We need to prune ancestors too. This is necessary to prevent
996 		 * quadratic behavior of shrink_dcache_parent(), but is also
997 		 * expected to be beneficial in reducing dentry cache
998 		 * fragmentation.
999 		 */
1000 		dentry = parent;
1001 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1002 			parent = lock_parent(dentry);
1003 			if (dentry->d_lockref.count != 1) {
1004 				dentry->d_lockref.count--;
1005 				spin_unlock(&dentry->d_lock);
1006 				if (parent)
1007 					spin_unlock(&parent->d_lock);
1008 				break;
1009 			}
1010 			inode = dentry->d_inode;	/* can't be NULL */
1011 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1012 				spin_unlock(&dentry->d_lock);
1013 				if (parent)
1014 					spin_unlock(&parent->d_lock);
1015 				cpu_relax();
1016 				continue;
1017 			}
1018 			__dentry_kill(dentry);
1019 			dentry = parent;
1020 		}
1021 	}
1022 }
1023 
1024 static enum lru_status dentry_lru_isolate(struct list_head *item,
1025 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1026 {
1027 	struct list_head *freeable = arg;
1028 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1029 
1030 
1031 	/*
1032 	 * we are inverting the lru lock/dentry->d_lock here,
1033 	 * so use a trylock. If we fail to get the lock, just skip
1034 	 * it
1035 	 */
1036 	if (!spin_trylock(&dentry->d_lock))
1037 		return LRU_SKIP;
1038 
1039 	/*
1040 	 * Referenced dentries are still in use. If they have active
1041 	 * counts, just remove them from the LRU. Otherwise give them
1042 	 * another pass through the LRU.
1043 	 */
1044 	if (dentry->d_lockref.count) {
1045 		d_lru_isolate(lru, dentry);
1046 		spin_unlock(&dentry->d_lock);
1047 		return LRU_REMOVED;
1048 	}
1049 
1050 	if (dentry->d_flags & DCACHE_REFERENCED) {
1051 		dentry->d_flags &= ~DCACHE_REFERENCED;
1052 		spin_unlock(&dentry->d_lock);
1053 
1054 		/*
1055 		 * The list move itself will be made by the common LRU code. At
1056 		 * this point, we've dropped the dentry->d_lock but keep the
1057 		 * lru lock. This is safe to do, since every list movement is
1058 		 * protected by the lru lock even if both locks are held.
1059 		 *
1060 		 * This is guaranteed by the fact that all LRU management
1061 		 * functions are intermediated by the LRU API calls like
1062 		 * list_lru_add and list_lru_del. List movement in this file
1063 		 * only ever occur through this functions or through callbacks
1064 		 * like this one, that are called from the LRU API.
1065 		 *
1066 		 * The only exceptions to this are functions like
1067 		 * shrink_dentry_list, and code that first checks for the
1068 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1069 		 * operating only with stack provided lists after they are
1070 		 * properly isolated from the main list.  It is thus, always a
1071 		 * local access.
1072 		 */
1073 		return LRU_ROTATE;
1074 	}
1075 
1076 	d_lru_shrink_move(lru, dentry, freeable);
1077 	spin_unlock(&dentry->d_lock);
1078 
1079 	return LRU_REMOVED;
1080 }
1081 
1082 /**
1083  * prune_dcache_sb - shrink the dcache
1084  * @sb: superblock
1085  * @sc: shrink control, passed to list_lru_shrink_walk()
1086  *
1087  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1088  * is done when we need more memory and called from the superblock shrinker
1089  * function.
1090  *
1091  * This function may fail to free any resources if all the dentries are in
1092  * use.
1093  */
1094 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1095 {
1096 	LIST_HEAD(dispose);
1097 	long freed;
1098 
1099 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1100 				     dentry_lru_isolate, &dispose);
1101 	shrink_dentry_list(&dispose);
1102 	return freed;
1103 }
1104 
1105 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1106 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1107 {
1108 	struct list_head *freeable = arg;
1109 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1110 
1111 	/*
1112 	 * we are inverting the lru lock/dentry->d_lock here,
1113 	 * so use a trylock. If we fail to get the lock, just skip
1114 	 * it
1115 	 */
1116 	if (!spin_trylock(&dentry->d_lock))
1117 		return LRU_SKIP;
1118 
1119 	d_lru_shrink_move(lru, dentry, freeable);
1120 	spin_unlock(&dentry->d_lock);
1121 
1122 	return LRU_REMOVED;
1123 }
1124 
1125 
1126 /**
1127  * shrink_dcache_sb - shrink dcache for a superblock
1128  * @sb: superblock
1129  *
1130  * Shrink the dcache for the specified super block. This is used to free
1131  * the dcache before unmounting a file system.
1132  */
1133 void shrink_dcache_sb(struct super_block *sb)
1134 {
1135 	long freed;
1136 
1137 	do {
1138 		LIST_HEAD(dispose);
1139 
1140 		freed = list_lru_walk(&sb->s_dentry_lru,
1141 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1142 
1143 		this_cpu_sub(nr_dentry_unused, freed);
1144 		shrink_dentry_list(&dispose);
1145 	} while (freed > 0);
1146 }
1147 EXPORT_SYMBOL(shrink_dcache_sb);
1148 
1149 /**
1150  * enum d_walk_ret - action to talke during tree walk
1151  * @D_WALK_CONTINUE:	contrinue walk
1152  * @D_WALK_QUIT:	quit walk
1153  * @D_WALK_NORETRY:	quit when retry is needed
1154  * @D_WALK_SKIP:	skip this dentry and its children
1155  */
1156 enum d_walk_ret {
1157 	D_WALK_CONTINUE,
1158 	D_WALK_QUIT,
1159 	D_WALK_NORETRY,
1160 	D_WALK_SKIP,
1161 };
1162 
1163 /**
1164  * d_walk - walk the dentry tree
1165  * @parent:	start of walk
1166  * @data:	data passed to @enter() and @finish()
1167  * @enter:	callback when first entering the dentry
1168  * @finish:	callback when successfully finished the walk
1169  *
1170  * The @enter() and @finish() callbacks are called with d_lock held.
1171  */
1172 static void d_walk(struct dentry *parent, void *data,
1173 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1174 		   void (*finish)(void *))
1175 {
1176 	struct dentry *this_parent;
1177 	struct list_head *next;
1178 	unsigned seq = 0;
1179 	enum d_walk_ret ret;
1180 	bool retry = true;
1181 
1182 again:
1183 	read_seqbegin_or_lock(&rename_lock, &seq);
1184 	this_parent = parent;
1185 	spin_lock(&this_parent->d_lock);
1186 
1187 	ret = enter(data, this_parent);
1188 	switch (ret) {
1189 	case D_WALK_CONTINUE:
1190 		break;
1191 	case D_WALK_QUIT:
1192 	case D_WALK_SKIP:
1193 		goto out_unlock;
1194 	case D_WALK_NORETRY:
1195 		retry = false;
1196 		break;
1197 	}
1198 repeat:
1199 	next = this_parent->d_subdirs.next;
1200 resume:
1201 	while (next != &this_parent->d_subdirs) {
1202 		struct list_head *tmp = next;
1203 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1204 		next = tmp->next;
1205 
1206 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1207 
1208 		ret = enter(data, dentry);
1209 		switch (ret) {
1210 		case D_WALK_CONTINUE:
1211 			break;
1212 		case D_WALK_QUIT:
1213 			spin_unlock(&dentry->d_lock);
1214 			goto out_unlock;
1215 		case D_WALK_NORETRY:
1216 			retry = false;
1217 			break;
1218 		case D_WALK_SKIP:
1219 			spin_unlock(&dentry->d_lock);
1220 			continue;
1221 		}
1222 
1223 		if (!list_empty(&dentry->d_subdirs)) {
1224 			spin_unlock(&this_parent->d_lock);
1225 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1226 			this_parent = dentry;
1227 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1228 			goto repeat;
1229 		}
1230 		spin_unlock(&dentry->d_lock);
1231 	}
1232 	/*
1233 	 * All done at this level ... ascend and resume the search.
1234 	 */
1235 	rcu_read_lock();
1236 ascend:
1237 	if (this_parent != parent) {
1238 		struct dentry *child = this_parent;
1239 		this_parent = child->d_parent;
1240 
1241 		spin_unlock(&child->d_lock);
1242 		spin_lock(&this_parent->d_lock);
1243 
1244 		/* might go back up the wrong parent if we have had a rename. */
1245 		if (need_seqretry(&rename_lock, seq))
1246 			goto rename_retry;
1247 		/* go into the first sibling still alive */
1248 		do {
1249 			next = child->d_child.next;
1250 			if (next == &this_parent->d_subdirs)
1251 				goto ascend;
1252 			child = list_entry(next, struct dentry, d_child);
1253 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1254 		rcu_read_unlock();
1255 		goto resume;
1256 	}
1257 	if (need_seqretry(&rename_lock, seq))
1258 		goto rename_retry;
1259 	rcu_read_unlock();
1260 	if (finish)
1261 		finish(data);
1262 
1263 out_unlock:
1264 	spin_unlock(&this_parent->d_lock);
1265 	done_seqretry(&rename_lock, seq);
1266 	return;
1267 
1268 rename_retry:
1269 	spin_unlock(&this_parent->d_lock);
1270 	rcu_read_unlock();
1271 	BUG_ON(seq & 1);
1272 	if (!retry)
1273 		return;
1274 	seq = 1;
1275 	goto again;
1276 }
1277 
1278 /*
1279  * Search for at least 1 mount point in the dentry's subdirs.
1280  * We descend to the next level whenever the d_subdirs
1281  * list is non-empty and continue searching.
1282  */
1283 
1284 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1285 {
1286 	int *ret = data;
1287 	if (d_mountpoint(dentry)) {
1288 		*ret = 1;
1289 		return D_WALK_QUIT;
1290 	}
1291 	return D_WALK_CONTINUE;
1292 }
1293 
1294 /**
1295  * have_submounts - check for mounts over a dentry
1296  * @parent: dentry to check.
1297  *
1298  * Return true if the parent or its subdirectories contain
1299  * a mount point
1300  */
1301 int have_submounts(struct dentry *parent)
1302 {
1303 	int ret = 0;
1304 
1305 	d_walk(parent, &ret, check_mount, NULL);
1306 
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL(have_submounts);
1310 
1311 /*
1312  * Called by mount code to set a mountpoint and check if the mountpoint is
1313  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1314  * subtree can become unreachable).
1315  *
1316  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1317  * this reason take rename_lock and d_lock on dentry and ancestors.
