xref: /openbmc/linux/fs/dcache.c (revision 0d456bad)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459  * @dentry: dentry to drop
460  *
461  * This is called when we do a lookup on a placeholder dentry that needed to be
462  * looked up.  The dentry should have been hashed in order for it to be found by
463  * the lookup code, but now needs to be unhashed while we do the actual lookup
464  * and clear the DCACHE_NEED_LOOKUP flag.
465  */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 	spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474 
475 /*
476  * Finish off a dentry we've decided to kill.
477  * dentry->d_lock must be held, returns with it unlocked.
478  * If ref is non-zero, then decrement the refcount too.
479  * Returns dentry requiring refcount drop, or NULL if we're done.
480  */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 	__releases(dentry->d_lock)
483 {
484 	struct inode *inode;
485 	struct dentry *parent;
486 
487 	inode = dentry->d_inode;
488 	if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 		spin_unlock(&dentry->d_lock);
491 		cpu_relax();
492 		return dentry; /* try again with same dentry */
493 	}
494 	if (IS_ROOT(dentry))
495 		parent = NULL;
496 	else
497 		parent = dentry->d_parent;
498 	if (parent && !spin_trylock(&parent->d_lock)) {
499 		if (inode)
500 			spin_unlock(&inode->i_lock);
501 		goto relock;
502 	}
503 
504 	if (ref)
505 		dentry->d_count--;
506 	/*
507 	 * if dentry was on the d_lru list delete it from there.
508 	 * inform the fs via d_prune that this dentry is about to be
509 	 * unhashed and destroyed.
510 	 */
511 	dentry_lru_prune(dentry);
512 	/* if it was on the hash then remove it */
513 	__d_drop(dentry);
514 	return d_kill(dentry, parent);
515 }
516 
517 /*
518  * This is dput
519  *
520  * This is complicated by the fact that we do not want to put
521  * dentries that are no longer on any hash chain on the unused
522  * list: we'd much rather just get rid of them immediately.
523  *
524  * However, that implies that we have to traverse the dentry
525  * tree upwards to the parents which might _also_ now be
526  * scheduled for deletion (it may have been only waiting for
527  * its last child to go away).
528  *
529  * This tail recursion is done by hand as we don't want to depend
530  * on the compiler to always get this right (gcc generally doesn't).
531  * Real recursion would eat up our stack space.
532  */
533 
534 /*
535  * dput - release a dentry
536  * @dentry: dentry to release
537  *
538  * Release a dentry. This will drop the usage count and if appropriate
539  * call the dentry unlink method as well as removing it from the queues and
540  * releasing its resources. If the parent dentries were scheduled for release
541  * they too may now get deleted.
542  */
543 void dput(struct dentry *dentry)
544 {
545 	if (!dentry)
546 		return;
547 
548 repeat:
549 	if (dentry->d_count == 1)
550 		might_sleep();
551 	spin_lock(&dentry->d_lock);
552 	BUG_ON(!dentry->d_count);
553 	if (dentry->d_count > 1) {
554 		dentry->d_count--;
555 		spin_unlock(&dentry->d_lock);
556 		return;
557 	}
558 
559 	if (dentry->d_flags & DCACHE_OP_DELETE) {
560 		if (dentry->d_op->d_delete(dentry))
561 			goto kill_it;
562 	}
563 
564 	/* Unreachable? Get rid of it */
565  	if (d_unhashed(dentry))
566 		goto kill_it;
567 
568 	/*
569 	 * If this dentry needs lookup, don't set the referenced flag so that it
570 	 * is more likely to be cleaned up by the dcache shrinker in case of
571 	 * memory pressure.
572 	 */
573 	if (!d_need_lookup(dentry))
574 		dentry->d_flags |= DCACHE_REFERENCED;
575 	dentry_lru_add(dentry);
576 
577 	dentry->d_count--;
578 	spin_unlock(&dentry->d_lock);
579 	return;
580 
581 kill_it:
582 	dentry = dentry_kill(dentry, 1);
583 	if (dentry)
584 		goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587 
588 /**
589  * d_invalidate - invalidate a dentry
590  * @dentry: dentry to invalidate
591  *
592  * Try to invalidate the dentry if it turns out to be
593  * possible. If there are other dentries that can be
594  * reached through this one we can't delete it and we
595  * return -EBUSY. On success we return 0.
596  *
597  * no dcache lock.
598  */
599 
600 int d_invalidate(struct dentry * dentry)
601 {
602 	/*
603 	 * If it's already been dropped, return OK.
604 	 */
605 	spin_lock(&dentry->d_lock);
606 	if (d_unhashed(dentry)) {
607 		spin_unlock(&dentry->d_lock);
608 		return 0;
609 	}
610 	/*
611 	 * Check whether to do a partial shrink_dcache
612 	 * to get rid of unused child entries.
613 	 */
614 	if (!list_empty(&dentry->d_subdirs)) {
615 		spin_unlock(&dentry->d_lock);
616 		shrink_dcache_parent(dentry);
617 		spin_lock(&dentry->d_lock);
618 	}
619 
620 	/*
621 	 * Somebody else still using it?
622 	 *
623 	 * If it's a directory, we can't drop it
624 	 * for fear of somebody re-populating it
625 	 * with children (even though dropping it
626 	 * would make it unreachable from the root,
627 	 * we might still populate it if it was a
628 	 * working directory or similar).
629 	 * We also need to leave mountpoints alone,
630 	 * directory or not.
631 	 */
632 	if (dentry->d_count > 1 && dentry->d_inode) {
633 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 			spin_unlock(&dentry->d_lock);
635 			return -EBUSY;
636 		}
637 	}
638 
639 	__d_drop(dentry);
640 	spin_unlock(&dentry->d_lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644 
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 	dentry->d_count++;
649 }
650 
651 static inline void __dget(struct dentry *dentry)
652 {
653 	spin_lock(&dentry->d_lock);
654 	__dget_dlock(dentry);
655 	spin_unlock(&dentry->d_lock);
656 }
657 
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 	struct dentry *ret;
661 
662 repeat:
663 	/*
664 	 * Don't need rcu_dereference because we re-check it was correct under
665 	 * the lock.
666 	 */
667 	rcu_read_lock();
668 	ret = dentry->d_parent;
669 	spin_lock(&ret->d_lock);
670 	if (unlikely(ret != dentry->d_parent)) {
671 		spin_unlock(&ret->d_lock);
672 		rcu_read_unlock();
673 		goto repeat;
674 	}
675 	rcu_read_unlock();
676 	BUG_ON(!ret->d_count);
677 	ret->d_count++;
678 	spin_unlock(&ret->d_lock);
679 	return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682 
683 /**
684  * d_find_alias - grab a hashed alias of inode
685  * @inode: inode in question
686  * @want_discon:  flag, used by d_splice_alias, to request
687  *          that only a DISCONNECTED alias be returned.
688  *
689  * If inode has a hashed alias, or is a directory and has any alias,
690  * acquire the reference to alias and return it. Otherwise return NULL.
691  * Notice that if inode is a directory there can be only one alias and
692  * it can be unhashed only if it has no children, or if it is the root
693  * of a filesystem.
694  *
695  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696  * any other hashed alias over that one unless @want_discon is set,
697  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
698  */
699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
700 {
701 	struct dentry *alias, *discon_alias;
702 	struct hlist_node *p;
703 
704 again:
705 	discon_alias = NULL;
706 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
707 		spin_lock(&alias->d_lock);
708  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
709 			if (IS_ROOT(alias) &&
710 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
711 				discon_alias = alias;
712 			} else if (!want_discon) {
713 				__dget_dlock(alias);
714 				spin_unlock(&alias->d_lock);
715 				return alias;
716 			}
717 		}
718 		spin_unlock(&alias->d_lock);
719 	}
720 	if (discon_alias) {
721 		alias = discon_alias;
722 		spin_lock(&alias->d_lock);
723 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 			if (IS_ROOT(alias) &&
725 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
726 				__dget_dlock(alias);
727 				spin_unlock(&alias->d_lock);
728 				return alias;
729 			}
730 		}
731 		spin_unlock(&alias->d_lock);
732 		goto again;
733 	}
734 	return NULL;
735 }
736 
737 struct dentry *d_find_alias(struct inode *inode)
738 {
739 	struct dentry *de = NULL;
740 
741 	if (!hlist_empty(&inode->i_dentry)) {
742 		spin_lock(&inode->i_lock);
743 		de = __d_find_alias(inode, 0);
744 		spin_unlock(&inode->i_lock);
745 	}
746 	return de;
747 }
748 EXPORT_SYMBOL(d_find_alias);
749 
750 /*
751  *	Try to kill dentries associated with this inode.
752  * WARNING: you must own a reference to inode.
753  */
754 void d_prune_aliases(struct inode *inode)
755 {
756 	struct dentry *dentry;
757 	struct hlist_node *p;
758 restart:
759 	spin_lock(&inode->i_lock);
760 	hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
761 		spin_lock(&dentry->d_lock);
762 		if (!dentry->d_count) {
763 			__dget_dlock(dentry);
764 			__d_drop(dentry);
765 			spin_unlock(&dentry->d_lock);
766 			spin_unlock(&inode->i_lock);
767 			dput(dentry);
768 			goto restart;
769 		}
770 		spin_unlock(&dentry->d_lock);
771 	}
772 	spin_unlock(&inode->i_lock);
773 }
774 EXPORT_SYMBOL(d_prune_aliases);
775 
776 /*
777  * Try to throw away a dentry - free the inode, dput the parent.
778  * Requires dentry->d_lock is held, and dentry->d_count == 0.
779  * Releases dentry->d_lock.
780  *
781  * This may fail if locks cannot be acquired no problem, just try again.
782  */
783 static void try_prune_one_dentry(struct dentry *dentry)
784 	__releases(dentry->d_lock)
785 {
786 	struct dentry *parent;
787 
788 	parent = dentry_kill(dentry, 0);
789 	/*
790 	 * If dentry_kill returns NULL, we have nothing more to do.
791 	 * if it returns the same dentry, trylocks failed. In either
792 	 * case, just loop again.
793 	 *
794 	 * Otherwise, we need to prune ancestors too. This is necessary
795 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 	 * is also expected to be beneficial in reducing dentry cache
797 	 * fragmentation.
798 	 */
799 	if (!parent)
800 		return;
801 	if (parent == dentry)
802 		return;
803 
804 	/* Prune ancestors. */
805 	dentry = parent;
806 	while (dentry) {
807 		spin_lock(&dentry->d_lock);
808 		if (dentry->d_count > 1) {
809 			dentry->d_count--;
810 			spin_unlock(&dentry->d_lock);
811 			return;
812 		}
813 		dentry = dentry_kill(dentry, 1);
814 	}
815 }
816 
817 static void shrink_dentry_list(struct list_head *list)
818 {
819 	struct dentry *dentry;
820 
821 	rcu_read_lock();
822 	for (;;) {
823 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 		if (&dentry->d_lru == list)
825 			break; /* empty */
826 		spin_lock(&dentry->d_lock);
827 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 			spin_unlock(&dentry->d_lock);
829 			continue;
830 		}
831 
832 		/*
833 		 * We found an inuse dentry which was not removed from
834 		 * the LRU because of laziness during lookup.  Do not free
835 		 * it - just keep it off the LRU list.
