1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <linux/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/rculist_bl.h> 37 #include <linux/prefetch.h> 38 #include <linux/ratelimit.h> 39 #include <linux/list_lru.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_u.d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_roots bl list spinlock protects: 50 * - the s_roots list (see __d_drop) 51 * dentry->d_sb->s_dentry_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_u.d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dentry->d_sb->s_dentry_lru_lock 67 * dcache_hash_bucket lock 68 * s_roots lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 85 86 EXPORT_SYMBOL(rename_lock); 87 88 static struct kmem_cache *dentry_cache __read_mostly; 89 90 const struct qstr empty_name = QSTR_INIT("", 0); 91 EXPORT_SYMBOL(empty_name); 92 const struct qstr slash_name = QSTR_INIT("/", 1); 93 EXPORT_SYMBOL(slash_name); 94 95 /* 96 * This is the single most critical data structure when it comes 97 * to the dcache: the hashtable for lookups. Somebody should try 98 * to make this good - I've just made it work. 99 * 100 * This hash-function tries to avoid losing too many bits of hash 101 * information, yet avoid using a prime hash-size or similar. 102 */ 103 104 static unsigned int d_hash_shift __read_mostly; 105 106 static struct hlist_bl_head *dentry_hashtable __read_mostly; 107 108 static inline struct hlist_bl_head *d_hash(unsigned int hash) 109 { 110 return dentry_hashtable + (hash >> d_hash_shift); 111 } 112 113 #define IN_LOOKUP_SHIFT 10 114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 115 116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 117 unsigned int hash) 118 { 119 hash += (unsigned long) parent / L1_CACHE_BYTES; 120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 121 } 122 123 124 /* Statistics gathering. */ 125 struct dentry_stat_t dentry_stat = { 126 .age_limit = 45, 127 }; 128 129 static DEFINE_PER_CPU(long, nr_dentry); 130 static DEFINE_PER_CPU(long, nr_dentry_unused); 131 132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 133 134 /* 135 * Here we resort to our own counters instead of using generic per-cpu counters 136 * for consistency with what the vfs inode code does. We are expected to harvest 137 * better code and performance by having our own specialized counters. 138 * 139 * Please note that the loop is done over all possible CPUs, not over all online 140 * CPUs. The reason for this is that we don't want to play games with CPUs going 141 * on and off. If one of them goes off, we will just keep their counters. 142 * 143 * glommer: See cffbc8a for details, and if you ever intend to change this, 144 * please update all vfs counters to match. 145 */ 146 static long get_nr_dentry(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 static long get_nr_dentry_unused(void) 156 { 157 int i; 158 long sum = 0; 159 for_each_possible_cpu(i) 160 sum += per_cpu(nr_dentry_unused, i); 161 return sum < 0 ? 0 : sum; 162 } 163 164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 165 size_t *lenp, loff_t *ppos) 166 { 167 dentry_stat.nr_dentry = get_nr_dentry(); 168 dentry_stat.nr_unused = get_nr_dentry_unused(); 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 170 } 171 #endif 172 173 /* 174 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 175 * The strings are both count bytes long, and count is non-zero. 176 */ 177 #ifdef CONFIG_DCACHE_WORD_ACCESS 178 179 #include <asm/word-at-a-time.h> 180 /* 181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 182 * aligned allocation for this particular component. We don't 183 * strictly need the load_unaligned_zeropad() safety, but it 184 * doesn't hurt either. 185 * 186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 187 * need the careful unaligned handling. 188 */ 189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 190 { 191 unsigned long a,b,mask; 192 193 for (;;) { 194 a = read_word_at_a_time(cs); 195 b = load_unaligned_zeropad(ct); 196 if (tcount < sizeof(unsigned long)) 197 break; 198 if (unlikely(a != b)) 199 return 1; 200 cs += sizeof(unsigned long); 201 ct += sizeof(unsigned long); 202 tcount -= sizeof(unsigned long); 203 if (!tcount) 204 return 0; 205 } 206 mask = bytemask_from_count(tcount); 207 return unlikely(!!((a ^ b) & mask)); 208 } 209 210 #else 211 212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 213 { 214 do { 215 if (*cs != *ct) 216 return 1; 217 cs++; 218 ct++; 219 tcount--; 220 } while (tcount); 221 return 0; 222 } 223 224 #endif 225 226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 227 { 228 /* 229 * Be careful about RCU walk racing with rename: 230 * use 'READ_ONCE' to fetch the name pointer. 231 * 232 * NOTE! Even if a rename will mean that the length 233 * was not loaded atomically, we don't care. The 234 * RCU walk will check the sequence count eventually, 235 * and catch it. And we won't overrun the buffer, 236 * because we're reading the name pointer atomically, 237 * and a dentry name is guaranteed to be properly 238 * terminated with a NUL byte. 239 * 240 * End result: even if 'len' is wrong, we'll exit 241 * early because the data cannot match (there can 242 * be no NUL in the ct/tcount data) 243 */ 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 245 246 return dentry_string_cmp(cs, ct, tcount); 247 } 248 249 struct external_name { 250 union { 251 atomic_t count; 252 struct rcu_head head; 253 } u; 254 unsigned char name[]; 255 }; 256 257 static inline struct external_name *external_name(struct dentry *dentry) 258 { 259 return container_of(dentry->d_name.name, struct external_name, name[0]); 260 } 261 262 static void __d_free(struct rcu_head *head) 263 { 264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 265 266 kmem_cache_free(dentry_cache, dentry); 267 } 268 269 static void __d_free_external(struct rcu_head *head) 270 { 271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 272 kfree(external_name(dentry)); 273 kmem_cache_free(dentry_cache, dentry); 274 } 275 276 static inline int dname_external(const struct dentry *dentry) 277 { 278 return dentry->d_name.name != dentry->d_iname; 279 } 280 281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 282 { 283 spin_lock(&dentry->d_lock); 284 if (unlikely(dname_external(dentry))) { 285 struct external_name *p = external_name(dentry); 286 atomic_inc(&p->u.count); 287 spin_unlock(&dentry->d_lock); 288 name->name = p->name; 289 } else { 290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 291 spin_unlock(&dentry->d_lock); 292 name->name = name->inline_name; 293 } 294 } 295 EXPORT_SYMBOL(take_dentry_name_snapshot); 296 297 void release_dentry_name_snapshot(struct name_snapshot *name) 298 { 299 if (unlikely(name->name != name->inline_name)) { 300 struct external_name *p; 301 p = container_of(name->name, struct external_name, name[0]); 302 if (unlikely(atomic_dec_and_test(&p->u.count))) 303 kfree_rcu(p, u.head); 304 } 305 } 306 EXPORT_SYMBOL(release_dentry_name_snapshot); 307 308 static inline void __d_set_inode_and_type(struct dentry *dentry, 309 struct inode *inode, 310 unsigned type_flags) 311 { 312 unsigned flags; 313 314 dentry->d_inode = inode; 315 flags = READ_ONCE(dentry->d_flags); 316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 317 flags |= type_flags; 318 WRITE_ONCE(dentry->d_flags, flags); 319 } 320 321 static inline void __d_clear_type_and_inode(struct dentry *dentry) 322 { 323 unsigned flags = READ_ONCE(dentry->d_flags); 324 325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 326 WRITE_ONCE(dentry->d_flags, flags); 327 dentry->d_inode = NULL; 328 } 329 330 static void dentry_free(struct dentry *dentry) 331 { 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 333 if (unlikely(dname_external(dentry))) { 334 struct external_name *p = external_name(dentry); 335 if (likely(atomic_dec_and_test(&p->u.count))) { 336 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 337 return; 338 } 339 } 340 /* if dentry was never visible to RCU, immediate free is OK */ 341 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 342 __d_free(&dentry->d_u.d_rcu); 343 else 344 call_rcu(&dentry->d_u.d_rcu, __d_free); 345 } 346 347 /* 348 * Release the dentry's inode, using the filesystem 349 * d_iput() operation if defined. 350 */ 351 static void dentry_unlink_inode(struct dentry * dentry) 352 __releases(dentry->d_lock) 353 __releases(dentry->d_inode->i_lock) 354 { 355 struct inode *inode = dentry->d_inode; 356 bool hashed = !d_unhashed(dentry); 357 358 if (hashed) 359 raw_write_seqcount_begin(&dentry->d_seq); 360 __d_clear_type_and_inode(dentry); 361 hlist_del_init(&dentry->d_u.d_alias); 362 if (hashed) 363 raw_write_seqcount_end(&dentry->d_seq); 364 spin_unlock(&dentry->d_lock); 365 spin_unlock(&inode->i_lock); 366 if (!inode->i_nlink) 367 fsnotify_inoderemove(inode); 368 if (dentry->d_op && dentry->d_op->d_iput) 369 dentry->d_op->d_iput(dentry, inode); 370 else 371 iput(inode); 372 } 373 374 /* 375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 376 * is in use - which includes both the "real" per-superblock 377 * LRU list _and_ the DCACHE_SHRINK_LIST use. 378 * 379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 380 * on the shrink list (ie not on the superblock LRU list). 381 * 382 * The per-cpu "nr_dentry_unused" counters are updated with 383 * the DCACHE_LRU_LIST bit. 384 * 385 * These helper functions make sure we always follow the 386 * rules. d_lock must be held by the caller. 387 */ 388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 389 static void d_lru_add(struct dentry *dentry) 390 { 391 D_FLAG_VERIFY(dentry, 0); 392 dentry->d_flags |= DCACHE_LRU_LIST; 393 this_cpu_inc(nr_dentry_unused); 394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 395 } 396 397 static void d_lru_del(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 400 dentry->d_flags &= ~DCACHE_LRU_LIST; 401 this_cpu_dec(nr_dentry_unused); 402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 403 } 404 405 static void d_shrink_del(struct dentry *dentry) 406 { 407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 408 list_del_init(&dentry->d_lru); 409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 410 this_cpu_dec(nr_dentry_unused); 411 } 412 413 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 414 { 415 D_FLAG_VERIFY(dentry, 0); 416 list_add(&dentry->d_lru, list); 417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 418 this_cpu_inc(nr_dentry_unused); 419 } 420 421 /* 422 * These can only be called under the global LRU lock, ie during the 423 * callback for freeing the LRU list. "isolate" removes it from the 424 * LRU lists entirely, while shrink_move moves it to the indicated 425 * private list. 426 */ 427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 428 { 429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 430 dentry->d_flags &= ~DCACHE_LRU_LIST; 431 this_cpu_dec(nr_dentry_unused); 432 list_lru_isolate(lru, &dentry->d_lru); 433 } 434 435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 436 struct list_head *list) 437 { 438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 439 dentry->d_flags |= DCACHE_SHRINK_LIST; 440 list_lru_isolate_move(lru, &dentry->d_lru, list); 441 } 442 443 /* 444 * dentry_lru_(add|del)_list) must be called with d_lock held. 445 */ 446 static void dentry_lru_add(struct dentry *dentry) 447 { 448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 449 d_lru_add(dentry); 450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 451 dentry->d_flags |= DCACHE_REFERENCED; 452 } 453 454 /** 455 * d_drop - drop a dentry 456 * @dentry: dentry to drop 457 * 458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 459 * be found through a VFS lookup any more. Note that this is different from 460 * deleting the dentry - d_delete will try to mark the dentry negative if 461 * possible, giving a successful _negative_ lookup, while d_drop will 462 * just make the cache lookup fail. 463 * 464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 465 * reason (NFS timeouts or autofs deletes). 466 * 467 * __d_drop requires dentry->d_lock 468 * ___d_drop doesn't mark dentry as "unhashed" 469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 470 */ 471 static void ___d_drop(struct dentry *dentry) 472 { 473 if (!d_unhashed(dentry)) { 474 struct hlist_bl_head *b; 475 /* 476 * Hashed dentries are normally on the dentry hashtable, 477 * with the exception of those newly allocated by 478 * d_obtain_root, which are always IS_ROOT: 479 */ 480 if (unlikely(IS_ROOT(dentry))) 481 b = &dentry->d_sb->s_roots; 482 else 483 b = d_hash(dentry->d_name.hash); 484 485 hlist_bl_lock(b); 486 __hlist_bl_del(&dentry->d_hash); 487 hlist_bl_unlock(b); 488 /* After this call, in-progress rcu-walk path lookup will fail. */ 489 write_seqcount_invalidate(&dentry->d_seq); 490 } 491 } 492 493 void __d_drop(struct dentry *dentry) 494 { 495 ___d_drop(dentry); 496 dentry->d_hash.pprev = NULL; 497 } 498 EXPORT_SYMBOL(__d_drop); 499 500 void d_drop(struct dentry *dentry) 501 { 502 spin_lock(&dentry->d_lock); 503 __d_drop(dentry); 504 spin_unlock(&dentry->d_lock); 505 } 506 EXPORT_SYMBOL(d_drop); 507 508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 509 { 510 struct dentry *next; 511 /* 512 * Inform d_walk() and shrink_dentry_list() that we are no longer 513 * attached to the dentry tree 514 */ 515 dentry->d_flags |= DCACHE_DENTRY_KILLED; 516 if (unlikely(list_empty(&dentry->d_child))) 517 return; 518 __list_del_entry(&dentry->d_child); 519 /* 520 * Cursors can move around the list of children. While we'd been 521 * a normal list member, it didn't matter - ->d_child.next would've 522 * been updated. However, from now on it won't be and for the 523 * things like d_walk() it might end up with a nasty surprise. 