1318  */
1319 int d_set_mounted(struct dentry *dentry)
1320 {
1321 	struct dentry *p;
1322 	int ret = -ENOENT;
1323 	write_seqlock(&rename_lock);
1324 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1325 		/* Need exclusion wrt. d_invalidate() */
1326 		spin_lock(&p->d_lock);
1327 		if (unlikely(d_unhashed(p))) {
1328 			spin_unlock(&p->d_lock);
1329 			goto out;
1330 		}
1331 		spin_unlock(&p->d_lock);
1332 	}
1333 	spin_lock(&dentry->d_lock);
1334 	if (!d_unlinked(dentry)) {
1335 		dentry->d_flags |= DCACHE_MOUNTED;
1336 		ret = 0;
1337 	}
1338  	spin_unlock(&dentry->d_lock);
1339 out:
1340 	write_sequnlock(&rename_lock);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Search the dentry child list of the specified parent,
1346  * and move any unused dentries to the end of the unused
1347  * list for prune_dcache(). We descend to the next level
1348  * whenever the d_subdirs list is non-empty and continue
1349  * searching.
1350  *
1351  * It returns zero iff there are no unused children,
1352  * otherwise  it returns the number of children moved to
1353  * the end of the unused list. This may not be the total
1354  * number of unused children, because select_parent can
1355  * drop the lock and return early due to latency
1356  * constraints.
1357  */
1358 
1359 struct select_data {
1360 	struct dentry *start;
1361 	struct list_head dispose;
1362 	int found;
1363 };
1364 
1365 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1366 {
1367 	struct select_data *data = _data;
1368 	enum d_walk_ret ret = D_WALK_CONTINUE;
1369 
1370 	if (data->start == dentry)
1371 		goto out;
1372 
1373 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1374 		data->found++;
1375 	} else {
1376 		if (dentry->d_flags & DCACHE_LRU_LIST)
1377 			d_lru_del(dentry);
1378 		if (!dentry->d_lockref.count) {
1379 			d_shrink_add(dentry, &data->dispose);
1380 			data->found++;
1381 		}
1382 	}
1383 	/*
1384 	 * We can return to the caller if we have found some (this
1385 	 * ensures forward progress). We'll be coming back to find
1386 	 * the rest.
1387 	 */
1388 	if (!list_empty(&data->dispose))
1389 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1390 out:
1391 	return ret;
1392 }
1393 
1394 /**
1395  * shrink_dcache_parent - prune dcache
1396  * @parent: parent of entries to prune
1397  *
1398  * Prune the dcache to remove unused children of the parent dentry.
1399  */
1400 void shrink_dcache_parent(struct dentry *parent)
1401 {
1402 	for (;;) {
1403 		struct select_data data;
1404 
1405 		INIT_LIST_HEAD(&data.dispose);
1406 		data.start = parent;
1407 		data.found = 0;
1408 
1409 		d_walk(parent, &data, select_collect, NULL);
1410 		if (!data.found)
1411 			break;
1412 
1413 		shrink_dentry_list(&data.dispose);
1414 		cond_resched();
1415 	}
1416 }
1417 EXPORT_SYMBOL(shrink_dcache_parent);
1418 
1419 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1420 {
1421 	/* it has busy descendents; complain about those instead */
1422 	if (!list_empty(&dentry->d_subdirs))
1423 		return D_WALK_CONTINUE;
1424 
1425 	/* root with refcount 1 is fine */
1426 	if (dentry == _data && dentry->d_lockref.count == 1)
1427 		return D_WALK_CONTINUE;
1428 
1429 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1430 			" still in use (%d) [unmount of %s %s]\n",
1431 		       dentry,
1432 		       dentry->d_inode ?
1433 		       dentry->d_inode->i_ino : 0UL,
1434 		       dentry,
1435 		       dentry->d_lockref.count,
1436 		       dentry->d_sb->s_type->name,
1437 		       dentry->d_sb->s_id);
1438 	WARN_ON(1);
1439 	return D_WALK_CONTINUE;
1440 }
1441 
1442 static void do_one_tree(struct dentry *dentry)
1443 {
1444 	shrink_dcache_parent(dentry);
1445 	d_walk(dentry, dentry, umount_check, NULL);
1446 	d_drop(dentry);
1447 	dput(dentry);
1448 }
1449 
1450 /*
1451  * destroy the dentries attached to a superblock on unmounting
1452  */
1453 void shrink_dcache_for_umount(struct super_block *sb)
1454 {
1455 	struct dentry *dentry;
1456 
1457 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1458 
1459 	dentry = sb->s_root;
1460 	sb->s_root = NULL;
1461 	do_one_tree(dentry);
1462 
1463 	while (!hlist_bl_empty(&sb->s_anon)) {
1464 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1465 		do_one_tree(dentry);
1466 	}
1467 }
1468 
1469 struct detach_data {
1470 	struct select_data select;
1471 	struct dentry *mountpoint;
1472 };
1473 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1474 {
1475 	struct detach_data *data = _data;
1476 
1477 	if (d_mountpoint(dentry)) {
1478 		__dget_dlock(dentry);
1479 		data->mountpoint = dentry;
1480 		return D_WALK_QUIT;
1481 	}
1482 
1483 	return select_collect(&data->select, dentry);
1484 }
1485 
1486 static void check_and_drop(void *_data)
1487 {
1488 	struct detach_data *data = _data;
1489 
1490 	if (!data->mountpoint && !data->select.found)
1491 		__d_drop(data->select.start);
1492 }
1493 
1494 /**
1495  * d_invalidate - detach submounts, prune dcache, and drop
1496  * @dentry: dentry to invalidate (aka detach, prune and drop)
1497  *
1498  * no dcache lock.
1499  *
1500  * The final d_drop is done as an atomic operation relative to
1501  * rename_lock ensuring there are no races with d_set_mounted.  This
1502  * ensures there are no unhashed dentries on the path to a mountpoint.
1503  */
1504 void d_invalidate(struct dentry *dentry)
1505 {
1506 	/*
1507 	 * If it's already been dropped, return OK.
1508 	 */
1509 	spin_lock(&dentry->d_lock);
1510 	if (d_unhashed(dentry)) {
1511 		spin_unlock(&dentry->d_lock);
1512 		return;
1513 	}
1514 	spin_unlock(&dentry->d_lock);
1515 
1516 	/* Negative dentries can be dropped without further checks */
1517 	if (!dentry->d_inode) {
1518 		d_drop(dentry);
1519 		return;
1520 	}
1521 
1522 	for (;;) {
1523 		struct detach_data data;
1524 
1525 		data.mountpoint = NULL;
1526 		INIT_LIST_HEAD(&data.select.dispose);
1527 		data.select.start = dentry;
1528 		data.select.found = 0;
1529 
1530 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1531 
1532 		if (data.select.found)
1533 			shrink_dentry_list(&data.select.dispose);
1534 
1535 		if (data.mountpoint) {
1536 			detach_mounts(data.mountpoint);
1537 			dput(data.mountpoint);
1538 		}
1539 
1540 		if (!data.mountpoint && !data.select.found)
1541 			break;
1542 
1543 		cond_resched();
1544 	}
1545 }
1546 EXPORT_SYMBOL(d_invalidate);
1547 
1548 /**
1549  * __d_alloc	-	allocate a dcache entry
1550  * @sb: filesystem it will belong to
1551  * @name: qstr of the name
1552  *
1553  * Allocates a dentry. It returns %NULL if there is insufficient memory
1554  * available. On a success the dentry is returned. The name passed in is
1555  * copied and the copy passed in may be reused after this call.
1556  */
1557 
1558 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1559 {
1560 	struct dentry *dentry;
1561 	char *dname;
1562 
1563 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1564 	if (!dentry)
1565 		return NULL;
1566 
1567 	/*
1568 	 * We guarantee that the inline name is always NUL-terminated.
1569 	 * This way the memcpy() done by the name switching in rename
1570 	 * will still always have a NUL at the end, even if we might
1571 	 * be overwriting an internal NUL character
1572 	 */
1573 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1574 	if (unlikely(!name)) {
1575 		static const struct qstr anon = QSTR_INIT("/", 1);
1576 		name = &anon;
1577 		dname = dentry->d_iname;
1578 	} else if (name->len > DNAME_INLINE_LEN-1) {
1579 		size_t size = offsetof(struct external_name, name[1]);
1580 		struct external_name *p = kmalloc(size + name->len,
1581 						  GFP_KERNEL_ACCOUNT);
1582 		if (!p) {
1583 			kmem_cache_free(dentry_cache, dentry);
1584 			return NULL;
1585 		}
1586 		atomic_set(&p->u.count, 1);
1587 		dname = p->name;
1588 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1589 			kasan_unpoison_shadow(dname,
1590 				round_up(name->len + 1,	sizeof(unsigned long)));
1591 	} else  {
1592 		dname = dentry->d_iname;
1593 	}
1594 
1595 	dentry->d_name.len = name->len;
1596 	dentry->d_name.hash = name->hash;
1597 	memcpy(dname, name->name, name->len);
1598 	dname[name->len] = 0;
1599 
1600 	/* Make sure we always see the terminating NUL character */
1601 	smp_wmb();
1602 	dentry->d_name.name = dname;
1603 
1604 	dentry->d_lockref.count = 1;
1605 	dentry->d_flags = 0;
1606 	spin_lock_init(&dentry->d_lock);
1607 	seqcount_init(&dentry->d_seq);
1608 	dentry->d_inode = NULL;
1609 	dentry->d_parent = dentry;
1610 	dentry->d_sb = sb;
1611 	dentry->d_op = NULL;
1612 	dentry->d_fsdata = NULL;
1613 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1614 	INIT_LIST_HEAD(&dentry->d_lru);
1615 	INIT_LIST_HEAD(&dentry->d_subdirs);
1616 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1617 	INIT_LIST_HEAD(&dentry->d_child);
1618 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1619 
1620 	this_cpu_inc(nr_dentry);
1621 
1622 	return dentry;
1623 }
1624 
1625 /**
1626  * d_alloc	-	allocate a dcache entry
1627  * @parent: parent of entry to allocate
1628  * @name: qstr of the name
1629  *
1630  * Allocates a dentry. It returns %NULL if there is insufficient memory
1631  * available. On a success the dentry is returned. The name passed in is
1632  * copied and the copy passed in may be reused after this call.
1633  */
1634 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1635 {
1636 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1637 	if (!dentry)
1638 		return NULL;
1639 
1640 	spin_lock(&parent->d_lock);
1641 	/*
1642 	 * don't need child lock because it is not subject
1643 	 * to concurrency here
1644 	 */
1645 	__dget_dlock(parent);
1646 	dentry->d_parent = parent;
1647 	list_add(&dentry->d_child, &parent->d_subdirs);
1648 	spin_unlock(&parent->d_lock);
1649 
1650 	return dentry;
1651 }
1652 EXPORT_SYMBOL(d_alloc);
1653 
1654 /**
1655  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1656  * @sb: the superblock
1657  * @name: qstr of the name
1658  *
1659  * For a filesystem that just pins its dentries in memory and never
1660  * performs lookups at all, return an unhashed IS_ROOT dentry.