836 		 */
837 		if (dentry->d_count) {
838 			dentry_lru_del(dentry);
839 			spin_unlock(&dentry->d_lock);
840 			continue;
841 		}
842 
843 		rcu_read_unlock();
844 
845 		try_prune_one_dentry(dentry);
846 
847 		rcu_read_lock();
848 	}
849 	rcu_read_unlock();
850 }
851 
852 /**
853  * prune_dcache_sb - shrink the dcache
854  * @sb: superblock
855  * @count: number of entries to try to free
856  *
857  * Attempt to shrink the superblock dcache LRU by @count entries. This is
858  * done when we need more memory an called from the superblock shrinker
859  * function.
860  *
861  * This function may fail to free any resources if all the dentries are in
862  * use.
863  */
864 void prune_dcache_sb(struct super_block *sb, int count)
865 {
866 	struct dentry *dentry;
867 	LIST_HEAD(referenced);
868 	LIST_HEAD(tmp);
869 
870 relock:
871 	spin_lock(&dcache_lru_lock);
872 	while (!list_empty(&sb->s_dentry_lru)) {
873 		dentry = list_entry(sb->s_dentry_lru.prev,
874 				struct dentry, d_lru);
875 		BUG_ON(dentry->d_sb != sb);
876 
877 		if (!spin_trylock(&dentry->d_lock)) {
878 			spin_unlock(&dcache_lru_lock);
879 			cpu_relax();
880 			goto relock;
881 		}
882 
883 		if (dentry->d_flags & DCACHE_REFERENCED) {
884 			dentry->d_flags &= ~DCACHE_REFERENCED;
885 			list_move(&dentry->d_lru, &referenced);
886 			spin_unlock(&dentry->d_lock);
887 		} else {
888 			list_move_tail(&dentry->d_lru, &tmp);
889 			dentry->d_flags |= DCACHE_SHRINK_LIST;
890 			spin_unlock(&dentry->d_lock);
891 			if (!--count)
892 				break;
893 		}
894 		cond_resched_lock(&dcache_lru_lock);
895 	}
896 	if (!list_empty(&referenced))
897 		list_splice(&referenced, &sb->s_dentry_lru);
898 	spin_unlock(&dcache_lru_lock);
899 
900 	shrink_dentry_list(&tmp);
901 }
902 
903 /**
904  * shrink_dcache_sb - shrink dcache for a superblock
905  * @sb: superblock
906  *
907  * Shrink the dcache for the specified super block. This is used to free
908  * the dcache before unmounting a file system.
909  */
910 void shrink_dcache_sb(struct super_block *sb)
911 {
912 	LIST_HEAD(tmp);
913 
914 	spin_lock(&dcache_lru_lock);
915 	while (!list_empty(&sb->s_dentry_lru)) {
916 		list_splice_init(&sb->s_dentry_lru, &tmp);
917 		spin_unlock(&dcache_lru_lock);
918 		shrink_dentry_list(&tmp);
919 		spin_lock(&dcache_lru_lock);
920 	}
921 	spin_unlock(&dcache_lru_lock);
922 }
923 EXPORT_SYMBOL(shrink_dcache_sb);
924 
925 /*
926  * destroy a single subtree of dentries for unmount
927  * - see the comments on shrink_dcache_for_umount() for a description of the
928  *   locking
929  */
930 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
931 {
932 	struct dentry *parent;
933 
934 	BUG_ON(!IS_ROOT(dentry));
935 
936 	for (;;) {
937 		/* descend to the first leaf in the current subtree */
938 		while (!list_empty(&dentry->d_subdirs))
939 			dentry = list_entry(dentry->d_subdirs.next,
940 					    struct dentry, d_u.d_child);
941 
942 		/* consume the dentries from this leaf up through its parents
943 		 * until we find one with children or run out altogether */
944 		do {
945 			struct inode *inode;
946 
947 			/*
948 			 * remove the dentry from the lru, and inform
949 			 * the fs that this dentry is about to be
950 			 * unhashed and destroyed.
951 			 */
952 			dentry_lru_prune(dentry);
953 			__d_shrink(dentry);
954 
955 			if (dentry->d_count != 0) {
956 				printk(KERN_ERR
957 				       "BUG: Dentry %p{i=%lx,n=%s}"
958 				       " still in use (%d)"
959 				       " [unmount of %s %s]\n",
960 				       dentry,
961 				       dentry->d_inode ?
962 				       dentry->d_inode->i_ino : 0UL,
963 				       dentry->d_name.name,
964 				       dentry->d_count,
965 				       dentry->d_sb->s_type->name,
966 				       dentry->d_sb->s_id);
967 				BUG();
968 			}
969 
970 			if (IS_ROOT(dentry)) {
971 				parent = NULL;
972 				list_del(&dentry->d_u.d_child);
973 			} else {
974 				parent = dentry->d_parent;
975 				parent->d_count--;
976 				list_del(&dentry->d_u.d_child);
977 			}
978 
979 			inode = dentry->d_inode;
980 			if (inode) {
981 				dentry->d_inode = NULL;
982 				hlist_del_init(&dentry->d_alias);
983 				if (dentry->d_op && dentry->d_op->d_iput)
984 					dentry->d_op->d_iput(dentry, inode);
985 				else
986 					iput(inode);
987 			}
988 
989 			d_free(dentry);
990 
991 			/* finished when we fall off the top of the tree,
992 			 * otherwise we ascend to the parent and move to the
993 			 * next sibling if there is one */
994 			if (!parent)
995 				return;
996 			dentry = parent;
997 		} while (list_empty(&dentry->d_subdirs));
998 
999 		dentry = list_entry(dentry->d_subdirs.next,
1000 				    struct dentry, d_u.d_child);
1001 	}
1002 }
1003 
1004 /*
1005  * destroy the dentries attached to a superblock on unmounting
1006  * - we don't need to use dentry->d_lock because:
1007  *   - the superblock is detached from all mountings and open files, so the
1008  *     dentry trees will not be rearranged by the VFS
1009  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
1010  *     any dentries belonging to this superblock that it comes across
1011  *   - the filesystem itself is no longer permitted to rearrange the dentries
1012  *     in this superblock
1013  */
1014 void shrink_dcache_for_umount(struct super_block *sb)
1015 {
1016 	struct dentry *dentry;
1017 
1018 	if (down_read_trylock(&sb->s_umount))
1019 		BUG();
1020 
1021 	dentry = sb->s_root;
1022 	sb->s_root = NULL;
1023 	dentry->d_count--;
1024 	shrink_dcache_for_umount_subtree(dentry);
1025 
1026 	while (!hlist_bl_empty(&sb->s_anon)) {
1027 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1028 		shrink_dcache_for_umount_subtree(dentry);
1029 	}
1030 }
1031 
1032 /*
1033  * This tries to ascend one level of parenthood, but
1034  * we can race with renaming, so we need to re-check
1035  * the parenthood after dropping the lock and check
1036  * that the sequence number still matches.
1037  */
1038 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1039 {
1040 	struct dentry *new = old->d_parent;
1041 
1042 	rcu_read_lock();
1043 	spin_unlock(&old->d_lock);
1044 	spin_lock(&new->d_lock);
1045 
1046 	/*
1047 	 * might go back up the wrong parent if we have had a rename
1048 	 * or deletion
1049 	 */
1050 	if (new != old->d_parent ||
1051 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1052 		 (!locked && read_seqretry(&rename_lock, seq))) {
1053 		spin_unlock(&new->d_lock);
1054 		new = NULL;
1055 	}
1056 	rcu_read_unlock();
1057 	return new;
1058 }
1059 
1060 
1061 /*
1062  * Search for at least 1 mount point in the dentry's subdirs.
1063  * We descend to the next level whenever the d_subdirs
1064  * list is non-empty and continue searching.
1065  */
1066 
1067 /**
1068  * have_submounts - check for mounts over a dentry
1069  * @parent: dentry to check.
1070  *
1071  * Return true if the parent or its subdirectories contain
1072  * a mount point
1073  */
1074 int have_submounts(struct dentry *parent)
1075 {
1076 	struct dentry *this_parent;
1077 	struct list_head *next;
1078 	unsigned seq;
1079 	int locked = 0;
1080 
1081 	seq = read_seqbegin(&rename_lock);
1082 again:
1083 	this_parent = parent;
1084 
1085 	if (d_mountpoint(parent))
1086 		goto positive;
1087 	spin_lock(&this_parent->d_lock);
1088 repeat:
1089 	next = this_parent->d_subdirs.next;
1090 resume:
1091 	while (next != &this_parent->d_subdirs) {
1092 		struct list_head *tmp = next;
1093 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1094 		next = tmp->next;
1095 
1096 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1097 		/* Have we found a mount point ? */
1098 		if (d_mountpoint(dentry)) {
1099 			spin_unlock(&dentry->d_lock);
1100 			spin_unlock(&this_parent->d_lock);
1101 			goto positive;
1102 		}
1103 		if (!list_empty(&dentry->d_subdirs)) {
1104 			spin_unlock(&this_parent->d_lock);
1105 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1106 			this_parent = dentry;
1107 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1108 			goto repeat;
1109 		}
1110 		spin_unlock(&dentry->d_lock);
1111 	}
1112 	/*
1113 	 * All done at this level ... ascend and resume the search.
1114 	 */
1115 	if (this_parent != parent) {
1116 		struct dentry *child = this_parent;
1117 		this_parent = try_to_ascend(this_parent, locked, seq);
1118 		if (!this_parent)
1119 			goto rename_retry;
1120 		next = child->d_u.d_child.next;
1121 		goto resume;
1122 	}
1123 	spin_unlock(&this_parent->d_lock);
1124 	if (!locked && read_seqretry(&rename_lock, seq))
1125 		goto rename_retry;
1126 	if (locked)
1127 		write_sequnlock(&rename_lock);
1128 	return 0; /* No mount points found in tree */
1129 positive:
1130 	if (!locked && read_seqretry(&rename_lock, seq))
1131 		goto rename_retry;
1132 	if (locked)
1133 		write_sequnlock(&rename_lock);
1134 	return 1;
1135 
1136 rename_retry:
1137 	if (locked)
1138 		goto again;
1139 	locked = 1;
1140 	write_seqlock(&rename_lock);
1141 	goto again;
1142 }
1143 EXPORT_SYMBOL(have_submounts);
1144 
1145 /*
1146  * Search the dentry child list of the specified parent,
1147  * and move any unused dentries to the end of the unused
1148  * list for prune_dcache(). We descend to the next level
1149  * whenever the d_subdirs list is non-empty and continue
1150  * searching.
