xref: /openbmc/linux/fs/dcache.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/memblock.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 	spin_lock(&dentry->d_lock);
275 	if (unlikely(dname_external(dentry))) {
276 		struct external_name *p = external_name(dentry);
277 		atomic_inc(&p->u.count);
278 		spin_unlock(&dentry->d_lock);
279 		name->name = p->name;
280 	} else {
281 		memcpy(name->inline_name, dentry->d_iname,
282 		       dentry->d_name.len + 1);
283 		spin_unlock(&dentry->d_lock);
284 		name->name = name->inline_name;
285 	}
286 }
287 EXPORT_SYMBOL(take_dentry_name_snapshot);
288 
289 void release_dentry_name_snapshot(struct name_snapshot *name)
290 {
291 	if (unlikely(name->name != name->inline_name)) {
292 		struct external_name *p;
293 		p = container_of(name->name, struct external_name, name[0]);
294 		if (unlikely(atomic_dec_and_test(&p->u.count)))
295 			kfree_rcu(p, u.head);
296 	}
297 }
298 EXPORT_SYMBOL(release_dentry_name_snapshot);
299 
300 static inline void __d_set_inode_and_type(struct dentry *dentry,
301 					  struct inode *inode,
302 					  unsigned type_flags)
303 {
304 	unsigned flags;
305 
306 	dentry->d_inode = inode;
307 	flags = READ_ONCE(dentry->d_flags);
308 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309 	flags |= type_flags;
310 	WRITE_ONCE(dentry->d_flags, flags);
311 }
312 
313 static inline void __d_clear_type_and_inode(struct dentry *dentry)
314 {
315 	unsigned flags = READ_ONCE(dentry->d_flags);
316 
317 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 	WRITE_ONCE(dentry->d_flags, flags);
319 	dentry->d_inode = NULL;
320 }
321 
322 static void dentry_free(struct dentry *dentry)
323 {
324 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
325 	if (unlikely(dname_external(dentry))) {
326 		struct external_name *p = external_name(dentry);
327 		if (likely(atomic_dec_and_test(&p->u.count))) {
328 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329 			return;
330 		}
331 	}
332 	/* if dentry was never visible to RCU, immediate free is OK */
333 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
334 		__d_free(&dentry->d_u.d_rcu);
335 	else
336 		call_rcu(&dentry->d_u.d_rcu, __d_free);
337 }
338 
339 /*
340  * Release the dentry's inode, using the filesystem
341  * d_iput() operation if defined.
342  */
343 static void dentry_unlink_inode(struct dentry * dentry)
344 	__releases(dentry->d_lock)
345 	__releases(dentry->d_inode->i_lock)
346 {
347 	struct inode *inode = dentry->d_inode;
348 
349 	raw_write_seqcount_begin(&dentry->d_seq);
350 	__d_clear_type_and_inode(dentry);
351 	hlist_del_init(&dentry->d_u.d_alias);
352 	raw_write_seqcount_end(&dentry->d_seq);
353 	spin_unlock(&dentry->d_lock);
354 	spin_unlock(&inode->i_lock);
355 	if (!inode->i_nlink)
356 		fsnotify_inoderemove(inode);
357 	if (dentry->d_op && dentry->d_op->d_iput)
358 		dentry->d_op->d_iput(dentry, inode);
359 	else
360 		iput(inode);
361 }
362 
363 /*
364  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
365  * is in use - which includes both the "real" per-superblock
366  * LRU list _and_ the DCACHE_SHRINK_LIST use.
367  *
368  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
369  * on the shrink list (ie not on the superblock LRU list).
370  *
371  * The per-cpu "nr_dentry_unused" counters are updated with
372  * the DCACHE_LRU_LIST bit.
373  *
374  * These helper functions make sure we always follow the
375  * rules. d_lock must be held by the caller.
376  */
377 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
378 static void d_lru_add(struct dentry *dentry)
379 {
380 	D_FLAG_VERIFY(dentry, 0);
381 	dentry->d_flags |= DCACHE_LRU_LIST;
382 	this_cpu_inc(nr_dentry_unused);
383 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
384 }
385 
386 static void d_lru_del(struct dentry *dentry)
387 {
388 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
389 	dentry->d_flags &= ~DCACHE_LRU_LIST;
390 	this_cpu_dec(nr_dentry_unused);
391 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
392 }
393 
394 static void d_shrink_del(struct dentry *dentry)
395 {
396 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
397 	list_del_init(&dentry->d_lru);
398 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
399 	this_cpu_dec(nr_dentry_unused);
400 }
401 
402 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
403 {
404 	D_FLAG_VERIFY(dentry, 0);
405 	list_add(&dentry->d_lru, list);
406 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
407 	this_cpu_inc(nr_dentry_unused);
408 }
409 
410 /*
411  * These can only be called under the global LRU lock, ie during the
412  * callback for freeing the LRU list. "isolate" removes it from the
413  * LRU lists entirely, while shrink_move moves it to the indicated
414  * private list.
415  */
416 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
417 {
418 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
419 	dentry->d_flags &= ~DCACHE_LRU_LIST;
420 	this_cpu_dec(nr_dentry_unused);
421 	list_lru_isolate(lru, &dentry->d_lru);
422 }
423 
424 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
425 			      struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
428 	dentry->d_flags |= DCACHE_SHRINK_LIST;
429 	list_lru_isolate_move(lru, &dentry->d_lru, list);
430 }
431 
432 /**
433  * d_drop - drop a dentry
434  * @dentry: dentry to drop
435  *
436  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
437  * be found through a VFS lookup any more. Note that this is different from
438  * deleting the dentry - d_delete will try to mark the dentry negative if
439  * possible, giving a successful _negative_ lookup, while d_drop will
440  * just make the cache lookup fail.
441  *
442  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
443  * reason (NFS timeouts or autofs deletes).
444  *
445  * __d_drop requires dentry->d_lock
446  * ___d_drop doesn't mark dentry as "unhashed"
447  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
448  */
449 static void ___d_drop(struct dentry *dentry)
450 {
451 	struct hlist_bl_head *b;
452 	/*
453 	 * Hashed dentries are normally on the dentry hashtable,
454 	 * with the exception of those newly allocated by
455 	 * d_obtain_root, which are always IS_ROOT:
456 	 */
457 	if (unlikely(IS_ROOT(dentry)))
458 		b = &dentry->d_sb->s_roots;
459 	else
460 		b = d_hash(dentry->d_name.hash);
461 
462 	hlist_bl_lock(b);
463 	__hlist_bl_del(&dentry->d_hash);
464 	hlist_bl_unlock(b);
465 }
466 
467 void __d_drop(struct dentry *dentry)
468 {
469 	if (!d_unhashed(dentry)) {
470 		___d_drop(dentry);
471 		dentry->d_hash.pprev = NULL;
472 		write_seqcount_invalidate(&dentry->d_seq);
473 	}
474 }
475 EXPORT_SYMBOL(__d_drop);
476 
477 void d_drop(struct dentry *dentry)
478 {
479 	spin_lock(&dentry->d_lock);
480 	__d_drop(dentry);
481 	spin_unlock(&dentry->d_lock);
482 }
483 EXPORT_SYMBOL(d_drop);
484 
485 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
486 {
487 	struct dentry *next;
488 	/*
489 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
490 	 * attached to the dentry tree
491 	 */
492 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
493 	if (unlikely(list_empty(&dentry->d_child)))
494 		return;
495 	__list_del_entry(&dentry->d_child);
496 	/*
497 	 * Cursors can move around the list of children.  While we'd been
498 	 * a normal list member, it didn't matter - ->d_child.next would've
499 	 * been updated.  However, from now on it won't be and for the
500 	 * things like d_walk() it might end up with a nasty surprise.
501 	 * Normally d_walk() doesn't care about cursors moving around -
502 	 * ->d_lock on parent prevents that and since a cursor has no children
503 	 * of its own, we get through it without ever unlocking the parent.
504 	 * There is one exception, though - if we ascend from a child that
505 	 * gets killed as soon as we unlock it, the next sibling is found
506 	 * using the value left in its ->d_child.next.  And if _that_
507 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
508 	 * before d_walk() regains parent->d_lock, we'll end up skipping
509 	 * everything the cursor had been moved past.
510 	 *
511 	 * Solution: make sure that the pointer left behind in ->d_child.next
512 	 * points to something that won't be moving around.  I.e. skip the
513 	 * cursors.
514 	 */
515 	while (dentry->d_child.next != &parent->d_subdirs) {
516 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
517 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
518 			break;
519 		dentry->d_child.next = next->d_child.next;
520 	}
521 }
522 
523 static void __dentry_kill(struct dentry *dentry)
524 {
525 	struct dentry *parent = NULL;
526 	bool can_free = true;
527 	if (!IS_ROOT(dentry))
528 		parent = dentry->d_parent;
529 
530 	/*
531 	 * The dentry is now unrecoverably dead to the world.
532 	 */
533 	lockref_mark_dead(&dentry->d_lockref);
534 
535 	/*
536 	 * inform the fs via d_prune that this dentry is about to be
537 	 * unhashed and destroyed.
538 	 */
539 	if (dentry->d_flags & DCACHE_OP_PRUNE)
540 		dentry->d_op->d_prune(dentry);
541 
542 	if (dentry->d_flags & DCACHE_LRU_LIST) {
543 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
544 			d_lru_del(dentry);
545 	}
546 	/* if it was on the hash then remove it */
547 	__d_drop(dentry);
548 	dentry_unlist(dentry, parent);
549 	if (parent)
550 		spin_unlock(&parent->d_lock);
551 	if (dentry->d_inode)
552 		dentry_unlink_inode(dentry);
553 	else
554 		spin_unlock(&dentry->d_lock);
555 	this_cpu_dec(nr_dentry);
556 	if (dentry->d_op && dentry->d_op->d_release)
557 		dentry->d_op->d_release(dentry);
558 
559 	spin_lock(&dentry->d_lock);
560 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
561 		dentry->d_flags |= DCACHE_MAY_FREE;
562 		can_free = false;
563 	}
564 	spin_unlock(&dentry->d_lock);
565 	if (likely(can_free))
566 		dentry_free(dentry);
567 	cond_resched();
568 }
569 
570 static struct dentry *__lock_parent(struct dentry *dentry)
571 {
572 	struct dentry *parent;
573 	rcu_read_lock();
574 	spin_unlock(&dentry->d_lock);
575 again:
576 	parent = READ_ONCE(dentry->d_parent);
577 	spin_lock(&parent->d_lock);
578 	/*
579 	 * We can't blindly lock dentry until we are sure
580 	 * that we won't violate the locking order.
581 	 * Any changes of dentry->d_parent must have
582 	 * been done with parent->d_lock held, so
583 	 * spin_lock() above is enough of a barrier
584 	 * for checking if it's still our child.
585 	 */
586 	if (unlikely(parent != dentry->d_parent)) {
587 		spin_unlock(&parent->d_lock);
588 		goto again;
589 	}
590 	rcu_read_unlock();
591 	if (parent != dentry)
592 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
593 	else
594 		parent = NULL;
595 	return parent;
596 }
597 
598 static inline struct dentry *lock_parent(struct dentry *dentry)
599 {
600 	struct dentry *parent = dentry->d_parent;
601 	if (IS_ROOT(dentry))
602 		return NULL;
603 	if (likely(spin_trylock(&parent->d_lock)))
604 		return parent;
605 	return __lock_parent(dentry);
606 }
607 
608 static inline bool retain_dentry(struct dentry *dentry)
609 {
610 	WARN_ON(d_in_lookup(dentry));
611 
612 	/* Unreachable? Get rid of it */
613 	if (unlikely(d_unhashed(dentry)))
614 		return false;
615 
616 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
617 		return false;
618 
619 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
620 		if (dentry->d_op->d_delete(dentry))
621 			return false;
622 	}
623 	/* retain; LRU fodder */
624 	dentry->d_lockref.count--;
625 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
626 		d_lru_add(dentry);
627 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
628 		dentry->d_flags |= DCACHE_REFERENCED;
629 	return true;
630 }
631 
632 /*
633  * Finish off a dentry we've decided to kill.