524 * Normally d_walk() doesn't care about cursors moving around - 525 * ->d_lock on parent prevents that and since a cursor has no children 526 * of its own, we get through it without ever unlocking the parent. 527 * There is one exception, though - if we ascend from a child that 528 * gets killed as soon as we unlock it, the next sibling is found 529 * using the value left in its ->d_child.next. And if _that_ 530 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 531 * before d_walk() regains parent->d_lock, we'll end up skipping 532 * everything the cursor had been moved past. 533 * 534 * Solution: make sure that the pointer left behind in ->d_child.next 535 * points to something that won't be moving around. I.e. skip the 536 * cursors. 537 */ 538 while (dentry->d_child.next != &parent->d_subdirs) { 539 next = list_entry(dentry->d_child.next, struct dentry, d_child); 540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 541 break; 542 dentry->d_child.next = next->d_child.next; 543 } 544 } 545 546 static void __dentry_kill(struct dentry *dentry) 547 { 548 struct dentry *parent = NULL; 549 bool can_free = true; 550 if (!IS_ROOT(dentry)) 551 parent = dentry->d_parent; 552 553 /* 554 * The dentry is now unrecoverably dead to the world. 555 */ 556 lockref_mark_dead(&dentry->d_lockref); 557 558 /* 559 * inform the fs via d_prune that this dentry is about to be 560 * unhashed and destroyed. 561 */ 562 if (dentry->d_flags & DCACHE_OP_PRUNE) 563 dentry->d_op->d_prune(dentry); 564 565 if (dentry->d_flags & DCACHE_LRU_LIST) { 566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 567 d_lru_del(dentry); 568 } 569 /* if it was on the hash then remove it */ 570 __d_drop(dentry); 571 dentry_unlist(dentry, parent); 572 if (parent) 573 spin_unlock(&parent->d_lock); 574 if (dentry->d_inode) 575 dentry_unlink_inode(dentry); 576 else 577 spin_unlock(&dentry->d_lock); 578 this_cpu_dec(nr_dentry); 579 if (dentry->d_op && dentry->d_op->d_release) 580 dentry->d_op->d_release(dentry); 581 582 spin_lock(&dentry->d_lock); 583 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 584 dentry->d_flags |= DCACHE_MAY_FREE; 585 can_free = false; 586 } 587 spin_unlock(&dentry->d_lock); 588 if (likely(can_free)) 589 dentry_free(dentry); 590 } 591 592 /* 593 * Finish off a dentry we've decided to kill. 594 * dentry->d_lock must be held, returns with it unlocked. 595 * If ref is non-zero, then decrement the refcount too. 596 * Returns dentry requiring refcount drop, or NULL if we're done. 597 */ 598 static struct dentry *dentry_kill(struct dentry *dentry) 599 __releases(dentry->d_lock) 600 { 601 struct inode *inode = dentry->d_inode; 602 struct dentry *parent = NULL; 603 604 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 605 goto failed; 606 607 if (!IS_ROOT(dentry)) { 608 parent = dentry->d_parent; 609 if (unlikely(!spin_trylock(&parent->d_lock))) { 610 if (inode) 611 spin_unlock(&inode->i_lock); 612 goto failed; 613 } 614 } 615 616 __dentry_kill(dentry); 617 return parent; 618 619 failed: 620 spin_unlock(&dentry->d_lock); 621 return dentry; /* try again with same dentry */ 622 } 623 624 static inline struct dentry *lock_parent(struct dentry *dentry) 625 { 626 struct dentry *parent = dentry->d_parent; 627 if (IS_ROOT(dentry)) 628 return NULL; 629 if (unlikely(dentry->d_lockref.count < 0)) 630 return NULL; 631 if (likely(spin_trylock(&parent->d_lock))) 632 return parent; 633 rcu_read_lock(); 634 spin_unlock(&dentry->d_lock); 635 again: 636 parent = READ_ONCE(dentry->d_parent); 637 spin_lock(&parent->d_lock); 638 /* 639 * We can't blindly lock dentry until we are sure 640 * that we won't violate the locking order. 641 * Any changes of dentry->d_parent must have 642 * been done with parent->d_lock held, so 643 * spin_lock() above is enough of a barrier 644 * for checking if it's still our child. 645 */ 646 if (unlikely(parent != dentry->d_parent)) { 647 spin_unlock(&parent->d_lock); 648 goto again; 649 } 650 rcu_read_unlock(); 651 if (parent != dentry) 652 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 653 else 654 parent = NULL; 655 return parent; 656 } 657 658 /* 659 * Try to do a lockless dput(), and return whether that was successful. 660 * 661 * If unsuccessful, we return false, having already taken the dentry lock. 662 * 663 * The caller needs to hold the RCU read lock, so that the dentry is 664 * guaranteed to stay around even if the refcount goes down to zero! 665 */ 666 static inline bool fast_dput(struct dentry *dentry) 667 { 668 int ret; 669 unsigned int d_flags; 670 671 /* 672 * If we have a d_op->d_delete() operation, we sould not 673 * let the dentry count go to zero, so use "put_or_lock". 674 */ 675 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 676 return lockref_put_or_lock(&dentry->d_lockref); 677 678 /* 679 * .. otherwise, we can try to just decrement the 680 * lockref optimistically. 681 */ 682 ret = lockref_put_return(&dentry->d_lockref); 683 684 /* 685 * If the lockref_put_return() failed due to the lock being held 686 * by somebody else, the fast path has failed. We will need to 687 * get the lock, and then check the count again. 688 */ 689 if (unlikely(ret < 0)) { 690 spin_lock(&dentry->d_lock); 691 if (dentry->d_lockref.count > 1) { 692 dentry->d_lockref.count--; 693 spin_unlock(&dentry->d_lock); 694 return 1; 695 } 696 return 0; 697 } 698 699 /* 700 * If we weren't the last ref, we're done. 701 */ 702 if (ret) 703 return 1; 704 705 /* 706 * Careful, careful. The reference count went down 707 * to zero, but we don't hold the dentry lock, so 708 * somebody else could get it again, and do another 709 * dput(), and we need to not race with that. 710 * 711 * However, there is a very special and common case 712 * where we don't care, because there is nothing to 713 * do: the dentry is still hashed, it does not have 714 * a 'delete' op, and it's referenced and already on 715 * the LRU list. 716 * 717 * NOTE! Since we aren't locked, these values are 718 * not "stable". However, it is sufficient that at 719 * some point after we dropped the reference the 720 * dentry was hashed and the flags had the proper 721 * value. Other dentry users may have re-gotten 722 * a reference to the dentry and change that, but 723 * our work is done - we can leave the dentry 724 * around with a zero refcount. 725 */ 726 smp_rmb(); 727 d_flags = READ_ONCE(dentry->d_flags); 728 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 729 730 /* Nothing to do? Dropping the reference was all we needed? */ 731 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 732 return 1; 733 734 /* 735 * Not the fast normal case? Get the lock. We've already decremented 736 * the refcount, but we'll need to re-check the situation after 737 * getting the lock. 738 */ 739 spin_lock(&dentry->d_lock); 740 741 /* 742 * Did somebody else grab a reference to it in the meantime, and 743 * we're no longer the last user after all? Alternatively, somebody 744 * else could have killed it and marked it dead. Either way, we 745 * don't need to do anything else. 746 */ 747 if (dentry->d_lockref.count) { 748 spin_unlock(&dentry->d_lock); 749 return 1; 750 } 751 752 /* 753 * Re-get the reference we optimistically dropped. We hold the 754 * lock, and we just tested that it was zero, so we can just 755 * set it to 1. 756 */ 757 dentry->d_lockref.count = 1; 758 return 0; 759 } 760 761 762 /* 763 * This is dput 764 * 765 * This is complicated by the fact that we do not want to put 766 * dentries that are no longer on any hash chain on the unused 767 * list: we'd much rather just get rid of them immediately. 768 * 769 * However, that implies that we have to traverse the dentry 770 * tree upwards to the parents which might _also_ now be 771 * scheduled for deletion (it may have been only waiting for 772 * its last child to go away). 773 * 774 * This tail recursion is done by hand as we don't want to depend 775 * on the compiler to always get this right (gcc generally doesn't). 776 * Real recursion would eat up our stack space. 777 */ 778 779 /* 780 * dput - release a dentry 781 * @dentry: dentry to release 782 * 783 * Release a dentry. This will drop the usage count and if appropriate 784 * call the dentry unlink method as well as removing it from the queues and 785 * releasing its resources. If the parent dentries were scheduled for release 786 * they too may now get deleted. 787 */ 788 void dput(struct dentry *dentry) 789 { 790 if (unlikely(!dentry)) 791 return; 792 793 repeat: 794 might_sleep(); 795 796 rcu_read_lock(); 797 if (likely(fast_dput(dentry))) { 798 rcu_read_unlock(); 799 return; 800 } 801 802 /* Slow case: now with the dentry lock held */ 803 rcu_read_unlock(); 804 805 WARN_ON(d_in_lookup(dentry)); 806 807 /* Unreachable? Get rid of it */ 808 if (unlikely(d_unhashed(dentry))) 809 goto kill_it; 810 811 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 812 goto kill_it; 813 814 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 815 if (dentry->d_op->d_delete(dentry)) 816 goto kill_it; 817 } 818 819 dentry_lru_add(dentry); 820 821 dentry->d_lockref.count--; 822 spin_unlock(&dentry->d_lock); 823 return; 824 825 kill_it: 826 dentry = dentry_kill(dentry); 827 if (dentry) { 828 cond_resched(); 829 goto repeat; 830 } 831 } 832 EXPORT_SYMBOL(dput); 833 834 835 /* This must be called with d_lock held */ 836 static inline void __dget_dlock(struct dentry *dentry) 837 { 838 dentry->d_lockref.count++; 839 } 840 841 static inline void __dget(struct dentry *dentry) 842 { 843 lockref_get(&dentry->d_lockref); 844 } 845 846 struct dentry *dget_parent(struct dentry *dentry) 847 { 848 int gotref; 849 struct dentry *ret; 850 851 /* 852 * Do optimistic parent lookup without any 853 * locking. 854 */ 855 rcu_read_lock(); 856 ret = READ_ONCE(dentry->d_parent); 857 gotref = lockref_get_not_zero(&ret->d_lockref); 858 rcu_read_unlock(); 859 if (likely(gotref)) { 860 if (likely(ret == READ_ONCE(dentry->d_parent))) 861 return ret; 862 dput(ret); 863 } 864 865 repeat: 866 /* 867 * Don't need rcu_dereference because we re-check it was correct under 868 * the lock. 869 */ 870 rcu_read_lock(); 871 ret = dentry->d_parent; 872 spin_lock(&ret->d_lock); 873 if (unlikely(ret != dentry->d_parent)) { 874 spin_unlock(&ret->d_lock); 875 rcu_read_unlock(); 876 goto repeat; 877 } 878 rcu_read_unlock(); 879 BUG_ON(!ret->d_lockref.count); 880 ret->d_lockref.count++; 881 spin_unlock(&ret->d_lock); 882 return ret; 883 } 884 EXPORT_SYMBOL(dget_parent); 885 886 /** 887 * d_find_alias - grab a hashed alias of inode 888 * @inode: inode in question 889 * 890 * If inode has a hashed alias, or is a directory and has any alias, 891 * acquire the reference to alias and return it. Otherwise return NULL. 892 * Notice that if inode is a directory there can be only one alias and 893 * it can be unhashed only if it has no children, or if it is the root 894 * of a filesystem, or if the directory was renamed and d_revalidate 895 * was the first vfs operation to notice. 896 * 897 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 898 * any other hashed alias over that one. 899 */ 900 static struct dentry *__d_find_alias(struct inode *inode) 901 { 902 struct dentry *alias, *discon_alias; 903 904 again: 905 discon_alias = NULL; 906 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 907 spin_lock(&alias->d_lock); 908 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 909 if (IS_ROOT(alias) && 910 (alias->d_flags & DCACHE_DISCONNECTED)) { 911 discon_alias = alias; 912 } else { 913 __dget_dlock(alias); 914 spin_unlock(&alias->d_lock); 915 return alias; 916 } 917 } 918 spin_unlock(&alias->d_lock); 919 } 920 if (discon_alias) { 921 alias = discon_alias; 922 spin_lock(&alias->d_lock); 923 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 924 __dget_dlock(alias); 925 spin_unlock(&alias->d_lock); 926 return alias; 927 } 928 spin_unlock(&alias->d_lock); 929 goto again; 930 } 931 return NULL; 932 } 933 934 struct dentry *d_find_alias(struct inode *inode) 935 { 936 struct dentry *de = NULL; 937 938 if (!hlist_empty(&inode->i_dentry)) { 939 spin_lock(&inode->i_lock); 940 de = __d_find_alias(inode); 941 spin_unlock(&inode->i_lock); 942 } 943 return de; 944 } 945 EXPORT_SYMBOL(d_find_alias); 946 947 /* 948 * Try to kill dentries associated with this inode. 949 * WARNING: you must own a reference to inode. 