1151  *
1152  * It returns zero iff there are no unused children,
1153  * otherwise  it returns the number of children moved to
1154  * the end of the unused list. This may not be the total
1155  * number of unused children, because select_parent can
1156  * drop the lock and return early due to latency
1157  * constraints.
1158  */
1159 static int select_parent(struct dentry *parent, struct list_head *dispose)
1160 {
1161 	struct dentry *this_parent;
1162 	struct list_head *next;
1163 	unsigned seq;
1164 	int found = 0;
1165 	int locked = 0;
1166 
1167 	seq = read_seqbegin(&rename_lock);
1168 again:
1169 	this_parent = parent;
1170 	spin_lock(&this_parent->d_lock);
1171 repeat:
1172 	next = this_parent->d_subdirs.next;
1173 resume:
1174 	while (next != &this_parent->d_subdirs) {
1175 		struct list_head *tmp = next;
1176 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1177 		next = tmp->next;
1178 
1179 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1180 
1181 		/*
1182 		 * move only zero ref count dentries to the dispose list.
1183 		 *
1184 		 * Those which are presently on the shrink list, being processed
1185 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1186 		 * loop in shrink_dcache_parent() might not make any progress
1187 		 * and loop forever.
1188 		 */
1189 		if (dentry->d_count) {
1190 			dentry_lru_del(dentry);
1191 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1192 			dentry_lru_move_list(dentry, dispose);
1193 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1194 			found++;
1195 		}
1196 		/*
1197 		 * We can return to the caller if we have found some (this
1198 		 * ensures forward progress). We'll be coming back to find
1199 		 * the rest.
1200 		 */
1201 		if (found && need_resched()) {
1202 			spin_unlock(&dentry->d_lock);
1203 			goto out;
1204 		}
1205 
1206 		/*
1207 		 * Descend a level if the d_subdirs list is non-empty.
1208 		 */
1209 		if (!list_empty(&dentry->d_subdirs)) {
1210 			spin_unlock(&this_parent->d_lock);
1211 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1212 			this_parent = dentry;
1213 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1214 			goto repeat;
1215 		}
1216 
1217 		spin_unlock(&dentry->d_lock);
1218 	}
1219 	/*
1220 	 * All done at this level ... ascend and resume the search.
1221 	 */
1222 	if (this_parent != parent) {
1223 		struct dentry *child = this_parent;
1224 		this_parent = try_to_ascend(this_parent, locked, seq);
1225 		if (!this_parent)
1226 			goto rename_retry;
1227 		next = child->d_u.d_child.next;
1228 		goto resume;
1229 	}
1230 out:
1231 	spin_unlock(&this_parent->d_lock);
1232 	if (!locked && read_seqretry(&rename_lock, seq))
1233 		goto rename_retry;
1234 	if (locked)
1235 		write_sequnlock(&rename_lock);
1236 	return found;
1237 
1238 rename_retry:
1239 	if (found)
1240 		return found;
1241 	if (locked)
1242 		goto again;
1243 	locked = 1;
1244 	write_seqlock(&rename_lock);
1245 	goto again;
1246 }
1247 
1248 /**
1249  * shrink_dcache_parent - prune dcache
1250  * @parent: parent of entries to prune
1251  *
1252  * Prune the dcache to remove unused children of the parent dentry.
1253  */
1254 void shrink_dcache_parent(struct dentry * parent)
1255 {
1256 	LIST_HEAD(dispose);
1257 	int found;
1258 
1259 	while ((found = select_parent(parent, &dispose)) != 0)
1260 		shrink_dentry_list(&dispose);
1261 }
1262 EXPORT_SYMBOL(shrink_dcache_parent);
1263 
1264 /**
1265  * __d_alloc	-	allocate a dcache entry
1266  * @sb: filesystem it will belong to
1267  * @name: qstr of the name
1268  *
1269  * Allocates a dentry. It returns %NULL if there is insufficient memory
1270  * available. On a success the dentry is returned. The name passed in is
1271  * copied and the copy passed in may be reused after this call.
1272  */
1273 
1274 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1275 {
1276 	struct dentry *dentry;
1277 	char *dname;
1278 
1279 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 	if (!dentry)
1281 		return NULL;
1282 
1283 	/*
1284 	 * We guarantee that the inline name is always NUL-terminated.
1285 	 * This way the memcpy() done by the name switching in rename
1286 	 * will still always have a NUL at the end, even if we might
1287 	 * be overwriting an internal NUL character
1288 	 */
1289 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1290 	if (name->len > DNAME_INLINE_LEN-1) {
1291 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1292 		if (!dname) {
1293 			kmem_cache_free(dentry_cache, dentry);
1294 			return NULL;
1295 		}
1296 	} else  {
1297 		dname = dentry->d_iname;
1298 	}
1299 
1300 	dentry->d_name.len = name->len;
1301 	dentry->d_name.hash = name->hash;
1302 	memcpy(dname, name->name, name->len);
1303 	dname[name->len] = 0;
1304 
1305 	/* Make sure we always see the terminating NUL character */
1306 	smp_wmb();
1307 	dentry->d_name.name = dname;
1308 
1309 	dentry->d_count = 1;
1310 	dentry->d_flags = 0;
1311 	spin_lock_init(&dentry->d_lock);
1312 	seqcount_init(&dentry->d_seq);
1313 	dentry->d_inode = NULL;
1314 	dentry->d_parent = dentry;
1315 	dentry->d_sb = sb;
1316 	dentry->d_op = NULL;
1317 	dentry->d_fsdata = NULL;
1318 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1319 	INIT_LIST_HEAD(&dentry->d_lru);
1320 	INIT_LIST_HEAD(&dentry->d_subdirs);
1321 	INIT_HLIST_NODE(&dentry->d_alias);
1322 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1323 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1324 
1325 	this_cpu_inc(nr_dentry);
1326 
1327 	return dentry;
1328 }
1329 
1330 /**
1331  * d_alloc	-	allocate a dcache entry
1332  * @parent: parent of entry to allocate
1333  * @name: qstr of the name
1334  *
1335  * Allocates a dentry. It returns %NULL if there is insufficient memory
1336  * available. On a success the dentry is returned. The name passed in is
1337  * copied and the copy passed in may be reused after this call.
1338  */
1339 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1340 {
1341 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1342 	if (!dentry)
1343 		return NULL;
1344 
1345 	spin_lock(&parent->d_lock);
1346 	/*
1347 	 * don't need child lock because it is not subject
1348 	 * to concurrency here
1349 	 */
1350 	__dget_dlock(parent);
1351 	dentry->d_parent = parent;
1352 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1353 	spin_unlock(&parent->d_lock);
1354 
1355 	return dentry;
1356 }
1357 EXPORT_SYMBOL(d_alloc);
1358 
1359 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1360 {
1361 	struct dentry *dentry = __d_alloc(sb, name);
1362 	if (dentry)
1363 		dentry->d_flags |= DCACHE_DISCONNECTED;
1364 	return dentry;
1365 }
1366 EXPORT_SYMBOL(d_alloc_pseudo);
1367 
1368 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1369 {
1370 	struct qstr q;
1371 
1372 	q.name = name;
1373 	q.len = strlen(name);
1374 	q.hash = full_name_hash(q.name, q.len);
1375 	return d_alloc(parent, &q);
1376 }
1377 EXPORT_SYMBOL(d_alloc_name);
1378 
1379 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1380 {
1381 	WARN_ON_ONCE(dentry->d_op);
1382 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1383 				DCACHE_OP_COMPARE	|
1384 				DCACHE_OP_REVALIDATE	|
1385 				DCACHE_OP_DELETE ));
1386 	dentry->d_op = op;
1387 	if (!op)
1388 		return;
1389 	if (op->d_hash)
1390 		dentry->d_flags |= DCACHE_OP_HASH;
1391 	if (op->d_compare)
1392 		dentry->d_flags |= DCACHE_OP_COMPARE;
1393 	if (op->d_revalidate)
1394 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1395 	if (op->d_delete)
1396 		dentry->d_flags |= DCACHE_OP_DELETE;
1397 	if (op->d_prune)
1398 		dentry->d_flags |= DCACHE_OP_PRUNE;
1399 
1400 }
1401 EXPORT_SYMBOL(d_set_d_op);
1402 
1403 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1404 {
1405 	spin_lock(&dentry->d_lock);
1406 	if (inode) {
1407 		if (unlikely(IS_AUTOMOUNT(inode)))
1408 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1409 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1410 	}
1411 	dentry->d_inode = inode;
1412 	dentry_rcuwalk_barrier(dentry);
1413 	spin_unlock(&dentry->d_lock);
1414 	fsnotify_d_instantiate(dentry, inode);
1415 }
1416 
1417 /**
1418  * d_instantiate - fill in inode information for a dentry
1419  * @entry: dentry to complete
1420  * @inode: inode to attach to this dentry
1421  *
1422  * Fill in inode information in the entry.
1423  *
1424  * This turns negative dentries into productive full members
1425  * of society.
1426  *
1427  * NOTE! This assumes that the inode count has been incremented
1428  * (or otherwise set) by the caller to indicate that it is now
1429  * in use by the dcache.
1430  */
1431 
1432 void d_instantiate(struct dentry *entry, struct inode * inode)
1433 {
1434 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1435 	if (inode)
1436 		spin_lock(&inode->i_lock);
1437 	__d_instantiate(entry, inode);
1438 	if (inode)
1439 		spin_unlock(&inode->i_lock);
1440 	security_d_instantiate(entry, inode);
1441 }
1442 EXPORT_SYMBOL(d_instantiate);
1443 
1444 /**
1445  * d_instantiate_unique - instantiate a non-aliased dentry
1446  * @entry: dentry to instantiate
1447  * @inode: inode to attach to this dentry
1448  *
1449  * Fill in inode information in the entry. On success, it returns NULL.
1450  * If an unhashed alias of "entry" already exists, then we return the
1451  * aliased dentry instead and drop one reference to inode.
1452  *
1453  * Note that in order to avoid conflicts with rename() etc, the caller
1454  * had better be holding the parent directory semaphore.
1455  *
1456  * This also assumes that the inode count has been incremented
1457  * (or otherwise set) by the caller to indicate that it is now
1458  * in use by the dcache.
1459  */
1460 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1461 					     struct inode *inode)
1462 {
1463 	struct dentry *alias;
1464 	int len = entry->d_name.len;
1465 	const char *name = entry->d_name.name;
1466 	unsigned int hash = entry->d_name.hash;
1467 	struct hlist_node *p;
1468 
1469 	if (!inode) {
1470 		__d_instantiate(entry, NULL);
1471 		return NULL;
1472 	}
1473 
1474 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1475 		/*
1476 		 * Don't need alias->d_lock here, because aliases with
1477 		 * d_parent == entry->d_parent are not subject to name or
1478 		 * parent changes, because the parent inode i_mutex is held.