634  * dentry->d_lock must be held, returns with it unlocked.
635  * Returns dentry requiring refcount drop, or NULL if we're done.
636  */
637 static struct dentry *dentry_kill(struct dentry *dentry)
638 	__releases(dentry->d_lock)
639 {
640 	struct inode *inode = dentry->d_inode;
641 	struct dentry *parent = NULL;
642 
643 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
644 		goto slow_positive;
645 
646 	if (!IS_ROOT(dentry)) {
647 		parent = dentry->d_parent;
648 		if (unlikely(!spin_trylock(&parent->d_lock))) {
649 			parent = __lock_parent(dentry);
650 			if (likely(inode || !dentry->d_inode))
651 				goto got_locks;
652 			/* negative that became positive */
653 			if (parent)
654 				spin_unlock(&parent->d_lock);
655 			inode = dentry->d_inode;
656 			goto slow_positive;
657 		}
658 	}
659 	__dentry_kill(dentry);
660 	return parent;
661 
662 slow_positive:
663 	spin_unlock(&dentry->d_lock);
664 	spin_lock(&inode->i_lock);
665 	spin_lock(&dentry->d_lock);
666 	parent = lock_parent(dentry);
667 got_locks:
668 	if (unlikely(dentry->d_lockref.count != 1)) {
669 		dentry->d_lockref.count--;
670 	} else if (likely(!retain_dentry(dentry))) {
671 		__dentry_kill(dentry);
672 		return parent;
673 	}
674 	/* we are keeping it, after all */
675 	if (inode)
676 		spin_unlock(&inode->i_lock);
677 	if (parent)
678 		spin_unlock(&parent->d_lock);
679 	spin_unlock(&dentry->d_lock);
680 	return NULL;
681 }
682 
683 /*
684  * Try to do a lockless dput(), and return whether that was successful.
685  *
686  * If unsuccessful, we return false, having already taken the dentry lock.
687  *
688  * The caller needs to hold the RCU read lock, so that the dentry is
689  * guaranteed to stay around even if the refcount goes down to zero!
690  */
691 static inline bool fast_dput(struct dentry *dentry)
692 {
693 	int ret;
694 	unsigned int d_flags;
695 
696 	/*
697 	 * If we have a d_op->d_delete() operation, we sould not
698 	 * let the dentry count go to zero, so use "put_or_lock".
699 	 */
700 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
701 		return lockref_put_or_lock(&dentry->d_lockref);
702 
703 	/*
704 	 * .. otherwise, we can try to just decrement the
705 	 * lockref optimistically.
706 	 */
707 	ret = lockref_put_return(&dentry->d_lockref);
708 
709 	/*
710 	 * If the lockref_put_return() failed due to the lock being held
711 	 * by somebody else, the fast path has failed. We will need to
712 	 * get the lock, and then check the count again.
713 	 */
714 	if (unlikely(ret < 0)) {
715 		spin_lock(&dentry->d_lock);
716 		if (dentry->d_lockref.count > 1) {
717 			dentry->d_lockref.count--;
718 			spin_unlock(&dentry->d_lock);
719 			return true;
720 		}
721 		return false;
722 	}
723 
724 	/*
725 	 * If we weren't the last ref, we're done.
726 	 */
727 	if (ret)
728 		return true;
729 
730 	/*
731 	 * Careful, careful. The reference count went down
732 	 * to zero, but we don't hold the dentry lock, so
733 	 * somebody else could get it again, and do another
734 	 * dput(), and we need to not race with that.
735 	 *
736 	 * However, there is a very special and common case
737 	 * where we don't care, because there is nothing to
738 	 * do: the dentry is still hashed, it does not have
739 	 * a 'delete' op, and it's referenced and already on
740 	 * the LRU list.
741 	 *
742 	 * NOTE! Since we aren't locked, these values are
743 	 * not "stable". However, it is sufficient that at
744 	 * some point after we dropped the reference the
745 	 * dentry was hashed and the flags had the proper
746 	 * value. Other dentry users may have re-gotten
747 	 * a reference to the dentry and change that, but
748 	 * our work is done - we can leave the dentry
749 	 * around with a zero refcount.
750 	 */
751 	smp_rmb();
752 	d_flags = READ_ONCE(dentry->d_flags);
753 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
754 
755 	/* Nothing to do? Dropping the reference was all we needed? */
756 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
757 		return true;
758 
759 	/*
760 	 * Not the fast normal case? Get the lock. We've already decremented
761 	 * the refcount, but we'll need to re-check the situation after
762 	 * getting the lock.
763 	 */
764 	spin_lock(&dentry->d_lock);
765 
766 	/*
767 	 * Did somebody else grab a reference to it in the meantime, and
768 	 * we're no longer the last user after all? Alternatively, somebody
769 	 * else could have killed it and marked it dead. Either way, we
770 	 * don't need to do anything else.
771 	 */
772 	if (dentry->d_lockref.count) {
773 		spin_unlock(&dentry->d_lock);
774 		return true;
775 	}
776 
777 	/*
778 	 * Re-get the reference we optimistically dropped. We hold the
779 	 * lock, and we just tested that it was zero, so we can just
780 	 * set it to 1.
781 	 */
782 	dentry->d_lockref.count = 1;
783 	return false;
784 }
785 
786 
787 /*
788  * This is dput
789  *
790  * This is complicated by the fact that we do not want to put
791  * dentries that are no longer on any hash chain on the unused
792  * list: we'd much rather just get rid of them immediately.
793  *
794  * However, that implies that we have to traverse the dentry
795  * tree upwards to the parents which might _also_ now be
796  * scheduled for deletion (it may have been only waiting for
797  * its last child to go away).
798  *
799  * This tail recursion is done by hand as we don't want to depend
800  * on the compiler to always get this right (gcc generally doesn't).
801  * Real recursion would eat up our stack space.
802  */
803 
804 /*
805  * dput - release a dentry
806  * @dentry: dentry to release
807  *
808  * Release a dentry. This will drop the usage count and if appropriate
809  * call the dentry unlink method as well as removing it from the queues and
810  * releasing its resources. If the parent dentries were scheduled for release
811  * they too may now get deleted.
812  */
813 void dput(struct dentry *dentry)
814 {
815 	while (dentry) {
816 		might_sleep();
817 
818 		rcu_read_lock();
819 		if (likely(fast_dput(dentry))) {
820 			rcu_read_unlock();
821 			return;
822 		}
823 
824 		/* Slow case: now with the dentry lock held */
825 		rcu_read_unlock();
826 
827 		if (likely(retain_dentry(dentry))) {
828 			spin_unlock(&dentry->d_lock);
829 			return;
830 		}
831 
832 		dentry = dentry_kill(dentry);
833 	}
834 }
835 EXPORT_SYMBOL(dput);
836 
837 
838 /* This must be called with d_lock held */
839 static inline void __dget_dlock(struct dentry *dentry)
840 {
841 	dentry->d_lockref.count++;
842 }
843 
844 static inline void __dget(struct dentry *dentry)
845 {
846 	lockref_get(&dentry->d_lockref);
847 }
848 
849 struct dentry *dget_parent(struct dentry *dentry)
850 {
851 	int gotref;
852 	struct dentry *ret;
853 
854 	/*
855 	 * Do optimistic parent lookup without any
856 	 * locking.
857 	 */
858 	rcu_read_lock();
859 	ret = READ_ONCE(dentry->d_parent);
860 	gotref = lockref_get_not_zero(&ret->d_lockref);
861 	rcu_read_unlock();
862 	if (likely(gotref)) {
863 		if (likely(ret == READ_ONCE(dentry->d_parent)))
864 			return ret;
865 		dput(ret);
866 	}
867 
868 repeat:
869 	/*
870 	 * Don't need rcu_dereference because we re-check it was correct under
871 	 * the lock.
872 	 */
873 	rcu_read_lock();
874 	ret = dentry->d_parent;
875 	spin_lock(&ret->d_lock);
876 	if (unlikely(ret != dentry->d_parent)) {
877 		spin_unlock(&ret->d_lock);
878 		rcu_read_unlock();
879 		goto repeat;
880 	}
881 	rcu_read_unlock();
882 	BUG_ON(!ret->d_lockref.count);
883 	ret->d_lockref.count++;
884 	spin_unlock(&ret->d_lock);
885 	return ret;
886 }
887 EXPORT_SYMBOL(dget_parent);
888 
889 static struct dentry * __d_find_any_alias(struct inode *inode)
890 {
891 	struct dentry *alias;
892 
893 	if (hlist_empty(&inode->i_dentry))
894 		return NULL;
895 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
896 	__dget(alias);
897 	return alias;
898 }
899 
900 /**
901  * d_find_any_alias - find any alias for a given inode
902  * @inode: inode to find an alias for
903  *
904  * If any aliases exist for the given inode, take and return a
905  * reference for one of them.  If no aliases exist, return %NULL.
906  */
907 struct dentry *d_find_any_alias(struct inode *inode)
908 {
909 	struct dentry *de;
910 
911 	spin_lock(&inode->i_lock);
912 	de = __d_find_any_alias(inode);
913 	spin_unlock(&inode->i_lock);
914 	return de;
915 }
916 EXPORT_SYMBOL(d_find_any_alias);
917 
918 /**
919  * d_find_alias - grab a hashed alias of inode
920  * @inode: inode in question
921  *
922  * If inode has a hashed alias, or is a directory and has any alias,
923  * acquire the reference to alias and return it. Otherwise return NULL.
924  * Notice that if inode is a directory there can be only one alias and
925  * it can be unhashed only if it has no children, or if it is the root
926  * of a filesystem, or if the directory was renamed and d_revalidate
927  * was the first vfs operation to notice.
928  *
929  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
930  * any other hashed alias over that one.
931  */
932 static struct dentry *__d_find_alias(struct inode *inode)
933 {
934 	struct dentry *alias;
935 
936 	if (S_ISDIR(inode->i_mode))
937 		return __d_find_any_alias(inode);
938 
939 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
940 		spin_lock(&alias->d_lock);
941  		if (!d_unhashed(alias)) {
942 			__dget_dlock(alias);
943 			spin_unlock(&alias->d_lock);
944 			return alias;
945 		}
946 		spin_unlock(&alias->d_lock);
947 	}
948 	return NULL;
949 }
950 
951 struct dentry *d_find_alias(struct inode *inode)
952 {
953 	struct dentry *de = NULL;
954 
955 	if (!hlist_empty(&inode->i_dentry)) {
956 		spin_lock(&inode->i_lock);
957 		de = __d_find_alias(inode);
958 		spin_unlock(&inode->i_lock);
959 	}
960 	return de;
961 }
962 EXPORT_SYMBOL(d_find_alias);
963 
964 /*
965  *	Try to kill dentries associated with this inode.
966  * WARNING: you must own a reference to inode.
967  */
968 void d_prune_aliases(struct inode *inode)
969 {
970 	struct dentry *dentry;
971 restart:
972 	spin_lock(&inode->i_lock);
973 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
974 		spin_lock(&dentry->d_lock);
975 		if (!dentry->d_lockref.count) {
976 			struct dentry *parent = lock_parent(dentry);
977 			if (likely(!dentry->d_lockref.count)) {
978 				__dentry_kill(dentry);
979 				dput(parent);
980 				goto restart;
981 			}
982 			if (parent)
983 				spin_unlock(&parent->d_lock);
984 		}
985 		spin_unlock(&dentry->d_lock);
986 	}
987 	spin_unlock(&inode->i_lock);
988 }
989 EXPORT_SYMBOL(d_prune_aliases);
990 
991 /*
992  * Lock a dentry from shrink list.