950 */ 951 void d_prune_aliases(struct inode *inode) 952 { 953 struct dentry *dentry; 954 restart: 955 spin_lock(&inode->i_lock); 956 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 957 spin_lock(&dentry->d_lock); 958 if (!dentry->d_lockref.count) { 959 struct dentry *parent = lock_parent(dentry); 960 if (likely(!dentry->d_lockref.count)) { 961 __dentry_kill(dentry); 962 dput(parent); 963 goto restart; 964 } 965 if (parent) 966 spin_unlock(&parent->d_lock); 967 } 968 spin_unlock(&dentry->d_lock); 969 } 970 spin_unlock(&inode->i_lock); 971 } 972 EXPORT_SYMBOL(d_prune_aliases); 973 974 static void shrink_dentry_list(struct list_head *list) 975 { 976 struct dentry *dentry, *parent; 977 978 while (!list_empty(list)) { 979 struct inode *inode; 980 dentry = list_entry(list->prev, struct dentry, d_lru); 981 spin_lock(&dentry->d_lock); 982 parent = lock_parent(dentry); 983 984 /* 985 * The dispose list is isolated and dentries are not accounted 986 * to the LRU here, so we can simply remove it from the list 987 * here regardless of whether it is referenced or not. 988 */ 989 d_shrink_del(dentry); 990 991 /* 992 * We found an inuse dentry which was not removed from 993 * the LRU because of laziness during lookup. Do not free it. 994 */ 995 if (dentry->d_lockref.count > 0) { 996 spin_unlock(&dentry->d_lock); 997 if (parent) 998 spin_unlock(&parent->d_lock); 999 continue; 1000 } 1001 1002 1003 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 1004 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 1005 spin_unlock(&dentry->d_lock); 1006 if (parent) 1007 spin_unlock(&parent->d_lock); 1008 if (can_free) 1009 dentry_free(dentry); 1010 continue; 1011 } 1012 1013 inode = dentry->d_inode; 1014 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1015 d_shrink_add(dentry, list); 1016 spin_unlock(&dentry->d_lock); 1017 if (parent) 1018 spin_unlock(&parent->d_lock); 1019 continue; 1020 } 1021 1022 __dentry_kill(dentry); 1023 1024 /* 1025 * We need to prune ancestors too. This is necessary to prevent 1026 * quadratic behavior of shrink_dcache_parent(), but is also 1027 * expected to be beneficial in reducing dentry cache 1028 * fragmentation. 1029 */ 1030 dentry = parent; 1031 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1032 parent = lock_parent(dentry); 1033 if (dentry->d_lockref.count != 1) { 1034 dentry->d_lockref.count--; 1035 spin_unlock(&dentry->d_lock); 1036 if (parent) 1037 spin_unlock(&parent->d_lock); 1038 break; 1039 } 1040 inode = dentry->d_inode; /* can't be NULL */ 1041 if (unlikely(!spin_trylock(&inode->i_lock))) { 1042 spin_unlock(&dentry->d_lock); 1043 if (parent) 1044 spin_unlock(&parent->d_lock); 1045 cpu_relax(); 1046 continue; 1047 } 1048 __dentry_kill(dentry); 1049 dentry = parent; 1050 } 1051 } 1052 } 1053 1054 static enum lru_status dentry_lru_isolate(struct list_head *item, 1055 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1056 { 1057 struct list_head *freeable = arg; 1058 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1059 1060 1061 /* 1062 * we are inverting the lru lock/dentry->d_lock here, 1063 * so use a trylock. If we fail to get the lock, just skip 1064 * it 1065 */ 1066 if (!spin_trylock(&dentry->d_lock)) 1067 return LRU_SKIP; 1068 1069 /* 1070 * Referenced dentries are still in use. If they have active 1071 * counts, just remove them from the LRU. Otherwise give them 1072 * another pass through the LRU. 1073 */ 1074 if (dentry->d_lockref.count) { 1075 d_lru_isolate(lru, dentry); 1076 spin_unlock(&dentry->d_lock); 1077 return LRU_REMOVED; 1078 } 1079 1080 if (dentry->d_flags & DCACHE_REFERENCED) { 1081 dentry->d_flags &= ~DCACHE_REFERENCED; 1082 spin_unlock(&dentry->d_lock); 1083 1084 /* 1085 * The list move itself will be made by the common LRU code. At 1086 * this point, we've dropped the dentry->d_lock but keep the 1087 * lru lock. This is safe to do, since every list movement is 1088 * protected by the lru lock even if both locks are held. 1089 * 1090 * This is guaranteed by the fact that all LRU management 1091 * functions are intermediated by the LRU API calls like 1092 * list_lru_add and list_lru_del. List movement in this file 1093 * only ever occur through this functions or through callbacks 1094 * like this one, that are called from the LRU API. 1095 * 1096 * The only exceptions to this are functions like 1097 * shrink_dentry_list, and code that first checks for the 1098 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1099 * operating only with stack provided lists after they are 1100 * properly isolated from the main list. It is thus, always a 1101 * local access. 1102 */ 1103 return LRU_ROTATE; 1104 } 1105 1106 d_lru_shrink_move(lru, dentry, freeable); 1107 spin_unlock(&dentry->d_lock); 1108 1109 return LRU_REMOVED; 1110 } 1111 1112 /** 1113 * prune_dcache_sb - shrink the dcache 1114 * @sb: superblock 1115 * @sc: shrink control, passed to list_lru_shrink_walk() 1116 * 1117 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1118 * is done when we need more memory and called from the superblock shrinker 1119 * function. 1120 * 1121 * This function may fail to free any resources if all the dentries are in 1122 * use. 1123 */ 1124 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1125 { 1126 LIST_HEAD(dispose); 1127 long freed; 1128 1129 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1130 dentry_lru_isolate, &dispose); 1131 shrink_dentry_list(&dispose); 1132 return freed; 1133 } 1134 1135 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1136 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1137 { 1138 struct list_head *freeable = arg; 1139 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1140 1141 /* 1142 * we are inverting the lru lock/dentry->d_lock here, 1143 * so use a trylock. If we fail to get the lock, just skip 1144 * it 1145 */ 1146 if (!spin_trylock(&dentry->d_lock)) 1147 return LRU_SKIP; 1148 1149 d_lru_shrink_move(lru, dentry, freeable); 1150 spin_unlock(&dentry->d_lock); 1151 1152 return LRU_REMOVED; 1153 } 1154 1155 1156 /** 1157 * shrink_dcache_sb - shrink dcache for a superblock 1158 * @sb: superblock 1159 * 1160 * Shrink the dcache for the specified super block. This is used to free 1161 * the dcache before unmounting a file system. 1162 */ 1163 void shrink_dcache_sb(struct super_block *sb) 1164 { 1165 long freed; 1166 1167 do { 1168 LIST_HEAD(dispose); 1169 1170 freed = list_lru_walk(&sb->s_dentry_lru, 1171 dentry_lru_isolate_shrink, &dispose, 1024); 1172 1173 this_cpu_sub(nr_dentry_unused, freed); 1174 shrink_dentry_list(&dispose); 1175 cond_resched(); 1176 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1177 } 1178 EXPORT_SYMBOL(shrink_dcache_sb); 1179 1180 /** 1181 * enum d_walk_ret - action to talke during tree walk 1182 * @D_WALK_CONTINUE: contrinue walk 1183 * @D_WALK_QUIT: quit walk 1184 * @D_WALK_NORETRY: quit when retry is needed 1185 * @D_WALK_SKIP: skip this dentry and its children 1186 */ 1187 enum d_walk_ret { 1188 D_WALK_CONTINUE, 1189 D_WALK_QUIT, 1190 D_WALK_NORETRY, 1191 D_WALK_SKIP, 1192 }; 1193 1194 /** 1195 * d_walk - walk the dentry tree 1196 * @parent: start of walk 1197 * @data: data passed to @enter() and @finish() 1198 * @enter: callback when first entering the dentry 1199 * @finish: callback when successfully finished the walk 1200 * 1201 * The @enter() and @finish() callbacks are called with d_lock held. 1202 */ 1203 static void d_walk(struct dentry *parent, void *data, 1204 enum d_walk_ret (*enter)(void *, struct dentry *), 1205 void (*finish)(void *)) 1206 { 1207 struct dentry *this_parent; 1208 struct list_head *next; 1209 unsigned seq = 0; 1210 enum d_walk_ret ret; 1211 bool retry = true; 1212 1213 again: 1214 read_seqbegin_or_lock(&rename_lock, &seq); 1215 this_parent = parent; 1216 spin_lock(&this_parent->d_lock); 1217 1218 ret = enter(data, this_parent); 1219 switch (ret) { 1220 case D_WALK_CONTINUE: 1221 break; 1222 case D_WALK_QUIT: 1223 case D_WALK_SKIP: 1224 goto out_unlock; 1225 case D_WALK_NORETRY: 1226 retry = false; 1227 break; 1228 } 1229 repeat: 1230 next = this_parent->d_subdirs.next; 1231 resume: 1232 while (next != &this_parent->d_subdirs) { 1233 struct list_head *tmp = next; 1234 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1235 next = tmp->next; 1236 1237 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1238 continue; 1239 1240 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1241 1242 ret = enter(data, dentry); 1243 switch (ret) { 1244 case D_WALK_CONTINUE: 1245 break; 1246 case D_WALK_QUIT: 1247 spin_unlock(&dentry->d_lock); 1248 goto out_unlock; 1249 case D_WALK_NORETRY: 1250 retry = false; 1251 break; 1252 case D_WALK_SKIP: 1253 spin_unlock(&dentry->d_lock); 1254 continue; 1255 } 1256 1257 if (!list_empty(&dentry->d_subdirs)) { 1258 spin_unlock(&this_parent->d_lock); 1259 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1260 this_parent = dentry; 1261 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1262 goto repeat; 1263 } 1264 spin_unlock(&dentry->d_lock); 1265 } 1266 /* 1267 * All done at this level ... ascend and resume the search. 1268 */ 1269 rcu_read_lock(); 1270 ascend: 1271 if (this_parent != parent) { 1272 struct dentry *child = this_parent; 1273 this_parent = child->d_parent; 1274 1275 spin_unlock(&child->d_lock); 1276 spin_lock(&this_parent->d_lock); 1277 1278 /* might go back up the wrong parent if we have had a rename. */ 1279 if (need_seqretry(&rename_lock, seq)) 1280 goto rename_retry; 1281 /* go into the first sibling still alive */ 1282 do { 1283 next = child->d_child.next; 1284 if (next == &this_parent->d_subdirs) 1285 goto ascend; 1286 child = list_entry(next, struct dentry, d_child); 1287 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1288 rcu_read_unlock(); 1289 goto resume; 1290 } 1291 if (need_seqretry(&rename_lock, seq)) 1292 goto rename_retry; 1293 rcu_read_unlock(); 1294 if (finish) 1295 finish(data); 1296 1297 out_unlock: 1298 spin_unlock(&this_parent->d_lock); 1299 done_seqretry(&rename_lock, seq); 1300 return; 1301 1302 rename_retry: 1303 spin_unlock(&this_parent->d_lock); 1304 rcu_read_unlock(); 1305 BUG_ON(seq & 1); 1306 if (!retry) 1307 return; 1308 seq = 1; 1309 goto again; 1310 } 1311 1312 struct check_mount { 1313 struct vfsmount *mnt; 1314 unsigned int mounted; 1315 }; 1316 1317 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1318 { 1319 struct check_mount *info = data; 1320 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1321 1322 if (likely(!d_mountpoint(dentry))) 1323 return D_WALK_CONTINUE; 1324 if (__path_is_mountpoint(&path)) { 1325 info->mounted = 1; 1326 return D_WALK_QUIT; 1327 } 1328 return D_WALK_CONTINUE; 1329 } 1330 1331 /** 1332 * path_has_submounts - check for mounts over a dentry in the 1333 * current namespace. 1334 * @parent: path to check. 1335 * 1336 * Return true if the parent or its subdirectories contain 1337 * a mount point in the current namespace. 1338 */ 1339 int path_has_submounts(const struct path *parent) 1340 { 1341 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1342 1343 read_seqlock_excl(&mount_lock); 1344 d_walk(parent->dentry, &data, path_check_mount, NULL); 1345 read_sequnlock_excl(&mount_lock); 1346 1347 return data.mounted; 1348 } 1349 EXPORT_SYMBOL(path_has_submounts); 1350 1351 /* 1352 * Called by mount code to set a mountpoint and check if the mountpoint is 1353 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1354 * subtree can become unreachable). 1355 * 1356 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1357 * this reason take rename_lock and d_lock on dentry and ancestors. 1358 */ 1359 int d_set_mounted(struct dentry *dentry) 1360 { 1361 struct dentry *p; 1362 int ret = -ENOENT; 1363 write_seqlock(&rename_lock); 1364 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1365 /* Need exclusion wrt. d_invalidate() */ 1366 spin_lock(&p->d_lock); 1367 if (unlikely(d_unhashed(p))) { 1368 spin_unlock(&p->d_lock); 1369 goto out; 1370 } 1371 spin_unlock(&p->d_lock); 1372 } 1373 spin_lock(&dentry->d_lock); 1374 if (!d_unlinked(dentry)) { 1375 ret = -EBUSY; 1376 if (!d_mountpoint(dentry)) { 1377 dentry->d_flags |= DCACHE_MOUNTED; 1378 ret = 0; 1379 } 1380 } 1381 spin_unlock(&dentry->d_lock); 1382 out: 1383 write_sequnlock(&rename_lock); 1384 return ret; 1385 } 1386 1387 /* 1388 * Search the dentry child list of the specified parent, 1389 * and move any unused dentries to the end of the unused 1390 * list for prune_dcache(). We descend to the next level 1391 * whenever the d_subdirs list is non-empty and continue 1392 * searching. 1393 * 1394 * It returns zero iff there are no unused children, 1395 * otherwise it returns the number of children moved to 1396 * the end of the unused list. This may not be the total 1397 * number of unused children, because select_parent can 1398 * drop the lock and return early due to latency 1399 * constraints. 1400 */ 1401 1402 struct select_data { 1403 struct dentry *start; 1404 struct list_head dispose; 1405 int found; 1406 }; 1407 1408 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1409 { 1410 struct select_data *data = _data; 1411 enum d_walk_ret ret = D_WALK_CONTINUE; 1412 1413 if (data->start == dentry) 1414 goto out; 1415 1416 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1417 data->found++; 1418 } else { 1419 if (dentry->d_flags & DCACHE_LRU_LIST) 1420 d_lru_del(dentry); 1421 if (!dentry->d_lockref.count) { 1422 d_shrink_add(dentry, &data->dispose); 1423 data->found++; 1424 } 1425 } 1426 /* 1427 * We can return to the caller if we have found some (this 1428 * ensures forward progress). We'll be coming back to find 1429 * the rest. 1430 */ 1431 if (!list_empty(&data->dispose)) 1432 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1433 out: 1434 return ret; 1435 } 1436 1437 /** 1438 * shrink_dcache_parent - prune dcache 1439 * @parent: parent of entries to prune 1440 * 1441 * Prune the dcache to remove unused children of the parent dentry. 