1479 		 */
1480 		if (alias->d_name.hash != hash)
1481 			continue;
1482 		if (alias->d_parent != entry->d_parent)
1483 			continue;
1484 		if (alias->d_name.len != len)
1485 			continue;
1486 		if (dentry_cmp(alias, name, len))
1487 			continue;
1488 		__dget(alias);
1489 		return alias;
1490 	}
1491 
1492 	__d_instantiate(entry, inode);
1493 	return NULL;
1494 }
1495 
1496 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1497 {
1498 	struct dentry *result;
1499 
1500 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1501 
1502 	if (inode)
1503 		spin_lock(&inode->i_lock);
1504 	result = __d_instantiate_unique(entry, inode);
1505 	if (inode)
1506 		spin_unlock(&inode->i_lock);
1507 
1508 	if (!result) {
1509 		security_d_instantiate(entry, inode);
1510 		return NULL;
1511 	}
1512 
1513 	BUG_ON(!d_unhashed(result));
1514 	iput(inode);
1515 	return result;
1516 }
1517 
1518 EXPORT_SYMBOL(d_instantiate_unique);
1519 
1520 struct dentry *d_make_root(struct inode *root_inode)
1521 {
1522 	struct dentry *res = NULL;
1523 
1524 	if (root_inode) {
1525 		static const struct qstr name = QSTR_INIT("/", 1);
1526 
1527 		res = __d_alloc(root_inode->i_sb, &name);
1528 		if (res)
1529 			d_instantiate(res, root_inode);
1530 		else
1531 			iput(root_inode);
1532 	}
1533 	return res;
1534 }
1535 EXPORT_SYMBOL(d_make_root);
1536 
1537 static struct dentry * __d_find_any_alias(struct inode *inode)
1538 {
1539 	struct dentry *alias;
1540 
1541 	if (hlist_empty(&inode->i_dentry))
1542 		return NULL;
1543 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1544 	__dget(alias);
1545 	return alias;
1546 }
1547 
1548 /**
1549  * d_find_any_alias - find any alias for a given inode
1550  * @inode: inode to find an alias for
1551  *
1552  * If any aliases exist for the given inode, take and return a
1553  * reference for one of them.  If no aliases exist, return %NULL.
1554  */
1555 struct dentry *d_find_any_alias(struct inode *inode)
1556 {
1557 	struct dentry *de;
1558 
1559 	spin_lock(&inode->i_lock);
1560 	de = __d_find_any_alias(inode);
1561 	spin_unlock(&inode->i_lock);
1562 	return de;
1563 }
1564 EXPORT_SYMBOL(d_find_any_alias);
1565 
1566 /**
1567  * d_obtain_alias - find or allocate a dentry for a given inode
1568  * @inode: inode to allocate the dentry for
1569  *
1570  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1571  * similar open by handle operations.  The returned dentry may be anonymous,
1572  * or may have a full name (if the inode was already in the cache).
1573  *
1574  * When called on a directory inode, we must ensure that the inode only ever
1575  * has one dentry.  If a dentry is found, that is returned instead of
1576  * allocating a new one.
1577  *
1578  * On successful return, the reference to the inode has been transferred
1579  * to the dentry.  In case of an error the reference on the inode is released.
1580  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1581  * be passed in and will be the error will be propagate to the return value,
1582  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1583  */
1584 struct dentry *d_obtain_alias(struct inode *inode)
1585 {
1586 	static const struct qstr anonstring = { .name = "" };
1587 	struct dentry *tmp;
1588 	struct dentry *res;
1589 
1590 	if (!inode)
1591 		return ERR_PTR(-ESTALE);
1592 	if (IS_ERR(inode))
1593 		return ERR_CAST(inode);
1594 
1595 	res = d_find_any_alias(inode);
1596 	if (res)
1597 		goto out_iput;
1598 
1599 	tmp = __d_alloc(inode->i_sb, &anonstring);
1600 	if (!tmp) {
1601 		res = ERR_PTR(-ENOMEM);
1602 		goto out_iput;
1603 	}
1604 
1605 	spin_lock(&inode->i_lock);
1606 	res = __d_find_any_alias(inode);
1607 	if (res) {
1608 		spin_unlock(&inode->i_lock);
1609 		dput(tmp);
1610 		goto out_iput;
1611 	}
1612 
1613 	/* attach a disconnected dentry */
1614 	spin_lock(&tmp->d_lock);
1615 	tmp->d_inode = inode;
1616 	tmp->d_flags |= DCACHE_DISCONNECTED;
1617 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1618 	hlist_bl_lock(&tmp->d_sb->s_anon);
1619 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1620 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1621 	spin_unlock(&tmp->d_lock);
1622 	spin_unlock(&inode->i_lock);
1623 	security_d_instantiate(tmp, inode);
1624 
1625 	return tmp;
1626 
1627  out_iput:
1628 	if (res && !IS_ERR(res))
1629 		security_d_instantiate(res, inode);
1630 	iput(inode);
1631 	return res;
1632 }
1633 EXPORT_SYMBOL(d_obtain_alias);
1634 
1635 /**
1636  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1637  * @inode:  the inode which may have a disconnected dentry
1638  * @dentry: a negative dentry which we want to point to the inode.
1639  *
1640  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1641  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1642  * and return it, else simply d_add the inode to the dentry and return NULL.
1643  *
1644  * This is needed in the lookup routine of any filesystem that is exportable
1645  * (via knfsd) so that we can build dcache paths to directories effectively.
1646  *
1647  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1648  * is returned.  This matches the expected return value of ->lookup.
1649  *
1650  */
1651 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1652 {
1653 	struct dentry *new = NULL;
1654 
1655 	if (IS_ERR(inode))
1656 		return ERR_CAST(inode);
1657 
1658 	if (inode && S_ISDIR(inode->i_mode)) {
1659 		spin_lock(&inode->i_lock);
1660 		new = __d_find_alias(inode, 1);
1661 		if (new) {
1662 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1663 			spin_unlock(&inode->i_lock);
1664 			security_d_instantiate(new, inode);
1665 			d_move(new, dentry);
1666 			iput(inode);
1667 		} else {
1668 			/* already taking inode->i_lock, so d_add() by hand */
1669 			__d_instantiate(dentry, inode);
1670 			spin_unlock(&inode->i_lock);
1671 			security_d_instantiate(dentry, inode);
1672 			d_rehash(dentry);
1673 		}
1674 	} else
1675 		d_add(dentry, inode);
1676 	return new;
1677 }
1678 EXPORT_SYMBOL(d_splice_alias);
1679 
1680 /**
1681  * d_add_ci - lookup or allocate new dentry with case-exact name
1682  * @inode:  the inode case-insensitive lookup has found
1683  * @dentry: the negative dentry that was passed to the parent's lookup func
1684  * @name:   the case-exact name to be associated with the returned dentry
1685  *
1686  * This is to avoid filling the dcache with case-insensitive names to the
1687  * same inode, only the actual correct case is stored in the dcache for
1688  * case-insensitive filesystems.
1689  *
1690  * For a case-insensitive lookup match and if the the case-exact dentry
1691  * already exists in in the dcache, use it and return it.
1692  *
1693  * If no entry exists with the exact case name, allocate new dentry with
1694  * the exact case, and return the spliced entry.
1695  */
1696 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1697 			struct qstr *name)
1698 {
1699 	int error;
1700 	struct dentry *found;
1701 	struct dentry *new;
1702 
1703 	/*
1704 	 * First check if a dentry matching the name already exists,
1705 	 * if not go ahead and create it now.
1706 	 */
1707 	found = d_hash_and_lookup(dentry->d_parent, name);
1708 	if (!found) {
1709 		new = d_alloc(dentry->d_parent, name);
1710 		if (!new) {
1711 			error = -ENOMEM;
1712 			goto err_out;
1713 		}
1714 
1715 		found = d_splice_alias(inode, new);
1716 		if (found) {
1717 			dput(new);
1718 			return found;
1719 		}
1720 		return new;
1721 	}
1722 
1723 	/*
1724 	 * If a matching dentry exists, and it's not negative use it.
1725 	 *
1726 	 * Decrement the reference count to balance the iget() done
1727 	 * earlier on.
1728 	 */
1729 	if (found->d_inode) {
1730 		if (unlikely(found->d_inode != inode)) {
1731 			/* This can't happen because bad inodes are unhashed. */
1732 			BUG_ON(!is_bad_inode(inode));
1733 			BUG_ON(!is_bad_inode(found->d_inode));
1734 		}
1735 		iput(inode);
1736 		return found;
1737 	}
1738 
1739 	/*
1740 	 * We are going to instantiate this dentry, unhash it and clear the
1741 	 * lookup flag so we can do that.
1742 	 */
1743 	if (unlikely(d_need_lookup(found)))
1744 		d_clear_need_lookup(found);
1745 
1746 	/*
1747 	 * Negative dentry: instantiate it unless the inode is a directory and
1748 	 * already has a dentry.
1749 	 */
1750 	new = d_splice_alias(inode, found);
1751 	if (new) {
1752 		dput(found);
1753 		found = new;
1754 	}
1755 	return found;
1756 
1757 err_out:
1758 	iput(inode);
1759 	return ERR_PTR(error);
1760 }
1761 EXPORT_SYMBOL(d_add_ci);
1762 
1763 /*
1764  * Do the slow-case of the dentry name compare.
1765  *
1766  * Unlike the dentry_cmp() function, we need to atomically
1767  * load the name, length and inode information, so that the
1768  * filesystem can rely on them, and can use the 'name' and
1769  * 'len' information without worrying about walking off the
1770  * end of memory etc.
1771  *
1772  * Thus the read_seqcount_retry() and the "duplicate" info
1773  * in arguments (the low-level filesystem should not look
1774  * at the dentry inode or name contents directly, since
1775  * rename can change them while we're in RCU mode).
1776  */
1777 enum slow_d_compare {
1778 	D_COMP_OK,
1779 	D_COMP_NOMATCH,
1780 	D_COMP_SEQRETRY,
1781 };
1782 
1783 static noinline enum slow_d_compare slow_dentry_cmp(
1784 		const struct dentry *parent,
1785 		struct inode *inode,
1786 		struct dentry *dentry,
1787 		unsigned int seq,
1788 		const struct qstr *name)
1789 {
1790 	int tlen = dentry->d_name.len;
1791 	const char *tname = dentry->d_name.name;
1792 	struct inode *i = dentry->d_inode;
1793 
1794 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1795 		cpu_relax();
1796 		return D_COMP_SEQRETRY;
1797 	}
1798 	if (parent->d_op->d_compare(parent, inode,
1799 				dentry, i,
1800 				tlen, tname, name))
1801 		return D_COMP_NOMATCH;
1802 	return D_COMP_OK;
1803 }
1804 
1805 /**
1806  * __d_lookup_rcu - search for a dentry (racy, store-free)
1807  * @parent: parent dentry
1808  * @name: qstr of name we wish to find
1809  * @seqp: returns d_seq value at the point where the dentry was found
1810  * @inode: returns dentry->d_inode when the inode was found valid.
