xref: /openbmc/linux/fs/dcache.c (revision 01a6e126)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_u.d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_roots bl list spinlock protects:
50  *   - the s_roots list (see __d_drop)
51  * dentry->d_sb->s_dentry_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_u.d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dentry->d_sb->s_dentry_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_roots lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 
86 EXPORT_SYMBOL(rename_lock);
87 
88 static struct kmem_cache *dentry_cache __read_mostly;
89 
90 const struct qstr empty_name = QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name);
92 const struct qstr slash_name = QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name);
94 
95 /*
96  * This is the single most critical data structure when it comes
97  * to the dcache: the hashtable for lookups. Somebody should try
98  * to make this good - I've just made it work.
99  *
100  * This hash-function tries to avoid losing too many bits of hash
101  * information, yet avoid using a prime hash-size or similar.
102  */
103 
104 static unsigned int d_hash_shift __read_mostly;
105 
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 
108 static inline struct hlist_bl_head *d_hash(unsigned int hash)
109 {
110 	return dentry_hashtable + (hash >> d_hash_shift);
111 }
112 
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115 
116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 					unsigned int hash)
118 {
119 	hash += (unsigned long) parent / L1_CACHE_BYTES;
120 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
121 }
122 
123 
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat = {
126 	.age_limit = 45,
127 };
128 
129 static DEFINE_PER_CPU(long, nr_dentry);
130 static DEFINE_PER_CPU(long, nr_dentry_unused);
131 
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 
134 /*
135  * Here we resort to our own counters instead of using generic per-cpu counters
136  * for consistency with what the vfs inode code does. We are expected to harvest
137  * better code and performance by having our own specialized counters.
138  *
139  * Please note that the loop is done over all possible CPUs, not over all online
140  * CPUs. The reason for this is that we don't want to play games with CPUs going
141  * on and off. If one of them goes off, we will just keep their counters.
142  *
143  * glommer: See cffbc8a for details, and if you ever intend to change this,
144  * please update all vfs counters to match.
145  */
146 static long get_nr_dentry(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 static long get_nr_dentry_unused(void)
156 {
157 	int i;
158 	long sum = 0;
159 	for_each_possible_cpu(i)
160 		sum += per_cpu(nr_dentry_unused, i);
161 	return sum < 0 ? 0 : sum;
162 }
163 
164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
165 		   size_t *lenp, loff_t *ppos)
166 {
167 	dentry_stat.nr_dentry = get_nr_dentry();
168 	dentry_stat.nr_unused = get_nr_dentry_unused();
169 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
170 }
171 #endif
172 
173 /*
174  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175  * The strings are both count bytes long, and count is non-zero.
176  */
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
178 
179 #include <asm/word-at-a-time.h>
180 /*
181  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182  * aligned allocation for this particular component. We don't
183  * strictly need the load_unaligned_zeropad() safety, but it
184  * doesn't hurt either.
185  *
186  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187  * need the careful unaligned handling.
188  */
189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
190 {
191 	unsigned long a,b,mask;
192 
193 	for (;;) {
194 		a = read_word_at_a_time(cs);
195 		b = load_unaligned_zeropad(ct);
196 		if (tcount < sizeof(unsigned long))
197 			break;
198 		if (unlikely(a != b))
199 			return 1;
200 		cs += sizeof(unsigned long);
201 		ct += sizeof(unsigned long);
202 		tcount -= sizeof(unsigned long);
203 		if (!tcount)
204 			return 0;
205 	}
206 	mask = bytemask_from_count(tcount);
207 	return unlikely(!!((a ^ b) & mask));
208 }
209 
210 #else
211 
212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
213 {
214 	do {
215 		if (*cs != *ct)
216 			return 1;
217 		cs++;
218 		ct++;
219 		tcount--;
220 	} while (tcount);
221 	return 0;
222 }
223 
224 #endif
225 
226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
227 {
228 	/*
229 	 * Be careful about RCU walk racing with rename:
230 	 * use 'READ_ONCE' to fetch the name pointer.
231 	 *
232 	 * NOTE! Even if a rename will mean that the length
233 	 * was not loaded atomically, we don't care. The
234 	 * RCU walk will check the sequence count eventually,
235 	 * and catch it. And we won't overrun the buffer,
236 	 * because we're reading the name pointer atomically,
237 	 * and a dentry name is guaranteed to be properly
238 	 * terminated with a NUL byte.