1442 */ 1443 void shrink_dcache_parent(struct dentry *parent) 1444 { 1445 for (;;) { 1446 struct select_data data; 1447 1448 INIT_LIST_HEAD(&data.dispose); 1449 data.start = parent; 1450 data.found = 0; 1451 1452 d_walk(parent, &data, select_collect, NULL); 1453 if (!data.found) 1454 break; 1455 1456 shrink_dentry_list(&data.dispose); 1457 cond_resched(); 1458 } 1459 } 1460 EXPORT_SYMBOL(shrink_dcache_parent); 1461 1462 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1463 { 1464 /* it has busy descendents; complain about those instead */ 1465 if (!list_empty(&dentry->d_subdirs)) 1466 return D_WALK_CONTINUE; 1467 1468 /* root with refcount 1 is fine */ 1469 if (dentry == _data && dentry->d_lockref.count == 1) 1470 return D_WALK_CONTINUE; 1471 1472 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1473 " still in use (%d) [unmount of %s %s]\n", 1474 dentry, 1475 dentry->d_inode ? 1476 dentry->d_inode->i_ino : 0UL, 1477 dentry, 1478 dentry->d_lockref.count, 1479 dentry->d_sb->s_type->name, 1480 dentry->d_sb->s_id); 1481 WARN_ON(1); 1482 return D_WALK_CONTINUE; 1483 } 1484 1485 static void do_one_tree(struct dentry *dentry) 1486 { 1487 shrink_dcache_parent(dentry); 1488 d_walk(dentry, dentry, umount_check, NULL); 1489 d_drop(dentry); 1490 dput(dentry); 1491 } 1492 1493 /* 1494 * destroy the dentries attached to a superblock on unmounting 1495 */ 1496 void shrink_dcache_for_umount(struct super_block *sb) 1497 { 1498 struct dentry *dentry; 1499 1500 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1501 1502 dentry = sb->s_root; 1503 sb->s_root = NULL; 1504 do_one_tree(dentry); 1505 1506 while (!hlist_bl_empty(&sb->s_roots)) { 1507 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1508 do_one_tree(dentry); 1509 } 1510 } 1511 1512 struct detach_data { 1513 struct select_data select; 1514 struct dentry *mountpoint; 1515 }; 1516 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1517 { 1518 struct detach_data *data = _data; 1519 1520 if (d_mountpoint(dentry)) { 1521 __dget_dlock(dentry); 1522 data->mountpoint = dentry; 1523 return D_WALK_QUIT; 1524 } 1525 1526 return select_collect(&data->select, dentry); 1527 } 1528 1529 static void check_and_drop(void *_data) 1530 { 1531 struct detach_data *data = _data; 1532 1533 if (!data->mountpoint && list_empty(&data->select.dispose)) 1534 __d_drop(data->select.start); 1535 } 1536 1537 /** 1538 * d_invalidate - detach submounts, prune dcache, and drop 1539 * @dentry: dentry to invalidate (aka detach, prune and drop) 1540 * 1541 * no dcache lock. 1542 * 1543 * The final d_drop is done as an atomic operation relative to 1544 * rename_lock ensuring there are no races with d_set_mounted. This 1545 * ensures there are no unhashed dentries on the path to a mountpoint. 1546 */ 1547 void d_invalidate(struct dentry *dentry) 1548 { 1549 /* 1550 * If it's already been dropped, return OK. 1551 */ 1552 spin_lock(&dentry->d_lock); 1553 if (d_unhashed(dentry)) { 1554 spin_unlock(&dentry->d_lock); 1555 return; 1556 } 1557 spin_unlock(&dentry->d_lock); 1558 1559 /* Negative dentries can be dropped without further checks */ 1560 if (!dentry->d_inode) { 1561 d_drop(dentry); 1562 return; 1563 } 1564 1565 for (;;) { 1566 struct detach_data data; 1567 1568 data.mountpoint = NULL; 1569 INIT_LIST_HEAD(&data.select.dispose); 1570 data.select.start = dentry; 1571 data.select.found = 0; 1572 1573 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1574 1575 if (!list_empty(&data.select.dispose)) 1576 shrink_dentry_list(&data.select.dispose); 1577 else if (!data.mountpoint) 1578 return; 1579 1580 if (data.mountpoint) { 1581 detach_mounts(data.mountpoint); 1582 dput(data.mountpoint); 1583 } 1584 cond_resched(); 1585 } 1586 } 1587 EXPORT_SYMBOL(d_invalidate); 1588 1589 /** 1590 * __d_alloc - allocate a dcache entry 1591 * @sb: filesystem it will belong to 1592 * @name: qstr of the name 1593 * 1594 * Allocates a dentry. It returns %NULL if there is insufficient memory 1595 * available. On a success the dentry is returned. The name passed in is 1596 * copied and the copy passed in may be reused after this call. 1597 */ 1598 1599 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1600 { 1601 struct dentry *dentry; 1602 char *dname; 1603 int err; 1604 1605 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1606 if (!dentry) 1607 return NULL; 1608 1609 /* 1610 * We guarantee that the inline name is always NUL-terminated. 1611 * This way the memcpy() done by the name switching in rename 1612 * will still always have a NUL at the end, even if we might 1613 * be overwriting an internal NUL character 1614 */ 1615 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1616 if (unlikely(!name)) { 1617 name = &slash_name; 1618 dname = dentry->d_iname; 1619 } else if (name->len > DNAME_INLINE_LEN-1) { 1620 size_t size = offsetof(struct external_name, name[1]); 1621 struct external_name *p = kmalloc(size + name->len, 1622 GFP_KERNEL_ACCOUNT); 1623 if (!p) { 1624 kmem_cache_free(dentry_cache, dentry); 1625 return NULL; 1626 } 1627 atomic_set(&p->u.count, 1); 1628 dname = p->name; 1629 } else { 1630 dname = dentry->d_iname; 1631 } 1632 1633 dentry->d_name.len = name->len; 1634 dentry->d_name.hash = name->hash; 1635 memcpy(dname, name->name, name->len); 1636 dname[name->len] = 0; 1637 1638 /* Make sure we always see the terminating NUL character */ 1639 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1640 1641 dentry->d_lockref.count = 1; 1642 dentry->d_flags = 0; 1643 spin_lock_init(&dentry->d_lock); 1644 seqcount_init(&dentry->d_seq); 1645 dentry->d_inode = NULL; 1646 dentry->d_parent = dentry; 1647 dentry->d_sb = sb; 1648 dentry->d_op = NULL; 1649 dentry->d_fsdata = NULL; 1650 INIT_HLIST_BL_NODE(&dentry->d_hash); 1651 INIT_LIST_HEAD(&dentry->d_lru); 1652 INIT_LIST_HEAD(&dentry->d_subdirs); 1653 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1654 INIT_LIST_HEAD(&dentry->d_child); 1655 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1656 1657 if (dentry->d_op && dentry->d_op->d_init) { 1658 err = dentry->d_op->d_init(dentry); 1659 if (err) { 1660 if (dname_external(dentry)) 1661 kfree(external_name(dentry)); 1662 kmem_cache_free(dentry_cache, dentry); 1663 return NULL; 1664 } 1665 } 1666 1667 this_cpu_inc(nr_dentry); 1668 1669 return dentry; 1670 } 1671 1672 /** 1673 * d_alloc - allocate a dcache entry 1674 * @parent: parent of entry to allocate 1675 * @name: qstr of the name 1676 * 1677 * Allocates a dentry. It returns %NULL if there is insufficient memory 1678 * available. On a success the dentry is returned. The name passed in is 1679 * copied and the copy passed in may be reused after this call. 1680 */ 1681 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1682 { 1683 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1684 if (!dentry) 1685 return NULL; 1686 dentry->d_flags |= DCACHE_RCUACCESS; 1687 spin_lock(&parent->d_lock); 1688 /* 1689 * don't need child lock because it is not subject 1690 * to concurrency here 1691 */ 1692 __dget_dlock(parent); 1693 dentry->d_parent = parent; 1694 list_add(&dentry->d_child, &parent->d_subdirs); 1695 spin_unlock(&parent->d_lock); 1696 1697 return dentry; 1698 } 1699 EXPORT_SYMBOL(d_alloc); 1700 1701 struct dentry *d_alloc_anon(struct super_block *sb) 1702 { 1703 return __d_alloc(sb, NULL); 1704 } 1705 EXPORT_SYMBOL(d_alloc_anon); 1706 1707 struct dentry *d_alloc_cursor(struct dentry * parent) 1708 { 1709 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1710 if (dentry) { 1711 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1712 dentry->d_parent = dget(parent); 1713 } 1714 return dentry; 1715 } 1716 1717 /** 1718 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1719 * @sb: the superblock 1720 * @name: qstr of the name 1721 * 1722 * For a filesystem that just pins its dentries in memory and never 1723 * performs lookups at all, return an unhashed IS_ROOT dentry. 1724 */ 1725 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1726 { 1727 return __d_alloc(sb, name); 1728 } 1729 EXPORT_SYMBOL(d_alloc_pseudo); 1730 1731 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1732 { 1733 struct qstr q; 1734 1735 q.name = name; 1736 q.hash_len = hashlen_string(parent, name); 1737 return d_alloc(parent, &q); 1738 } 1739 EXPORT_SYMBOL(d_alloc_name); 1740 1741 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1742 { 1743 WARN_ON_ONCE(dentry->d_op); 1744 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1745 DCACHE_OP_COMPARE | 1746 DCACHE_OP_REVALIDATE | 1747 DCACHE_OP_WEAK_REVALIDATE | 1748 DCACHE_OP_DELETE | 1749 DCACHE_OP_REAL)); 1750 dentry->d_op = op; 1751 if (!op) 1752 return; 1753 if (op->d_hash) 1754 dentry->d_flags |= DCACHE_OP_HASH; 1755 if (op->d_compare) 1756 dentry->d_flags |= DCACHE_OP_COMPARE; 1757 if (op->d_revalidate) 1758 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1759 if (op->d_weak_revalidate) 1760 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1761 if (op->d_delete) 1762 dentry->d_flags |= DCACHE_OP_DELETE; 1763 if (op->d_prune) 1764 dentry->d_flags |= DCACHE_OP_PRUNE; 1765 if (op->d_real) 1766 dentry->d_flags |= DCACHE_OP_REAL; 1767 1768 } 1769 EXPORT_SYMBOL(d_set_d_op); 1770 1771 1772 /* 1773 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1774 * @dentry - The dentry to mark 1775 * 1776 * Mark a dentry as falling through to the lower layer (as set with 1777 * d_pin_lower()). This flag may be recorded on the medium. 1778 */ 1779 void d_set_fallthru(struct dentry *dentry) 1780 { 1781 spin_lock(&dentry->d_lock); 1782 dentry->d_flags |= DCACHE_FALLTHRU; 1783 spin_unlock(&dentry->d_lock); 1784 } 1785 EXPORT_SYMBOL(d_set_fallthru); 1786 1787 static unsigned d_flags_for_inode(struct inode *inode) 1788 { 1789 unsigned add_flags = DCACHE_REGULAR_TYPE; 1790 1791 if (!inode) 1792 return DCACHE_MISS_TYPE; 1793 1794 if (S_ISDIR(inode->i_mode)) { 1795 add_flags = DCACHE_DIRECTORY_TYPE; 1796 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1797 if (unlikely(!inode->i_op->lookup)) 1798 add_flags = DCACHE_AUTODIR_TYPE; 1799 else 1800 inode->i_opflags |= IOP_LOOKUP; 1801 } 1802 goto type_determined; 1803 } 1804 1805 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1806 if (unlikely(inode->i_op->get_link)) { 1807 add_flags = DCACHE_SYMLINK_TYPE; 1808 goto type_determined; 1809 } 1810 inode->i_opflags |= IOP_NOFOLLOW; 1811 } 1812 1813 if (unlikely(!S_ISREG(inode->i_mode))) 1814 add_flags = DCACHE_SPECIAL_TYPE; 1815 1816 type_determined: 1817 if (unlikely(IS_AUTOMOUNT(inode))) 1818 add_flags |= DCACHE_NEED_AUTOMOUNT; 1819 return add_flags; 1820 } 1821 1822 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1823 { 1824 unsigned add_flags = d_flags_for_inode(inode); 1825 WARN_ON(d_in_lookup(dentry)); 1826 1827 spin_lock(&dentry->d_lock); 1828 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1829 raw_write_seqcount_begin(&dentry->d_seq); 1830 __d_set_inode_and_type(dentry, inode, add_flags); 1831 raw_write_seqcount_end(&dentry->d_seq); 1832 fsnotify_update_flags(dentry); 1833 spin_unlock(&dentry->d_lock); 1834 } 1835 1836 /** 1837 * d_instantiate - fill in inode information for a dentry 1838 * @entry: dentry to complete 1839 * @inode: inode to attach to this dentry 1840 * 1841 * Fill in inode information in the entry. 1842 * 1843 * This turns negative dentries into productive full members 1844 * of society. 1845 * 1846 * NOTE! This assumes that the inode count has been incremented 1847 * (or otherwise set) by the caller to indicate that it is now 1848 * in use by the dcache. 1849 */ 1850 1851 void d_instantiate(struct dentry *entry, struct inode * inode) 1852 { 1853 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1854 if (inode) { 1855 security_d_instantiate(entry, inode); 1856 spin_lock(&inode->i_lock); 1857 __d_instantiate(entry, inode); 1858 spin_unlock(&inode->i_lock); 1859 } 1860 } 1861 EXPORT_SYMBOL(d_instantiate); 1862 1863 /** 1864 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1865 * @entry: dentry to complete 1866 * @inode: inode to attach to this dentry 1867 * 1868 * Fill in inode information in the entry. If a directory alias is found, then 1869 * return an error (and drop inode). Together with d_materialise_unique() this 1870 * guarantees that a directory inode may never have more than one alias. 