1811  * Returns: dentry, or NULL
1812  *
1813  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1814  * resolution (store-free path walking) design described in
1815  * Documentation/filesystems/path-lookup.txt.
1816  *
1817  * This is not to be used outside core vfs.
1818  *
1819  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1820  * held, and rcu_read_lock held. The returned dentry must not be stored into
1821  * without taking d_lock and checking d_seq sequence count against @seq
1822  * returned here.
1823  *
1824  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1825  * function.
1826  *
1827  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1828  * the returned dentry, so long as its parent's seqlock is checked after the
1829  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1830  * is formed, giving integrity down the path walk.
1831  *
1832  * NOTE! The caller *has* to check the resulting dentry against the sequence
1833  * number we've returned before using any of the resulting dentry state!
1834  */
1835 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1836 				const struct qstr *name,
1837 				unsigned *seqp, struct inode *inode)
1838 {
1839 	u64 hashlen = name->hash_len;
1840 	const unsigned char *str = name->name;
1841 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1842 	struct hlist_bl_node *node;
1843 	struct dentry *dentry;
1844 
1845 	/*
1846 	 * Note: There is significant duplication with __d_lookup_rcu which is
1847 	 * required to prevent single threaded performance regressions
1848 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1849 	 * Keep the two functions in sync.
1850 	 */
1851 
1852 	/*
1853 	 * The hash list is protected using RCU.
1854 	 *
1855 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1856 	 * races with d_move().
1857 	 *
1858 	 * It is possible that concurrent renames can mess up our list
1859 	 * walk here and result in missing our dentry, resulting in the
1860 	 * false-negative result. d_lookup() protects against concurrent
1861 	 * renames using rename_lock seqlock.
1862 	 *
1863 	 * See Documentation/filesystems/path-lookup.txt for more details.
1864 	 */
1865 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1866 		unsigned seq;
1867 
1868 seqretry:
1869 		/*
1870 		 * The dentry sequence count protects us from concurrent
1871 		 * renames, and thus protects inode, parent and name fields.
1872 		 *
1873 		 * The caller must perform a seqcount check in order
1874 		 * to do anything useful with the returned dentry,
1875 		 * including using the 'd_inode' pointer.
1876 		 *
1877 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1878 		 * we don't wait for the sequence count to stabilize if it
1879 		 * is in the middle of a sequence change. If we do the slow
1880 		 * dentry compare, we will do seqretries until it is stable,
1881 		 * and if we end up with a successful lookup, we actually
1882 		 * want to exit RCU lookup anyway.
1883 		 */
1884 		seq = raw_seqcount_begin(&dentry->d_seq);
1885 		if (dentry->d_parent != parent)
1886 			continue;
1887 		if (d_unhashed(dentry))
1888 			continue;
1889 		*seqp = seq;
1890 
1891 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1892 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1893 				continue;
1894 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1895 			case D_COMP_OK:
1896 				return dentry;
1897 			case D_COMP_NOMATCH:
1898 				continue;
1899 			default:
1900 				goto seqretry;
1901 			}
1902 		}
1903 
1904 		if (dentry->d_name.hash_len != hashlen)
1905 			continue;
1906 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1907 			return dentry;
1908 	}
1909 	return NULL;
1910 }
1911 
1912 /**
1913  * d_lookup - search for a dentry
1914  * @parent: parent dentry
1915  * @name: qstr of name we wish to find
1916  * Returns: dentry, or NULL
1917  *
1918  * d_lookup searches the children of the parent dentry for the name in
1919  * question. If the dentry is found its reference count is incremented and the
1920  * dentry is returned. The caller must use dput to free the entry when it has
1921  * finished using it. %NULL is returned if the dentry does not exist.
1922  */
1923 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1924 {
1925 	struct dentry *dentry;
1926 	unsigned seq;
1927 
1928         do {
1929                 seq = read_seqbegin(&rename_lock);
1930                 dentry = __d_lookup(parent, name);
1931                 if (dentry)
1932 			break;
1933 	} while (read_seqretry(&rename_lock, seq));
1934 	return dentry;
1935 }
1936 EXPORT_SYMBOL(d_lookup);
1937 
1938 /**
1939  * __d_lookup - search for a dentry (racy)
1940  * @parent: parent dentry
1941  * @name: qstr of name we wish to find
1942  * Returns: dentry, or NULL
1943  *
1944  * __d_lookup is like d_lookup, however it may (rarely) return a
1945  * false-negative result due to unrelated rename activity.
1946  *
1947  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1948  * however it must be used carefully, eg. with a following d_lookup in
1949  * the case of failure.
1950  *
1951  * __d_lookup callers must be commented.
1952  */
1953 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1954 {
1955 	unsigned int len = name->len;
1956 	unsigned int hash = name->hash;
1957 	const unsigned char *str = name->name;
1958 	struct hlist_bl_head *b = d_hash(parent, hash);
1959 	struct hlist_bl_node *node;
1960 	struct dentry *found = NULL;
1961 	struct dentry *dentry;
1962 
1963 	/*
1964 	 * Note: There is significant duplication with __d_lookup_rcu which is
1965 	 * required to prevent single threaded performance regressions
1966 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1967 	 * Keep the two functions in sync.
1968 	 */
1969 
1970 	/*
1971 	 * The hash list is protected using RCU.
1972 	 *
1973 	 * Take d_lock when comparing a candidate dentry, to avoid races
1974 	 * with d_move().
1975 	 *
1976 	 * It is possible that concurrent renames can mess up our list
1977 	 * walk here and result in missing our dentry, resulting in the
1978 	 * false-negative result. d_lookup() protects against concurrent
1979 	 * renames using rename_lock seqlock.
1980 	 *
1981 	 * See Documentation/filesystems/path-lookup.txt for more details.
1982 	 */
1983 	rcu_read_lock();
1984 
1985 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1986 
1987 		if (dentry->d_name.hash != hash)
1988 			continue;
1989 
1990 		spin_lock(&dentry->d_lock);
1991 		if (dentry->d_parent != parent)
1992 			goto next;
1993 		if (d_unhashed(dentry))
1994 			goto next;
1995 
1996 		/*
1997 		 * It is safe to compare names since d_move() cannot
1998 		 * change the qstr (protected by d_lock).
1999 		 */
2000 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2001 			int tlen = dentry->d_name.len;
2002 			const char *tname = dentry->d_name.name;
2003 			if (parent->d_op->d_compare(parent, parent->d_inode,
2004 						dentry, dentry->d_inode,
2005 						tlen, tname, name))
2006 				goto next;
2007 		} else {
2008 			if (dentry->d_name.len != len)
2009 				goto next;
2010 			if (dentry_cmp(dentry, str, len))
2011 				goto next;
2012 		}
2013 
2014 		dentry->d_count++;
2015 		found = dentry;
2016 		spin_unlock(&dentry->d_lock);
2017 		break;
2018 next:
2019 		spin_unlock(&dentry->d_lock);
2020  	}
2021  	rcu_read_unlock();
2022 
2023  	return found;
2024 }
2025 
2026 /**
2027  * d_hash_and_lookup - hash the qstr then search for a dentry
2028  * @dir: Directory to search in
2029  * @name: qstr of name we wish to find
2030  *
2031  * On hash failure or on lookup failure NULL is returned.
2032  */
2033 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2034 {
2035 	struct dentry *dentry = NULL;
2036 
2037 	/*
2038 	 * Check for a fs-specific hash function. Note that we must
2039 	 * calculate the standard hash first, as the d_op->d_hash()
2040 	 * routine may choose to leave the hash value unchanged.
2041 	 */
2042 	name->hash = full_name_hash(name->name, name->len);
2043 	if (dir->d_flags & DCACHE_OP_HASH) {
2044 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2045 			goto out;
2046 	}
2047 	dentry = d_lookup(dir, name);
2048 out:
2049 	return dentry;
2050 }
2051 
2052 /**
2053  * d_validate - verify dentry provided from insecure source (deprecated)
2054  * @dentry: The dentry alleged to be valid child of @dparent
2055  * @dparent: The parent dentry (known to be valid)
2056  *
2057  * An insecure source has sent us a dentry, here we verify it and dget() it.
2058  * This is used by ncpfs in its readdir implementation.
2059  * Zero is returned in the dentry is invalid.
2060  *
2061  * This function is slow for big directories, and deprecated, do not use it.
2062  */
2063 int d_validate(struct dentry *dentry, struct dentry *dparent)
2064 {
2065 	struct dentry *child;
2066 
2067 	spin_lock(&dparent->d_lock);
2068 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2069 		if (dentry == child) {
2070 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2071 			__dget_dlock(dentry);
2072 			spin_unlock(&dentry->d_lock);
2073 			spin_unlock(&dparent->d_lock);
2074 			return 1;
2075 		}
2076 	}
2077 	spin_unlock(&dparent->d_lock);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(d_validate);
2082 
2083 /*
2084  * When a file is deleted, we have two options:
2085  * - turn this dentry into a negative dentry
2086  * - unhash this dentry and free it.
2087  *
2088  * Usually, we want to just turn this into
2089  * a negative dentry, but if anybody else is
2090  * currently using the dentry or the inode
2091  * we can't do that and we fall back on removing
2092  * it from the hash queues and waiting for
2093  * it to be deleted later when it has no users
2094  */
2095 
2096 /**
2097  * d_delete - delete a dentry
2098  * @dentry: The dentry to delete
2099  *
2100  * Turn the dentry into a negative dentry if possible, otherwise
2101  * remove it from the hash queues so it can be deleted later
2102  */
2103 
2104 void d_delete(struct dentry * dentry)
2105 {
2106 	struct inode *inode;
2107 	int isdir = 0;
2108 	/*
2109 	 * Are we the only user?
2110 	 */
2111 again:
2112 	spin_lock(&dentry->d_lock);
2113 	inode = dentry->d_inode;
2114 	isdir = S_ISDIR(inode->i_mode);
2115 	if (dentry->d_count == 1) {
2116 		if (!spin_trylock(&inode->i_lock)) {
2117 			spin_unlock(&dentry->d_lock);
2118 			cpu_relax();
2119 			goto again;
2120 		}
2121 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2122 		dentry_unlink_inode(dentry);
2123 		fsnotify_nameremove(dentry, isdir);
2124 		return;
2125 	}
2126 
2127 	if (!d_unhashed(dentry))
2128 		__d_drop(dentry);
2129 
2130 	spin_unlock(&dentry->d_lock);
2131 
2132 	fsnotify_nameremove(dentry, isdir);
2133 }
2134 EXPORT_SYMBOL(d_delete);
2135 
2136 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2137 {
2138 	BUG_ON(!d_unhashed(entry));
2139 	hlist_bl_lock(b);
2140 	entry->d_flags |= DCACHE_RCUACCESS;
2141 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2142 	hlist_bl_unlock(b);
2143 }
2144 
2145 static void _d_rehash(struct dentry * entry)
2146 {
2147 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2148 }
2149 
2150 /**
2151  * d_rehash	- add an entry back to the hash
2152  * @entry: dentry to add to the hash
2153  *
2154  * Adds a dentry to the hash according to its name.