1661  */
1662 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1663 {
1664 	return __d_alloc(sb, name);
1665 }
1666 EXPORT_SYMBOL(d_alloc_pseudo);
1667 
1668 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1669 {
1670 	struct qstr q;
1671 
1672 	q.name = name;
1673 	q.hash_len = hashlen_string(name);
1674 	return d_alloc(parent, &q);
1675 }
1676 EXPORT_SYMBOL(d_alloc_name);
1677 
1678 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1679 {
1680 	WARN_ON_ONCE(dentry->d_op);
1681 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1682 				DCACHE_OP_COMPARE	|
1683 				DCACHE_OP_REVALIDATE	|
1684 				DCACHE_OP_WEAK_REVALIDATE	|
1685 				DCACHE_OP_DELETE	|
1686 				DCACHE_OP_SELECT_INODE	|
1687 				DCACHE_OP_REAL));
1688 	dentry->d_op = op;
1689 	if (!op)
1690 		return;
1691 	if (op->d_hash)
1692 		dentry->d_flags |= DCACHE_OP_HASH;
1693 	if (op->d_compare)
1694 		dentry->d_flags |= DCACHE_OP_COMPARE;
1695 	if (op->d_revalidate)
1696 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1697 	if (op->d_weak_revalidate)
1698 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1699 	if (op->d_delete)
1700 		dentry->d_flags |= DCACHE_OP_DELETE;
1701 	if (op->d_prune)
1702 		dentry->d_flags |= DCACHE_OP_PRUNE;
1703 	if (op->d_select_inode)
1704 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1705 	if (op->d_real)
1706 		dentry->d_flags |= DCACHE_OP_REAL;
1707 
1708 }
1709 EXPORT_SYMBOL(d_set_d_op);
1710 
1711 
1712 /*
1713  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1714  * @dentry - The dentry to mark
1715  *
1716  * Mark a dentry as falling through to the lower layer (as set with
1717  * d_pin_lower()).  This flag may be recorded on the medium.
1718  */
1719 void d_set_fallthru(struct dentry *dentry)
1720 {
1721 	spin_lock(&dentry->d_lock);
1722 	dentry->d_flags |= DCACHE_FALLTHRU;
1723 	spin_unlock(&dentry->d_lock);
1724 }
1725 EXPORT_SYMBOL(d_set_fallthru);
1726 
1727 static unsigned d_flags_for_inode(struct inode *inode)
1728 {
1729 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1730 
1731 	if (!inode)
1732 		return DCACHE_MISS_TYPE;
1733 
1734 	if (S_ISDIR(inode->i_mode)) {
1735 		add_flags = DCACHE_DIRECTORY_TYPE;
1736 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1737 			if (unlikely(!inode->i_op->lookup))
1738 				add_flags = DCACHE_AUTODIR_TYPE;
1739 			else
1740 				inode->i_opflags |= IOP_LOOKUP;
1741 		}
1742 		goto type_determined;
1743 	}
1744 
1745 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1746 		if (unlikely(inode->i_op->get_link)) {
1747 			add_flags = DCACHE_SYMLINK_TYPE;
1748 			goto type_determined;
1749 		}
1750 		inode->i_opflags |= IOP_NOFOLLOW;
1751 	}
1752 
1753 	if (unlikely(!S_ISREG(inode->i_mode)))
1754 		add_flags = DCACHE_SPECIAL_TYPE;
1755 
1756 type_determined:
1757 	if (unlikely(IS_AUTOMOUNT(inode)))
1758 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1759 	return add_flags;
1760 }
1761 
1762 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1763 {
1764 	unsigned add_flags = d_flags_for_inode(inode);
1765 	WARN_ON(d_in_lookup(dentry));
1766 
1767 	spin_lock(&dentry->d_lock);
1768 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1769 	raw_write_seqcount_begin(&dentry->d_seq);
1770 	__d_set_inode_and_type(dentry, inode, add_flags);
1771 	raw_write_seqcount_end(&dentry->d_seq);
1772 	__fsnotify_d_instantiate(dentry);
1773 	spin_unlock(&dentry->d_lock);
1774 }
1775 
1776 /**
1777  * d_instantiate - fill in inode information for a dentry
1778  * @entry: dentry to complete
1779  * @inode: inode to attach to this dentry
1780  *
1781  * Fill in inode information in the entry.
1782  *
1783  * This turns negative dentries into productive full members
1784  * of society.
1785  *
1786  * NOTE! This assumes that the inode count has been incremented
1787  * (or otherwise set) by the caller to indicate that it is now
1788  * in use by the dcache.
1789  */
1790 
1791 void d_instantiate(struct dentry *entry, struct inode * inode)
1792 {
1793 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1794 	if (inode) {
1795 		security_d_instantiate(entry, inode);
1796 		spin_lock(&inode->i_lock);
1797 		__d_instantiate(entry, inode);
1798 		spin_unlock(&inode->i_lock);
1799 	}
1800 }
1801 EXPORT_SYMBOL(d_instantiate);
1802 
1803 /**
1804  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1805  * @entry: dentry to complete
1806  * @inode: inode to attach to this dentry
1807  *
1808  * Fill in inode information in the entry.  If a directory alias is found, then
1809  * return an error (and drop inode).  Together with d_materialise_unique() this
1810  * guarantees that a directory inode may never have more than one alias.
1811  */
1812 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1813 {
1814 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1815 
1816 	security_d_instantiate(entry, inode);
1817 	spin_lock(&inode->i_lock);
1818 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1819 		spin_unlock(&inode->i_lock);
1820 		iput(inode);
1821 		return -EBUSY;
1822 	}
1823 	__d_instantiate(entry, inode);
1824 	spin_unlock(&inode->i_lock);
1825 
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(d_instantiate_no_diralias);
1829 
1830 struct dentry *d_make_root(struct inode *root_inode)
1831 {
1832 	struct dentry *res = NULL;
1833 
1834 	if (root_inode) {
1835 		res = __d_alloc(root_inode->i_sb, NULL);
1836 		if (res)
1837 			d_instantiate(res, root_inode);
1838 		else
1839 			iput(root_inode);
1840 	}
1841 	return res;
1842 }
1843 EXPORT_SYMBOL(d_make_root);
1844 
1845 static struct dentry * __d_find_any_alias(struct inode *inode)
1846 {
1847 	struct dentry *alias;
1848 
1849 	if (hlist_empty(&inode->i_dentry))
1850 		return NULL;
1851 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1852 	__dget(alias);
1853 	return alias;
1854 }
1855 
1856 /**
1857  * d_find_any_alias - find any alias for a given inode
1858  * @inode: inode to find an alias for
1859  *
1860  * If any aliases exist for the given inode, take and return a
1861  * reference for one of them.  If no aliases exist, return %NULL.
1862  */
1863 struct dentry *d_find_any_alias(struct inode *inode)
1864 {
1865 	struct dentry *de;
1866 
1867 	spin_lock(&inode->i_lock);
1868 	de = __d_find_any_alias(inode);
1869 	spin_unlock(&inode->i_lock);
1870 	return de;
1871 }
1872 EXPORT_SYMBOL(d_find_any_alias);
1873 
1874 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1875 {
1876 	struct dentry *tmp;
1877 	struct dentry *res;
1878 	unsigned add_flags;
1879 
1880 	if (!inode)
1881 		return ERR_PTR(-ESTALE);
1882 	if (IS_ERR(inode))
1883 		return ERR_CAST(inode);
1884 
1885 	res = d_find_any_alias(inode);
1886 	if (res)
1887 		goto out_iput;
1888 
1889 	tmp = __d_alloc(inode->i_sb, NULL);
1890 	if (!tmp) {
1891 		res = ERR_PTR(-ENOMEM);
1892 		goto out_iput;
1893 	}
1894 
1895 	security_d_instantiate(tmp, inode);
1896 	spin_lock(&inode->i_lock);
1897 	res = __d_find_any_alias(inode);
1898 	if (res) {
1899 		spin_unlock(&inode->i_lock);
1900 		dput(tmp);
1901 		goto out_iput;
1902 	}
1903 
1904 	/* attach a disconnected dentry */
1905 	add_flags = d_flags_for_inode(inode);
1906 
1907 	if (disconnected)
1908 		add_flags |= DCACHE_DISCONNECTED;
1909 
1910 	spin_lock(&tmp->d_lock);
1911 	__d_set_inode_and_type(tmp, inode, add_flags);
1912 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1913 	hlist_bl_lock(&tmp->d_sb->s_anon);
1914 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1915 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1916 	spin_unlock(&tmp->d_lock);
1917 	spin_unlock(&inode->i_lock);
1918 
1919 	return tmp;
1920 
1921  out_iput:
1922 	iput(inode);
1923 	return res;
1924 }
1925 
1926 /**
1927  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1928  * @inode: inode to allocate the dentry for
1929  *
1930  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1931  * similar open by handle operations.  The returned dentry may be anonymous,
1932  * or may have a full name (if the inode was already in the cache).
1933  *
1934  * When called on a directory inode, we must ensure that the inode only ever
1935  * has one dentry.  If a dentry is found, that is returned instead of
1936  * allocating a new one.
1937  *
1938  * On successful return, the reference to the inode has been transferred
1939  * to the dentry.  In case of an error the reference on the inode is released.
1940  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1941  * be passed in and the error will be propagated to the return value,
1942  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1943  */
1944 struct dentry *d_obtain_alias(struct inode *inode)
1945 {
1946 	return __d_obtain_alias(inode, 1);
1947 }
1948 EXPORT_SYMBOL(d_obtain_alias);
1949 
1950 /**
1951  * d_obtain_root - find or allocate a dentry for a given inode
1952  * @inode: inode to allocate the dentry for
1953  *
1954  * Obtain an IS_ROOT dentry for the root of a filesystem.
1955  *
1956  * We must ensure that directory inodes only ever have one dentry.  If a
1957  * dentry is found, that is returned instead of allocating a new one.
1958  *
1959  * On successful return, the reference to the inode has been transferred
1960  * to the dentry.  In case of an error the reference on the inode is
1961  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1962  * error will be propagate to the return value, with a %NULL @inode
1963  * replaced by ERR_PTR(-ESTALE).
1964  */
1965 struct dentry *d_obtain_root(struct inode *inode)
1966 {
1967 	return __d_obtain_alias(inode, 0);
1968 }
1969 EXPORT_SYMBOL(d_obtain_root);
1970 
1971 /**
1972  * d_add_ci - lookup or allocate new dentry with case-exact name
1973  * @inode:  the inode case-insensitive lookup has found
1974  * @dentry: the negative dentry that was passed to the parent's lookup func
1975  * @name:   the case-exact name to be associated with the returned dentry
1976  *
1977  * This is to avoid filling the dcache with case-insensitive names to the
1978  * same inode, only the actual correct case is stored in the dcache for
1979  * case-insensitive filesystems.
1980  *
1981  * For a case-insensitive lookup match and if the the case-exact dentry
1982  * already exists in in the dcache, use it and return it.
1983  *
1984  * If no entry exists with the exact case name, allocate new dentry with
1985  * the exact case, and return the spliced entry.