1871 */ 1872 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1873 { 1874 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1875 1876 security_d_instantiate(entry, inode); 1877 spin_lock(&inode->i_lock); 1878 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1879 spin_unlock(&inode->i_lock); 1880 iput(inode); 1881 return -EBUSY; 1882 } 1883 __d_instantiate(entry, inode); 1884 spin_unlock(&inode->i_lock); 1885 1886 return 0; 1887 } 1888 EXPORT_SYMBOL(d_instantiate_no_diralias); 1889 1890 struct dentry *d_make_root(struct inode *root_inode) 1891 { 1892 struct dentry *res = NULL; 1893 1894 if (root_inode) { 1895 res = d_alloc_anon(root_inode->i_sb); 1896 if (res) 1897 d_instantiate(res, root_inode); 1898 else 1899 iput(root_inode); 1900 } 1901 return res; 1902 } 1903 EXPORT_SYMBOL(d_make_root); 1904 1905 static struct dentry * __d_find_any_alias(struct inode *inode) 1906 { 1907 struct dentry *alias; 1908 1909 if (hlist_empty(&inode->i_dentry)) 1910 return NULL; 1911 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1912 __dget(alias); 1913 return alias; 1914 } 1915 1916 /** 1917 * d_find_any_alias - find any alias for a given inode 1918 * @inode: inode to find an alias for 1919 * 1920 * If any aliases exist for the given inode, take and return a 1921 * reference for one of them. If no aliases exist, return %NULL. 1922 */ 1923 struct dentry *d_find_any_alias(struct inode *inode) 1924 { 1925 struct dentry *de; 1926 1927 spin_lock(&inode->i_lock); 1928 de = __d_find_any_alias(inode); 1929 spin_unlock(&inode->i_lock); 1930 return de; 1931 } 1932 EXPORT_SYMBOL(d_find_any_alias); 1933 1934 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1935 struct inode *inode, 1936 bool disconnected) 1937 { 1938 struct dentry *res; 1939 unsigned add_flags; 1940 1941 security_d_instantiate(dentry, inode); 1942 spin_lock(&inode->i_lock); 1943 res = __d_find_any_alias(inode); 1944 if (res) { 1945 spin_unlock(&inode->i_lock); 1946 dput(dentry); 1947 goto out_iput; 1948 } 1949 1950 /* attach a disconnected dentry */ 1951 add_flags = d_flags_for_inode(inode); 1952 1953 if (disconnected) 1954 add_flags |= DCACHE_DISCONNECTED; 1955 1956 spin_lock(&dentry->d_lock); 1957 __d_set_inode_and_type(dentry, inode, add_flags); 1958 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1959 if (!disconnected) { 1960 hlist_bl_lock(&dentry->d_sb->s_roots); 1961 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1962 hlist_bl_unlock(&dentry->d_sb->s_roots); 1963 } 1964 spin_unlock(&dentry->d_lock); 1965 spin_unlock(&inode->i_lock); 1966 1967 return dentry; 1968 1969 out_iput: 1970 iput(inode); 1971 return res; 1972 } 1973 1974 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1975 { 1976 return __d_instantiate_anon(dentry, inode, true); 1977 } 1978 EXPORT_SYMBOL(d_instantiate_anon); 1979 1980 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1981 { 1982 struct dentry *tmp; 1983 struct dentry *res; 1984 1985 if (!inode) 1986 return ERR_PTR(-ESTALE); 1987 if (IS_ERR(inode)) 1988 return ERR_CAST(inode); 1989 1990 res = d_find_any_alias(inode); 1991 if (res) 1992 goto out_iput; 1993 1994 tmp = d_alloc_anon(inode->i_sb); 1995 if (!tmp) { 1996 res = ERR_PTR(-ENOMEM); 1997 goto out_iput; 1998 } 1999 2000 return __d_instantiate_anon(tmp, inode, disconnected); 2001 2002 out_iput: 2003 iput(inode); 2004 return res; 2005 } 2006 2007 /** 2008 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2009 * @inode: inode to allocate the dentry for 2010 * 2011 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2012 * similar open by handle operations. The returned dentry may be anonymous, 2013 * or may have a full name (if the inode was already in the cache). 2014 * 2015 * When called on a directory inode, we must ensure that the inode only ever 2016 * has one dentry. If a dentry is found, that is returned instead of 2017 * allocating a new one. 2018 * 2019 * On successful return, the reference to the inode has been transferred 2020 * to the dentry. In case of an error the reference on the inode is released. 2021 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2022 * be passed in and the error will be propagated to the return value, 2023 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2024 */ 2025 struct dentry *d_obtain_alias(struct inode *inode) 2026 { 2027 return __d_obtain_alias(inode, true); 2028 } 2029 EXPORT_SYMBOL(d_obtain_alias); 2030 2031 /** 2032 * d_obtain_root - find or allocate a dentry for a given inode 2033 * @inode: inode to allocate the dentry for 2034 * 2035 * Obtain an IS_ROOT dentry for the root of a filesystem. 2036 * 2037 * We must ensure that directory inodes only ever have one dentry. If a 2038 * dentry is found, that is returned instead of allocating a new one. 2039 * 2040 * On successful return, the reference to the inode has been transferred 2041 * to the dentry. In case of an error the reference on the inode is 2042 * released. A %NULL or IS_ERR inode may be passed in and will be the 2043 * error will be propagate to the return value, with a %NULL @inode 2044 * replaced by ERR_PTR(-ESTALE). 2045 */ 2046 struct dentry *d_obtain_root(struct inode *inode) 2047 { 2048 return __d_obtain_alias(inode, false); 2049 } 2050 EXPORT_SYMBOL(d_obtain_root); 2051 2052 /** 2053 * d_add_ci - lookup or allocate new dentry with case-exact name 2054 * @inode: the inode case-insensitive lookup has found 2055 * @dentry: the negative dentry that was passed to the parent's lookup func 2056 * @name: the case-exact name to be associated with the returned dentry 2057 * 2058 * This is to avoid filling the dcache with case-insensitive names to the 2059 * same inode, only the actual correct case is stored in the dcache for 2060 * case-insensitive filesystems. 2061 * 2062 * For a case-insensitive lookup match and if the the case-exact dentry 2063 * already exists in in the dcache, use it and return it. 2064 * 2065 * If no entry exists with the exact case name, allocate new dentry with 2066 * the exact case, and return the spliced entry. 2067 */ 2068 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2069 struct qstr *name) 2070 { 2071 struct dentry *found, *res; 2072 2073 /* 2074 * First check if a dentry matching the name already exists, 2075 * if not go ahead and create it now. 2076 */ 2077 found = d_hash_and_lookup(dentry->d_parent, name); 2078 if (found) { 2079 iput(inode); 2080 return found; 2081 } 2082 if (d_in_lookup(dentry)) { 2083 found = d_alloc_parallel(dentry->d_parent, name, 2084 dentry->d_wait); 2085 if (IS_ERR(found) || !d_in_lookup(found)) { 2086 iput(inode); 2087 return found; 2088 } 2089 } else { 2090 found = d_alloc(dentry->d_parent, name); 2091 if (!found) { 2092 iput(inode); 2093 return ERR_PTR(-ENOMEM); 2094 } 2095 } 2096 res = d_splice_alias(inode, found); 2097 if (res) { 2098 dput(found); 2099 return res; 2100 } 2101 return found; 2102 } 2103 EXPORT_SYMBOL(d_add_ci); 2104 2105 2106 static inline bool d_same_name(const struct dentry *dentry, 2107 const struct dentry *parent, 2108 const struct qstr *name) 2109 { 2110 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2111 if (dentry->d_name.len != name->len) 2112 return false; 2113 return dentry_cmp(dentry, name->name, name->len) == 0; 2114 } 2115 return parent->d_op->d_compare(dentry, 2116 dentry->d_name.len, dentry->d_name.name, 2117 name) == 0; 2118 } 2119 2120 /** 2121 * __d_lookup_rcu - search for a dentry (racy, store-free) 2122 * @parent: parent dentry 2123 * @name: qstr of name we wish to find 2124 * @seqp: returns d_seq value at the point where the dentry was found 2125 * Returns: dentry, or NULL 2126 * 2127 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2128 * resolution (store-free path walking) design described in 2129 * Documentation/filesystems/path-lookup.txt. 2130 * 2131 * This is not to be used outside core vfs. 2132 * 2133 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2134 * held, and rcu_read_lock held. The returned dentry must not be stored into 2135 * without taking d_lock and checking d_seq sequence count against @seq 2136 * returned here. 2137 * 2138 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2139 * function. 2140 * 2141 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2142 * the returned dentry, so long as its parent's seqlock is checked after the 2143 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2144 * is formed, giving integrity down the path walk. 2145 * 2146 * NOTE! The caller *has* to check the resulting dentry against the sequence 2147 * number we've returned before using any of the resulting dentry state! 2148 */ 2149 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2150 const struct qstr *name, 2151 unsigned *seqp) 2152 { 2153 u64 hashlen = name->hash_len; 2154 const unsigned char *str = name->name; 2155 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2156 struct hlist_bl_node *node; 2157 struct dentry *dentry; 2158 2159 /* 2160 * Note: There is significant duplication with __d_lookup_rcu which is 2161 * required to prevent single threaded performance regressions 2162 * especially on architectures where smp_rmb (in seqcounts) are costly. 2163 * Keep the two functions in sync. 2164 */ 2165 2166 /* 2167 * The hash list is protected using RCU. 2168 * 2169 * Carefully use d_seq when comparing a candidate dentry, to avoid 2170 * races with d_move(). 2171 * 2172 * It is possible that concurrent renames can mess up our list 2173 * walk here and result in missing our dentry, resulting in the 2174 * false-negative result. d_lookup() protects against concurrent 2175 * renames using rename_lock seqlock. 2176 * 2177 * See Documentation/filesystems/path-lookup.txt for more details. 2178 */ 2179 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2180 unsigned seq; 2181 2182 seqretry: 2183 /* 2184 * The dentry sequence count protects us from concurrent 2185 * renames, and thus protects parent and name fields. 2186 * 2187 * The caller must perform a seqcount check in order 2188 * to do anything useful with the returned dentry. 2189 * 2190 * NOTE! We do a "raw" seqcount_begin here. That means that 2191 * we don't wait for the sequence count to stabilize if it 2192 * is in the middle of a sequence change. If we do the slow 2193 * dentry compare, we will do seqretries until it is stable, 2194 * and if we end up with a successful lookup, we actually 2195 * want to exit RCU lookup anyway. 2196 * 2197 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2198 * we are still guaranteed NUL-termination of ->d_name.name. 2199 */ 2200 seq = raw_seqcount_begin(&dentry->d_seq); 2201 if (dentry->d_parent != parent) 2202 continue; 2203 if (d_unhashed(dentry)) 2204 continue; 2205 2206 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2207 int tlen; 2208 const char *tname; 2209 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2210 continue; 2211 tlen = dentry->d_name.len; 2212 tname = dentry->d_name.name; 2213 /* we want a consistent (name,len) pair */ 2214 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2215 cpu_relax(); 2216 goto seqretry; 2217 } 2218 if (parent->d_op->d_compare(dentry, 2219 tlen, tname, name) != 0) 2220 continue; 2221 } else { 2222 if (dentry->d_name.hash_len != hashlen) 2223 continue; 2224 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2225 continue; 2226 } 2227 *seqp = seq; 2228 return dentry; 2229 } 2230 return NULL; 2231 } 2232 2233 /** 2234 * d_lookup - search for a dentry 2235 * @parent: parent dentry 2236 * @name: qstr of name we wish to find 2237 * Returns: dentry, or NULL 2238 * 2239 * d_lookup searches the children of the parent dentry for the name in 2240 * question. If the dentry is found its reference count is incremented and the 2241 * dentry is returned. The caller must use dput to free the entry when it has 2242 * finished using it. %NULL is returned if the dentry does not exist. 2243 */ 2244 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2245 { 2246 struct dentry *dentry; 2247 unsigned seq; 2248 2249 do { 2250 seq = read_seqbegin(&rename_lock); 2251 dentry = __d_lookup(parent, name); 2252 if (dentry) 2253 break; 2254 } while (read_seqretry(&rename_lock, seq)); 2255 return dentry; 2256 } 2257 EXPORT_SYMBOL(d_lookup); 2258 2259 /** 2260 * __d_lookup - search for a dentry (racy) 2261 * @parent: parent dentry 2262 * @name: qstr of name we wish to find 2263 * Returns: dentry, or NULL 2264 * 2265 * __d_lookup is like d_lookup, however it may (rarely) return a 2266 * false-negative result due to unrelated rename activity. 2267 * 2268 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2269 * however it must be used carefully, eg. with a following d_lookup in 2270 * the case of failure. 2271 * 2272 * __d_lookup callers must be commented. 2273 */ 2274 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2275 { 2276 unsigned int hash = name->hash; 2277 struct hlist_bl_head *b = d_hash(hash); 2278 struct hlist_bl_node *node; 2279 struct dentry *found = NULL; 2280 struct dentry *dentry; 2281 2282 /* 2283 * Note: There is significant duplication with __d_lookup_rcu which is 2284 * required to prevent single threaded performance regressions 2285 * especially on architectures where smp_rmb (in seqcounts) are costly. 2286 * Keep the two functions in sync. 2287 */ 2288 2289 /* 2290 * The hash list is protected using RCU. 2291 * 2292 * Take d_lock when comparing a candidate dentry, to avoid races 2293 * with d_move(). 2294 * 2295 * It is possible that concurrent renames can mess up our list 2296 * walk here and result in missing our dentry, resulting in the 2297 * false-negative result. d_lookup() protects against concurrent 2298 * renames using rename_lock seqlock. 2299 * 2300 * See Documentation/filesystems/path-lookup.txt for more details. 