2155  */
2156 
2157 void d_rehash(struct dentry * entry)
2158 {
2159 	spin_lock(&entry->d_lock);
2160 	_d_rehash(entry);
2161 	spin_unlock(&entry->d_lock);
2162 }
2163 EXPORT_SYMBOL(d_rehash);
2164 
2165 /**
2166  * dentry_update_name_case - update case insensitive dentry with a new name
2167  * @dentry: dentry to be updated
2168  * @name: new name
2169  *
2170  * Update a case insensitive dentry with new case of name.
2171  *
2172  * dentry must have been returned by d_lookup with name @name. Old and new
2173  * name lengths must match (ie. no d_compare which allows mismatched name
2174  * lengths).
2175  *
2176  * Parent inode i_mutex must be held over d_lookup and into this call (to
2177  * keep renames and concurrent inserts, and readdir(2) away).
2178  */
2179 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2180 {
2181 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2182 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2183 
2184 	spin_lock(&dentry->d_lock);
2185 	write_seqcount_begin(&dentry->d_seq);
2186 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2187 	write_seqcount_end(&dentry->d_seq);
2188 	spin_unlock(&dentry->d_lock);
2189 }
2190 EXPORT_SYMBOL(dentry_update_name_case);
2191 
2192 static void switch_names(struct dentry *dentry, struct dentry *target)
2193 {
2194 	if (dname_external(target)) {
2195 		if (dname_external(dentry)) {
2196 			/*
2197 			 * Both external: swap the pointers
2198 			 */
2199 			swap(target->d_name.name, dentry->d_name.name);
2200 		} else {
2201 			/*
2202 			 * dentry:internal, target:external.  Steal target's
2203 			 * storage and make target internal.
2204 			 */
2205 			memcpy(target->d_iname, dentry->d_name.name,
2206 					dentry->d_name.len + 1);
2207 			dentry->d_name.name = target->d_name.name;
2208 			target->d_name.name = target->d_iname;
2209 		}
2210 	} else {
2211 		if (dname_external(dentry)) {
2212 			/*
2213 			 * dentry:external, target:internal.  Give dentry's
2214 			 * storage to target and make dentry internal
2215 			 */
2216 			memcpy(dentry->d_iname, target->d_name.name,
2217 					target->d_name.len + 1);
2218 			target->d_name.name = dentry->d_name.name;
2219 			dentry->d_name.name = dentry->d_iname;
2220 		} else {
2221 			/*
2222 			 * Both are internal.  Just copy target to dentry
2223 			 */
2224 			memcpy(dentry->d_iname, target->d_name.name,
2225 					target->d_name.len + 1);
2226 			dentry->d_name.len = target->d_name.len;
2227 			return;
2228 		}
2229 	}
2230 	swap(dentry->d_name.len, target->d_name.len);
2231 }
2232 
2233 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2234 {
2235 	/*
2236 	 * XXXX: do we really need to take target->d_lock?
2237 	 */
2238 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2239 		spin_lock(&target->d_parent->d_lock);
2240 	else {
2241 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2242 			spin_lock(&dentry->d_parent->d_lock);
2243 			spin_lock_nested(&target->d_parent->d_lock,
2244 						DENTRY_D_LOCK_NESTED);
2245 		} else {
2246 			spin_lock(&target->d_parent->d_lock);
2247 			spin_lock_nested(&dentry->d_parent->d_lock,
2248 						DENTRY_D_LOCK_NESTED);
2249 		}
2250 	}
2251 	if (target < dentry) {
2252 		spin_lock_nested(&target->d_lock, 2);
2253 		spin_lock_nested(&dentry->d_lock, 3);
2254 	} else {
2255 		spin_lock_nested(&dentry->d_lock, 2);
2256 		spin_lock_nested(&target->d_lock, 3);
2257 	}
2258 }
2259 
2260 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2261 					struct dentry *target)
2262 {
2263 	if (target->d_parent != dentry->d_parent)
2264 		spin_unlock(&dentry->d_parent->d_lock);
2265 	if (target->d_parent != target)
2266 		spin_unlock(&target->d_parent->d_lock);
2267 }
2268 
2269 /*
2270  * When switching names, the actual string doesn't strictly have to
2271  * be preserved in the target - because we're dropping the target
2272  * anyway. As such, we can just do a simple memcpy() to copy over
2273  * the new name before we switch.
2274  *
2275  * Note that we have to be a lot more careful about getting the hash
2276  * switched - we have to switch the hash value properly even if it
2277  * then no longer matches the actual (corrupted) string of the target.
2278  * The hash value has to match the hash queue that the dentry is on..
2279  */
2280 /*
2281  * __d_move - move a dentry
2282  * @dentry: entry to move
2283  * @target: new dentry
2284  *
2285  * Update the dcache to reflect the move of a file name. Negative
2286  * dcache entries should not be moved in this way. Caller must hold
2287  * rename_lock, the i_mutex of the source and target directories,
2288  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2289  */
2290 static void __d_move(struct dentry * dentry, struct dentry * target)
2291 {
2292 	if (!dentry->d_inode)
2293 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2294 
2295 	BUG_ON(d_ancestor(dentry, target));
2296 	BUG_ON(d_ancestor(target, dentry));
2297 
2298 	dentry_lock_for_move(dentry, target);
2299 
2300 	write_seqcount_begin(&dentry->d_seq);
2301 	write_seqcount_begin(&target->d_seq);
2302 
2303 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2304 
2305 	/*
2306 	 * Move the dentry to the target hash queue. Don't bother checking
2307 	 * for the same hash queue because of how unlikely it is.
2308 	 */
2309 	__d_drop(dentry);
2310 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2311 
2312 	/* Unhash the target: dput() will then get rid of it */
2313 	__d_drop(target);
2314 
2315 	list_del(&dentry->d_u.d_child);
2316 	list_del(&target->d_u.d_child);
2317 
2318 	/* Switch the names.. */
2319 	switch_names(dentry, target);
2320 	swap(dentry->d_name.hash, target->d_name.hash);
2321 
2322 	/* ... and switch the parents */
2323 	if (IS_ROOT(dentry)) {
2324 		dentry->d_parent = target->d_parent;
2325 		target->d_parent = target;
2326 		INIT_LIST_HEAD(&target->d_u.d_child);
2327 	} else {
2328 		swap(dentry->d_parent, target->d_parent);
2329 
2330 		/* And add them back to the (new) parent lists */
2331 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2332 	}
2333 
2334 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2335 
2336 	write_seqcount_end(&target->d_seq);
2337 	write_seqcount_end(&dentry->d_seq);
2338 
2339 	dentry_unlock_parents_for_move(dentry, target);
2340 	spin_unlock(&target->d_lock);
2341 	fsnotify_d_move(dentry);
2342 	spin_unlock(&dentry->d_lock);
2343 }
2344 
2345 /*
2346  * d_move - move a dentry
2347  * @dentry: entry to move
2348  * @target: new dentry
2349  *
2350  * Update the dcache to reflect the move of a file name. Negative
2351  * dcache entries should not be moved in this way. See the locking
2352  * requirements for __d_move.
2353  */
2354 void d_move(struct dentry *dentry, struct dentry *target)
2355 {
2356 	write_seqlock(&rename_lock);
2357 	__d_move(dentry, target);
2358 	write_sequnlock(&rename_lock);
2359 }
2360 EXPORT_SYMBOL(d_move);
2361 
2362 /**
2363  * d_ancestor - search for an ancestor
2364  * @p1: ancestor dentry
2365  * @p2: child dentry
2366  *
2367  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2368  * an ancestor of p2, else NULL.
2369  */
2370 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2371 {
2372 	struct dentry *p;
2373 
2374 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2375 		if (p->d_parent == p1)
2376 			return p;
2377 	}
2378 	return NULL;
2379 }
2380 
2381 /*
2382  * This helper attempts to cope with remotely renamed directories
2383  *
2384  * It assumes that the caller is already holding
2385  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2386  *
2387  * Note: If ever the locking in lock_rename() changes, then please
2388  * remember to update this too...
2389  */
2390 static struct dentry *__d_unalias(struct inode *inode,
2391 		struct dentry *dentry, struct dentry *alias)
2392 {
2393 	struct mutex *m1 = NULL, *m2 = NULL;
2394 	struct dentry *ret = ERR_PTR(-EBUSY);
2395 
2396 	/* If alias and dentry share a parent, then no extra locks required */
2397 	if (alias->d_parent == dentry->d_parent)
2398 		goto out_unalias;
2399 
2400 	/* See lock_rename() */
2401 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2402 		goto out_err;
2403 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2404 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2405 		goto out_err;
2406 	m2 = &alias->d_parent->d_inode->i_mutex;
2407 out_unalias:
2408 	if (likely(!d_mountpoint(alias))) {
2409 		__d_move(alias, dentry);
2410 		ret = alias;
2411 	}
2412 out_err:
2413 	spin_unlock(&inode->i_lock);
2414 	if (m2)
2415 		mutex_unlock(m2);
2416 	if (m1)
2417 		mutex_unlock(m1);
2418 	return ret;
2419 }
2420 
2421 /*
2422  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2423  * named dentry in place of the dentry to be replaced.
2424  * returns with anon->d_lock held!
2425  */
2426 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2427 {
2428 	struct dentry *dparent, *aparent;
2429 
2430 	dentry_lock_for_move(anon, dentry);
2431 
2432 	write_seqcount_begin(&dentry->d_seq);
2433 	write_seqcount_begin(&anon->d_seq);
2434 
2435 	dparent = dentry->d_parent;
2436 	aparent = anon->d_parent;
2437 
2438 	switch_names(dentry, anon);
2439 	swap(dentry->d_name.hash, anon->d_name.hash);
2440 
2441 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2442 	list_del(&dentry->d_u.d_child);
2443 	if (!IS_ROOT(dentry))
2444 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2445 	else
2446 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2447 
2448 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2449 	list_del(&anon->d_u.d_child);
2450 	if (!IS_ROOT(anon))
2451 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2452 	else
2453 		INIT_LIST_HEAD(&anon->d_u.d_child);
2454 
2455 	write_seqcount_end(&dentry->d_seq);
2456 	write_seqcount_end(&anon->d_seq);
2457 
2458 	dentry_unlock_parents_for_move(anon, dentry);
2459 	spin_unlock(&dentry->d_lock);
2460 
2461 	/* anon->d_lock still locked, returns locked */
2462 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2463 }
2464 
2465 /**
2466  * d_materialise_unique - introduce an inode into the tree
2467  * @dentry: candidate dentry
2468  * @inode: inode to bind to the dentry, to which aliases may be attached
2469  *
2470  * Introduces an dentry into the tree, substituting an extant disconnected
2471  * root directory alias in its place if there is one. Caller must hold the
2472  * i_mutex of the parent directory.