239 	 *
240 	 * End result: even if 'len' is wrong, we'll exit
241 	 * early because the data cannot match (there can
242 	 * be no NUL in the ct/tcount data)
243 	 */
244 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
245 
246 	return dentry_string_cmp(cs, ct, tcount);
247 }
248 
249 struct external_name {
250 	union {
251 		atomic_t count;
252 		struct rcu_head head;
253 	} u;
254 	unsigned char name[];
255 };
256 
257 static inline struct external_name *external_name(struct dentry *dentry)
258 {
259 	return container_of(dentry->d_name.name, struct external_name, name[0]);
260 }
261 
262 static void __d_free(struct rcu_head *head)
263 {
264 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265 
266 	kmem_cache_free(dentry_cache, dentry);
267 }
268 
269 static void __d_free_external(struct rcu_head *head)
270 {
271 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 	kfree(external_name(dentry));
273 	kmem_cache_free(dentry_cache, dentry);
274 }
275 
276 static inline int dname_external(const struct dentry *dentry)
277 {
278 	return dentry->d_name.name != dentry->d_iname;
279 }
280 
281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
282 {
283 	spin_lock(&dentry->d_lock);
284 	if (unlikely(dname_external(dentry))) {
285 		struct external_name *p = external_name(dentry);
286 		atomic_inc(&p->u.count);
287 		spin_unlock(&dentry->d_lock);
288 		name->name = p->name;
289 	} else {
290 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 		spin_unlock(&dentry->d_lock);
292 		name->name = name->inline_name;
293 	}
294 }
295 EXPORT_SYMBOL(take_dentry_name_snapshot);
296 
297 void release_dentry_name_snapshot(struct name_snapshot *name)
298 {
299 	if (unlikely(name->name != name->inline_name)) {
300 		struct external_name *p;
301 		p = container_of(name->name, struct external_name, name[0]);
302 		if (unlikely(atomic_dec_and_test(&p->u.count)))
303 			kfree_rcu(p, u.head);
304 	}
305 }
306 EXPORT_SYMBOL(release_dentry_name_snapshot);
307 
308 static inline void __d_set_inode_and_type(struct dentry *dentry,
309 					  struct inode *inode,
310 					  unsigned type_flags)
311 {
312 	unsigned flags;
313 
314 	dentry->d_inode = inode;
315 	flags = READ_ONCE(dentry->d_flags);
316 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 	flags |= type_flags;
318 	WRITE_ONCE(dentry->d_flags, flags);
319 }
320 
321 static inline void __d_clear_type_and_inode(struct dentry *dentry)
322 {
323 	unsigned flags = READ_ONCE(dentry->d_flags);
324 
325 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 	WRITE_ONCE(dentry->d_flags, flags);
327 	dentry->d_inode = NULL;
328 }
329 
330 static void dentry_free(struct dentry *dentry)
331 {
332 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
333 	if (unlikely(dname_external(dentry))) {
334 		struct external_name *p = external_name(dentry);
335 		if (likely(atomic_dec_and_test(&p->u.count))) {
336 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 			return;
338 		}
339 	}
340 	/* if dentry was never visible to RCU, immediate free is OK */
341 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 		__d_free(&dentry->d_u.d_rcu);
343 	else
344 		call_rcu(&dentry->d_u.d_rcu, __d_free);
345 }
346 
347 /*
348  * Release the dentry's inode, using the filesystem
349  * d_iput() operation if defined.
350  */
351 static void dentry_unlink_inode(struct dentry * dentry)
352 	__releases(dentry->d_lock)
353 	__releases(dentry->d_inode->i_lock)
354 {
355 	struct inode *inode = dentry->d_inode;
356 	bool hashed = !d_unhashed(dentry);
357 
358 	if (hashed)
359 		raw_write_seqcount_begin(&dentry->d_seq);
360 	__d_clear_type_and_inode(dentry);
361 	hlist_del_init(&dentry->d_u.d_alias);
362 	if (hashed)
363 		raw_write_seqcount_end(&dentry->d_seq);
364 	spin_unlock(&dentry->d_lock);
365 	spin_unlock(&inode->i_lock);
366 	if (!inode->i_nlink)
367 		fsnotify_inoderemove(inode);
368 	if (dentry->d_op && dentry->d_op->d_iput)
369 		dentry->d_op->d_iput(dentry, inode);
370 	else
371 		iput(inode);
372 }
373 
374 /*
375  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376  * is in use - which includes both the "real" per-superblock
377  * LRU list _and_ the DCACHE_SHRINK_LIST use.