2301 */ 2302 rcu_read_lock(); 2303 2304 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2305 2306 if (dentry->d_name.hash != hash) 2307 continue; 2308 2309 spin_lock(&dentry->d_lock); 2310 if (dentry->d_parent != parent) 2311 goto next; 2312 if (d_unhashed(dentry)) 2313 goto next; 2314 2315 if (!d_same_name(dentry, parent, name)) 2316 goto next; 2317 2318 dentry->d_lockref.count++; 2319 found = dentry; 2320 spin_unlock(&dentry->d_lock); 2321 break; 2322 next: 2323 spin_unlock(&dentry->d_lock); 2324 } 2325 rcu_read_unlock(); 2326 2327 return found; 2328 } 2329 2330 /** 2331 * d_hash_and_lookup - hash the qstr then search for a dentry 2332 * @dir: Directory to search in 2333 * @name: qstr of name we wish to find 2334 * 2335 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2336 */ 2337 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2338 { 2339 /* 2340 * Check for a fs-specific hash function. Note that we must 2341 * calculate the standard hash first, as the d_op->d_hash() 2342 * routine may choose to leave the hash value unchanged. 2343 */ 2344 name->hash = full_name_hash(dir, name->name, name->len); 2345 if (dir->d_flags & DCACHE_OP_HASH) { 2346 int err = dir->d_op->d_hash(dir, name); 2347 if (unlikely(err < 0)) 2348 return ERR_PTR(err); 2349 } 2350 return d_lookup(dir, name); 2351 } 2352 EXPORT_SYMBOL(d_hash_and_lookup); 2353 2354 /* 2355 * When a file is deleted, we have two options: 2356 * - turn this dentry into a negative dentry 2357 * - unhash this dentry and free it. 2358 * 2359 * Usually, we want to just turn this into 2360 * a negative dentry, but if anybody else is 2361 * currently using the dentry or the inode 2362 * we can't do that and we fall back on removing 2363 * it from the hash queues and waiting for 2364 * it to be deleted later when it has no users 2365 */ 2366 2367 /** 2368 * d_delete - delete a dentry 2369 * @dentry: The dentry to delete 2370 * 2371 * Turn the dentry into a negative dentry if possible, otherwise 2372 * remove it from the hash queues so it can be deleted later 2373 */ 2374 2375 void d_delete(struct dentry * dentry) 2376 { 2377 struct inode *inode; 2378 int isdir = 0; 2379 /* 2380 * Are we the only user? 2381 */ 2382 again: 2383 spin_lock(&dentry->d_lock); 2384 inode = dentry->d_inode; 2385 isdir = S_ISDIR(inode->i_mode); 2386 if (dentry->d_lockref.count == 1) { 2387 if (!spin_trylock(&inode->i_lock)) { 2388 spin_unlock(&dentry->d_lock); 2389 cpu_relax(); 2390 goto again; 2391 } 2392 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2393 dentry_unlink_inode(dentry); 2394 fsnotify_nameremove(dentry, isdir); 2395 return; 2396 } 2397 2398 if (!d_unhashed(dentry)) 2399 __d_drop(dentry); 2400 2401 spin_unlock(&dentry->d_lock); 2402 2403 fsnotify_nameremove(dentry, isdir); 2404 } 2405 EXPORT_SYMBOL(d_delete); 2406 2407 static void __d_rehash(struct dentry *entry) 2408 { 2409 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2410 2411 hlist_bl_lock(b); 2412 hlist_bl_add_head_rcu(&entry->d_hash, b); 2413 hlist_bl_unlock(b); 2414 } 2415 2416 /** 2417 * d_rehash - add an entry back to the hash 2418 * @entry: dentry to add to the hash 2419 * 2420 * Adds a dentry to the hash according to its name. 2421 */ 2422 2423 void d_rehash(struct dentry * entry) 2424 { 2425 spin_lock(&entry->d_lock); 2426 __d_rehash(entry); 2427 spin_unlock(&entry->d_lock); 2428 } 2429 EXPORT_SYMBOL(d_rehash); 2430 2431 static inline unsigned start_dir_add(struct inode *dir) 2432 { 2433 2434 for (;;) { 2435 unsigned n = dir->i_dir_seq; 2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2437 return n; 2438 cpu_relax(); 2439 } 2440 } 2441 2442 static inline void end_dir_add(struct inode *dir, unsigned n) 2443 { 2444 smp_store_release(&dir->i_dir_seq, n + 2); 2445 } 2446 2447 static void d_wait_lookup(struct dentry *dentry) 2448 { 2449 if (d_in_lookup(dentry)) { 2450 DECLARE_WAITQUEUE(wait, current); 2451 add_wait_queue(dentry->d_wait, &wait); 2452 do { 2453 set_current_state(TASK_UNINTERRUPTIBLE); 2454 spin_unlock(&dentry->d_lock); 2455 schedule(); 2456 spin_lock(&dentry->d_lock); 2457 } while (d_in_lookup(dentry)); 2458 } 2459 } 2460 2461 struct dentry *d_alloc_parallel(struct dentry *parent, 2462 const struct qstr *name, 2463 wait_queue_head_t *wq) 2464 { 2465 unsigned int hash = name->hash; 2466 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2467 struct hlist_bl_node *node; 2468 struct dentry *new = d_alloc(parent, name); 2469 struct dentry *dentry; 2470 unsigned seq, r_seq, d_seq; 2471 2472 if (unlikely(!new)) 2473 return ERR_PTR(-ENOMEM); 2474 2475 retry: 2476 rcu_read_lock(); 2477 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2478 r_seq = read_seqbegin(&rename_lock); 2479 dentry = __d_lookup_rcu(parent, name, &d_seq); 2480 if (unlikely(dentry)) { 2481 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2482 rcu_read_unlock(); 2483 goto retry; 2484 } 2485 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2486 rcu_read_unlock(); 2487 dput(dentry); 2488 goto retry; 2489 } 2490 rcu_read_unlock(); 2491 dput(new); 2492 return dentry; 2493 } 2494 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2495 rcu_read_unlock(); 2496 goto retry; 2497 } 2498 hlist_bl_lock(b); 2499 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2500 hlist_bl_unlock(b); 2501 rcu_read_unlock(); 2502 goto retry; 2503 } 2504 /* 2505 * No changes for the parent since the beginning of d_lookup(). 2506 * Since all removals from the chain happen with hlist_bl_lock(), 2507 * any potential in-lookup matches are going to stay here until 2508 * we unlock the chain. All fields are stable in everything 2509 * we encounter. 2510 */ 2511 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2512 if (dentry->d_name.hash != hash) 2513 continue; 2514 if (dentry->d_parent != parent) 2515 continue; 2516 if (!d_same_name(dentry, parent, name)) 2517 continue; 2518 hlist_bl_unlock(b); 2519 /* now we can try to grab a reference */ 2520 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2521 rcu_read_unlock(); 2522 goto retry; 2523 } 2524 2525 rcu_read_unlock(); 2526 /* 2527 * somebody is likely to be still doing lookup for it; 2528 * wait for them to finish 2529 */ 2530 spin_lock(&dentry->d_lock); 2531 d_wait_lookup(dentry); 2532 /* 2533 * it's not in-lookup anymore; in principle we should repeat 2534 * everything from dcache lookup, but it's likely to be what 2535 * d_lookup() would've found anyway. If it is, just return it; 2536 * otherwise we really have to repeat the whole thing. 2537 */ 2538 if (unlikely(dentry->d_name.hash != hash)) 2539 goto mismatch; 2540 if (unlikely(dentry->d_parent != parent)) 2541 goto mismatch; 2542 if (unlikely(d_unhashed(dentry))) 2543 goto mismatch; 2544 if (unlikely(!d_same_name(dentry, parent, name))) 2545 goto mismatch; 2546 /* OK, it *is* a hashed match; return it */ 2547 spin_unlock(&dentry->d_lock); 2548 dput(new); 2549 return dentry; 2550 } 2551 rcu_read_unlock(); 2552 /* we can't take ->d_lock here; it's OK, though. */ 2553 new->d_flags |= DCACHE_PAR_LOOKUP; 2554 new->d_wait = wq; 2555 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2556 hlist_bl_unlock(b); 2557 return new; 2558 mismatch: 2559 spin_unlock(&dentry->d_lock); 2560 dput(dentry); 2561 goto retry; 2562 } 2563 EXPORT_SYMBOL(d_alloc_parallel); 2564 2565 void __d_lookup_done(struct dentry *dentry) 2566 { 2567 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2568 dentry->d_name.hash); 2569 hlist_bl_lock(b); 2570 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2571 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2572 wake_up_all(dentry->d_wait); 2573 dentry->d_wait = NULL; 2574 hlist_bl_unlock(b); 2575 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2576 INIT_LIST_HEAD(&dentry->d_lru); 2577 } 2578 EXPORT_SYMBOL(__d_lookup_done); 2579 2580 /* inode->i_lock held if inode is non-NULL */ 2581 2582 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2583 { 2584 struct inode *dir = NULL; 2585 unsigned n; 2586 spin_lock(&dentry->d_lock); 2587 if (unlikely(d_in_lookup(dentry))) { 2588 dir = dentry->d_parent->d_inode; 2589 n = start_dir_add(dir); 2590 __d_lookup_done(dentry); 2591 } 2592 if (inode) { 2593 unsigned add_flags = d_flags_for_inode(inode); 2594 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2595 raw_write_seqcount_begin(&dentry->d_seq); 2596 __d_set_inode_and_type(dentry, inode, add_flags); 2597 raw_write_seqcount_end(&dentry->d_seq); 2598 fsnotify_update_flags(dentry); 2599 } 2600 __d_rehash(dentry); 2601 if (dir) 2602 end_dir_add(dir, n); 2603 spin_unlock(&dentry->d_lock); 2604 if (inode) 2605 spin_unlock(&inode->i_lock); 2606 } 2607 2608 /** 2609 * d_add - add dentry to hash queues 2610 * @entry: dentry to add 2611 * @inode: The inode to attach to this dentry 2612 * 2613 * This adds the entry to the hash queues and initializes @inode. 2614 * The entry was actually filled in earlier during d_alloc(). 2615 */ 2616 2617 void d_add(struct dentry *entry, struct inode *inode) 2618 { 2619 if (inode) { 2620 security_d_instantiate(entry, inode); 2621 spin_lock(&inode->i_lock); 2622 } 2623 __d_add(entry, inode); 2624 } 2625 EXPORT_SYMBOL(d_add); 2626 2627 /** 2628 * d_exact_alias - find and hash an exact unhashed alias 2629 * @entry: dentry to add 2630 * @inode: The inode to go with this dentry 2631 * 2632 * If an unhashed dentry with the same name/parent and desired 2633 * inode already exists, hash and return it. Otherwise, return 2634 * NULL. 2635 * 2636 * Parent directory should be locked. 2637 */ 2638 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2639 { 2640 struct dentry *alias; 2641 unsigned int hash = entry->d_name.hash; 2642 2643 spin_lock(&inode->i_lock); 2644 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2645 /* 2646 * Don't need alias->d_lock here, because aliases with 2647 * d_parent == entry->d_parent are not subject to name or 2648 * parent changes, because the parent inode i_mutex is held. 2649 */ 2650 if (alias->d_name.hash != hash) 2651 continue; 2652 if (alias->d_parent != entry->d_parent) 2653 continue; 2654 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2655 continue; 2656 spin_lock(&alias->d_lock); 2657 if (!d_unhashed(alias)) { 2658 spin_unlock(&alias->d_lock); 2659 alias = NULL; 2660 } else { 2661 __dget_dlock(alias); 2662 __d_rehash(alias); 2663 spin_unlock(&alias->d_lock); 2664 } 2665 spin_unlock(&inode->i_lock); 2666 return alias; 2667 } 2668 spin_unlock(&inode->i_lock); 2669 return NULL; 2670 } 2671 EXPORT_SYMBOL(d_exact_alias); 2672 2673 /** 2674 * dentry_update_name_case - update case insensitive dentry with a new name 2675 * @dentry: dentry to be updated 2676 * @name: new name 2677 * 2678 * Update a case insensitive dentry with new case of name. 2679 * 2680 * dentry must have been returned by d_lookup with name @name. Old and new 2681 * name lengths must match (ie. no d_compare which allows mismatched name 2682 * lengths). 2683 * 2684 * Parent inode i_mutex must be held over d_lookup and into this call (to 2685 * keep renames and concurrent inserts, and readdir(2) away). 2686 */ 2687 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2688 { 2689 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2690 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2691 2692 spin_lock(&dentry->d_lock); 2693 write_seqcount_begin(&dentry->d_seq); 2694 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2695 write_seqcount_end(&dentry->d_seq); 2696 spin_unlock(&dentry->d_lock); 2697 } 2698 EXPORT_SYMBOL(dentry_update_name_case); 2699 2700 static void swap_names(struct dentry *dentry, struct dentry *target) 2701 { 2702 if (unlikely(dname_external(target))) { 2703 if (unlikely(dname_external(dentry))) { 2704 /* 2705 * Both external: swap the pointers 2706 */ 2707 swap(target->d_name.name, dentry->d_name.name); 2708 } else { 2709 /* 2710 * dentry:internal, target:external. Steal target's 2711 * storage and make target internal. 2712 */ 2713 memcpy(target->d_iname, dentry->d_name.name, 2714 dentry->d_name.len + 1); 2715 dentry->d_name.name = target->d_name.name; 2716 target->d_name.name = target->d_iname; 2717 } 2718 } else { 2719 if (unlikely(dname_external(dentry))) { 2720 /* 2721 * dentry:external, target:internal. Give dentry's 2722 * storage to target and make dentry internal 2723 */ 2724 memcpy(dentry->d_iname, target->d_name.name, 2725 target->d_name.len + 1); 2726 target->d_name.name = dentry->d_name.name; 2727 dentry->d_name.name = dentry->d_iname; 2728 } else { 2729 /* 2730 * Both are internal. 