993  * Called under rcu_read_lock() and dentry->d_lock; the former
994  * guarantees that nothing we access will be freed under us.
995  * Note that dentry is *not* protected from concurrent dentry_kill(),
996  * d_delete(), etc.
997  *
998  * Return false if dentry has been disrupted or grabbed, leaving
999  * the caller to kick it off-list.  Otherwise, return true and have
1000  * that dentry's inode and parent both locked.
1001  */
1002 static bool shrink_lock_dentry(struct dentry *dentry)
1003 {
1004 	struct inode *inode;
1005 	struct dentry *parent;
1006 
1007 	if (dentry->d_lockref.count)
1008 		return false;
1009 
1010 	inode = dentry->d_inode;
1011 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012 		spin_unlock(&dentry->d_lock);
1013 		spin_lock(&inode->i_lock);
1014 		spin_lock(&dentry->d_lock);
1015 		if (unlikely(dentry->d_lockref.count))
1016 			goto out;
1017 		/* changed inode means that somebody had grabbed it */
1018 		if (unlikely(inode != dentry->d_inode))
1019 			goto out;
1020 	}
1021 
1022 	parent = dentry->d_parent;
1023 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1024 		return true;
1025 
1026 	spin_unlock(&dentry->d_lock);
1027 	spin_lock(&parent->d_lock);
1028 	if (unlikely(parent != dentry->d_parent)) {
1029 		spin_unlock(&parent->d_lock);
1030 		spin_lock(&dentry->d_lock);
1031 		goto out;
1032 	}
1033 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1034 	if (likely(!dentry->d_lockref.count))
1035 		return true;
1036 	spin_unlock(&parent->d_lock);
1037 out:
1038 	if (inode)
1039 		spin_unlock(&inode->i_lock);
1040 	return false;
1041 }
1042 
1043 static void shrink_dentry_list(struct list_head *list)
1044 {
1045 	while (!list_empty(list)) {
1046 		struct dentry *dentry, *parent;
1047 
1048 		dentry = list_entry(list->prev, struct dentry, d_lru);
1049 		spin_lock(&dentry->d_lock);
1050 		rcu_read_lock();
1051 		if (!shrink_lock_dentry(dentry)) {
1052 			bool can_free = false;
1053 			rcu_read_unlock();
1054 			d_shrink_del(dentry);
1055 			if (dentry->d_lockref.count < 0)
1056 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1057 			spin_unlock(&dentry->d_lock);
1058 			if (can_free)
1059 				dentry_free(dentry);
1060 			continue;
1061 		}
1062 		rcu_read_unlock();
1063 		d_shrink_del(dentry);
1064 		parent = dentry->d_parent;
1065 		__dentry_kill(dentry);
1066 		if (parent == dentry)
1067 			continue;
1068 		/*
1069 		 * We need to prune ancestors too. This is necessary to prevent
1070 		 * quadratic behavior of shrink_dcache_parent(), but is also
1071 		 * expected to be beneficial in reducing dentry cache
1072 		 * fragmentation.
1073 		 */
1074 		dentry = parent;
1075 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1076 			dentry = dentry_kill(dentry);
1077 	}
1078 }
1079 
1080 static enum lru_status dentry_lru_isolate(struct list_head *item,
1081 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1082 {
1083 	struct list_head *freeable = arg;
1084 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1085 
1086 
1087 	/*
1088 	 * we are inverting the lru lock/dentry->d_lock here,
1089 	 * so use a trylock. If we fail to get the lock, just skip
1090 	 * it
1091 	 */
1092 	if (!spin_trylock(&dentry->d_lock))
1093 		return LRU_SKIP;
1094 
1095 	/*
1096 	 * Referenced dentries are still in use. If they have active
1097 	 * counts, just remove them from the LRU. Otherwise give them
1098 	 * another pass through the LRU.
1099 	 */
1100 	if (dentry->d_lockref.count) {
1101 		d_lru_isolate(lru, dentry);
1102 		spin_unlock(&dentry->d_lock);
1103 		return LRU_REMOVED;
1104 	}
1105 
1106 	if (dentry->d_flags & DCACHE_REFERENCED) {
1107 		dentry->d_flags &= ~DCACHE_REFERENCED;
1108 		spin_unlock(&dentry->d_lock);
1109 
1110 		/*
1111 		 * The list move itself will be made by the common LRU code. At
1112 		 * this point, we've dropped the dentry->d_lock but keep the
1113 		 * lru lock. This is safe to do, since every list movement is
1114 		 * protected by the lru lock even if both locks are held.
1115 		 *
1116 		 * This is guaranteed by the fact that all LRU management
1117 		 * functions are intermediated by the LRU API calls like
1118 		 * list_lru_add and list_lru_del. List movement in this file
1119 		 * only ever occur through this functions or through callbacks
1120 		 * like this one, that are called from the LRU API.
1121 		 *
1122 		 * The only exceptions to this are functions like
1123 		 * shrink_dentry_list, and code that first checks for the
1124 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1125 		 * operating only with stack provided lists after they are
1126 		 * properly isolated from the main list.  It is thus, always a
1127 		 * local access.
1128 		 */
1129 		return LRU_ROTATE;
1130 	}
1131 
1132 	d_lru_shrink_move(lru, dentry, freeable);
1133 	spin_unlock(&dentry->d_lock);
1134 
1135 	return LRU_REMOVED;
1136 }
1137 
1138 /**
1139  * prune_dcache_sb - shrink the dcache
1140  * @sb: superblock
1141  * @sc: shrink control, passed to list_lru_shrink_walk()
1142  *
1143  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144  * is done when we need more memory and called from the superblock shrinker
1145  * function.
1146  *
1147  * This function may fail to free any resources if all the dentries are in
1148  * use.
1149  */
1150 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1151 {
1152 	LIST_HEAD(dispose);
1153 	long freed;
1154 
1155 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1156 				     dentry_lru_isolate, &dispose);
1157 	shrink_dentry_list(&dispose);
1158 	return freed;
1159 }
1160 
1161 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1162 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1163 {
1164 	struct list_head *freeable = arg;
1165 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1166 
1167 	/*
1168 	 * we are inverting the lru lock/dentry->d_lock here,
1169 	 * so use a trylock. If we fail to get the lock, just skip
1170 	 * it
1171 	 */
1172 	if (!spin_trylock(&dentry->d_lock))
1173 		return LRU_SKIP;
1174 
1175 	d_lru_shrink_move(lru, dentry, freeable);
1176 	spin_unlock(&dentry->d_lock);
1177 
1178 	return LRU_REMOVED;
1179 }
1180 
1181 
1182 /**
1183  * shrink_dcache_sb - shrink dcache for a superblock
1184  * @sb: superblock
1185  *
1186  * Shrink the dcache for the specified super block. This is used to free
1187  * the dcache before unmounting a file system.
1188  */
1189 void shrink_dcache_sb(struct super_block *sb)
1190 {
1191 	long freed;
1192 
1193 	do {
1194 		LIST_HEAD(dispose);
1195 
1196 		freed = list_lru_walk(&sb->s_dentry_lru,
1197 			dentry_lru_isolate_shrink, &dispose, 1024);
1198 
1199 		this_cpu_sub(nr_dentry_unused, freed);
1200 		shrink_dentry_list(&dispose);
1201 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1202 }
1203 EXPORT_SYMBOL(shrink_dcache_sb);
1204 
1205 /**
1206  * enum d_walk_ret - action to talke during tree walk
1207  * @D_WALK_CONTINUE:	contrinue walk
1208  * @D_WALK_QUIT:	quit walk
1209  * @D_WALK_NORETRY:	quit when retry is needed
1210  * @D_WALK_SKIP:	skip this dentry and its children
1211  */
1212 enum d_walk_ret {
1213 	D_WALK_CONTINUE,
1214 	D_WALK_QUIT,
1215 	D_WALK_NORETRY,
1216 	D_WALK_SKIP,
1217 };
1218 
1219 /**
1220  * d_walk - walk the dentry tree
1221  * @parent:	start of walk
1222  * @data:	data passed to @enter() and @finish()
1223  * @enter:	callback when first entering the dentry
1224  *
1225  * The @enter() callbacks are called with d_lock held.
1226  */
1227 static void d_walk(struct dentry *parent, void *data,
1228 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1229 {
1230 	struct dentry *this_parent;
1231 	struct list_head *next;
1232 	unsigned seq = 0;
1233 	enum d_walk_ret ret;
1234 	bool retry = true;
1235 
1236 again:
1237 	read_seqbegin_or_lock(&rename_lock, &seq);
1238 	this_parent = parent;
1239 	spin_lock(&this_parent->d_lock);
1240 
1241 	ret = enter(data, this_parent);
1242 	switch (ret) {
1243 	case D_WALK_CONTINUE:
1244 		break;
1245 	case D_WALK_QUIT:
1246 	case D_WALK_SKIP:
1247 		goto out_unlock;
1248 	case D_WALK_NORETRY:
1249 		retry = false;
1250 		break;
1251 	}
1252 repeat:
1253 	next = this_parent->d_subdirs.next;
1254 resume:
1255 	while (next != &this_parent->d_subdirs) {
1256 		struct list_head *tmp = next;
1257 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1258 		next = tmp->next;
1259 
1260 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1261 			continue;
1262 
1263 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1264 
1265 		ret = enter(data, dentry);
1266 		switch (ret) {
1267 		case D_WALK_CONTINUE:
1268 			break;
1269 		case D_WALK_QUIT:
1270 			spin_unlock(&dentry->d_lock);
1271 			goto out_unlock;
1272 		case D_WALK_NORETRY:
1273 			retry = false;
1274 			break;
1275 		case D_WALK_SKIP:
1276 			spin_unlock(&dentry->d_lock);
1277 			continue;
1278 		}
1279 
1280 		if (!list_empty(&dentry->d_subdirs)) {
1281 			spin_unlock(&this_parent->d_lock);
1282 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1283 			this_parent = dentry;
1284 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1285 			goto repeat;
1286 		}
1287 		spin_unlock(&dentry->d_lock);
1288 	}
1289 	/*
1290 	 * All done at this level ... ascend and resume the search.
1291 	 */
1292 	rcu_read_lock();
1293 ascend:
1294 	if (this_parent != parent) {
1295 		struct dentry *child = this_parent;
1296 		this_parent = child->d_parent;
1297 
1298 		spin_unlock(&child->d_lock);
1299 		spin_lock(&this_parent->d_lock);
1300 
1301 		/* might go back up the wrong parent if we have had a rename. */
1302 		if (need_seqretry(&rename_lock, seq))
1303 			goto rename_retry;
1304 		/* go into the first sibling still alive */
1305 		do {
1306 			next = child->d_child.next;
1307 			if (next == &this_parent->d_subdirs)
1308 				goto ascend;
1309 			child = list_entry(next, struct dentry, d_child);
1310 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1311 		rcu_read_unlock();
1312 		goto resume;
1313 	}
1314 	if (need_seqretry(&rename_lock, seq))
1315 		goto rename_retry;
1316 	rcu_read_unlock();
1317 
1318 out_unlock:
1319 	spin_unlock(&this_parent->d_lock);
1320 	done_seqretry(&rename_lock, seq);
1321 	return;
1322 
1323 rename_retry:
1324 	spin_unlock(&this_parent->d_lock);
1325 	rcu_read_unlock();
1326 	BUG_ON(seq & 1);
1327 	if (!retry)
1328 		return;
1329 	seq = 1;
1330 	goto again;
1331 }
1332 
1333 struct check_mount {
1334 	struct vfsmount *mnt;
1335 	unsigned int mounted;
1336 };
1337 
1338 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1339 {
1340 	struct check_mount *info = data;
1341 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1342 
1343 	if (likely(!d_mountpoint(dentry)))
1344 		return D_WALK_CONTINUE;
1345 	if (__path_is_mountpoint(&path)) {
1346 		info->mounted = 1;
1347 		return D_WALK_QUIT;
1348 	}
1349 	return D_WALK_CONTINUE;
1350 }
1351 
1352 /**
1353  * path_has_submounts - check for mounts over a dentry in the
1354  *                      current namespace.