2473  */
2474 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2475 {
2476 	struct dentry *actual;
2477 
2478 	BUG_ON(!d_unhashed(dentry));
2479 
2480 	if (!inode) {
2481 		actual = dentry;
2482 		__d_instantiate(dentry, NULL);
2483 		d_rehash(actual);
2484 		goto out_nolock;
2485 	}
2486 
2487 	spin_lock(&inode->i_lock);
2488 
2489 	if (S_ISDIR(inode->i_mode)) {
2490 		struct dentry *alias;
2491 
2492 		/* Does an aliased dentry already exist? */
2493 		alias = __d_find_alias(inode, 0);
2494 		if (alias) {
2495 			actual = alias;
2496 			write_seqlock(&rename_lock);
2497 
2498 			if (d_ancestor(alias, dentry)) {
2499 				/* Check for loops */
2500 				actual = ERR_PTR(-ELOOP);
2501 				spin_unlock(&inode->i_lock);
2502 			} else if (IS_ROOT(alias)) {
2503 				/* Is this an anonymous mountpoint that we
2504 				 * could splice into our tree? */
2505 				__d_materialise_dentry(dentry, alias);
2506 				write_sequnlock(&rename_lock);
2507 				__d_drop(alias);
2508 				goto found;
2509 			} else {
2510 				/* Nope, but we must(!) avoid directory
2511 				 * aliasing. This drops inode->i_lock */
2512 				actual = __d_unalias(inode, dentry, alias);
2513 			}
2514 			write_sequnlock(&rename_lock);
2515 			if (IS_ERR(actual)) {
2516 				if (PTR_ERR(actual) == -ELOOP)
2517 					pr_warn_ratelimited(
2518 						"VFS: Lookup of '%s' in %s %s"
2519 						" would have caused loop\n",
2520 						dentry->d_name.name,
2521 						inode->i_sb->s_type->name,
2522 						inode->i_sb->s_id);
2523 				dput(alias);
2524 			}
2525 			goto out_nolock;
2526 		}
2527 	}
2528 
2529 	/* Add a unique reference */
2530 	actual = __d_instantiate_unique(dentry, inode);
2531 	if (!actual)
2532 		actual = dentry;
2533 	else
2534 		BUG_ON(!d_unhashed(actual));
2535 
2536 	spin_lock(&actual->d_lock);
2537 found:
2538 	_d_rehash(actual);
2539 	spin_unlock(&actual->d_lock);
2540 	spin_unlock(&inode->i_lock);
2541 out_nolock:
2542 	if (actual == dentry) {
2543 		security_d_instantiate(dentry, inode);
2544 		return NULL;
2545 	}
2546 
2547 	iput(inode);
2548 	return actual;
2549 }
2550 EXPORT_SYMBOL_GPL(d_materialise_unique);
2551 
2552 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2553 {
2554 	*buflen -= namelen;
2555 	if (*buflen < 0)
2556 		return -ENAMETOOLONG;
2557 	*buffer -= namelen;
2558 	memcpy(*buffer, str, namelen);
2559 	return 0;
2560 }
2561 
2562 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2563 {
2564 	return prepend(buffer, buflen, name->name, name->len);
2565 }
2566 
2567 /**
2568  * prepend_path - Prepend path string to a buffer
2569  * @path: the dentry/vfsmount to report
2570  * @root: root vfsmnt/dentry
2571  * @buffer: pointer to the end of the buffer
2572  * @buflen: pointer to buffer length
2573  *
2574  * Caller holds the rename_lock.
2575  */
2576 static int prepend_path(const struct path *path,
2577 			const struct path *root,
2578 			char **buffer, int *buflen)
2579 {
2580 	struct dentry *dentry = path->dentry;
2581 	struct vfsmount *vfsmnt = path->mnt;
2582 	struct mount *mnt = real_mount(vfsmnt);
2583 	bool slash = false;
2584 	int error = 0;
2585 
2586 	br_read_lock(&vfsmount_lock);
2587 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2588 		struct dentry * parent;
2589 
2590 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2591 			/* Global root? */
2592 			if (!mnt_has_parent(mnt))
2593 				goto global_root;
2594 			dentry = mnt->mnt_mountpoint;
2595 			mnt = mnt->mnt_parent;
2596 			vfsmnt = &mnt->mnt;
2597 			continue;
2598 		}
2599 		parent = dentry->d_parent;
2600 		prefetch(parent);
2601 		spin_lock(&dentry->d_lock);
2602 		error = prepend_name(buffer, buflen, &dentry->d_name);
2603 		spin_unlock(&dentry->d_lock);
2604 		if (!error)
2605 			error = prepend(buffer, buflen, "/", 1);
2606 		if (error)
2607 			break;
2608 
2609 		slash = true;
2610 		dentry = parent;
2611 	}
2612 
2613 	if (!error && !slash)
2614 		error = prepend(buffer, buflen, "/", 1);
2615 
2616 out:
2617 	br_read_unlock(&vfsmount_lock);
2618 	return error;
2619 
2620 global_root:
2621 	/*
2622 	 * Filesystems needing to implement special "root names"
2623 	 * should do so with ->d_dname()
2624 	 */
2625 	if (IS_ROOT(dentry) &&
2626 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2627 		WARN(1, "Root dentry has weird name <%.*s>\n",
2628 		     (int) dentry->d_name.len, dentry->d_name.name);
2629 	}
2630 	if (!slash)
2631 		error = prepend(buffer, buflen, "/", 1);
2632 	if (!error)
2633 		error = is_mounted(vfsmnt) ? 1 : 2;
2634 	goto out;
2635 }
2636 
2637 /**
2638  * __d_path - return the path of a dentry
2639  * @path: the dentry/vfsmount to report
2640  * @root: root vfsmnt/dentry
2641  * @buf: buffer to return value in
2642  * @buflen: buffer length
2643  *
2644  * Convert a dentry into an ASCII path name.
2645  *
2646  * Returns a pointer into the buffer or an error code if the
2647  * path was too long.
2648  *
2649  * "buflen" should be positive.
2650  *
2651  * If the path is not reachable from the supplied root, return %NULL.
2652  */
2653 char *__d_path(const struct path *path,
2654 	       const struct path *root,
2655 	       char *buf, int buflen)
2656 {
2657 	char *res = buf + buflen;
2658 	int error;
2659 
2660 	prepend(&res, &buflen, "\0", 1);
2661 	write_seqlock(&rename_lock);
2662 	error = prepend_path(path, root, &res, &buflen);
2663 	write_sequnlock(&rename_lock);
2664 
2665 	if (error < 0)
2666 		return ERR_PTR(error);
2667 	if (error > 0)
2668 		return NULL;
2669 	return res;
2670 }
2671 
2672 char *d_absolute_path(const struct path *path,
2673 	       char *buf, int buflen)
2674 {
2675 	struct path root = {};
2676 	char *res = buf + buflen;
2677 	int error;
2678 
2679 	prepend(&res, &buflen, "\0", 1);
2680 	write_seqlock(&rename_lock);
2681 	error = prepend_path(path, &root, &res, &buflen);
2682 	write_sequnlock(&rename_lock);
2683 
2684 	if (error > 1)
2685 		error = -EINVAL;
2686 	if (error < 0)
2687 		return ERR_PTR(error);
2688 	return res;
2689 }
2690 
2691 /*
2692  * same as __d_path but appends "(deleted)" for unlinked files.
2693  */
2694 static int path_with_deleted(const struct path *path,
2695 			     const struct path *root,
2696 			     char **buf, int *buflen)
2697 {
2698 	prepend(buf, buflen, "\0", 1);
2699 	if (d_unlinked(path->dentry)) {
2700 		int error = prepend(buf, buflen, " (deleted)", 10);
2701 		if (error)
2702 			return error;
2703 	}
2704 
2705 	return prepend_path(path, root, buf, buflen);
2706 }
2707 
2708 static int prepend_unreachable(char **buffer, int *buflen)
2709 {
2710 	return prepend(buffer, buflen, "(unreachable)", 13);
2711 }
2712 
2713 /**
2714  * d_path - return the path of a dentry
2715  * @path: path to report
2716  * @buf: buffer to return value in
2717  * @buflen: buffer length
2718  *
2719  * Convert a dentry into an ASCII path name. If the entry has been deleted
2720  * the string " (deleted)" is appended. Note that this is ambiguous.
2721  *
2722  * Returns a pointer into the buffer or an error code if the path was
2723  * too long. Note: Callers should use the returned pointer, not the passed
2724  * in buffer, to use the name! The implementation often starts at an offset
2725  * into the buffer, and may leave 0 bytes at the start.
2726  *
2727  * "buflen" should be positive.
2728  */
2729 char *d_path(const struct path *path, char *buf, int buflen)
2730 {
2731 	char *res = buf + buflen;
2732 	struct path root;
2733 	int error;
2734 
2735 	/*
2736 	 * We have various synthetic filesystems that never get mounted.  On
2737 	 * these filesystems dentries are never used for lookup purposes, and
2738 	 * thus don't need to be hashed.  They also don't need a name until a
2739 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2740 	 * below allows us to generate a name for these objects on demand:
2741 	 */
2742 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2743 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2744 
2745 	get_fs_root(current->fs, &root);
2746 	write_seqlock(&rename_lock);
2747 	error = path_with_deleted(path, &root, &res, &buflen);
2748 	if (error < 0)
2749 		res = ERR_PTR(error);
2750 	write_sequnlock(&rename_lock);
2751 	path_put(&root);
2752 	return res;
2753 }
2754 EXPORT_SYMBOL(d_path);
2755 
2756 /**
2757  * d_path_with_unreachable - return the path of a dentry
2758  * @path: path to report
2759  * @buf: buffer to return value in
2760  * @buflen: buffer length
2761  *
2762  * The difference from d_path() is that this prepends "(unreachable)"
2763  * to paths which are unreachable from the current process' root.
2764  */
2765 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2766 {
2767 	char *res = buf + buflen;
2768 	struct path root;
2769 	int error;
2770 
2771 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2772 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2773 
2774 	get_fs_root(current->fs, &root);
2775 	write_seqlock(&rename_lock);
2776 	error = path_with_deleted(path, &root, &res, &buflen);
2777 	if (error > 0)
2778 		error = prepend_unreachable(&res, &buflen);
2779 	write_sequnlock(&rename_lock);
2780 	path_put(&root);
2781 	if (error)
2782 		res =  ERR_PTR(error);
2783 
2784 	return res;
2785 }
2786 
2787 /*
2788  * Helper function for dentry_operations.d_dname() members
2789  */
2790 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2791 			const char *fmt, ...)
2792 {
2793 	va_list args;
2794 	char temp[64];
2795 	int sz;
2796 
2797 	va_start(args, fmt);
2798 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2799 	va_end(args);
2800 
2801 	if (sz > sizeof(temp) || sz > buflen)
2802 		return ERR_PTR(-ENAMETOOLONG);
2803 
2804 	buffer += buflen - sz;
2805 	return memcpy(buffer, temp, sz);
2806 }
2807 
2808 /*
2809  * Write full pathname from the root of the filesystem into the buffer.