1986  */
1987 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1988 			struct qstr *name)
1989 {
1990 	struct dentry *found, *res;
1991 
1992 	/*
1993 	 * First check if a dentry matching the name already exists,
1994 	 * if not go ahead and create it now.
1995 	 */
1996 	found = d_hash_and_lookup(dentry->d_parent, name);
1997 	if (found) {
1998 		iput(inode);
1999 		return found;
2000 	}
2001 	if (d_in_lookup(dentry)) {
2002 		found = d_alloc_parallel(dentry->d_parent, name,
2003 					dentry->d_wait);
2004 		if (IS_ERR(found) || !d_in_lookup(found)) {
2005 			iput(inode);
2006 			return found;
2007 		}
2008 	} else {
2009 		found = d_alloc(dentry->d_parent, name);
2010 		if (!found) {
2011 			iput(inode);
2012 			return ERR_PTR(-ENOMEM);
2013 		}
2014 	}
2015 	res = d_splice_alias(inode, found);
2016 	if (res) {
2017 		dput(found);
2018 		return res;
2019 	}
2020 	return found;
2021 }
2022 EXPORT_SYMBOL(d_add_ci);
2023 
2024 /*
2025  * Do the slow-case of the dentry name compare.
2026  *
2027  * Unlike the dentry_cmp() function, we need to atomically
2028  * load the name and length information, so that the
2029  * filesystem can rely on them, and can use the 'name' and
2030  * 'len' information without worrying about walking off the
2031  * end of memory etc.
2032  *
2033  * Thus the read_seqcount_retry() and the "duplicate" info
2034  * in arguments (the low-level filesystem should not look
2035  * at the dentry inode or name contents directly, since
2036  * rename can change them while we're in RCU mode).
2037  */
2038 enum slow_d_compare {
2039 	D_COMP_OK,
2040 	D_COMP_NOMATCH,
2041 	D_COMP_SEQRETRY,
2042 };
2043 
2044 static noinline enum slow_d_compare slow_dentry_cmp(
2045 		const struct dentry *parent,
2046 		struct dentry *dentry,
2047 		unsigned int seq,
2048 		const struct qstr *name)
2049 {
2050 	int tlen = dentry->d_name.len;
2051 	const char *tname = dentry->d_name.name;
2052 
2053 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2054 		cpu_relax();
2055 		return D_COMP_SEQRETRY;
2056 	}
2057 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2058 		return D_COMP_NOMATCH;
2059 	return D_COMP_OK;
2060 }
2061 
2062 /**
2063  * __d_lookup_rcu - search for a dentry (racy, store-free)
2064  * @parent: parent dentry
2065  * @name: qstr of name we wish to find
2066  * @seqp: returns d_seq value at the point where the dentry was found
2067  * Returns: dentry, or NULL
2068  *
2069  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2070  * resolution (store-free path walking) design described in
2071  * Documentation/filesystems/path-lookup.txt.
2072  *
2073  * This is not to be used outside core vfs.
2074  *
2075  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2076  * held, and rcu_read_lock held. The returned dentry must not be stored into
2077  * without taking d_lock and checking d_seq sequence count against @seq
2078  * returned here.
2079  *
2080  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2081  * function.
2082  *
2083  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2084  * the returned dentry, so long as its parent's seqlock is checked after the
2085  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2086  * is formed, giving integrity down the path walk.
2087  *
2088  * NOTE! The caller *has* to check the resulting dentry against the sequence
2089  * number we've returned before using any of the resulting dentry state!
2090  */
2091 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2092 				const struct qstr *name,
2093 				unsigned *seqp)
2094 {
2095 	u64 hashlen = name->hash_len;
2096 	const unsigned char *str = name->name;
2097 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2098 	struct hlist_bl_node *node;
2099 	struct dentry *dentry;
2100 
2101 	/*
2102 	 * Note: There is significant duplication with __d_lookup_rcu which is
2103 	 * required to prevent single threaded performance regressions
2104 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2105 	 * Keep the two functions in sync.
2106 	 */
2107 
2108 	/*
2109 	 * The hash list is protected using RCU.
2110 	 *
2111 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2112 	 * races with d_move().
2113 	 *
2114 	 * It is possible that concurrent renames can mess up our list
2115 	 * walk here and result in missing our dentry, resulting in the
2116 	 * false-negative result. d_lookup() protects against concurrent
2117 	 * renames using rename_lock seqlock.
2118 	 *
2119 	 * See Documentation/filesystems/path-lookup.txt for more details.
2120 	 */
2121 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2122 		unsigned seq;
2123 
2124 seqretry:
2125 		/*
2126 		 * The dentry sequence count protects us from concurrent
2127 		 * renames, and thus protects parent and name fields.
2128 		 *
2129 		 * The caller must perform a seqcount check in order
2130 		 * to do anything useful with the returned dentry.
2131 		 *
2132 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2133 		 * we don't wait for the sequence count to stabilize if it
2134 		 * is in the middle of a sequence change. If we do the slow
2135 		 * dentry compare, we will do seqretries until it is stable,
2136 		 * and if we end up with a successful lookup, we actually
2137 		 * want to exit RCU lookup anyway.
2138 		 */
2139 		seq = raw_seqcount_begin(&dentry->d_seq);
2140 		if (dentry->d_parent != parent)
2141 			continue;
2142 		if (d_unhashed(dentry))
2143 			continue;
2144 
2145 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2146 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2147 				continue;
2148 			*seqp = seq;
2149 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2150 			case D_COMP_OK:
2151 				return dentry;
2152 			case D_COMP_NOMATCH:
2153 				continue;
2154 			default:
2155 				goto seqretry;
2156 			}
2157 		}
2158 
2159 		if (dentry->d_name.hash_len != hashlen)
2160 			continue;
2161 		*seqp = seq;
2162 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2163 			return dentry;
2164 	}
2165 	return NULL;
2166 }
2167 
2168 /**
2169  * d_lookup - search for a dentry
2170  * @parent: parent dentry
2171  * @name: qstr of name we wish to find
2172  * Returns: dentry, or NULL
2173  *
2174  * d_lookup searches the children of the parent dentry for the name in
2175  * question. If the dentry is found its reference count is incremented and the
2176  * dentry is returned. The caller must use dput to free the entry when it has
2177  * finished using it. %NULL is returned if the dentry does not exist.
2178  */
2179 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2180 {
2181 	struct dentry *dentry;
2182 	unsigned seq;
2183 
2184 	do {
2185 		seq = read_seqbegin(&rename_lock);
2186 		dentry = __d_lookup(parent, name);
2187 		if (dentry)
2188 			break;
2189 	} while (read_seqretry(&rename_lock, seq));
2190 	return dentry;
2191 }
2192 EXPORT_SYMBOL(d_lookup);
2193 
2194 /**
2195  * __d_lookup - search for a dentry (racy)
2196  * @parent: parent dentry
2197  * @name: qstr of name we wish to find
2198  * Returns: dentry, or NULL
2199  *
2200  * __d_lookup is like d_lookup, however it may (rarely) return a
2201  * false-negative result due to unrelated rename activity.
2202  *
2203  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2204  * however it must be used carefully, eg. with a following d_lookup in
2205  * the case of failure.
2206  *
2207  * __d_lookup callers must be commented.
2208  */
2209 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2210 {
2211 	unsigned int len = name->len;
2212 	unsigned int hash = name->hash;
2213 	const unsigned char *str = name->name;
2214 	struct hlist_bl_head *b = d_hash(parent, hash);
2215 	struct hlist_bl_node *node;
2216 	struct dentry *found = NULL;
2217 	struct dentry *dentry;
2218 
2219 	/*
2220 	 * Note: There is significant duplication with __d_lookup_rcu which is
2221 	 * required to prevent single threaded performance regressions
2222 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2223 	 * Keep the two functions in sync.
2224 	 */
2225 
2226 	/*
2227 	 * The hash list is protected using RCU.
2228 	 *
2229 	 * Take d_lock when comparing a candidate dentry, to avoid races
2230 	 * with d_move().
2231 	 *
2232 	 * It is possible that concurrent renames can mess up our list
2233 	 * walk here and result in missing our dentry, resulting in the
2234 	 * false-negative result. d_lookup() protects against concurrent
2235 	 * renames using rename_lock seqlock.
2236 	 *
2237 	 * See Documentation/filesystems/path-lookup.txt for more details.
2238 	 */
2239 	rcu_read_lock();
2240 
2241 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2242 
2243 		if (dentry->d_name.hash != hash)
2244 			continue;
2245 
2246 		spin_lock(&dentry->d_lock);
2247 		if (dentry->d_parent != parent)
2248 			goto next;
2249 		if (d_unhashed(dentry))
2250 			goto next;
2251 
2252 		/*
2253 		 * It is safe to compare names since d_move() cannot
2254 		 * change the qstr (protected by d_lock).
2255 		 */
2256 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2257 			int tlen = dentry->d_name.len;
2258 			const char *tname = dentry->d_name.name;
2259 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2260 				goto next;
2261 		} else {
2262 			if (dentry->d_name.len != len)
2263 				goto next;
2264 			if (dentry_cmp(dentry, str, len))
2265 				goto next;
2266 		}
2267 
2268 		dentry->d_lockref.count++;
2269 		found = dentry;
2270 		spin_unlock(&dentry->d_lock);
2271 		break;
2272 next:
2273 		spin_unlock(&dentry->d_lock);
2274  	}
2275  	rcu_read_unlock();
2276 
2277  	return found;
2278 }
2279 
2280 /**
2281  * d_hash_and_lookup - hash the qstr then search for a dentry
2282  * @dir: Directory to search in
2283  * @name: qstr of name we wish to find
2284  *
2285  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2286  */
2287 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2288 {
2289 	/*
2290 	 * Check for a fs-specific hash function. Note that we must
2291 	 * calculate the standard hash first, as the d_op->d_hash()
2292 	 * routine may choose to leave the hash value unchanged.
2293 	 */
2294 	name->hash = full_name_hash(name->name, name->len);
2295 	if (dir->d_flags & DCACHE_OP_HASH) {
2296 		int err = dir->d_op->d_hash(dir, name);
2297 		if (unlikely(err < 0))
2298 			return ERR_PTR(err);
2299 	}
2300 	return d_lookup(dir, name);
2301 }
2302 EXPORT_SYMBOL(d_hash_and_lookup);
2303 
2304 /*
2305  * When a file is deleted, we have two options:
2306  * - turn this dentry into a negative dentry
2307  * - unhash this dentry and free it.
2308  *
2309  * Usually, we want to just turn this into
2310  * a negative dentry, but if anybody else is
2311  * currently using the dentry or the inode
2312  * we can't do that and we fall back on removing
2313  * it from the hash queues and waiting for
2314  * it to be deleted later when it has no users
2315  */
2316 
2317 /**
2318  * d_delete - delete a dentry
2319  * @dentry: The dentry to delete
2320  *
2321  * Turn the dentry into a negative dentry if possible, otherwise
2322  * remove it from the hash queues so it can be deleted later
2323  */
2324 
2325 void d_delete(struct dentry * dentry)
2326 {
2327 	struct inode *inode;
2328 	int isdir = 0;
2329 	/*
2330 	 * Are we the only user?