1355  * @parent: path to check.
1356  *
1357  * Return true if the parent or its subdirectories contain
1358  * a mount point in the current namespace.
1359  */
1360 int path_has_submounts(const struct path *parent)
1361 {
1362 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1363 
1364 	read_seqlock_excl(&mount_lock);
1365 	d_walk(parent->dentry, &data, path_check_mount);
1366 	read_sequnlock_excl(&mount_lock);
1367 
1368 	return data.mounted;
1369 }
1370 EXPORT_SYMBOL(path_has_submounts);
1371 
1372 /*
1373  * Called by mount code to set a mountpoint and check if the mountpoint is
1374  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1375  * subtree can become unreachable).
1376  *
1377  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1378  * this reason take rename_lock and d_lock on dentry and ancestors.
1379  */
1380 int d_set_mounted(struct dentry *dentry)
1381 {
1382 	struct dentry *p;
1383 	int ret = -ENOENT;
1384 	write_seqlock(&rename_lock);
1385 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1386 		/* Need exclusion wrt. d_invalidate() */
1387 		spin_lock(&p->d_lock);
1388 		if (unlikely(d_unhashed(p))) {
1389 			spin_unlock(&p->d_lock);
1390 			goto out;
1391 		}
1392 		spin_unlock(&p->d_lock);
1393 	}
1394 	spin_lock(&dentry->d_lock);
1395 	if (!d_unlinked(dentry)) {
1396 		ret = -EBUSY;
1397 		if (!d_mountpoint(dentry)) {
1398 			dentry->d_flags |= DCACHE_MOUNTED;
1399 			ret = 0;
1400 		}
1401 	}
1402  	spin_unlock(&dentry->d_lock);
1403 out:
1404 	write_sequnlock(&rename_lock);
1405 	return ret;
1406 }
1407 
1408 /*
1409  * Search the dentry child list of the specified parent,
1410  * and move any unused dentries to the end of the unused
1411  * list for prune_dcache(). We descend to the next level
1412  * whenever the d_subdirs list is non-empty and continue
1413  * searching.
1414  *
1415  * It returns zero iff there are no unused children,
1416  * otherwise  it returns the number of children moved to
1417  * the end of the unused list. This may not be the total
1418  * number of unused children, because select_parent can
1419  * drop the lock and return early due to latency
1420  * constraints.
1421  */
1422 
1423 struct select_data {
1424 	struct dentry *start;
1425 	struct list_head dispose;
1426 	int found;
1427 };
1428 
1429 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1430 {
1431 	struct select_data *data = _data;
1432 	enum d_walk_ret ret = D_WALK_CONTINUE;
1433 
1434 	if (data->start == dentry)
1435 		goto out;
1436 
1437 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1438 		data->found++;
1439 	} else {
1440 		if (dentry->d_flags & DCACHE_LRU_LIST)
1441 			d_lru_del(dentry);
1442 		if (!dentry->d_lockref.count) {
1443 			d_shrink_add(dentry, &data->dispose);
1444 			data->found++;
1445 		}
1446 	}
1447 	/*
1448 	 * We can return to the caller if we have found some (this
1449 	 * ensures forward progress). We'll be coming back to find
1450 	 * the rest.
1451 	 */
1452 	if (!list_empty(&data->dispose))
1453 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1454 out:
1455 	return ret;
1456 }
1457 
1458 /**
1459  * shrink_dcache_parent - prune dcache
1460  * @parent: parent of entries to prune
1461  *
1462  * Prune the dcache to remove unused children of the parent dentry.
1463  */
1464 void shrink_dcache_parent(struct dentry *parent)
1465 {
1466 	for (;;) {
1467 		struct select_data data;
1468 
1469 		INIT_LIST_HEAD(&data.dispose);
1470 		data.start = parent;
1471 		data.found = 0;
1472 
1473 		d_walk(parent, &data, select_collect);
1474 
1475 		if (!list_empty(&data.dispose)) {
1476 			shrink_dentry_list(&data.dispose);
1477 			continue;
1478 		}
1479 
1480 		cond_resched();
1481 		if (!data.found)
1482 			break;
1483 	}
1484 }
1485 EXPORT_SYMBOL(shrink_dcache_parent);
1486 
1487 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1488 {
1489 	/* it has busy descendents; complain about those instead */
1490 	if (!list_empty(&dentry->d_subdirs))
1491 		return D_WALK_CONTINUE;
1492 
1493 	/* root with refcount 1 is fine */
1494 	if (dentry == _data && dentry->d_lockref.count == 1)
1495 		return D_WALK_CONTINUE;
1496 
1497 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1498 			" still in use (%d) [unmount of %s %s]\n",
1499 		       dentry,
1500 		       dentry->d_inode ?
1501 		       dentry->d_inode->i_ino : 0UL,
1502 		       dentry,
1503 		       dentry->d_lockref.count,
1504 		       dentry->d_sb->s_type->name,
1505 		       dentry->d_sb->s_id);
1506 	WARN_ON(1);
1507 	return D_WALK_CONTINUE;
1508 }
1509 
1510 static void do_one_tree(struct dentry *dentry)
1511 {
1512 	shrink_dcache_parent(dentry);
1513 	d_walk(dentry, dentry, umount_check);
1514 	d_drop(dentry);
1515 	dput(dentry);
1516 }
1517 
1518 /*
1519  * destroy the dentries attached to a superblock on unmounting
1520  */
1521 void shrink_dcache_for_umount(struct super_block *sb)
1522 {
1523 	struct dentry *dentry;
1524 
1525 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1526 
1527 	dentry = sb->s_root;
1528 	sb->s_root = NULL;
1529 	do_one_tree(dentry);
1530 
1531 	while (!hlist_bl_empty(&sb->s_roots)) {
1532 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1533 		do_one_tree(dentry);
1534 	}
1535 }
1536 
1537 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1538 {
1539 	struct dentry **victim = _data;
1540 	if (d_mountpoint(dentry)) {
1541 		__dget_dlock(dentry);
1542 		*victim = dentry;
1543 		return D_WALK_QUIT;
1544 	}
1545 	return D_WALK_CONTINUE;
1546 }
1547 
1548 /**
1549  * d_invalidate - detach submounts, prune dcache, and drop
1550  * @dentry: dentry to invalidate (aka detach, prune and drop)
1551  */
1552 void d_invalidate(struct dentry *dentry)
1553 {
1554 	bool had_submounts = false;
1555 	spin_lock(&dentry->d_lock);
1556 	if (d_unhashed(dentry)) {
1557 		spin_unlock(&dentry->d_lock);
1558 		return;
1559 	}
1560 	__d_drop(dentry);
1561 	spin_unlock(&dentry->d_lock);
1562 
1563 	/* Negative dentries can be dropped without further checks */
1564 	if (!dentry->d_inode)
1565 		return;
1566 
1567 	shrink_dcache_parent(dentry);
1568 	for (;;) {
1569 		struct dentry *victim = NULL;
1570 		d_walk(dentry, &victim, find_submount);
1571 		if (!victim) {
1572 			if (had_submounts)
1573 				shrink_dcache_parent(dentry);
1574 			return;
1575 		}
1576 		had_submounts = true;
1577 		detach_mounts(victim);
1578 		dput(victim);
1579 	}
1580 }
1581 EXPORT_SYMBOL(d_invalidate);
1582 
1583 /**
1584  * __d_alloc	-	allocate a dcache entry
1585  * @sb: filesystem it will belong to
1586  * @name: qstr of the name
1587  *
1588  * Allocates a dentry. It returns %NULL if there is insufficient memory
1589  * available. On a success the dentry is returned. The name passed in is
1590  * copied and the copy passed in may be reused after this call.
1591  */
1592 
1593 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1594 {
1595 	struct dentry *dentry;
1596 	char *dname;
1597 	int err;
1598 
1599 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1600 	if (!dentry)
1601 		return NULL;
1602 
1603 	/*
1604 	 * We guarantee that the inline name is always NUL-terminated.
1605 	 * This way the memcpy() done by the name switching in rename
1606 	 * will still always have a NUL at the end, even if we might
1607 	 * be overwriting an internal NUL character
1608 	 */
1609 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1610 	if (unlikely(!name)) {
1611 		name = &slash_name;
1612 		dname = dentry->d_iname;
1613 	} else if (name->len > DNAME_INLINE_LEN-1) {
1614 		size_t size = offsetof(struct external_name, name[1]);
1615 		struct external_name *p = kmalloc(size + name->len,
1616 						  GFP_KERNEL_ACCOUNT |
1617 						  __GFP_RECLAIMABLE);
1618 		if (!p) {
1619 			kmem_cache_free(dentry_cache, dentry);
1620 			return NULL;
1621 		}
1622 		atomic_set(&p->u.count, 1);
1623 		dname = p->name;
1624 	} else  {
1625 		dname = dentry->d_iname;
1626 	}
1627 
1628 	dentry->d_name.len = name->len;
1629 	dentry->d_name.hash = name->hash;
1630 	memcpy(dname, name->name, name->len);
1631 	dname[name->len] = 0;
1632 
1633 	/* Make sure we always see the terminating NUL character */
1634 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1635 
1636 	dentry->d_lockref.count = 1;
1637 	dentry->d_flags = 0;
1638 	spin_lock_init(&dentry->d_lock);
1639 	seqcount_init(&dentry->d_seq);
1640 	dentry->d_inode = NULL;
1641 	dentry->d_parent = dentry;
1642 	dentry->d_sb = sb;
1643 	dentry->d_op = NULL;
1644 	dentry->d_fsdata = NULL;
1645 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1646 	INIT_LIST_HEAD(&dentry->d_lru);
1647 	INIT_LIST_HEAD(&dentry->d_subdirs);
1648 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1649 	INIT_LIST_HEAD(&dentry->d_child);
1650 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1651 
1652 	if (dentry->d_op && dentry->d_op->d_init) {
1653 		err = dentry->d_op->d_init(dentry);
1654 		if (err) {
1655 			if (dname_external(dentry))
1656 				kfree(external_name(dentry));
1657 			kmem_cache_free(dentry_cache, dentry);
1658 			return NULL;
1659 		}
1660 	}
1661 
1662 	this_cpu_inc(nr_dentry);
1663 
1664 	return dentry;
1665 }
1666 
1667 /**
1668  * d_alloc	-	allocate a dcache entry
1669  * @parent: parent of entry to allocate
1670  * @name: qstr of the name
1671  *
1672  * Allocates a dentry. It returns %NULL if there is insufficient memory
1673  * available. On a success the dentry is returned. The name passed in is
1674  * copied and the copy passed in may be reused after this call.
1675  */
1676 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1677 {
1678 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1679 	if (!dentry)
1680 		return NULL;
1681 	dentry->d_flags |= DCACHE_RCUACCESS;
1682 	spin_lock(&parent->d_lock);
1683 	/*
1684 	 * don't need child lock because it is not subject
1685 	 * to concurrency here
1686 	 */
1687 	__dget_dlock(parent);
1688 	dentry->d_parent = parent;
1689 	list_add(&dentry->d_child, &parent->d_subdirs);
1690 	spin_unlock(&parent->d_lock);
1691 
1692 	return dentry;
1693 }
1694 EXPORT_SYMBOL(d_alloc);
1695 
1696 struct dentry *d_alloc_anon(struct super_block *sb)
1697 {
1698 	return __d_alloc(sb, NULL);
1699 }
1700 EXPORT_SYMBOL(d_alloc_anon);
1701 
1702 struct dentry *d_alloc_cursor(struct dentry * parent)
1703 {
1704 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1705 	if (dentry) {
1706 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1707 		dentry->d_parent = dget(parent);
1708 	}
1709 	return dentry;
1710 }
1711 
1712 /**
1713  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714  * @sb: the superblock
1715  * @name: qstr of the name
1716  *
1717  * For a filesystem that just pins its dentries in memory and never
1718  * performs lookups at all, return an unhashed IS_ROOT dentry.