2810  */
2811 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2812 {
2813 	char *end = buf + buflen;
2814 	char *retval;
2815 
2816 	prepend(&end, &buflen, "\0", 1);
2817 	if (buflen < 1)
2818 		goto Elong;
2819 	/* Get '/' right */
2820 	retval = end-1;
2821 	*retval = '/';
2822 
2823 	while (!IS_ROOT(dentry)) {
2824 		struct dentry *parent = dentry->d_parent;
2825 		int error;
2826 
2827 		prefetch(parent);
2828 		spin_lock(&dentry->d_lock);
2829 		error = prepend_name(&end, &buflen, &dentry->d_name);
2830 		spin_unlock(&dentry->d_lock);
2831 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2832 			goto Elong;
2833 
2834 		retval = end;
2835 		dentry = parent;
2836 	}
2837 	return retval;
2838 Elong:
2839 	return ERR_PTR(-ENAMETOOLONG);
2840 }
2841 
2842 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2843 {
2844 	char *retval;
2845 
2846 	write_seqlock(&rename_lock);
2847 	retval = __dentry_path(dentry, buf, buflen);
2848 	write_sequnlock(&rename_lock);
2849 
2850 	return retval;
2851 }
2852 EXPORT_SYMBOL(dentry_path_raw);
2853 
2854 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2855 {
2856 	char *p = NULL;
2857 	char *retval;
2858 
2859 	write_seqlock(&rename_lock);
2860 	if (d_unlinked(dentry)) {
2861 		p = buf + buflen;
2862 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2863 			goto Elong;
2864 		buflen++;
2865 	}
2866 	retval = __dentry_path(dentry, buf, buflen);
2867 	write_sequnlock(&rename_lock);
2868 	if (!IS_ERR(retval) && p)
2869 		*p = '/';	/* restore '/' overriden with '\0' */
2870 	return retval;
2871 Elong:
2872 	return ERR_PTR(-ENAMETOOLONG);
2873 }
2874 
2875 /*
2876  * NOTE! The user-level library version returns a
2877  * character pointer. The kernel system call just
2878  * returns the length of the buffer filled (which
2879  * includes the ending '\0' character), or a negative
2880  * error value. So libc would do something like
2881  *
2882  *	char *getcwd(char * buf, size_t size)
2883  *	{
2884  *		int retval;
2885  *
2886  *		retval = sys_getcwd(buf, size);
2887  *		if (retval >= 0)
2888  *			return buf;
2889  *		errno = -retval;
2890  *		return NULL;
2891  *	}
2892  */
2893 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2894 {
2895 	int error;
2896 	struct path pwd, root;
2897 	char *page = (char *) __get_free_page(GFP_USER);
2898 
2899 	if (!page)
2900 		return -ENOMEM;
2901 
2902 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2903 
2904 	error = -ENOENT;
2905 	write_seqlock(&rename_lock);
2906 	if (!d_unlinked(pwd.dentry)) {
2907 		unsigned long len;
2908 		char *cwd = page + PAGE_SIZE;
2909 		int buflen = PAGE_SIZE;
2910 
2911 		prepend(&cwd, &buflen, "\0", 1);
2912 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2913 		write_sequnlock(&rename_lock);
2914 
2915 		if (error < 0)
2916 			goto out;
2917 
2918 		/* Unreachable from current root */
2919 		if (error > 0) {
2920 			error = prepend_unreachable(&cwd, &buflen);
2921 			if (error)
2922 				goto out;
2923 		}
2924 
2925 		error = -ERANGE;
2926 		len = PAGE_SIZE + page - cwd;
2927 		if (len <= size) {
2928 			error = len;
2929 			if (copy_to_user(buf, cwd, len))
2930 				error = -EFAULT;
2931 		}
2932 	} else {
2933 		write_sequnlock(&rename_lock);
2934 	}
2935 
2936 out:
2937 	path_put(&pwd);
2938 	path_put(&root);
2939 	free_page((unsigned long) page);
2940 	return error;
2941 }
2942 
2943 /*
2944  * Test whether new_dentry is a subdirectory of old_dentry.
2945  *
2946  * Trivially implemented using the dcache structure
2947  */
2948 
2949 /**
2950  * is_subdir - is new dentry a subdirectory of old_dentry
2951  * @new_dentry: new dentry
2952  * @old_dentry: old dentry
2953  *
2954  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2955  * Returns 0 otherwise.
2956  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2957  */
2958 
2959 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2960 {
2961 	int result;
2962 	unsigned seq;
2963 
2964 	if (new_dentry == old_dentry)
2965 		return 1;
2966 
2967 	do {
2968 		/* for restarting inner loop in case of seq retry */
2969 		seq = read_seqbegin(&rename_lock);
2970 		/*
2971 		 * Need rcu_readlock to protect against the d_parent trashing
2972 		 * due to d_move
2973 		 */
2974 		rcu_read_lock();
2975 		if (d_ancestor(old_dentry, new_dentry))
2976 			result = 1;
2977 		else
2978 			result = 0;
2979 		rcu_read_unlock();
2980 	} while (read_seqretry(&rename_lock, seq));
2981 
2982 	return result;
2983 }
2984 
2985 void d_genocide(struct dentry *root)
2986 {
2987 	struct dentry *this_parent;
2988 	struct list_head *next;
2989 	unsigned seq;
2990 	int locked = 0;
2991 
2992 	seq = read_seqbegin(&rename_lock);
2993 again:
2994 	this_parent = root;
2995 	spin_lock(&this_parent->d_lock);
2996 repeat:
2997 	next = this_parent->d_subdirs.next;
2998 resume:
2999 	while (next != &this_parent->d_subdirs) {
3000 		struct list_head *tmp = next;
3001 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
3002 		next = tmp->next;
3003 
3004 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3005 		if (d_unhashed(dentry) || !dentry->d_inode) {
3006 			spin_unlock(&dentry->d_lock);
3007 			continue;
3008 		}
3009 		if (!list_empty(&dentry->d_subdirs)) {
3010 			spin_unlock(&this_parent->d_lock);
3011 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3012 			this_parent = dentry;
3013 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3014 			goto repeat;
3015 		}
3016 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3017 			dentry->d_flags |= DCACHE_GENOCIDE;
3018 			dentry->d_count--;
3019 		}
3020 		spin_unlock(&dentry->d_lock);
3021 	}
3022 	if (this_parent != root) {
3023 		struct dentry *child = this_parent;
3024 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3025 			this_parent->d_flags |= DCACHE_GENOCIDE;
3026 			this_parent->d_count--;
3027 		}
3028 		this_parent = try_to_ascend(this_parent, locked, seq);
3029 		if (!this_parent)
3030 			goto rename_retry;
3031 		next = child->d_u.d_child.next;
3032 		goto resume;
3033 	}
3034 	spin_unlock(&this_parent->d_lock);
3035 	if (!locked && read_seqretry(&rename_lock, seq))
3036 		goto rename_retry;
3037 	if (locked)
3038 		write_sequnlock(&rename_lock);
3039 	return;
3040 
3041 rename_retry:
3042 	if (locked)
3043 		goto again;
3044 	locked = 1;
3045 	write_seqlock(&rename_lock);
3046 	goto again;
3047 }
3048 
3049 /**
3050  * find_inode_number - check for dentry with name
3051  * @dir: directory to check
3052  * @name: Name to find.
3053  *
3054  * Check whether a dentry already exists for the given name,
3055  * and return the inode number if it has an inode. Otherwise
3056  * 0 is returned.
3057  *
3058  * This routine is used to post-process directory listings for
3059  * filesystems using synthetic inode numbers, and is necessary
3060  * to keep getcwd() working.
3061  */
3062 
3063 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3064 {
3065 	struct dentry * dentry;
3066 	ino_t ino = 0;
3067 
3068 	dentry = d_hash_and_lookup(dir, name);
3069 	if (dentry) {
3070 		if (dentry->d_inode)
3071 			ino = dentry->d_inode->i_ino;
3072 		dput(dentry);
3073 	}
3074 	return ino;
3075 }
3076 EXPORT_SYMBOL(find_inode_number);
3077 
3078 static __initdata unsigned long dhash_entries;
3079 static int __init set_dhash_entries(char *str)
3080 {
3081 	if (!str)
3082 		return 0;
3083 	dhash_entries = simple_strtoul(str, &str, 0);
3084 	return 1;
3085 }
3086 __setup("dhash_entries=", set_dhash_entries);
3087 
3088 static void __init dcache_init_early(void)
3089 {
3090 	unsigned int loop;
3091 
3092 	/* If hashes are distributed across NUMA nodes, defer
3093 	 * hash allocation until vmalloc space is available.
3094 	 */
3095 	if (hashdist)
3096 		return;
3097 
3098 	dentry_hashtable =
3099 		alloc_large_system_hash("Dentry cache",
3100 					sizeof(struct hlist_bl_head),
3101 					dhash_entries,
3102 					13,
3103 					HASH_EARLY,
3104 					&d_hash_shift,
3105 					&d_hash_mask,
3106 					0,
3107 					0);
3108 
3109 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3110 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3111 }
3112 
3113 static void __init dcache_init(void)
3114 {
3115 	unsigned int loop;
3116 
3117 	/*
3118 	 * A constructor could be added for stable state like the lists,
3119 	 * but it is probably not worth it because of the cache nature
3120 	 * of the dcache.
3121 	 */
3122 	dentry_cache = KMEM_CACHE(dentry,
3123 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3124 
3125 	/* Hash may have been set up in dcache_init_early */
3126 	if (!hashdist)
3127 		return;
3128 
3129 	dentry_hashtable =
3130 		alloc_large_system_hash("Dentry cache",
3131 					sizeof(struct hlist_bl_head),
3132 					dhash_entries,
3133 					13,
3134 					0,
3135 					&d_hash_shift,
3136 					&d_hash_mask,
3137 					0,
3138 					0);
3139 
3140 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3141 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3142 }
3143 
3144 /* SLAB cache for __getname() consumers */
3145 struct kmem_cache *names_cachep __read_mostly;
3146 EXPORT_SYMBOL(names_cachep);
3147 
3148 EXPORT_SYMBOL(d_genocide);
3149 
3150 void __init vfs_caches_init_early(void)
3151 {
3152 	dcache_init_early();
3153 	inode_init_early();
3154 }
3155 
3156 void __init vfs_caches_init(unsigned long mempages)
3157 {
3158 	unsigned long reserve;
3159 
3160 	/* Base hash sizes on available memory, with a reserve equal to
3161            150% of current kernel size */
3162 
3163 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3164 	mempages -= reserve;
3165 
3166 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3167 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3168 
3169 	dcache_init();
3170 	inode_init();
3171 	files_init(mempages);
3172 	mnt_init();
3173 	bdev_cache_init();
3174 	chrdev_init();
3175 }
3176