2331 	 */
2332 again:
2333 	spin_lock(&dentry->d_lock);
2334 	inode = dentry->d_inode;
2335 	isdir = S_ISDIR(inode->i_mode);
2336 	if (dentry->d_lockref.count == 1) {
2337 		if (!spin_trylock(&inode->i_lock)) {
2338 			spin_unlock(&dentry->d_lock);
2339 			cpu_relax();
2340 			goto again;
2341 		}
2342 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2343 		dentry_unlink_inode(dentry);
2344 		fsnotify_nameremove(dentry, isdir);
2345 		return;
2346 	}
2347 
2348 	if (!d_unhashed(dentry))
2349 		__d_drop(dentry);
2350 
2351 	spin_unlock(&dentry->d_lock);
2352 
2353 	fsnotify_nameremove(dentry, isdir);
2354 }
2355 EXPORT_SYMBOL(d_delete);
2356 
2357 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2358 {
2359 	BUG_ON(!d_unhashed(entry));
2360 	hlist_bl_lock(b);
2361 	entry->d_flags |= DCACHE_RCUACCESS;
2362 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2363 	hlist_bl_unlock(b);
2364 }
2365 
2366 static void _d_rehash(struct dentry * entry)
2367 {
2368 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2369 }
2370 
2371 /**
2372  * d_rehash	- add an entry back to the hash
2373  * @entry: dentry to add to the hash
2374  *
2375  * Adds a dentry to the hash according to its name.
2376  */
2377 
2378 void d_rehash(struct dentry * entry)
2379 {
2380 	spin_lock(&entry->d_lock);
2381 	_d_rehash(entry);
2382 	spin_unlock(&entry->d_lock);
2383 }
2384 EXPORT_SYMBOL(d_rehash);
2385 
2386 static inline unsigned start_dir_add(struct inode *dir)
2387 {
2388 
2389 	for (;;) {
2390 		unsigned n = dir->i_dir_seq;
2391 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2392 			return n;
2393 		cpu_relax();
2394 	}
2395 }
2396 
2397 static inline void end_dir_add(struct inode *dir, unsigned n)
2398 {
2399 	smp_store_release(&dir->i_dir_seq, n + 2);
2400 }
2401 
2402 static void d_wait_lookup(struct dentry *dentry)
2403 {
2404 	if (d_in_lookup(dentry)) {
2405 		DECLARE_WAITQUEUE(wait, current);
2406 		add_wait_queue(dentry->d_wait, &wait);
2407 		do {
2408 			set_current_state(TASK_UNINTERRUPTIBLE);
2409 			spin_unlock(&dentry->d_lock);
2410 			schedule();
2411 			spin_lock(&dentry->d_lock);
2412 		} while (d_in_lookup(dentry));
2413 	}
2414 }
2415 
2416 struct dentry *d_alloc_parallel(struct dentry *parent,
2417 				const struct qstr *name,
2418 				wait_queue_head_t *wq)
2419 {
2420 	unsigned int len = name->len;
2421 	unsigned int hash = name->hash;
2422 	const unsigned char *str = name->name;
2423 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2424 	struct hlist_bl_node *node;
2425 	struct dentry *new = d_alloc(parent, name);
2426 	struct dentry *dentry;
2427 	unsigned seq, r_seq, d_seq;
2428 
2429 	if (unlikely(!new))
2430 		return ERR_PTR(-ENOMEM);
2431 
2432 retry:
2433 	rcu_read_lock();
2434 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2435 	r_seq = read_seqbegin(&rename_lock);
2436 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2437 	if (unlikely(dentry)) {
2438 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2439 			rcu_read_unlock();
2440 			goto retry;
2441 		}
2442 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2443 			rcu_read_unlock();
2444 			dput(dentry);
2445 			goto retry;
2446 		}
2447 		rcu_read_unlock();
2448 		dput(new);
2449 		return dentry;
2450 	}
2451 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2452 		rcu_read_unlock();
2453 		goto retry;
2454 	}
2455 	hlist_bl_lock(b);
2456 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2457 		hlist_bl_unlock(b);
2458 		rcu_read_unlock();
2459 		goto retry;
2460 	}
2461 	rcu_read_unlock();
2462 	/*
2463 	 * No changes for the parent since the beginning of d_lookup().
2464 	 * Since all removals from the chain happen with hlist_bl_lock(),
2465 	 * any potential in-lookup matches are going to stay here until
2466 	 * we unlock the chain.  All fields are stable in everything
2467 	 * we encounter.
2468 	 */
2469 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2470 		if (dentry->d_name.hash != hash)
2471 			continue;
2472 		if (dentry->d_parent != parent)
2473 			continue;
2474 		if (d_unhashed(dentry))
2475 			continue;
2476 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2477 			int tlen = dentry->d_name.len;
2478 			const char *tname = dentry->d_name.name;
2479 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2480 				continue;
2481 		} else {
2482 			if (dentry->d_name.len != len)
2483 				continue;
2484 			if (dentry_cmp(dentry, str, len))
2485 				continue;
2486 		}
2487 		dget(dentry);
2488 		hlist_bl_unlock(b);
2489 		/* somebody is doing lookup for it right now; wait for it */
2490 		spin_lock(&dentry->d_lock);
2491 		d_wait_lookup(dentry);
2492 		/*
2493 		 * it's not in-lookup anymore; in principle we should repeat
2494 		 * everything from dcache lookup, but it's likely to be what
2495 		 * d_lookup() would've found anyway.  If it is, just return it;
2496 		 * otherwise we really have to repeat the whole thing.
2497 		 */
2498 		if (unlikely(dentry->d_name.hash != hash))
2499 			goto mismatch;
2500 		if (unlikely(dentry->d_parent != parent))
2501 			goto mismatch;
2502 		if (unlikely(d_unhashed(dentry)))
2503 			goto mismatch;
2504 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2505 			int tlen = dentry->d_name.len;
2506 			const char *tname = dentry->d_name.name;
2507 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2508 				goto mismatch;
2509 		} else {
2510 			if (unlikely(dentry->d_name.len != len))
2511 				goto mismatch;
2512 			if (unlikely(dentry_cmp(dentry, str, len)))
2513 				goto mismatch;
2514 		}
2515 		/* OK, it *is* a hashed match; return it */
2516 		spin_unlock(&dentry->d_lock);
2517 		dput(new);
2518 		return dentry;
2519 	}
2520 	/* we can't take ->d_lock here; it's OK, though. */
2521 	new->d_flags |= DCACHE_PAR_LOOKUP;
2522 	new->d_wait = wq;
2523 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2524 	hlist_bl_unlock(b);
2525 	return new;
2526 mismatch:
2527 	spin_unlock(&dentry->d_lock);
2528 	dput(dentry);
2529 	goto retry;
2530 }
2531 EXPORT_SYMBOL(d_alloc_parallel);
2532 
2533 void __d_lookup_done(struct dentry *dentry)
2534 {
2535 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2536 						 dentry->d_name.hash);
2537 	hlist_bl_lock(b);
2538 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2539 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2540 	wake_up_all(dentry->d_wait);
2541 	dentry->d_wait = NULL;
2542 	hlist_bl_unlock(b);
2543 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2544 	INIT_LIST_HEAD(&dentry->d_lru);
2545 }
2546 EXPORT_SYMBOL(__d_lookup_done);
2547 
2548 /* inode->i_lock held if inode is non-NULL */
2549 
2550 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2551 {
2552 	struct inode *dir = NULL;
2553 	unsigned n;
2554 	spin_lock(&dentry->d_lock);
2555 	if (unlikely(d_in_lookup(dentry))) {
2556 		dir = dentry->d_parent->d_inode;
2557 		n = start_dir_add(dir);
2558 		__d_lookup_done(dentry);
2559 	}
2560 	if (inode) {
2561 		unsigned add_flags = d_flags_for_inode(inode);
2562 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2563 		raw_write_seqcount_begin(&dentry->d_seq);
2564 		__d_set_inode_and_type(dentry, inode, add_flags);
2565 		raw_write_seqcount_end(&dentry->d_seq);
2566 		__fsnotify_d_instantiate(dentry);
2567 	}
2568 	_d_rehash(dentry);
2569 	if (dir)
2570 		end_dir_add(dir, n);
2571 	spin_unlock(&dentry->d_lock);
2572 	if (inode)
2573 		spin_unlock(&inode->i_lock);
2574 }
2575 
2576 /**
2577  * d_add - add dentry to hash queues
2578  * @entry: dentry to add
2579  * @inode: The inode to attach to this dentry
2580  *
2581  * This adds the entry to the hash queues and initializes @inode.
2582  * The entry was actually filled in earlier during d_alloc().
2583  */
2584 
2585 void d_add(struct dentry *entry, struct inode *inode)
2586 {
2587 	if (inode) {
2588 		security_d_instantiate(entry, inode);
2589 		spin_lock(&inode->i_lock);
2590 	}
2591 	__d_add(entry, inode);
2592 }
2593 EXPORT_SYMBOL(d_add);
2594 
2595 /**
2596  * d_exact_alias - find and hash an exact unhashed alias
2597  * @entry: dentry to add
2598  * @inode: The inode to go with this dentry
2599  *
2600  * If an unhashed dentry with the same name/parent and desired
2601  * inode already exists, hash and return it.  Otherwise, return
2602  * NULL.
2603  *
2604  * Parent directory should be locked.
2605  */
2606 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2607 {
2608 	struct dentry *alias;
2609 	int len = entry->d_name.len;
2610 	const char *name = entry->d_name.name;
2611 	unsigned int hash = entry->d_name.hash;
2612 
2613 	spin_lock(&inode->i_lock);
2614 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2615 		/*
2616 		 * Don't need alias->d_lock here, because aliases with
2617 		 * d_parent == entry->d_parent are not subject to name or
2618 		 * parent changes, because the parent inode i_mutex is held.
2619 		 */
2620 		if (alias->d_name.hash != hash)
2621 			continue;
2622 		if (alias->d_parent != entry->d_parent)
2623 			continue;
2624 		if (alias->d_name.len != len)
2625 			continue;
2626 		if (dentry_cmp(alias, name, len))
2627 			continue;
2628 		spin_lock(&alias->d_lock);
2629 		if (!d_unhashed(alias)) {
2630 			spin_unlock(&alias->d_lock);
2631 			alias = NULL;
2632 		} else {
2633 			__dget_dlock(alias);
2634 			_d_rehash(alias);
2635 			spin_unlock(&alias->d_lock);
2636 		}
2637 		spin_unlock(&inode->i_lock);
2638 		return alias;
2639 	}
2640 	spin_unlock(&inode->i_lock);
2641 	return NULL;
2642 }
2643 EXPORT_SYMBOL(d_exact_alias);
2644 
2645 /**
2646  * dentry_update_name_case - update case insensitive dentry with a new name
2647  * @dentry: dentry to be updated
2648  * @name: new name
2649  *
2650  * Update a case insensitive dentry with new case of name.