1719  */
1720 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721 {
1722 	return __d_alloc(sb, name);
1723 }
1724 EXPORT_SYMBOL(d_alloc_pseudo);
1725 
1726 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1727 {
1728 	struct qstr q;
1729 
1730 	q.name = name;
1731 	q.hash_len = hashlen_string(parent, name);
1732 	return d_alloc(parent, &q);
1733 }
1734 EXPORT_SYMBOL(d_alloc_name);
1735 
1736 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1737 {
1738 	WARN_ON_ONCE(dentry->d_op);
1739 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1740 				DCACHE_OP_COMPARE	|
1741 				DCACHE_OP_REVALIDATE	|
1742 				DCACHE_OP_WEAK_REVALIDATE	|
1743 				DCACHE_OP_DELETE	|
1744 				DCACHE_OP_REAL));
1745 	dentry->d_op = op;
1746 	if (!op)
1747 		return;
1748 	if (op->d_hash)
1749 		dentry->d_flags |= DCACHE_OP_HASH;
1750 	if (op->d_compare)
1751 		dentry->d_flags |= DCACHE_OP_COMPARE;
1752 	if (op->d_revalidate)
1753 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1754 	if (op->d_weak_revalidate)
1755 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1756 	if (op->d_delete)
1757 		dentry->d_flags |= DCACHE_OP_DELETE;
1758 	if (op->d_prune)
1759 		dentry->d_flags |= DCACHE_OP_PRUNE;
1760 	if (op->d_real)
1761 		dentry->d_flags |= DCACHE_OP_REAL;
1762 
1763 }
1764 EXPORT_SYMBOL(d_set_d_op);
1765 
1766 
1767 /*
1768  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769  * @dentry - The dentry to mark
1770  *
1771  * Mark a dentry as falling through to the lower layer (as set with
1772  * d_pin_lower()).  This flag may be recorded on the medium.
1773  */
1774 void d_set_fallthru(struct dentry *dentry)
1775 {
1776 	spin_lock(&dentry->d_lock);
1777 	dentry->d_flags |= DCACHE_FALLTHRU;
1778 	spin_unlock(&dentry->d_lock);
1779 }
1780 EXPORT_SYMBOL(d_set_fallthru);
1781 
1782 static unsigned d_flags_for_inode(struct inode *inode)
1783 {
1784 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1785 
1786 	if (!inode)
1787 		return DCACHE_MISS_TYPE;
1788 
1789 	if (S_ISDIR(inode->i_mode)) {
1790 		add_flags = DCACHE_DIRECTORY_TYPE;
1791 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1792 			if (unlikely(!inode->i_op->lookup))
1793 				add_flags = DCACHE_AUTODIR_TYPE;
1794 			else
1795 				inode->i_opflags |= IOP_LOOKUP;
1796 		}
1797 		goto type_determined;
1798 	}
1799 
1800 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1801 		if (unlikely(inode->i_op->get_link)) {
1802 			add_flags = DCACHE_SYMLINK_TYPE;
1803 			goto type_determined;
1804 		}
1805 		inode->i_opflags |= IOP_NOFOLLOW;
1806 	}
1807 
1808 	if (unlikely(!S_ISREG(inode->i_mode)))
1809 		add_flags = DCACHE_SPECIAL_TYPE;
1810 
1811 type_determined:
1812 	if (unlikely(IS_AUTOMOUNT(inode)))
1813 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1814 	return add_flags;
1815 }
1816 
1817 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1818 {
1819 	unsigned add_flags = d_flags_for_inode(inode);
1820 	WARN_ON(d_in_lookup(dentry));
1821 
1822 	spin_lock(&dentry->d_lock);
1823 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1824 	raw_write_seqcount_begin(&dentry->d_seq);
1825 	__d_set_inode_and_type(dentry, inode, add_flags);
1826 	raw_write_seqcount_end(&dentry->d_seq);
1827 	fsnotify_update_flags(dentry);
1828 	spin_unlock(&dentry->d_lock);
1829 }
1830 
1831 /**
1832  * d_instantiate - fill in inode information for a dentry
1833  * @entry: dentry to complete
1834  * @inode: inode to attach to this dentry
1835  *
1836  * Fill in inode information in the entry.
1837  *
1838  * This turns negative dentries into productive full members
1839  * of society.
1840  *
1841  * NOTE! This assumes that the inode count has been incremented
1842  * (or otherwise set) by the caller to indicate that it is now
1843  * in use by the dcache.
1844  */
1845 
1846 void d_instantiate(struct dentry *entry, struct inode * inode)
1847 {
1848 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849 	if (inode) {
1850 		security_d_instantiate(entry, inode);
1851 		spin_lock(&inode->i_lock);
1852 		__d_instantiate(entry, inode);
1853 		spin_unlock(&inode->i_lock);
1854 	}
1855 }
1856 EXPORT_SYMBOL(d_instantiate);
1857 
1858 /*
1859  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1860  * with lockdep-related part of unlock_new_inode() done before
1861  * anything else.  Use that instead of open-coding d_instantiate()/
1862  * unlock_new_inode() combinations.
1863  */
1864 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1865 {
1866 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1867 	BUG_ON(!inode);
1868 	lockdep_annotate_inode_mutex_key(inode);
1869 	security_d_instantiate(entry, inode);
1870 	spin_lock(&inode->i_lock);
1871 	__d_instantiate(entry, inode);
1872 	WARN_ON(!(inode->i_state & I_NEW));
1873 	inode->i_state &= ~I_NEW & ~I_CREATING;
1874 	smp_mb();
1875 	wake_up_bit(&inode->i_state, __I_NEW);
1876 	spin_unlock(&inode->i_lock);
1877 }
1878 EXPORT_SYMBOL(d_instantiate_new);
1879 
1880 struct dentry *d_make_root(struct inode *root_inode)
1881 {
1882 	struct dentry *res = NULL;
1883 
1884 	if (root_inode) {
1885 		res = d_alloc_anon(root_inode->i_sb);
1886 		if (res) {
1887 			res->d_flags |= DCACHE_RCUACCESS;
1888 			d_instantiate(res, root_inode);
1889 		} else {
1890 			iput(root_inode);
1891 		}
1892 	}
1893 	return res;
1894 }
1895 EXPORT_SYMBOL(d_make_root);
1896 
1897 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1898 					   struct inode *inode,
1899 					   bool disconnected)
1900 {
1901 	struct dentry *res;
1902 	unsigned add_flags;
1903 
1904 	security_d_instantiate(dentry, inode);
1905 	spin_lock(&inode->i_lock);
1906 	res = __d_find_any_alias(inode);
1907 	if (res) {
1908 		spin_unlock(&inode->i_lock);
1909 		dput(dentry);
1910 		goto out_iput;
1911 	}
1912 
1913 	/* attach a disconnected dentry */
1914 	add_flags = d_flags_for_inode(inode);
1915 
1916 	if (disconnected)
1917 		add_flags |= DCACHE_DISCONNECTED;
1918 
1919 	spin_lock(&dentry->d_lock);
1920 	__d_set_inode_and_type(dentry, inode, add_flags);
1921 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1922 	if (!disconnected) {
1923 		hlist_bl_lock(&dentry->d_sb->s_roots);
1924 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1925 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1926 	}
1927 	spin_unlock(&dentry->d_lock);
1928 	spin_unlock(&inode->i_lock);
1929 
1930 	return dentry;
1931 
1932  out_iput:
1933 	iput(inode);
1934 	return res;
1935 }
1936 
1937 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1938 {
1939 	return __d_instantiate_anon(dentry, inode, true);
1940 }
1941 EXPORT_SYMBOL(d_instantiate_anon);
1942 
1943 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1944 {
1945 	struct dentry *tmp;
1946 	struct dentry *res;
1947 
1948 	if (!inode)
1949 		return ERR_PTR(-ESTALE);
1950 	if (IS_ERR(inode))
1951 		return ERR_CAST(inode);
1952 
1953 	res = d_find_any_alias(inode);
1954 	if (res)
1955 		goto out_iput;
1956 
1957 	tmp = d_alloc_anon(inode->i_sb);
1958 	if (!tmp) {
1959 		res = ERR_PTR(-ENOMEM);
1960 		goto out_iput;
1961 	}
1962 
1963 	return __d_instantiate_anon(tmp, inode, disconnected);
1964 
1965 out_iput:
1966 	iput(inode);
1967 	return res;
1968 }
1969 
1970 /**
1971  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1972  * @inode: inode to allocate the dentry for
1973  *
1974  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1975  * similar open by handle operations.  The returned dentry may be anonymous,
1976  * or may have a full name (if the inode was already in the cache).
1977  *
1978  * When called on a directory inode, we must ensure that the inode only ever
1979  * has one dentry.  If a dentry is found, that is returned instead of
1980  * allocating a new one.
1981  *
1982  * On successful return, the reference to the inode has been transferred
1983  * to the dentry.  In case of an error the reference on the inode is released.
1984  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1985  * be passed in and the error will be propagated to the return value,
1986  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1987  */
1988 struct dentry *d_obtain_alias(struct inode *inode)
1989 {
1990 	return __d_obtain_alias(inode, true);
1991 }
1992 EXPORT_SYMBOL(d_obtain_alias);
1993 
1994 /**
1995  * d_obtain_root - find or allocate a dentry for a given inode
1996  * @inode: inode to allocate the dentry for
1997  *
1998  * Obtain an IS_ROOT dentry for the root of a filesystem.
1999  *
2000  * We must ensure that directory inodes only ever have one dentry.  If a
2001  * dentry is found, that is returned instead of allocating a new one.
2002  *
2003  * On successful return, the reference to the inode has been transferred
2004  * to the dentry.  In case of an error the reference on the inode is
2005  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2006  * error will be propagate to the return value, with a %NULL @inode
2007  * replaced by ERR_PTR(-ESTALE).
2008  */
2009 struct dentry *d_obtain_root(struct inode *inode)
2010 {
2011 	return __d_obtain_alias(inode, false);
2012 }
2013 EXPORT_SYMBOL(d_obtain_root);
2014 
2015 /**
2016  * d_add_ci - lookup or allocate new dentry with case-exact name
2017  * @inode:  the inode case-insensitive lookup has found
2018  * @dentry: the negative dentry that was passed to the parent's lookup func
2019  * @name:   the case-exact name to be associated with the returned dentry
2020  *
2021  * This is to avoid filling the dcache with case-insensitive names to the
2022  * same inode, only the actual correct case is stored in the dcache for
2023  * case-insensitive filesystems.
2024  *
2025  * For a case-insensitive lookup match and if the the case-exact dentry
2026  * already exists in in the dcache, use it and return it.
2027  *
2028  * If no entry exists with the exact case name, allocate new dentry with
2029  * the exact case, and return the spliced entry.
2030  */
2031 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2032 			struct qstr *name)
2033 {
2034 	struct dentry *found, *res;
2035 
2036 	/*
2037 	 * First check if a dentry matching the name already exists,
2038 	 * if not go ahead and create it now.