2731 */ 2732 unsigned int i; 2733 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2734 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2735 swap(((long *) &dentry->d_iname)[i], 2736 ((long *) &target->d_iname)[i]); 2737 } 2738 } 2739 } 2740 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2741 } 2742 2743 static void copy_name(struct dentry *dentry, struct dentry *target) 2744 { 2745 struct external_name *old_name = NULL; 2746 if (unlikely(dname_external(dentry))) 2747 old_name = external_name(dentry); 2748 if (unlikely(dname_external(target))) { 2749 atomic_inc(&external_name(target)->u.count); 2750 dentry->d_name = target->d_name; 2751 } else { 2752 memcpy(dentry->d_iname, target->d_name.name, 2753 target->d_name.len + 1); 2754 dentry->d_name.name = dentry->d_iname; 2755 dentry->d_name.hash_len = target->d_name.hash_len; 2756 } 2757 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2758 kfree_rcu(old_name, u.head); 2759 } 2760 2761 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2762 { 2763 /* 2764 * XXXX: do we really need to take target->d_lock? 2765 */ 2766 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2767 spin_lock(&target->d_parent->d_lock); 2768 else { 2769 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2770 spin_lock(&dentry->d_parent->d_lock); 2771 spin_lock_nested(&target->d_parent->d_lock, 2772 DENTRY_D_LOCK_NESTED); 2773 } else { 2774 spin_lock(&target->d_parent->d_lock); 2775 spin_lock_nested(&dentry->d_parent->d_lock, 2776 DENTRY_D_LOCK_NESTED); 2777 } 2778 } 2779 if (target < dentry) { 2780 spin_lock_nested(&target->d_lock, 2); 2781 spin_lock_nested(&dentry->d_lock, 3); 2782 } else { 2783 spin_lock_nested(&dentry->d_lock, 2); 2784 spin_lock_nested(&target->d_lock, 3); 2785 } 2786 } 2787 2788 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2789 { 2790 if (target->d_parent != dentry->d_parent) 2791 spin_unlock(&dentry->d_parent->d_lock); 2792 if (target->d_parent != target) 2793 spin_unlock(&target->d_parent->d_lock); 2794 spin_unlock(&target->d_lock); 2795 spin_unlock(&dentry->d_lock); 2796 } 2797 2798 /* 2799 * When switching names, the actual string doesn't strictly have to 2800 * be preserved in the target - because we're dropping the target 2801 * anyway. As such, we can just do a simple memcpy() to copy over 2802 * the new name before we switch, unless we are going to rehash 2803 * it. Note that if we *do* unhash the target, we are not allowed 2804 * to rehash it without giving it a new name/hash key - whether 2805 * we swap or overwrite the names here, resulting name won't match 2806 * the reality in filesystem; it's only there for d_path() purposes. 2807 * Note that all of this is happening under rename_lock, so the 2808 * any hash lookup seeing it in the middle of manipulations will 2809 * be discarded anyway. So we do not care what happens to the hash 2810 * key in that case. 2811 */ 2812 /* 2813 * __d_move - move a dentry 2814 * @dentry: entry to move 2815 * @target: new dentry 2816 * @exchange: exchange the two dentries 2817 * 2818 * Update the dcache to reflect the move of a file name. Negative 2819 * dcache entries should not be moved in this way. Caller must hold 2820 * rename_lock, the i_mutex of the source and target directories, 2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2822 */ 2823 static void __d_move(struct dentry *dentry, struct dentry *target, 2824 bool exchange) 2825 { 2826 struct inode *dir = NULL; 2827 unsigned n; 2828 if (!dentry->d_inode) 2829 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2830 2831 BUG_ON(d_ancestor(dentry, target)); 2832 BUG_ON(d_ancestor(target, dentry)); 2833 2834 dentry_lock_for_move(dentry, target); 2835 if (unlikely(d_in_lookup(target))) { 2836 dir = target->d_parent->d_inode; 2837 n = start_dir_add(dir); 2838 __d_lookup_done(target); 2839 } 2840 2841 write_seqcount_begin(&dentry->d_seq); 2842 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2843 2844 /* unhash both */ 2845 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */ 2846 ___d_drop(dentry); 2847 ___d_drop(target); 2848 2849 /* Switch the names.. */ 2850 if (exchange) 2851 swap_names(dentry, target); 2852 else 2853 copy_name(dentry, target); 2854 2855 /* rehash in new place(s) */ 2856 __d_rehash(dentry); 2857 if (exchange) 2858 __d_rehash(target); 2859 else 2860 target->d_hash.pprev = NULL; 2861 2862 /* ... and switch them in the tree */ 2863 if (IS_ROOT(dentry)) { 2864 /* splicing a tree */ 2865 dentry->d_flags |= DCACHE_RCUACCESS; 2866 dentry->d_parent = target->d_parent; 2867 target->d_parent = target; 2868 list_del_init(&target->d_child); 2869 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2870 } else { 2871 /* swapping two dentries */ 2872 swap(dentry->d_parent, target->d_parent); 2873 list_move(&target->d_child, &target->d_parent->d_subdirs); 2874 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2875 if (exchange) 2876 fsnotify_update_flags(target); 2877 fsnotify_update_flags(dentry); 2878 } 2879 2880 write_seqcount_end(&target->d_seq); 2881 write_seqcount_end(&dentry->d_seq); 2882 2883 if (dir) 2884 end_dir_add(dir, n); 2885 dentry_unlock_for_move(dentry, target); 2886 } 2887 2888 /* 2889 * d_move - move a dentry 2890 * @dentry: entry to move 2891 * @target: new dentry 2892 * 2893 * Update the dcache to reflect the move of a file name. Negative 2894 * dcache entries should not be moved in this way. See the locking 2895 * requirements for __d_move. 2896 */ 2897 void d_move(struct dentry *dentry, struct dentry *target) 2898 { 2899 write_seqlock(&rename_lock); 2900 __d_move(dentry, target, false); 2901 write_sequnlock(&rename_lock); 2902 } 2903 EXPORT_SYMBOL(d_move); 2904 2905 /* 2906 * d_exchange - exchange two dentries 2907 * @dentry1: first dentry 2908 * @dentry2: second dentry 2909 */ 2910 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2911 { 2912 write_seqlock(&rename_lock); 2913 2914 WARN_ON(!dentry1->d_inode); 2915 WARN_ON(!dentry2->d_inode); 2916 WARN_ON(IS_ROOT(dentry1)); 2917 WARN_ON(IS_ROOT(dentry2)); 2918 2919 __d_move(dentry1, dentry2, true); 2920 2921 write_sequnlock(&rename_lock); 2922 } 2923 2924 /** 2925 * d_ancestor - search for an ancestor 2926 * @p1: ancestor dentry 2927 * @p2: child dentry 2928 * 2929 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2930 * an ancestor of p2, else NULL. 2931 */ 2932 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2933 { 2934 struct dentry *p; 2935 2936 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2937 if (p->d_parent == p1) 2938 return p; 2939 } 2940 return NULL; 2941 } 2942 2943 /* 2944 * This helper attempts to cope with remotely renamed directories 2945 * 2946 * It assumes that the caller is already holding 2947 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2948 * 2949 * Note: If ever the locking in lock_rename() changes, then please 2950 * remember to update this too... 2951 */ 2952 static int __d_unalias(struct inode *inode, 2953 struct dentry *dentry, struct dentry *alias) 2954 { 2955 struct mutex *m1 = NULL; 2956 struct rw_semaphore *m2 = NULL; 2957 int ret = -ESTALE; 2958 2959 /* If alias and dentry share a parent, then no extra locks required */ 2960 if (alias->d_parent == dentry->d_parent) 2961 goto out_unalias; 2962 2963 /* See lock_rename() */ 2964 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2965 goto out_err; 2966 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2967 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2968 goto out_err; 2969 m2 = &alias->d_parent->d_inode->i_rwsem; 2970 out_unalias: 2971 __d_move(alias, dentry, false); 2972 ret = 0; 2973 out_err: 2974 if (m2) 2975 up_read(m2); 2976 if (m1) 2977 mutex_unlock(m1); 2978 return ret; 2979 } 2980 2981 /** 2982 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2983 * @inode: the inode which may have a disconnected dentry 2984 * @dentry: a negative dentry which we want to point to the inode. 2985 * 2986 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2987 * place of the given dentry and return it, else simply d_add the inode 2988 * to the dentry and return NULL. 2989 * 2990 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2991 * we should error out: directories can't have multiple aliases. 2992 * 2993 * This is needed in the lookup routine of any filesystem that is exportable 2994 * (via knfsd) so that we can build dcache paths to directories effectively. 2995 * 2996 * If a dentry was found and moved, then it is returned. Otherwise NULL 2997 * is returned. This matches the expected return value of ->lookup. 2998 * 2999 * Cluster filesystems may call this function with a negative, hashed dentry. 3000 * In that case, we know that the inode will be a regular file, and also this 3001 * will only occur during atomic_open. So we need to check for the dentry 3002 * being already hashed only in the final case. 3003 */ 3004 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3005 { 3006 if (IS_ERR(inode)) 3007 return ERR_CAST(inode); 3008 3009 BUG_ON(!d_unhashed(dentry)); 3010 3011 if (!inode) 3012 goto out; 3013 3014 security_d_instantiate(dentry, inode); 3015 spin_lock(&inode->i_lock); 3016 if (S_ISDIR(inode->i_mode)) { 3017 struct dentry *new = __d_find_any_alias(inode); 3018 if (unlikely(new)) { 3019 /* The reference to new ensures it remains an alias */ 3020 spin_unlock(&inode->i_lock); 3021 write_seqlock(&rename_lock); 3022 if (unlikely(d_ancestor(new, dentry))) { 3023 write_sequnlock(&rename_lock); 3024 dput(new); 3025 new = ERR_PTR(-ELOOP); 3026 pr_warn_ratelimited( 3027 "VFS: Lookup of '%s' in %s %s" 3028 " would have caused loop\n", 3029 dentry->d_name.name, 3030 inode->i_sb->s_type->name, 3031 inode->i_sb->s_id); 3032 } else if (!IS_ROOT(new)) { 3033 int err = __d_unalias(inode, dentry, new); 3034 write_sequnlock(&rename_lock); 3035 if (err) { 3036 dput(new); 3037 new = ERR_PTR(err); 3038 } 3039 } else { 3040 __d_move(new, dentry, false); 3041 write_sequnlock(&rename_lock); 3042 } 3043 iput(inode); 3044 return new; 3045 } 3046 } 3047 out: 3048 __d_add(dentry, inode); 3049 return NULL; 3050 } 3051 EXPORT_SYMBOL(d_splice_alias); 3052 3053 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3054 { 3055 *buflen -= namelen; 3056 if (*buflen < 0) 3057 return -ENAMETOOLONG; 3058 *buffer -= namelen; 3059 memcpy(*buffer, str, namelen); 3060 return 0; 3061 } 3062 3063 /** 3064 * prepend_name - prepend a pathname in front of current buffer pointer 3065 * @buffer: buffer pointer 3066 * @buflen: allocated length of the buffer 3067 * @name: name string and length qstr structure 3068 * 3069 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to 3070 * make sure that either the old or the new name pointer and length are 3071 * fetched. However, there may be mismatch between length and pointer. 3072 * The length cannot be trusted, we need to copy it byte-by-byte until 3073 * the length is reached or a null byte is found. It also prepends "/" at 3074 * the beginning of the name. The sequence number check at the caller will 3075 * retry it again when a d_move() does happen. So any garbage in the buffer 3076 * due to mismatched pointer and length will be discarded. 3077 * 3078 * Load acquire is needed to make sure that we see that terminating NUL. 3079 */ 3080 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3081 { 3082 const char *dname = smp_load_acquire(&name->name); /* ^^^ */ 3083 u32 dlen = READ_ONCE(name->len); 3084 char *p; 3085 3086 *buflen -= dlen + 1; 3087 if (*buflen < 0) 3088 return -ENAMETOOLONG; 3089 p = *buffer -= dlen + 1; 3090 *p++ = '/'; 3091 while (dlen--) { 3092 char c = *dname++; 3093 if (!c) 3094 break; 3095 *p++ = c; 3096 } 3097 return 0; 3098 } 3099 3100 /** 3101 * prepend_path - Prepend path string to a buffer 3102 * @path: the dentry/vfsmount to report 3103 * @root: root vfsmnt/dentry 3104 * @buffer: pointer to the end of the buffer 3105 * @buflen: pointer to buffer length 3106 * 3107 * The function will first try to write out the pathname without taking any 3108 * lock other than the RCU read lock to make sure that dentries won't go away. 3109 * It only checks the sequence number of the global rename_lock as any change 3110 * in the dentry's d_seq will be preceded by changes in the rename_lock 3111 * sequence number. If the sequence number had been changed, it will restart 3112 * the whole pathname back-tracing sequence again by taking the rename_lock. 3113 * In this case, there is no need to take the RCU read lock as the recursive 3114 * parent pointer references will keep the dentry chain alive as long as no 3115 * rename operation is performed. 3116 */ 3117 static int prepend_path(const struct path *path, 3118 const struct path *root, 3119 char **buffer, int *buflen) 3120 { 3121 struct dentry *dentry; 3122 struct vfsmount *vfsmnt; 3123 struct mount *mnt; 3124 int error = 0; 3125 unsigned seq, m_seq = 0; 3126 char *bptr; 3127 int blen; 3128 3129 rcu_read_lock(); 3130 restart_mnt: 3131 read_seqbegin_or_lock(&mount_lock, &m_seq); 3132 seq = 0; 3133 rcu_read_lock(); 3134 restart: 3135 bptr = *buffer; 3136 blen = *buflen; 3137 error = 0; 3138 dentry = path->dentry; 3139 vfsmnt = path->mnt; 3140 mnt = real_mount(vfsmnt); 3141 read_seqbegin_or_lock(&rename_lock, &seq); 3142 while (dentry != root->dentry || vfsmnt != root->mnt) { 3143 struct dentry * parent; 3144 3145 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3146 struct mount *parent = READ_ONCE(mnt->mnt_parent); 3147 /* Escaped? */ 3148 if (dentry != vfsmnt->mnt_root) { 3149 bptr = *buffer; 3150 blen = *buflen; 3151 error = 3; 3152 break; 3153 } 3154 /* Global root? */ 3155 if (mnt != parent) { 3156 dentry = READ_ONCE(mnt->mnt_mountpoint); 3157 mnt = parent; 3158 vfsmnt = &mnt->mnt; 3159 continue; 3160 } 3161 if (!error) 3162 error = is_mounted(vfsmnt) ? 1 : 2; 3163 break; 3164 } 3165 parent = dentry->d_parent; 3166 prefetch(parent); 3167 error = prepend_name(&bptr, &blen, &dentry->d_name); 3168 if (error) 3169 break; 3170 3171 dentry = parent; 3172 } 3173 if (!