2651  *
2652  * dentry must have been returned by d_lookup with name @name. Old and new
2653  * name lengths must match (ie. no d_compare which allows mismatched name
2654  * lengths).
2655  *
2656  * Parent inode i_mutex must be held over d_lookup and into this call (to
2657  * keep renames and concurrent inserts, and readdir(2) away).
2658  */
2659 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2660 {
2661 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2662 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2663 
2664 	spin_lock(&dentry->d_lock);
2665 	write_seqcount_begin(&dentry->d_seq);
2666 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2667 	write_seqcount_end(&dentry->d_seq);
2668 	spin_unlock(&dentry->d_lock);
2669 }
2670 EXPORT_SYMBOL(dentry_update_name_case);
2671 
2672 static void swap_names(struct dentry *dentry, struct dentry *target)
2673 {
2674 	if (unlikely(dname_external(target))) {
2675 		if (unlikely(dname_external(dentry))) {
2676 			/*
2677 			 * Both external: swap the pointers
2678 			 */
2679 			swap(target->d_name.name, dentry->d_name.name);
2680 		} else {
2681 			/*
2682 			 * dentry:internal, target:external.  Steal target's
2683 			 * storage and make target internal.
2684 			 */
2685 			memcpy(target->d_iname, dentry->d_name.name,
2686 					dentry->d_name.len + 1);
2687 			dentry->d_name.name = target->d_name.name;
2688 			target->d_name.name = target->d_iname;
2689 		}
2690 	} else {
2691 		if (unlikely(dname_external(dentry))) {
2692 			/*
2693 			 * dentry:external, target:internal.  Give dentry's
2694 			 * storage to target and make dentry internal
2695 			 */
2696 			memcpy(dentry->d_iname, target->d_name.name,
2697 					target->d_name.len + 1);
2698 			target->d_name.name = dentry->d_name.name;
2699 			dentry->d_name.name = dentry->d_iname;
2700 		} else {
2701 			/*
2702 			 * Both are internal.
2703 			 */
2704 			unsigned int i;
2705 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2706 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2707 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2708 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2709 				swap(((long *) &dentry->d_iname)[i],
2710 				     ((long *) &target->d_iname)[i]);
2711 			}
2712 		}
2713 	}
2714 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2715 }
2716 
2717 static void copy_name(struct dentry *dentry, struct dentry *target)
2718 {
2719 	struct external_name *old_name = NULL;
2720 	if (unlikely(dname_external(dentry)))
2721 		old_name = external_name(dentry);
2722 	if (unlikely(dname_external(target))) {
2723 		atomic_inc(&external_name(target)->u.count);
2724 		dentry->d_name = target->d_name;
2725 	} else {
2726 		memcpy(dentry->d_iname, target->d_name.name,
2727 				target->d_name.len + 1);
2728 		dentry->d_name.name = dentry->d_iname;
2729 		dentry->d_name.hash_len = target->d_name.hash_len;
2730 	}
2731 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2732 		kfree_rcu(old_name, u.head);
2733 }
2734 
2735 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2736 {
2737 	/*
2738 	 * XXXX: do we really need to take target->d_lock?
2739 	 */
2740 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2741 		spin_lock(&target->d_parent->d_lock);
2742 	else {
2743 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2744 			spin_lock(&dentry->d_parent->d_lock);
2745 			spin_lock_nested(&target->d_parent->d_lock,
2746 						DENTRY_D_LOCK_NESTED);
2747 		} else {
2748 			spin_lock(&target->d_parent->d_lock);
2749 			spin_lock_nested(&dentry->d_parent->d_lock,
2750 						DENTRY_D_LOCK_NESTED);
2751 		}
2752 	}
2753 	if (target < dentry) {
2754 		spin_lock_nested(&target->d_lock, 2);
2755 		spin_lock_nested(&dentry->d_lock, 3);
2756 	} else {
2757 		spin_lock_nested(&dentry->d_lock, 2);
2758 		spin_lock_nested(&target->d_lock, 3);
2759 	}
2760 }
2761 
2762 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2763 {
2764 	if (target->d_parent != dentry->d_parent)
2765 		spin_unlock(&dentry->d_parent->d_lock);
2766 	if (target->d_parent != target)
2767 		spin_unlock(&target->d_parent->d_lock);
2768 	spin_unlock(&target->d_lock);
2769 	spin_unlock(&dentry->d_lock);
2770 }
2771 
2772 /*
2773  * When switching names, the actual string doesn't strictly have to
2774  * be preserved in the target - because we're dropping the target
2775  * anyway. As such, we can just do a simple memcpy() to copy over
2776  * the new name before we switch, unless we are going to rehash
2777  * it.  Note that if we *do* unhash the target, we are not allowed
2778  * to rehash it without giving it a new name/hash key - whether
2779  * we swap or overwrite the names here, resulting name won't match
2780  * the reality in filesystem; it's only there for d_path() purposes.
2781  * Note that all of this is happening under rename_lock, so the
2782  * any hash lookup seeing it in the middle of manipulations will
2783  * be discarded anyway.  So we do not care what happens to the hash
2784  * key in that case.
2785  */
2786 /*
2787  * __d_move - move a dentry
2788  * @dentry: entry to move
2789  * @target: new dentry
2790  * @exchange: exchange the two dentries
2791  *
2792  * Update the dcache to reflect the move of a file name. Negative
2793  * dcache entries should not be moved in this way. Caller must hold
2794  * rename_lock, the i_mutex of the source and target directories,
2795  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2796  */
2797 static void __d_move(struct dentry *dentry, struct dentry *target,
2798 		     bool exchange)
2799 {
2800 	struct inode *dir = NULL;
2801 	unsigned n;
2802 	if (!dentry->d_inode)
2803 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2804 
2805 	BUG_ON(d_ancestor(dentry, target));
2806 	BUG_ON(d_ancestor(target, dentry));
2807 
2808 	dentry_lock_for_move(dentry, target);
2809 	if (unlikely(d_in_lookup(target))) {
2810 		dir = target->d_parent->d_inode;
2811 		n = start_dir_add(dir);
2812 		__d_lookup_done(target);
2813 	}
2814 
2815 	write_seqcount_begin(&dentry->d_seq);
2816 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2817 
2818 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2819 
2820 	/*
2821 	 * Move the dentry to the target hash queue. Don't bother checking
2822 	 * for the same hash queue because of how unlikely it is.
2823 	 */
2824 	__d_drop(dentry);
2825 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2826 
2827 	/*
2828 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2829 	 * the two dentries, then rehash onto the other's hash queue.
2830 	 */
2831 	__d_drop(target);
2832 	if (exchange) {
2833 		__d_rehash(target,
2834 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2835 	}
2836 
2837 	/* Switch the names.. */
2838 	if (exchange)
2839 		swap_names(dentry, target);
2840 	else
2841 		copy_name(dentry, target);
2842 
2843 	/* ... and switch them in the tree */
2844 	if (IS_ROOT(dentry)) {
2845 		/* splicing a tree */
2846 		dentry->d_parent = target->d_parent;
2847 		target->d_parent = target;
2848 		list_del_init(&target->d_child);
2849 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2850 	} else {
2851 		/* swapping two dentries */
2852 		swap(dentry->d_parent, target->d_parent);
2853 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2854 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2855 		if (exchange)
2856 			fsnotify_d_move(target);
2857 		fsnotify_d_move(dentry);
2858 	}
2859 
2860 	write_seqcount_end(&target->d_seq);
2861 	write_seqcount_end(&dentry->d_seq);
2862 
2863 	if (dir)
2864 		end_dir_add(dir, n);
2865 	dentry_unlock_for_move(dentry, target);
2866 }
2867 
2868 /*
2869  * d_move - move a dentry
2870  * @dentry: entry to move
2871  * @target: new dentry
2872  *
2873  * Update the dcache to reflect the move of a file name. Negative
2874  * dcache entries should not be moved in this way. See the locking
2875  * requirements for __d_move.
2876  */
2877 void d_move(struct dentry *dentry, struct dentry *target)
2878 {
2879 	write_seqlock(&rename_lock);
2880 	__d_move(dentry, target, false);
2881 	write_sequnlock(&rename_lock);
2882 }
2883 EXPORT_SYMBOL(d_move);
2884 
2885 /*
2886  * d_exchange - exchange two dentries
2887  * @dentry1: first dentry
2888  * @dentry2: second dentry
2889  */
2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2891 {
2892 	write_seqlock(&rename_lock);
2893 
2894 	WARN_ON(!dentry1->d_inode);
2895 	WARN_ON(!dentry2->d_inode);
2896 	WARN_ON(IS_ROOT(dentry1));
2897 	WARN_ON(IS_ROOT(dentry2));
2898 
2899 	__d_move(dentry1, dentry2, true);
2900 
2901 	write_sequnlock(&rename_lock);
2902 }
2903 
2904 /**
2905  * d_ancestor - search for an ancestor
2906  * @p1: ancestor dentry
2907  * @p2: child dentry
2908  *
2909  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910  * an ancestor of p2, else NULL.
2911  */
2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2913 {
2914 	struct dentry *p;
2915 
2916 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2917 		if (p->d_parent == p1)
2918 			return p;
2919 	}
2920 	return NULL;
2921 }
2922 
2923 /*
2924  * This helper attempts to cope with remotely renamed directories
2925  *
2926  * It assumes that the caller is already holding
2927  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2928  *
2929  * Note: If ever the locking in lock_rename() changes, then please
2930  * remember to update this too...
2931  */
2932 static int __d_unalias(struct inode *inode,
2933 		struct dentry *dentry, struct dentry *alias)
2934 {
2935 	struct mutex *m1 = NULL;
2936 	struct rw_semaphore *m2 = NULL;
2937 	int ret = -ESTALE;
2938 
2939 	/* If alias and dentry share a parent, then no extra locks required */
2940 	if (alias->d_parent == dentry->d_parent)
2941 		goto out_unalias;
2942 
2943 	/* See lock_rename() */
2944 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2945 		goto out_err;
2946 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2947 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2948 		goto out_err;
2949 	m2 = &alias->d_parent->d_inode->i_rwsem;
2950 out_unalias:
2951 	__d_move(alias, dentry, false);
2952 	ret = 0;
2953 out_err:
2954 	if (m2)
2955 		up_read(m2);
2956 	if (m1)
2957 		mutex_unlock(m1);
2958 	return ret;
2959 }
2960 
2961 /**
2962  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963  * @inode:  the inode which may have a disconnected dentry
2964  * @dentry: a negative dentry which we want to point to the inode.