2039 	 */
2040 	found = d_hash_and_lookup(dentry->d_parent, name);
2041 	if (found) {
2042 		iput(inode);
2043 		return found;
2044 	}
2045 	if (d_in_lookup(dentry)) {
2046 		found = d_alloc_parallel(dentry->d_parent, name,
2047 					dentry->d_wait);
2048 		if (IS_ERR(found) || !d_in_lookup(found)) {
2049 			iput(inode);
2050 			return found;
2051 		}
2052 	} else {
2053 		found = d_alloc(dentry->d_parent, name);
2054 		if (!found) {
2055 			iput(inode);
2056 			return ERR_PTR(-ENOMEM);
2057 		}
2058 	}
2059 	res = d_splice_alias(inode, found);
2060 	if (res) {
2061 		dput(found);
2062 		return res;
2063 	}
2064 	return found;
2065 }
2066 EXPORT_SYMBOL(d_add_ci);
2067 
2068 
2069 static inline bool d_same_name(const struct dentry *dentry,
2070 				const struct dentry *parent,
2071 				const struct qstr *name)
2072 {
2073 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2074 		if (dentry->d_name.len != name->len)
2075 			return false;
2076 		return dentry_cmp(dentry, name->name, name->len) == 0;
2077 	}
2078 	return parent->d_op->d_compare(dentry,
2079 				       dentry->d_name.len, dentry->d_name.name,
2080 				       name) == 0;
2081 }
2082 
2083 /**
2084  * __d_lookup_rcu - search for a dentry (racy, store-free)
2085  * @parent: parent dentry
2086  * @name: qstr of name we wish to find
2087  * @seqp: returns d_seq value at the point where the dentry was found
2088  * Returns: dentry, or NULL
2089  *
2090  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2091  * resolution (store-free path walking) design described in
2092  * Documentation/filesystems/path-lookup.txt.
2093  *
2094  * This is not to be used outside core vfs.
2095  *
2096  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2097  * held, and rcu_read_lock held. The returned dentry must not be stored into
2098  * without taking d_lock and checking d_seq sequence count against @seq
2099  * returned here.
2100  *
2101  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2102  * function.
2103  *
2104  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2105  * the returned dentry, so long as its parent's seqlock is checked after the
2106  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2107  * is formed, giving integrity down the path walk.
2108  *
2109  * NOTE! The caller *has* to check the resulting dentry against the sequence
2110  * number we've returned before using any of the resulting dentry state!
2111  */
2112 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2113 				const struct qstr *name,
2114 				unsigned *seqp)
2115 {
2116 	u64 hashlen = name->hash_len;
2117 	const unsigned char *str = name->name;
2118 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2119 	struct hlist_bl_node *node;
2120 	struct dentry *dentry;
2121 
2122 	/*
2123 	 * Note: There is significant duplication with __d_lookup_rcu which is
2124 	 * required to prevent single threaded performance regressions
2125 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2126 	 * Keep the two functions in sync.
2127 	 */
2128 
2129 	/*
2130 	 * The hash list is protected using RCU.
2131 	 *
2132 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2133 	 * races with d_move().
2134 	 *
2135 	 * It is possible that concurrent renames can mess up our list
2136 	 * walk here and result in missing our dentry, resulting in the
2137 	 * false-negative result. d_lookup() protects against concurrent
2138 	 * renames using rename_lock seqlock.
2139 	 *
2140 	 * See Documentation/filesystems/path-lookup.txt for more details.
2141 	 */
2142 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2143 		unsigned seq;
2144 
2145 seqretry:
2146 		/*
2147 		 * The dentry sequence count protects us from concurrent
2148 		 * renames, and thus protects parent and name fields.
2149 		 *
2150 		 * The caller must perform a seqcount check in order
2151 		 * to do anything useful with the returned dentry.
2152 		 *
2153 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2154 		 * we don't wait for the sequence count to stabilize if it
2155 		 * is in the middle of a sequence change. If we do the slow
2156 		 * dentry compare, we will do seqretries until it is stable,
2157 		 * and if we end up with a successful lookup, we actually
2158 		 * want to exit RCU lookup anyway.
2159 		 *
2160 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2161 		 * we are still guaranteed NUL-termination of ->d_name.name.
2162 		 */
2163 		seq = raw_seqcount_begin(&dentry->d_seq);
2164 		if (dentry->d_parent != parent)
2165 			continue;
2166 		if (d_unhashed(dentry))
2167 			continue;
2168 
2169 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2170 			int tlen;
2171 			const char *tname;
2172 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2173 				continue;
2174 			tlen = dentry->d_name.len;
2175 			tname = dentry->d_name.name;
2176 			/* we want a consistent (name,len) pair */
2177 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2178 				cpu_relax();
2179 				goto seqretry;
2180 			}
2181 			if (parent->d_op->d_compare(dentry,
2182 						    tlen, tname, name) != 0)
2183 				continue;
2184 		} else {
2185 			if (dentry->d_name.hash_len != hashlen)
2186 				continue;
2187 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2188 				continue;
2189 		}
2190 		*seqp = seq;
2191 		return dentry;
2192 	}
2193 	return NULL;
2194 }
2195 
2196 /**
2197  * d_lookup - search for a dentry
2198  * @parent: parent dentry
2199  * @name: qstr of name we wish to find
2200  * Returns: dentry, or NULL
2201  *
2202  * d_lookup searches the children of the parent dentry for the name in
2203  * question. If the dentry is found its reference count is incremented and the
2204  * dentry is returned. The caller must use dput to free the entry when it has
2205  * finished using it. %NULL is returned if the dentry does not exist.
2206  */
2207 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2208 {
2209 	struct dentry *dentry;
2210 	unsigned seq;
2211 
2212 	do {
2213 		seq = read_seqbegin(&rename_lock);
2214 		dentry = __d_lookup(parent, name);
2215 		if (dentry)
2216 			break;
2217 	} while (read_seqretry(&rename_lock, seq));
2218 	return dentry;
2219 }
2220 EXPORT_SYMBOL(d_lookup);
2221 
2222 /**
2223  * __d_lookup - search for a dentry (racy)
2224  * @parent: parent dentry
2225  * @name: qstr of name we wish to find
2226  * Returns: dentry, or NULL
2227  *
2228  * __d_lookup is like d_lookup, however it may (rarely) return a
2229  * false-negative result due to unrelated rename activity.
2230  *
2231  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2232  * however it must be used carefully, eg. with a following d_lookup in
2233  * the case of failure.
2234  *
2235  * __d_lookup callers must be commented.
2236  */
2237 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2238 {
2239 	unsigned int hash = name->hash;
2240 	struct hlist_bl_head *b = d_hash(hash);
2241 	struct hlist_bl_node *node;
2242 	struct dentry *found = NULL;
2243 	struct dentry *dentry;
2244 
2245 	/*
2246 	 * Note: There is significant duplication with __d_lookup_rcu which is
2247 	 * required to prevent single threaded performance regressions
2248 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2249 	 * Keep the two functions in sync.
2250 	 */
2251 
2252 	/*
2253 	 * The hash list is protected using RCU.
2254 	 *
2255 	 * Take d_lock when comparing a candidate dentry, to avoid races
2256 	 * with d_move().
2257 	 *
2258 	 * It is possible that concurrent renames can mess up our list
2259 	 * walk here and result in missing our dentry, resulting in the
2260 	 * false-negative result. d_lookup() protects against concurrent
2261 	 * renames using rename_lock seqlock.
2262 	 *
2263 	 * See Documentation/filesystems/path-lookup.txt for more details.
2264 	 */
2265 	rcu_read_lock();
2266 
2267 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2268 
2269 		if (dentry->d_name.hash != hash)
2270 			continue;
2271 
2272 		spin_lock(&dentry->d_lock);
2273 		if (dentry->d_parent != parent)
2274 			goto next;
2275 		if (d_unhashed(dentry))
2276 			goto next;
2277 
2278 		if (!d_same_name(dentry, parent, name))
2279 			goto next;
2280 
2281 		dentry->d_lockref.count++;
2282 		found = dentry;
2283 		spin_unlock(&dentry->d_lock);
2284 		break;
2285 next:
2286 		spin_unlock(&dentry->d_lock);
2287  	}
2288  	rcu_read_unlock();
2289 
2290  	return found;
2291 }
2292 
2293 /**
2294  * d_hash_and_lookup - hash the qstr then search for a dentry
2295  * @dir: Directory to search in
2296  * @name: qstr of name we wish to find
2297  *
2298  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2299  */
2300 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2301 {
2302 	/*
2303 	 * Check for a fs-specific hash function. Note that we must
2304 	 * calculate the standard hash first, as the d_op->d_hash()
2305 	 * routine may choose to leave the hash value unchanged.
2306 	 */
2307 	name->hash = full_name_hash(dir, name->name, name->len);
2308 	if (dir->d_flags & DCACHE_OP_HASH) {
2309 		int err = dir->d_op->d_hash(dir, name);
2310 		if (unlikely(err < 0))
2311 			return ERR_PTR(err);
2312 	}
2313 	return d_lookup(dir, name);
2314 }
2315 EXPORT_SYMBOL(d_hash_and_lookup);
2316 
2317 /*
2318  * When a file is deleted, we have two options:
2319  * - turn this dentry into a negative dentry
2320  * - unhash this dentry and free it.
2321  *
2322  * Usually, we want to just turn this into
2323  * a negative dentry, but if anybody else is
2324  * currently using the dentry or the inode
2325  * we can't do that and we fall back on removing
2326  * it from the hash queues and waiting for
2327  * it to be deleted later when it has no users
2328  */
2329 
2330 /**
2331  * d_delete - delete a dentry
2332  * @dentry: The dentry to delete
2333  *
2334  * Turn the dentry into a negative dentry if possible, otherwise
2335  * remove it from the hash queues so it can be deleted later
2336  */
2337 
2338 void d_delete(struct dentry * dentry)
2339 {
2340 	struct inode *inode = dentry->d_inode;
2341 	int isdir = d_is_dir(dentry);
2342 
2343 	spin_lock(&inode->i_lock);
2344 	spin_lock(&dentry->d_lock);
2345 	/*
2346 	 * Are we the only user?
2347 	 */
2348 	if (dentry->d_lockref.count == 1) {
2349 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2350 		dentry_unlink_inode(dentry);
2351 	} else {
2352 		__d_drop(dentry);
2353 		spin_unlock(&dentry->d_lock);
2354 		spin_unlock(&inode->i_lock);
2355 	}
2356 	fsnotify_nameremove(dentry, isdir);
2357 }
2358 EXPORT_SYMBOL(d_delete);
2359 
2360 static void __d_rehash(struct dentry *entry)
2361 {
2362 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2363 
2364 	hlist_bl_lock(b);
2365 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2366 	hlist_bl_unlock(b);
2367 }
2368 
2369 /**
2370  * d_rehash	- add an entry back to the hash
2371  * @entry: dentry to add to the hash
2372  *
2373  * Adds a dentry to the hash according to its name.