(seq & 1)) 3174 rcu_read_unlock(); 3175 if (need_seqretry(&rename_lock, seq)) { 3176 seq = 1; 3177 goto restart; 3178 } 3179 done_seqretry(&rename_lock, seq); 3180 3181 if (!(m_seq & 1)) 3182 rcu_read_unlock(); 3183 if (need_seqretry(&mount_lock, m_seq)) { 3184 m_seq = 1; 3185 goto restart_mnt; 3186 } 3187 done_seqretry(&mount_lock, m_seq); 3188 3189 if (error >= 0 && bptr == *buffer) { 3190 if (--blen < 0) 3191 error = -ENAMETOOLONG; 3192 else 3193 *--bptr = '/'; 3194 } 3195 *buffer = bptr; 3196 *buflen = blen; 3197 return error; 3198 } 3199 3200 /** 3201 * __d_path - return the path of a dentry 3202 * @path: the dentry/vfsmount to report 3203 * @root: root vfsmnt/dentry 3204 * @buf: buffer to return value in 3205 * @buflen: buffer length 3206 * 3207 * Convert a dentry into an ASCII path name. 3208 * 3209 * Returns a pointer into the buffer or an error code if the 3210 * path was too long. 3211 * 3212 * "buflen" should be positive. 3213 * 3214 * If the path is not reachable from the supplied root, return %NULL. 3215 */ 3216 char *__d_path(const struct path *path, 3217 const struct path *root, 3218 char *buf, int buflen) 3219 { 3220 char *res = buf + buflen; 3221 int error; 3222 3223 prepend(&res, &buflen, "\0", 1); 3224 error = prepend_path(path, root, &res, &buflen); 3225 3226 if (error < 0) 3227 return ERR_PTR(error); 3228 if (error > 0) 3229 return NULL; 3230 return res; 3231 } 3232 3233 char *d_absolute_path(const struct path *path, 3234 char *buf, int buflen) 3235 { 3236 struct path root = {}; 3237 char *res = buf + buflen; 3238 int error; 3239 3240 prepend(&res, &buflen, "\0", 1); 3241 error = prepend_path(path, &root, &res, &buflen); 3242 3243 if (error > 1) 3244 error = -EINVAL; 3245 if (error < 0) 3246 return ERR_PTR(error); 3247 return res; 3248 } 3249 3250 /* 3251 * same as __d_path but appends "(deleted)" for unlinked files. 3252 */ 3253 static int path_with_deleted(const struct path *path, 3254 const struct path *root, 3255 char **buf, int *buflen) 3256 { 3257 prepend(buf, buflen, "\0", 1); 3258 if (d_unlinked(path->dentry)) { 3259 int error = prepend(buf, buflen, " (deleted)", 10); 3260 if (error) 3261 return error; 3262 } 3263 3264 return prepend_path(path, root, buf, buflen); 3265 } 3266 3267 static int prepend_unreachable(char **buffer, int *buflen) 3268 { 3269 return prepend(buffer, buflen, "(unreachable)", 13); 3270 } 3271 3272 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3273 { 3274 unsigned seq; 3275 3276 do { 3277 seq = read_seqcount_begin(&fs->seq); 3278 *root = fs->root; 3279 } while (read_seqcount_retry(&fs->seq, seq)); 3280 } 3281 3282 /** 3283 * d_path - return the path of a dentry 3284 * @path: path to report 3285 * @buf: buffer to return value in 3286 * @buflen: buffer length 3287 * 3288 * Convert a dentry into an ASCII path name. If the entry has been deleted 3289 * the string " (deleted)" is appended. Note that this is ambiguous. 3290 * 3291 * Returns a pointer into the buffer or an error code if the path was 3292 * too long. Note: Callers should use the returned pointer, not the passed 3293 * in buffer, to use the name! The implementation often starts at an offset 3294 * into the buffer, and may leave 0 bytes at the start. 3295 * 3296 * "buflen" should be positive. 3297 */ 3298 char *d_path(const struct path *path, char *buf, int buflen) 3299 { 3300 char *res = buf + buflen; 3301 struct path root; 3302 int error; 3303 3304 /* 3305 * We have various synthetic filesystems that never get mounted. On 3306 * these filesystems dentries are never used for lookup purposes, and 3307 * thus don't need to be hashed. They also don't need a name until a 3308 * user wants to identify the object in /proc/pid/fd/. The little hack 3309 * below allows us to generate a name for these objects on demand: 3310 * 3311 * Some pseudo inodes are mountable. When they are mounted 3312 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3313 * and instead have d_path return the mounted path. 3314 */ 3315 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3316 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3317 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3318 3319 rcu_read_lock(); 3320 get_fs_root_rcu(current->fs, &root); 3321 error = path_with_deleted(path, &root, &res, &buflen); 3322 rcu_read_unlock(); 3323 3324 if (error < 0) 3325 res = ERR_PTR(error); 3326 return res; 3327 } 3328 EXPORT_SYMBOL(d_path); 3329 3330 /* 3331 * Helper function for dentry_operations.d_dname() members 3332 */ 3333 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3334 const char *fmt, ...) 3335 { 3336 va_list args; 3337 char temp[64]; 3338 int sz; 3339 3340 va_start(args, fmt); 3341 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3342 va_end(args); 3343 3344 if (sz > sizeof(temp) || sz > buflen) 3345 return ERR_PTR(-ENAMETOOLONG); 3346 3347 buffer += buflen - sz; 3348 return memcpy(buffer, temp, sz); 3349 } 3350 3351 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3352 { 3353 char *end = buffer + buflen; 3354 /* these dentries are never renamed, so d_lock is not needed */ 3355 if (prepend(&end, &buflen, " (deleted)", 11) || 3356 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3357 prepend(&end, &buflen, "/", 1)) 3358 end = ERR_PTR(-ENAMETOOLONG); 3359 return end; 3360 } 3361 EXPORT_SYMBOL(simple_dname); 3362 3363 /* 3364 * Write full pathname from the root of the filesystem into the buffer. 3365 */ 3366 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3367 { 3368 struct dentry *dentry; 3369 char *end, *retval; 3370 int len, seq = 0; 3371 int error = 0; 3372 3373 if (buflen < 2) 3374 goto Elong; 3375 3376 rcu_read_lock(); 3377 restart: 3378 dentry = d; 3379 end = buf + buflen; 3380 len = buflen; 3381 prepend(&end, &len, "\0", 1); 3382 /* Get '/' right */ 3383 retval = end-1; 3384 *retval = '/'; 3385 read_seqbegin_or_lock(&rename_lock, &seq); 3386 while (!IS_ROOT(dentry)) { 3387 struct dentry *parent = dentry->d_parent; 3388 3389 prefetch(parent); 3390 error = prepend_name(&end, &len, &dentry->d_name); 3391 if (error) 3392 break; 3393 3394 retval = end; 3395 dentry = parent; 3396 } 3397 if (!(seq & 1)) 3398 rcu_read_unlock(); 3399 if (need_seqretry(&rename_lock, seq)) { 3400 seq = 1; 3401 goto restart; 3402 } 3403 done_seqretry(&rename_lock, seq); 3404 if (error) 3405 goto Elong; 3406 return retval; 3407 Elong: 3408 return ERR_PTR(-ENAMETOOLONG); 3409 } 3410 3411 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3412 { 3413 return __dentry_path(dentry, buf, buflen); 3414 } 3415 EXPORT_SYMBOL(dentry_path_raw); 3416 3417 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3418 { 3419 char *p = NULL; 3420 char *retval; 3421 3422 if (d_unlinked(dentry)) { 3423 p = buf + buflen; 3424 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3425 goto Elong; 3426 buflen++; 3427 } 3428 retval = __dentry_path(dentry, buf, buflen); 3429 if (!IS_ERR(retval) && p) 3430 *p = '/'; /* restore '/' overriden with '\0' */ 3431 return retval; 3432 Elong: 3433 return ERR_PTR(-ENAMETOOLONG); 3434 } 3435 3436 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3437 struct path *pwd) 3438 { 3439 unsigned seq; 3440 3441 do { 3442 seq = read_seqcount_begin(&fs->seq); 3443 *root = fs->root; 3444 *pwd = fs->pwd; 3445 } while (read_seqcount_retry(&fs->seq, seq)); 3446 } 3447 3448 /* 3449 * NOTE! The user-level library version returns a 3450 * character pointer. The kernel system call just 3451 * returns the length of the buffer filled (which 3452 * includes the ending '\0' character), or a negative 3453 * error value. So libc would do something like 3454 * 3455 * char *getcwd(char * buf, size_t size) 3456 * { 3457 * int retval; 3458 * 3459 * retval = sys_getcwd(buf, size); 3460 * if (retval >= 0) 3461 * return buf; 3462 * errno = -retval; 3463 * return NULL; 3464 * } 3465 */ 3466 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3467 { 3468 int error; 3469 struct path pwd, root; 3470 char *page = __getname(); 3471 3472 if (!page) 3473 return -ENOMEM; 3474 3475 rcu_read_lock(); 3476 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3477 3478 error = -ENOENT; 3479 if (!d_unlinked(pwd.dentry)) { 3480 unsigned long len; 3481 char *cwd = page + PATH_MAX; 3482 int buflen = PATH_MAX; 3483 3484 prepend(&cwd, &buflen, "\0", 1); 3485 error = prepend_path(&pwd, &root, &cwd, &buflen); 3486 rcu_read_unlock(); 3487 3488 if (error < 0) 3489 goto out; 3490 3491 /* Unreachable from current root */ 3492 if (error > 0) { 3493 error = prepend_unreachable(&cwd, &buflen); 3494 if (error) 3495 goto out; 3496 } 3497 3498 error = -ERANGE; 3499 len = PATH_MAX + page - cwd; 3500 if (len <= size) { 3501 error = len; 3502 if (copy_to_user(buf, cwd, len)) 3503 error = -EFAULT; 3504 } 3505 } else { 3506 rcu_read_unlock(); 3507 } 3508 3509 out: 3510 __putname(page); 3511 return error; 3512 } 3513 3514 /* 3515 * Test whether new_dentry is a subdirectory of old_dentry. 3516 * 3517 * Trivially implemented using the dcache structure 3518 */ 3519 3520 /** 3521 * is_subdir - is new dentry a subdirectory of old_dentry 3522 * @new_dentry: new dentry 3523 * @old_dentry: old dentry 3524 * 3525 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3526 * Returns false otherwise. 3527 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3528 */ 3529 3530 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3531 { 3532 bool result; 3533 unsigned seq; 3534 3535 if (new_dentry == old_dentry) 3536 return true; 3537 3538 do { 3539 /* for restarting inner loop in case of seq retry */ 3540 seq = read_seqbegin(&rename_lock); 3541 /* 3542 * Need rcu_readlock to protect against the d_parent trashing 3543 * due to d_move 3544 */ 3545 rcu_read_lock(); 3546 if (d_ancestor(old_dentry, new_dentry)) 3547 result = true; 3548 else 3549 result = false; 3550 rcu_read_unlock(); 3551 } while (read_seqretry(&rename_lock, seq)); 3552 3553 return result; 3554 } 3555 EXPORT_SYMBOL(is_subdir); 3556 3557 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3558 { 3559 struct dentry *root = data; 3560 if (dentry != root) { 3561 if (d_unhashed(dentry) || !dentry->d_inode) 3562 return D_WALK_SKIP; 3563 3564 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3565 dentry->d_flags |= DCACHE_GENOCIDE; 3566 dentry->d_lockref.count--; 3567 } 3568 } 3569 return D_WALK_CONTINUE; 3570 } 3571 3572 void d_genocide(struct dentry *parent) 3573 { 3574 d_walk(parent, parent, d_genocide_kill, NULL); 3575 } 3576 3577 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3578 { 3579 inode_dec_link_count(inode); 3580 BUG_ON(dentry->d_name.name != dentry->d_iname || 3581 !hlist_unhashed(&dentry->d_u.d_alias) || 3582 !d_unlinked(dentry)); 3583 spin_lock(&dentry->d_parent->d_lock); 3584 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3585 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3586 (unsigned long long)inode->i_ino); 3587 spin_unlock(&dentry->d_lock); 3588 spin_unlock(&dentry->d_parent->d_lock); 3589 d_instantiate(dentry, inode); 3590 } 3591 EXPORT_SYMBOL(d_tmpfile); 3592 3593 static __initdata unsigned long dhash_entries; 3594 static int __init set_dhash_entries(char *str) 3595 { 3596 if (!str) 3597 return 0; 3598 dhash_entries = simple_strtoul(str, &str, 0); 3599 return 1; 3600 } 3601 __setup("dhash_entries=", set_dhash_entries); 3602 3603 static void __init dcache_init_early(void) 3604 { 3605 /* If hashes are distributed across NUMA nodes, defer 3606 * hash allocation until vmalloc space is available. 3607 */ 3608 if (hashdist) 3609 return; 3610 3611 dentry_hashtable = 3612 alloc_large_system_hash("Dentry cache", 3613 sizeof(struct hlist_bl_head), 3614 dhash_entries, 3615 13, 3616 HASH_EARLY | HASH_ZERO, 3617 &d_hash_shift, 3618 NULL, 3619 0, 3620 0); 3621 d_hash_shift = 32 - d_hash_shift; 3622 } 3623 3624 static void __init dcache_init(void) 3625 { 3626 /* 3627 * A constructor could be added for stable state like the lists, 3628 * but it is probably not worth it because of the cache nature 3629 * of the dcache. 3630 */ 3631 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3632 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3633 d_iname); 3634 3635 /* Hash may have been set up in dcache_init_early */ 3636 if (!hashdist) 3637 return; 3638 3639 dentry_hashtable = 3640 alloc_large_system_hash("Dentry cache", 3641 sizeof(struct hlist_bl_head), 3642 dhash_entries, 3643 13, 3644 HASH_ZERO, 3645 &d_hash_shift, 3646 NULL, 3647 0, 3648 0); 3649 d_hash_shift = 32 - d_hash_shift; 3650 } 3651 3652 /* SLAB cache for __getname() consumers */ 3653 struct kmem_cache *names_cachep __read_mostly; 3654 EXPORT_SYMBOL(names_cachep); 3655 3656 EXPORT_SYMBOL(d_genocide); 3657 3658 void __init vfs_caches_init_early(void) 3659 { 3660 int i; 3661 3662 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3663 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3664 3665 dcache_init_early(); 3666 inode_init_early(); 3667 } 3668 3669 void __init vfs_caches_init(void) 3670 { 3671 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3672 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3673 3674 dcache_init(); 3675 inode_init(); 3676 files_init(); 3677 files_maxfiles_init(); 3678 mnt_init(); 3679 bdev_cache_init(); 3680 chrdev_init(); 3681 } 3682