2965  *
2966  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967  * place of the given dentry and return it, else simply d_add the inode
2968  * to the dentry and return NULL.
2969  *
2970  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971  * we should error out: directories can't have multiple aliases.
2972  *
2973  * This is needed in the lookup routine of any filesystem that is exportable
2974  * (via knfsd) so that we can build dcache paths to directories effectively.
2975  *
2976  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2977  * is returned.  This matches the expected return value of ->lookup.
2978  *
2979  * Cluster filesystems may call this function with a negative, hashed dentry.
2980  * In that case, we know that the inode will be a regular file, and also this
2981  * will only occur during atomic_open. So we need to check for the dentry
2982  * being already hashed only in the final case.
2983  */
2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2985 {
2986 	if (IS_ERR(inode))
2987 		return ERR_CAST(inode);
2988 
2989 	BUG_ON(!d_unhashed(dentry));
2990 
2991 	if (!inode)
2992 		goto out;
2993 
2994 	security_d_instantiate(dentry, inode);
2995 	spin_lock(&inode->i_lock);
2996 	if (S_ISDIR(inode->i_mode)) {
2997 		struct dentry *new = __d_find_any_alias(inode);
2998 		if (unlikely(new)) {
2999 			/* The reference to new ensures it remains an alias */
3000 			spin_unlock(&inode->i_lock);
3001 			write_seqlock(&rename_lock);
3002 			if (unlikely(d_ancestor(new, dentry))) {
3003 				write_sequnlock(&rename_lock);
3004 				dput(new);
3005 				new = ERR_PTR(-ELOOP);
3006 				pr_warn_ratelimited(
3007 					"VFS: Lookup of '%s' in %s %s"
3008 					" would have caused loop\n",
3009 					dentry->d_name.name,
3010 					inode->i_sb->s_type->name,
3011 					inode->i_sb->s_id);
3012 			} else if (!IS_ROOT(new)) {
3013 				int err = __d_unalias(inode, dentry, new);
3014 				write_sequnlock(&rename_lock);
3015 				if (err) {
3016 					dput(new);
3017 					new = ERR_PTR(err);
3018 				}
3019 			} else {
3020 				__d_move(new, dentry, false);
3021 				write_sequnlock(&rename_lock);
3022 			}
3023 			iput(inode);
3024 			return new;
3025 		}
3026 	}
3027 out:
3028 	__d_add(dentry, inode);
3029 	return NULL;
3030 }
3031 EXPORT_SYMBOL(d_splice_alias);
3032 
3033 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3034 {
3035 	*buflen -= namelen;
3036 	if (*buflen < 0)
3037 		return -ENAMETOOLONG;
3038 	*buffer -= namelen;
3039 	memcpy(*buffer, str, namelen);
3040 	return 0;
3041 }
3042 
3043 /**
3044  * prepend_name - prepend a pathname in front of current buffer pointer
3045  * @buffer: buffer pointer
3046  * @buflen: allocated length of the buffer
3047  * @name:   name string and length qstr structure
3048  *
3049  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3050  * make sure that either the old or the new name pointer and length are
3051  * fetched. However, there may be mismatch between length and pointer.
3052  * The length cannot be trusted, we need to copy it byte-by-byte until
3053  * the length is reached or a null byte is found. It also prepends "/" at
3054  * the beginning of the name. The sequence number check at the caller will
3055  * retry it again when a d_move() does happen. So any garbage in the buffer
3056  * due to mismatched pointer and length will be discarded.
3057  *
3058  * Data dependency barrier is needed to make sure that we see that terminating
3059  * NUL.  Alpha strikes again, film at 11...
3060  */
3061 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3062 {
3063 	const char *dname = ACCESS_ONCE(name->name);
3064 	u32 dlen = ACCESS_ONCE(name->len);
3065 	char *p;
3066 
3067 	smp_read_barrier_depends();
3068 
3069 	*buflen -= dlen + 1;
3070 	if (*buflen < 0)
3071 		return -ENAMETOOLONG;
3072 	p = *buffer -= dlen + 1;
3073 	*p++ = '/';
3074 	while (dlen--) {
3075 		char c = *dname++;
3076 		if (!c)
3077 			break;
3078 		*p++ = c;
3079 	}
3080 	return 0;
3081 }
3082 
3083 /**
3084  * prepend_path - Prepend path string to a buffer
3085  * @path: the dentry/vfsmount to report
3086  * @root: root vfsmnt/dentry
3087  * @buffer: pointer to the end of the buffer
3088  * @buflen: pointer to buffer length
3089  *
3090  * The function will first try to write out the pathname without taking any
3091  * lock other than the RCU read lock to make sure that dentries won't go away.
3092  * It only checks the sequence number of the global rename_lock as any change
3093  * in the dentry's d_seq will be preceded by changes in the rename_lock
3094  * sequence number. If the sequence number had been changed, it will restart
3095  * the whole pathname back-tracing sequence again by taking the rename_lock.
3096  * In this case, there is no need to take the RCU read lock as the recursive
3097  * parent pointer references will keep the dentry chain alive as long as no
3098  * rename operation is performed.
3099  */
3100 static int prepend_path(const struct path *path,
3101 			const struct path *root,
3102 			char **buffer, int *buflen)
3103 {
3104 	struct dentry *dentry;
3105 	struct vfsmount *vfsmnt;
3106 	struct mount *mnt;
3107 	int error = 0;
3108 	unsigned seq, m_seq = 0;
3109 	char *bptr;
3110 	int blen;
3111 
3112 	rcu_read_lock();
3113 restart_mnt:
3114 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3115 	seq = 0;
3116 	rcu_read_lock();
3117 restart:
3118 	bptr = *buffer;
3119 	blen = *buflen;
3120 	error = 0;
3121 	dentry = path->dentry;
3122 	vfsmnt = path->mnt;
3123 	mnt = real_mount(vfsmnt);
3124 	read_seqbegin_or_lock(&rename_lock, &seq);
3125 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3126 		struct dentry * parent;
3127 
3128 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3129 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3130 			/* Escaped? */
3131 			if (dentry != vfsmnt->mnt_root) {
3132 				bptr = *buffer;
3133 				blen = *buflen;
3134 				error = 3;
3135 				break;
3136 			}
3137 			/* Global root? */
3138 			if (mnt != parent) {
3139 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3140 				mnt = parent;
3141 				vfsmnt = &mnt->mnt;
3142 				continue;
3143 			}
3144 			if (!error)
3145 				error = is_mounted(vfsmnt) ? 1 : 2;
3146 			break;
3147 		}
3148 		parent = dentry->d_parent;
3149 		prefetch(parent);
3150 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3151 		if (error)
3152 			break;
3153 
3154 		dentry = parent;
3155 	}
3156 	if (!(seq & 1))
3157 		rcu_read_unlock();
3158 	if (need_seqretry(&rename_lock, seq)) {
3159 		seq = 1;
3160 		goto restart;
3161 	}
3162 	done_seqretry(&rename_lock, seq);
3163 
3164 	if (!(m_seq & 1))
3165 		rcu_read_unlock();
3166 	if (need_seqretry(&mount_lock, m_seq)) {
3167 		m_seq = 1;
3168 		goto restart_mnt;
3169 	}
3170 	done_seqretry(&mount_lock, m_seq);
3171 
3172 	if (error >= 0 && bptr == *buffer) {
3173 		if (--blen < 0)
3174 			error = -ENAMETOOLONG;
3175 		else
3176 			*--bptr = '/';
3177 	}
3178 	*buffer = bptr;
3179 	*buflen = blen;
3180 	return error;
3181 }
3182 
3183 /**
3184  * __d_path - return the path of a dentry
3185  * @path: the dentry/vfsmount to report
3186  * @root: root vfsmnt/dentry
3187  * @buf: buffer to return value in
3188  * @buflen: buffer length
3189  *
3190  * Convert a dentry into an ASCII path name.
3191  *
3192  * Returns a pointer into the buffer or an error code if the
3193  * path was too long.
3194  *
3195  * "buflen" should be positive.
3196  *
3197  * If the path is not reachable from the supplied root, return %NULL.
3198  */
3199 char *__d_path(const struct path *path,
3200 	       const struct path *root,
3201 	       char *buf, int buflen)
3202 {
3203 	char *res = buf + buflen;
3204 	int error;
3205 
3206 	prepend(&res, &buflen, "\0", 1);
3207 	error = prepend_path(path, root, &res, &buflen);
3208 
3209 	if (error < 0)
3210 		return ERR_PTR(error);
3211 	if (error > 0)
3212 		return NULL;
3213 	return res;
3214 }
3215 
3216 char *d_absolute_path(const struct path *path,
3217 	       char *buf, int buflen)
3218 {
3219 	struct path root = {};
3220 	char *res = buf + buflen;
3221 	int error;
3222 
3223 	prepend(&res, &buflen, "\0", 1);
3224 	error = prepend_path(path, &root, &res, &buflen);
3225 
3226 	if (error > 1)
3227 		error = -EINVAL;
3228 	if (error < 0)
3229 		return ERR_PTR(error);
3230 	return res;
3231 }
3232 
3233 /*
3234  * same as __d_path but appends "(deleted)" for unlinked files.
3235  */
3236 static int path_with_deleted(const struct path *path,
3237 			     const struct path *root,
3238 			     char **buf, int *buflen)
3239 {
3240 	prepend(buf, buflen, "\0", 1);
3241 	if (d_unlinked(path->dentry)) {
3242 		int error = prepend(buf, buflen, " (deleted)", 10);
3243 		if (error)
3244 			return error;
3245 	}
3246 
3247 	return prepend_path(path, root, buf, buflen);
3248 }
3249 
3250 static int prepend_unreachable(char **buffer, int *buflen)
3251 {
3252 	return prepend(buffer, buflen, "(unreachable)", 13);
3253 }
3254 
3255 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3256 {
3257 	unsigned seq;
3258 
3259 	do {
3260 		seq = read_seqcount_begin(&fs->seq);
3261 		*root = fs->root;
3262 	} while (read_seqcount_retry(&fs->seq, seq));
3263 }
3264 
3265 /**
3266  * d_path - return the path of a dentry
3267  * @path: path to report
3268  * @buf: buffer to return value in
3269  * @buflen: buffer length
3270  *
3271  * Convert a dentry into an ASCII path name. If the entry has been deleted
3272  * the string " (deleted)" is appended. Note that this is ambiguous.
3273  *
3274  * Returns a pointer into the buffer or an error code if the path was
3275  * too long. Note: Callers should use the returned pointer, not the passed
3276  * in buffer, to use the name! The implementation often starts at an offset
3277  * into the buffer, and may leave 0 bytes at the start.
3278  *
3279  * "buflen" should be positive.