2374  */
2375 
2376 void d_rehash(struct dentry * entry)
2377 {
2378 	spin_lock(&entry->d_lock);
2379 	__d_rehash(entry);
2380 	spin_unlock(&entry->d_lock);
2381 }
2382 EXPORT_SYMBOL(d_rehash);
2383 
2384 static inline unsigned start_dir_add(struct inode *dir)
2385 {
2386 
2387 	for (;;) {
2388 		unsigned n = dir->i_dir_seq;
2389 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2390 			return n;
2391 		cpu_relax();
2392 	}
2393 }
2394 
2395 static inline void end_dir_add(struct inode *dir, unsigned n)
2396 {
2397 	smp_store_release(&dir->i_dir_seq, n + 2);
2398 }
2399 
2400 static void d_wait_lookup(struct dentry *dentry)
2401 {
2402 	if (d_in_lookup(dentry)) {
2403 		DECLARE_WAITQUEUE(wait, current);
2404 		add_wait_queue(dentry->d_wait, &wait);
2405 		do {
2406 			set_current_state(TASK_UNINTERRUPTIBLE);
2407 			spin_unlock(&dentry->d_lock);
2408 			schedule();
2409 			spin_lock(&dentry->d_lock);
2410 		} while (d_in_lookup(dentry));
2411 	}
2412 }
2413 
2414 struct dentry *d_alloc_parallel(struct dentry *parent,
2415 				const struct qstr *name,
2416 				wait_queue_head_t *wq)
2417 {
2418 	unsigned int hash = name->hash;
2419 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2420 	struct hlist_bl_node *node;
2421 	struct dentry *new = d_alloc(parent, name);
2422 	struct dentry *dentry;
2423 	unsigned seq, r_seq, d_seq;
2424 
2425 	if (unlikely(!new))
2426 		return ERR_PTR(-ENOMEM);
2427 
2428 retry:
2429 	rcu_read_lock();
2430 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2431 	r_seq = read_seqbegin(&rename_lock);
2432 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2433 	if (unlikely(dentry)) {
2434 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2435 			rcu_read_unlock();
2436 			goto retry;
2437 		}
2438 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2439 			rcu_read_unlock();
2440 			dput(dentry);
2441 			goto retry;
2442 		}
2443 		rcu_read_unlock();
2444 		dput(new);
2445 		return dentry;
2446 	}
2447 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2448 		rcu_read_unlock();
2449 		goto retry;
2450 	}
2451 
2452 	if (unlikely(seq & 1)) {
2453 		rcu_read_unlock();
2454 		goto retry;
2455 	}
2456 
2457 	hlist_bl_lock(b);
2458 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2459 		hlist_bl_unlock(b);
2460 		rcu_read_unlock();
2461 		goto retry;
2462 	}
2463 	/*
2464 	 * No changes for the parent since the beginning of d_lookup().
2465 	 * Since all removals from the chain happen with hlist_bl_lock(),
2466 	 * any potential in-lookup matches are going to stay here until
2467 	 * we unlock the chain.  All fields are stable in everything
2468 	 * we encounter.
2469 	 */
2470 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2471 		if (dentry->d_name.hash != hash)
2472 			continue;
2473 		if (dentry->d_parent != parent)
2474 			continue;
2475 		if (!d_same_name(dentry, parent, name))
2476 			continue;
2477 		hlist_bl_unlock(b);
2478 		/* now we can try to grab a reference */
2479 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2480 			rcu_read_unlock();
2481 			goto retry;
2482 		}
2483 
2484 		rcu_read_unlock();
2485 		/*
2486 		 * somebody is likely to be still doing lookup for it;
2487 		 * wait for them to finish
2488 		 */
2489 		spin_lock(&dentry->d_lock);
2490 		d_wait_lookup(dentry);
2491 		/*
2492 		 * it's not in-lookup anymore; in principle we should repeat
2493 		 * everything from dcache lookup, but it's likely to be what
2494 		 * d_lookup() would've found anyway.  If it is, just return it;
2495 		 * otherwise we really have to repeat the whole thing.
2496 		 */
2497 		if (unlikely(dentry->d_name.hash != hash))
2498 			goto mismatch;
2499 		if (unlikely(dentry->d_parent != parent))
2500 			goto mismatch;
2501 		if (unlikely(d_unhashed(dentry)))
2502 			goto mismatch;
2503 		if (unlikely(!d_same_name(dentry, parent, name)))
2504 			goto mismatch;
2505 		/* OK, it *is* a hashed match; return it */
2506 		spin_unlock(&dentry->d_lock);
2507 		dput(new);
2508 		return dentry;
2509 	}
2510 	rcu_read_unlock();
2511 	/* we can't take ->d_lock here; it's OK, though. */
2512 	new->d_flags |= DCACHE_PAR_LOOKUP;
2513 	new->d_wait = wq;
2514 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2515 	hlist_bl_unlock(b);
2516 	return new;
2517 mismatch:
2518 	spin_unlock(&dentry->d_lock);
2519 	dput(dentry);
2520 	goto retry;
2521 }
2522 EXPORT_SYMBOL(d_alloc_parallel);
2523 
2524 void __d_lookup_done(struct dentry *dentry)
2525 {
2526 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2527 						 dentry->d_name.hash);
2528 	hlist_bl_lock(b);
2529 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2530 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2531 	wake_up_all(dentry->d_wait);
2532 	dentry->d_wait = NULL;
2533 	hlist_bl_unlock(b);
2534 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2535 	INIT_LIST_HEAD(&dentry->d_lru);
2536 }
2537 EXPORT_SYMBOL(__d_lookup_done);
2538 
2539 /* inode->i_lock held if inode is non-NULL */
2540 
2541 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2542 {
2543 	struct inode *dir = NULL;
2544 	unsigned n;
2545 	spin_lock(&dentry->d_lock);
2546 	if (unlikely(d_in_lookup(dentry))) {
2547 		dir = dentry->d_parent->d_inode;
2548 		n = start_dir_add(dir);
2549 		__d_lookup_done(dentry);
2550 	}
2551 	if (inode) {
2552 		unsigned add_flags = d_flags_for_inode(inode);
2553 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2554 		raw_write_seqcount_begin(&dentry->d_seq);
2555 		__d_set_inode_and_type(dentry, inode, add_flags);
2556 		raw_write_seqcount_end(&dentry->d_seq);
2557 		fsnotify_update_flags(dentry);
2558 	}
2559 	__d_rehash(dentry);
2560 	if (dir)
2561 		end_dir_add(dir, n);
2562 	spin_unlock(&dentry->d_lock);
2563 	if (inode)
2564 		spin_unlock(&inode->i_lock);
2565 }
2566 
2567 /**
2568  * d_add - add dentry to hash queues
2569  * @entry: dentry to add
2570  * @inode: The inode to attach to this dentry
2571  *
2572  * This adds the entry to the hash queues and initializes @inode.
2573  * The entry was actually filled in earlier during d_alloc().
2574  */
2575 
2576 void d_add(struct dentry *entry, struct inode *inode)
2577 {
2578 	if (inode) {
2579 		security_d_instantiate(entry, inode);
2580 		spin_lock(&inode->i_lock);
2581 	}
2582 	__d_add(entry, inode);
2583 }
2584 EXPORT_SYMBOL(d_add);
2585 
2586 /**
2587  * d_exact_alias - find and hash an exact unhashed alias
2588  * @entry: dentry to add
2589  * @inode: The inode to go with this dentry
2590  *
2591  * If an unhashed dentry with the same name/parent and desired
2592  * inode already exists, hash and return it.  Otherwise, return
2593  * NULL.
2594  *
2595  * Parent directory should be locked.
2596  */
2597 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2598 {
2599 	struct dentry *alias;
2600 	unsigned int hash = entry->d_name.hash;
2601 
2602 	spin_lock(&inode->i_lock);
2603 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2604 		/*
2605 		 * Don't need alias->d_lock here, because aliases with
2606 		 * d_parent == entry->d_parent are not subject to name or
2607 		 * parent changes, because the parent inode i_mutex is held.
2608 		 */
2609 		if (alias->d_name.hash != hash)
2610 			continue;
2611 		if (alias->d_parent != entry->d_parent)
2612 			continue;
2613 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2614 			continue;
2615 		spin_lock(&alias->d_lock);
2616 		if (!d_unhashed(alias)) {
2617 			spin_unlock(&alias->d_lock);
2618 			alias = NULL;
2619 		} else {
2620 			__dget_dlock(alias);
2621 			__d_rehash(alias);
2622 			spin_unlock(&alias->d_lock);
2623 		}
2624 		spin_unlock(&inode->i_lock);
2625 		return alias;
2626 	}
2627 	spin_unlock(&inode->i_lock);
2628 	return NULL;
2629 }
2630 EXPORT_SYMBOL(d_exact_alias);
2631 
2632 static void swap_names(struct dentry *dentry, struct dentry *target)
2633 {
2634 	if (unlikely(dname_external(target))) {
2635 		if (unlikely(dname_external(dentry))) {
2636 			/*
2637 			 * Both external: swap the pointers
2638 			 */
2639 			swap(target->d_name.name, dentry->d_name.name);
2640 		} else {
2641 			/*
2642 			 * dentry:internal, target:external.  Steal target's
2643 			 * storage and make target internal.
2644 			 */
2645 			memcpy(target->d_iname, dentry->d_name.name,
2646 					dentry->d_name.len + 1);
2647 			dentry->d_name.name = target->d_name.name;
2648 			target->d_name.name = target->d_iname;
2649 		}
2650 	} else {
2651 		if (unlikely(dname_external(dentry))) {
2652 			/*
2653 			 * dentry:external, target:internal.  Give dentry's
2654 			 * storage to target and make dentry internal
2655 			 */
2656 			memcpy(dentry->d_iname, target->d_name.name,
2657 					target->d_name.len + 1);
2658 			target->d_name.name = dentry->d_name.name;
2659 			dentry->d_name.name = dentry->d_iname;
2660 		} else {
2661 			/*
2662 			 * Both are internal.
2663 			 */
2664 			unsigned int i;
2665 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2666 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2667 				swap(((long *) &dentry->d_iname)[i],
2668 				     ((long *) &target->d_iname)[i]);
2669 			}
2670 		}
2671 	}
2672 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2673 }
2674 
2675 static void copy_name(struct dentry *dentry, struct dentry *target)
2676 {
2677 	struct external_name *old_name = NULL;
2678 	if (unlikely(dname_external(dentry)))
2679 		old_name = external_name(dentry);
2680 	if (unlikely(dname_external(target))) {
2681 		atomic_inc(&external_name(target)->u.count);
2682 		dentry->d_name = target->d_name;
2683 	} else {
2684 		memcpy(dentry->d_iname, target->d_name.name,
2685 				target->d_name.len + 1);
2686 		dentry->d_name.name = dentry->d_iname;
2687 		dentry->d_name.hash_len = target->d_name.hash_len;
2688 	}
2689 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2690 		kfree_rcu(old_name, u.head);
2691 }
2692 
2693 /*
2694  * __d_move - move a dentry
2695  * @dentry: entry to move
2696  * @target: new dentry
2697  * @exchange: exchange the two dentries
2698  *
2699  * Update the dcache to reflect the move of a file name. Negative
2700  * dcache entries should not be moved in this way. Caller must hold
2701  * rename_lock, the i_mutex of the source and target directories,
2702  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2703  */
2704 static void __d_move(struct dentry *dentry, struct dentry *target,
2705 		     bool exchange)
2706 {
2707 	struct dentry *old_parent, *p;
2708 	struct inode *dir = NULL;
2709 	unsigned n;
2710 
2711 	WARN_ON(!dentry->d_inode);
2712 	if (WARN_ON(dentry == target))
2713 		return;
2714 
2715 	BUG_ON(d_ancestor(target, dentry));
2716 	old_parent = dentry->d_parent;
2717 	p = d_ancestor(old_parent, target);
2718 	if (IS_ROOT(dentry)) {
2719 		BUG_ON(p);
2720 		spin_lock(&target->d_parent->d_lock);
2721 	} else if (!p) {
2722 		/* target is not a descendent of dentry->d_parent */
2723 		spin_lock(&target->d_parent->d_lock);
2724 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2725 	} else {
2726 		BUG_ON(p == dentry);
2727 		spin_lock(&old_parent->d_lock);
2728 		if (p != target)
2729 			spin_lock_nested(&target->d_parent->d_lock,
2730 					DENTRY_D_LOCK_NESTED);
2731 	}
2732 	spin_lock_nested(&dentry->d_lock, 2);
2733 	spin_lock_nested(&target->d_lock, 3);
2734 
2735 	if (unlikely(d_in_lookup(target))) {
2736 		dir = target->d_parent->d_inode;
2737 		n = start_dir_add(dir);
2738 		__d_lookup_done(target);
2739 	}
2740 
2741 	write_seqcount_begin(&dentry->d_seq);
2742 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2743 
2744 	/* unhash both */
2745 	if (!d_unhashed(dentry))
2746 		___d_drop(dentry);
2747 	if (!d_unhashed(target))
2748 		___d_drop(target);
2749 
2750 	/* ... and switch them in the tree */
2751 	dentry->d_parent = target->d_parent;
2752 	if (!exchange) {
2753 		copy_name(dentry, target);
2754 		target->d_hash.pprev = NULL;
2755 		dentry->d_parent->d_lockref.count++;
2756 		if (dentry == old_parent)
2757 			dentry->d_flags |= DCACHE_RCUACCESS;
2758 		else
2759 			WARN_ON(!--old_parent->d_lockref.count);
2760 	} else {
2761 		target->d_parent = old_parent;
2762 		swap_names(dentry, target);
2763 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2764 		__d_rehash(target);
2765 		fsnotify_update_flags(target);
2766 	}
2767 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2768 	__d_rehash(dentry);
2769 	fsnotify_update_flags(dentry);
2770 
2771 	write_seqcount_end(&target->d_seq);
2772 	write_seqcount_end(&dentry->d_seq);
2773 
2774 	if (dir)
2775 		end_dir_add(dir, n);
2776 
2777 	if (dentry->d_parent != old_parent)
2778 		spin_unlock(&dentry->d_parent->d_lock);
2779 	if (dentry != old_parent)
2780 		spin_unlock(&old_parent->d_lock);
2781 	spin_unlock(&target->d_lock);
2782 	spin_unlock(&dentry->d_lock);
2783 }
2784 
2785 /*
2786  * d_move - move a dentry
2787  * @dentry: entry to move
2788  * @target: new dentry
2789  *
2790  * Update the dcache to reflect the move of a file name. Negative
2791  * dcache entries should not be moved in this way. See the locking
2792  * requirements for __d_move.
2793  */
2794 void d_move(struct dentry *dentry, struct dentry *target)
2795 {
2796 	write_seqlock(&rename_lock);
2797 	__d_move(dentry, target, false);
2798 	write_sequnlock(&rename_lock);
2799 }
2800 EXPORT_SYMBOL(d_move);
2801 
2802 /*
2803  * d_exchange - exchange two dentries
2804  * @dentry1: first dentry
2805  * @dentry2: second dentry
2806  */
2807 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2808 {
2809 	write_seqlock(&rename_lock);
2810 
2811 	WARN_ON(!dentry1->d_inode);
2812 	WARN_ON(!dentry2->d_inode);
2813 	WARN_ON(IS_ROOT(dentry1));
2814 	WARN_ON(IS_ROOT(dentry2));
2815 
2816 	__d_move(dentry1, dentry2, true);
2817 
2818 	write_sequnlock(&rename_lock);
2819 }
2820 
2821 /**
2822  * d_ancestor - search for an ancestor
2823  * @p1: ancestor dentry
2824  * @p2: child dentry
2825  *
2826  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2827  * an ancestor of p2, else NULL.
2828  */
2829 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2830 {
2831 	struct dentry *p;
2832 
2833 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2834 		if (p->d_parent == p1)
2835 			return p;
2836 	}
2837 	return NULL;
2838 }
2839 
2840 /*
2841  * This helper attempts to cope with remotely renamed directories
2842  *
2843  * It assumes that the caller is already holding
2844  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2845  *
2846  * Note: If ever the locking in lock_rename() changes, then please
2847  * remember to update this too...
2848  */
2849 static int __d_unalias(struct inode *inode,
2850 		struct dentry *dentry, struct dentry *alias)
2851 {
2852 	struct mutex *m1 = NULL;
2853 	struct rw_semaphore *m2 = NULL;
2854 	int ret = -ESTALE;
2855 
2856 	/* If alias and dentry share a parent, then no extra locks required */
2857 	if (alias->d_parent == dentry->d_parent)
2858 		goto out_unalias;
2859 
2860 	/* See lock_rename() */
2861 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2862 		goto out_err;
2863 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2864 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2865 		goto out_err;
2866 	m2 = &alias->d_parent->d_inode->i_rwsem;
2867 out_unalias:
2868 	__d_move(alias, dentry, false);
2869 	ret = 0;
2870 out_err:
2871 	if (m2)
2872 		up_read(m2);
2873 	if (m1)
2874 		mutex_unlock(m1);
2875 	return ret;
2876 }
2877 
2878 /**
2879  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2880  * @inode:  the inode which may have a disconnected dentry
2881  * @dentry: a negative dentry which we want to point to the inode.
2882  *
2883  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2884  * place of the given dentry and return it, else simply d_add the inode
2885  * to the dentry and return NULL.
2886  *
2887  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2888  * we should error out: directories can't have multiple aliases.
2889  *
2890  * This is needed in the lookup routine of any filesystem that is exportable
2891  * (via knfsd) so that we can build dcache paths to directories effectively.
2892  *
2893  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2894  * is returned.  This matches the expected return value of ->lookup.
2895  *
2896  * Cluster filesystems may call this function with a negative, hashed dentry.
2897  * In that case, we know that the inode will be a regular file, and also this
2898  * will only occur during atomic_open. So we need to check for the dentry
2899  * being already hashed only in the final case.
2900  */
2901 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2902 {
2903 	if (IS_ERR(inode))
2904 		return ERR_CAST(inode);
2905 
2906 	BUG_ON(!d_unhashed(dentry));
2907 
2908 	if (!inode)
2909 		goto out;
2910 
2911 	security_d_instantiate(dentry, inode);
2912 	spin_lock(&inode->i_lock);
2913 	if (S_ISDIR(inode->i_mode)) {
2914 		struct dentry *new = __d_find_any_alias(inode);
2915 		if (unlikely(new)) {
2916 			/* The reference to new ensures it remains an alias */
2917 			spin_unlock(&inode->i_lock);
2918 			write_seqlock(&rename_lock);
2919 			if (unlikely(d_ancestor(new, dentry))) {
2920 				write_sequnlock(&rename_lock);
2921 				dput(new);
2922 				new = ERR_PTR(-ELOOP);
2923 				pr_warn_ratelimited(
2924 					"VFS: Lookup of '%s' in %s %s"
2925 					" would have caused loop\n",
2926 					dentry->d_name.name,
2927 					inode->i_sb->s_type->name,
2928 					inode->i_sb->s_id);
2929 			} else if (!IS_ROOT(new)) {
2930 				struct dentry *old_parent = dget(new->d_parent);
2931 				int err = __d_unalias(inode, dentry, new);
2932 				write_sequnlock(&rename_lock);
2933 				if (err) {
2934 					dput(new);
2935 					new = ERR_PTR(err);
2936 				}
2937 				dput(old_parent);
2938 			} else {
2939 				__d_move(new, dentry, false);
2940 				write_sequnlock(&rename_lock);
2941 			}
2942 			iput(inode);
2943 			return new;
2944 		}
2945 	}
2946 out:
2947 	__d_add(dentry, inode);
2948 	return NULL;
2949 }
2950 EXPORT_SYMBOL(d_splice_alias);
2951 
2952 /*
2953  * Test whether new_dentry is a subdirectory of old_dentry.
2954  *
2955  * Trivially implemented using the dcache structure
2956  */
2957 
2958 /**
2959  * is_subdir - is new dentry a subdirectory of old_dentry
2960  * @new_dentry: new dentry
2961  * @old_dentry: old dentry
2962  *
2963  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2964  * Returns false otherwise.
2965  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2966  */
2967 
2968 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2969 {
2970 	bool result;
2971 	unsigned seq;
2972 
2973 	if (new_dentry == old_dentry)
2974 		return true;
2975 
2976 	do {
2977 		/* for restarting inner loop in case of seq retry */
2978 		seq = read_seqbegin(&rename_lock);
2979 		/*
2980 		 * Need rcu_readlock to protect against the d_parent trashing
2981 		 * due to d_move
2982 		 */
2983 		rcu_read_lock();
2984 		if (d_ancestor(old_dentry, new_dentry))
2985 			result = true;
2986 		else
2987 			result = false;
2988 		rcu_read_unlock();
2989 	} while (read_seqretry(&rename_lock, seq));
2990 
2991 	return result;
2992 }
2993 EXPORT_SYMBOL(is_subdir);
2994 
2995 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
2996 {
2997 	struct dentry *root = data;
2998 	if (dentry != root) {
2999 		if (d_unhashed(dentry) || !dentry->d_inode)
3000 			return D_WALK_SKIP;
3001 
3002 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3003 			dentry->d_flags |= DCACHE_GENOCIDE;
3004 			dentry->d_lockref.count--;
3005 		}
3006 	}
3007 	return D_WALK_CONTINUE;
3008 }
3009 
3010 void d_genocide(struct dentry *parent)
3011 {
3012 	d_walk(parent, parent, d_genocide_kill);
3013 }
3014 
3015 EXPORT_SYMBOL(d_genocide);
3016 
3017 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3018 {
3019 	inode_dec_link_count(inode);
3020 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3021 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3022 		!d_unlinked(dentry));
3023 	spin_lock(&dentry->d_parent->d_lock);
3024 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3025 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3026 				(unsigned long long)inode->i_ino);
3027 	spin_unlock(&dentry->d_lock);
3028 	spin_unlock(&dentry->d_parent->d_lock);
3029 	d_instantiate(dentry, inode);
3030 }
3031 EXPORT_SYMBOL(d_tmpfile);
3032 
3033 static __initdata unsigned long dhash_entries;
3034 static int __init set_dhash_entries(char *str)
3035 {
3036 	if (!str)
3037 		return 0;
3038 	dhash_entries = simple_strtoul(str, &str, 0);
3039 	return 1;
3040 }
3041 __setup("dhash_entries=", set_dhash_entries);
3042 
3043 static void __init dcache_init_early(void)
3044 {
3045 	/* If hashes are distributed across NUMA nodes, defer
3046 	 * hash allocation until vmalloc space is available.
3047 	 */
3048 	if (hashdist)
3049 		return;
3050 
3051 	dentry_hashtable =
3052 		alloc_large_system_hash("Dentry cache",
3053 					sizeof(struct hlist_bl_head),
3054 					dhash_entries,
3055 					13,
3056 					HASH_EARLY | HASH_ZERO,
3057 					&d_hash_shift,
3058 					NULL,
3059 					0,
3060 					0);
3061 	d_hash_shift = 32 - d_hash_shift;
3062 }
3063 
3064 static void __init dcache_init(void)
3065 {
3066 	/*
3067 	 * A constructor could be added for stable state like the lists,
3068 	 * but it is probably not worth it because of the cache nature
3069 	 * of the dcache.
3070 	 */
3071 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3072 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3073 		d_iname);
3074 
3075 	/* Hash may have been set up in dcache_init_early */
3076 	if (!hashdist)
3077 		return;
3078 
3079 	dentry_hashtable =
3080 		alloc_large_system_hash("Dentry cache",
3081 					sizeof(struct hlist_bl_head),
3082 					dhash_entries,
3083 					13,
3084 					HASH_ZERO,
3085 					&d_hash_shift,
3086 					NULL,
3087 					0,
3088 					0);
3089 	d_hash_shift = 32 - d_hash_shift;
3090 }
3091 
3092 /* SLAB cache for __getname() consumers */
3093 struct kmem_cache *names_cachep __read_mostly;
3094 EXPORT_SYMBOL(names_cachep);
3095 
3096 void __init vfs_caches_init_early(void)
3097 {
3098 	int i;
3099 
3100 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3101 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3102 
3103 	dcache_init_early();
3104 	inode_init_early();
3105 }
3106 
3107 void __init vfs_caches_init(void)
3108 {
3109 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3110 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3111 
3112 	dcache_init();
3113 	inode_init();
3114 	files_init();
3115 	files_maxfiles_init();
3116 	mnt_init();
3117 	bdev_cache_init();
3118 	chrdev_init();
3119 }
3120