3280  */
3281 char *d_path(const struct path *path, char *buf, int buflen)
3282 {
3283 	char *res = buf + buflen;
3284 	struct path root;
3285 	int error;
3286 
3287 	/*
3288 	 * We have various synthetic filesystems that never get mounted.  On
3289 	 * these filesystems dentries are never used for lookup purposes, and
3290 	 * thus don't need to be hashed.  They also don't need a name until a
3291 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3292 	 * below allows us to generate a name for these objects on demand:
3293 	 *
3294 	 * Some pseudo inodes are mountable.  When they are mounted
3295 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3296 	 * and instead have d_path return the mounted path.
3297 	 */
3298 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3299 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3300 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3301 
3302 	rcu_read_lock();
3303 	get_fs_root_rcu(current->fs, &root);
3304 	error = path_with_deleted(path, &root, &res, &buflen);
3305 	rcu_read_unlock();
3306 
3307 	if (error < 0)
3308 		res = ERR_PTR(error);
3309 	return res;
3310 }
3311 EXPORT_SYMBOL(d_path);
3312 
3313 /*
3314  * Helper function for dentry_operations.d_dname() members
3315  */
3316 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3317 			const char *fmt, ...)
3318 {
3319 	va_list args;
3320 	char temp[64];
3321 	int sz;
3322 
3323 	va_start(args, fmt);
3324 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3325 	va_end(args);
3326 
3327 	if (sz > sizeof(temp) || sz > buflen)
3328 		return ERR_PTR(-ENAMETOOLONG);
3329 
3330 	buffer += buflen - sz;
3331 	return memcpy(buffer, temp, sz);
3332 }
3333 
3334 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3335 {
3336 	char *end = buffer + buflen;
3337 	/* these dentries are never renamed, so d_lock is not needed */
3338 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3339 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3340 	    prepend(&end, &buflen, "/", 1))
3341 		end = ERR_PTR(-ENAMETOOLONG);
3342 	return end;
3343 }
3344 EXPORT_SYMBOL(simple_dname);
3345 
3346 /*
3347  * Write full pathname from the root of the filesystem into the buffer.
3348  */
3349 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3350 {
3351 	struct dentry *dentry;
3352 	char *end, *retval;
3353 	int len, seq = 0;
3354 	int error = 0;
3355 
3356 	if (buflen < 2)
3357 		goto Elong;
3358 
3359 	rcu_read_lock();
3360 restart:
3361 	dentry = d;
3362 	end = buf + buflen;
3363 	len = buflen;
3364 	prepend(&end, &len, "\0", 1);
3365 	/* Get '/' right */
3366 	retval = end-1;
3367 	*retval = '/';
3368 	read_seqbegin_or_lock(&rename_lock, &seq);
3369 	while (!IS_ROOT(dentry)) {
3370 		struct dentry *parent = dentry->d_parent;
3371 
3372 		prefetch(parent);
3373 		error = prepend_name(&end, &len, &dentry->d_name);
3374 		if (error)
3375 			break;
3376 
3377 		retval = end;
3378 		dentry = parent;
3379 	}
3380 	if (!(seq & 1))
3381 		rcu_read_unlock();
3382 	if (need_seqretry(&rename_lock, seq)) {
3383 		seq = 1;
3384 		goto restart;
3385 	}
3386 	done_seqretry(&rename_lock, seq);
3387 	if (error)
3388 		goto Elong;
3389 	return retval;
3390 Elong:
3391 	return ERR_PTR(-ENAMETOOLONG);
3392 }
3393 
3394 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3395 {
3396 	return __dentry_path(dentry, buf, buflen);
3397 }
3398 EXPORT_SYMBOL(dentry_path_raw);
3399 
3400 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3401 {
3402 	char *p = NULL;
3403 	char *retval;
3404 
3405 	if (d_unlinked(dentry)) {
3406 		p = buf + buflen;
3407 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3408 			goto Elong;
3409 		buflen++;
3410 	}
3411 	retval = __dentry_path(dentry, buf, buflen);
3412 	if (!IS_ERR(retval) && p)
3413 		*p = '/';	/* restore '/' overriden with '\0' */
3414 	return retval;
3415 Elong:
3416 	return ERR_PTR(-ENAMETOOLONG);
3417 }
3418 
3419 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3420 				    struct path *pwd)
3421 {
3422 	unsigned seq;
3423 
3424 	do {
3425 		seq = read_seqcount_begin(&fs->seq);
3426 		*root = fs->root;
3427 		*pwd = fs->pwd;
3428 	} while (read_seqcount_retry(&fs->seq, seq));
3429 }
3430 
3431 /*
3432  * NOTE! The user-level library version returns a
3433  * character pointer. The kernel system call just
3434  * returns the length of the buffer filled (which
3435  * includes the ending '\0' character), or a negative
3436  * error value. So libc would do something like
3437  *
3438  *	char *getcwd(char * buf, size_t size)
3439  *	{
3440  *		int retval;
3441  *
3442  *		retval = sys_getcwd(buf, size);
3443  *		if (retval >= 0)
3444  *			return buf;
3445  *		errno = -retval;
3446  *		return NULL;
3447  *	}
3448  */
3449 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3450 {
3451 	int error;
3452 	struct path pwd, root;
3453 	char *page = __getname();
3454 
3455 	if (!page)
3456 		return -ENOMEM;
3457 
3458 	rcu_read_lock();
3459 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3460 
3461 	error = -ENOENT;
3462 	if (!d_unlinked(pwd.dentry)) {
3463 		unsigned long len;
3464 		char *cwd = page + PATH_MAX;
3465 		int buflen = PATH_MAX;
3466 
3467 		prepend(&cwd, &buflen, "\0", 1);
3468 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3469 		rcu_read_unlock();
3470 
3471 		if (error < 0)
3472 			goto out;
3473 
3474 		/* Unreachable from current root */
3475 		if (error > 0) {
3476 			error = prepend_unreachable(&cwd, &buflen);
3477 			if (error)
3478 				goto out;
3479 		}
3480 
3481 		error = -ERANGE;
3482 		len = PATH_MAX + page - cwd;
3483 		if (len <= size) {
3484 			error = len;
3485 			if (copy_to_user(buf, cwd, len))
3486 				error = -EFAULT;
3487 		}
3488 	} else {
3489 		rcu_read_unlock();
3490 	}
3491 
3492 out:
3493 	__putname(page);
3494 	return error;
3495 }
3496 
3497 /*
3498  * Test whether new_dentry is a subdirectory of old_dentry.
3499  *
3500  * Trivially implemented using the dcache structure
3501  */
3502 
3503 /**
3504  * is_subdir - is new dentry a subdirectory of old_dentry
3505  * @new_dentry: new dentry
3506  * @old_dentry: old dentry
3507  *
3508  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3509  * Returns false otherwise.
3510  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3511  */
3512 
3513 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3514 {
3515 	bool result;
3516 	unsigned seq;
3517 
3518 	if (new_dentry == old_dentry)
3519 		return true;
3520 
3521 	do {
3522 		/* for restarting inner loop in case of seq retry */
3523 		seq = read_seqbegin(&rename_lock);
3524 		/*
3525 		 * Need rcu_readlock to protect against the d_parent trashing
3526 		 * due to d_move
3527 		 */
3528 		rcu_read_lock();
3529 		if (d_ancestor(old_dentry, new_dentry))
3530 			result = true;
3531 		else
3532 			result = false;
3533 		rcu_read_unlock();
3534 	} while (read_seqretry(&rename_lock, seq));
3535 
3536 	return result;
3537 }
3538 
3539 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3540 {
3541 	struct dentry *root = data;
3542 	if (dentry != root) {
3543 		if (d_unhashed(dentry) || !dentry->d_inode)
3544 			return D_WALK_SKIP;
3545 
3546 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3547 			dentry->d_flags |= DCACHE_GENOCIDE;
3548 			dentry->d_lockref.count--;
3549 		}
3550 	}
3551 	return D_WALK_CONTINUE;
3552 }
3553 
3554 void d_genocide(struct dentry *parent)
3555 {
3556 	d_walk(parent, parent, d_genocide_kill, NULL);
3557 }
3558 
3559 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3560 {
3561 	inode_dec_link_count(inode);
3562 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3563 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3564 		!d_unlinked(dentry));
3565 	spin_lock(&dentry->d_parent->d_lock);
3566 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3567 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3568 				(unsigned long long)inode->i_ino);
3569 	spin_unlock(&dentry->d_lock);
3570 	spin_unlock(&dentry->d_parent->d_lock);
3571 	d_instantiate(dentry, inode);
3572 }
3573 EXPORT_SYMBOL(d_tmpfile);
3574 
3575 static __initdata unsigned long dhash_entries;
3576 static int __init set_dhash_entries(char *str)
3577 {
3578 	if (!str)
3579 		return 0;
3580 	dhash_entries = simple_strtoul(str, &str, 0);
3581 	return 1;
3582 }
3583 __setup("dhash_entries=", set_dhash_entries);
3584 
3585 static void __init dcache_init_early(void)
3586 {
3587 	unsigned int loop;
3588 
3589 	/* If hashes are distributed across NUMA nodes, defer
3590 	 * hash allocation until vmalloc space is available.
3591 	 */
3592 	if (hashdist)
3593 		return;
3594 
3595 	dentry_hashtable =
3596 		alloc_large_system_hash("Dentry cache",
3597 					sizeof(struct hlist_bl_head),
3598 					dhash_entries,
3599 					13,
3600 					HASH_EARLY,
3601 					&d_hash_shift,
3602 					&d_hash_mask,
3603 					0,
3604 					0);
3605 
3606 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3607 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3608 }
3609 
3610 static void __init dcache_init(void)
3611 {
3612 	unsigned int loop;
3613 
3614 	/*
3615 	 * A constructor could be added for stable state like the lists,
3616 	 * but it is probably not worth it because of the cache nature
3617 	 * of the dcache.
3618 	 */
3619 	dentry_cache = KMEM_CACHE(dentry,
3620 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3621 
3622 	/* Hash may have been set up in dcache_init_early */
3623 	if (!hashdist)
3624 		return;
3625 
3626 	dentry_hashtable =
3627 		alloc_large_system_hash("Dentry cache",
3628 					sizeof(struct hlist_bl_head),
3629 					dhash_entries,
3630 					13,
3631 					0,
3632 					&d_hash_shift,
3633 					&d_hash_mask,
3634 					0,
3635 					0);
3636 
3637 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3638 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3639 }
3640 
3641 /* SLAB cache for __getname() consumers */
3642 struct kmem_cache *names_cachep __read_mostly;
3643 EXPORT_SYMBOL(names_cachep);
3644 
3645 EXPORT_SYMBOL(d_genocide);
3646 
3647 void __init vfs_caches_init_early(void)
3648 {
3649 	dcache_init_early();
3650 	inode_init_early();
3651 }
3652 
3653 void __init vfs_caches_init(void)
3654 {
3655 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3656 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3657 
3658 	dcache_init();
3659 	inode_init();
3660 	files_init();
3661 	files_maxfiles_init();
3662 	mnt_init();
3663 	bdev_cache_init();
3664 	chrdev_init();
3665 }
3666