378  *
379  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380  * on the shrink list (ie not on the superblock LRU list).
381  *
382  * The per-cpu "nr_dentry_unused" counters are updated with
383  * the DCACHE_LRU_LIST bit.
384  *
385  * These helper functions make sure we always follow the
386  * rules. d_lock must be held by the caller.
387  */
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry *dentry)
390 {
391 	D_FLAG_VERIFY(dentry, 0);
392 	dentry->d_flags |= DCACHE_LRU_LIST;
393 	this_cpu_inc(nr_dentry_unused);
394 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
395 }
396 
397 static void d_lru_del(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 	dentry->d_flags &= ~DCACHE_LRU_LIST;
401 	this_cpu_dec(nr_dentry_unused);
402 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
403 }
404 
405 static void d_shrink_del(struct dentry *dentry)
406 {
407 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 	list_del_init(&dentry->d_lru);
409 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 	this_cpu_dec(nr_dentry_unused);
411 }
412 
413 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
414 {
415 	D_FLAG_VERIFY(dentry, 0);
416 	list_add(&dentry->d_lru, list);
417 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 	this_cpu_inc(nr_dentry_unused);
419 }
420 
421 /*
422  * These can only be called under the global LRU lock, ie during the
423  * callback for freeing the LRU list. "isolate" removes it from the
424  * LRU lists entirely, while shrink_move moves it to the indicated
425  * private list.
426  */
427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
428 {
429 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 	dentry->d_flags &= ~DCACHE_LRU_LIST;
431 	this_cpu_dec(nr_dentry_unused);
432 	list_lru_isolate(lru, &dentry->d_lru);
433 }
434 
435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 			      struct list_head *list)
437 {
438 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 	dentry->d_flags |= DCACHE_SHRINK_LIST;
440 	list_lru_isolate_move(lru, &dentry->d_lru, list);
441 }
442 
443 /*
444  * dentry_lru_(add|del)_list) must be called with d_lock held.
445  */
446 static void dentry_lru_add(struct dentry *dentry)
447 {
448 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 		d_lru_add(dentry);
450 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 		dentry->d_flags |= DCACHE_REFERENCED;
452 }
453 
454 /**
455  * d_drop - drop a dentry
456  * @dentry: dentry to drop
457  *
458  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459  * be found through a VFS lookup any more. Note that this is different from
460  * deleting the dentry - d_delete will try to mark the dentry negative if
461  * possible, giving a successful _negative_ lookup, while d_drop will
462  * just make the cache lookup fail.
463  *
464  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465  * reason (NFS timeouts or autofs deletes).
466  *
467  * __d_drop requires dentry->d_lock
468  * ___d_drop doesn't mark dentry as "unhashed"
469  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
470  */
471 static void ___d_drop(struct dentry *dentry)
472 {
473 	if (!d_unhashed(dentry)) {
474 		struct hlist_bl_head *b;
475 		/*
476 		 * Hashed dentries are normally on the dentry hashtable,
477 		 * with the exception of those newly allocated by
478 		 * d_obtain_root, which are always IS_ROOT:
479 		 */
480 		if (unlikely(IS_ROOT(dentry)))
481 			b = &dentry->d_sb->s_roots;
482 		else
483 			b = d_hash(dentry->d_name.hash);
484 
485 		hlist_bl_lock(b);
486 		__hlist_bl_del(&dentry->d_hash);
487 		hlist_bl_unlock(b);
488 		/* After this call, in-progress rcu-walk path lookup will fail. */
489 		write_seqcount_invalidate(&dentry->d_seq);
490 	}
491 }
492 
493 void __d_drop(struct dentry *dentry)
494 {
495 	___d_drop(dentry);
496 	dentry->d_hash.pprev = NULL;
497 }
498 EXPORT_SYMBOL(__d_drop);
499 
500 void d_drop(struct dentry *dentry)
501 {
502 	spin_lock(&dentry->d_lock);
503 	__d_drop(dentry);
504 	spin_unlock(&dentry->d_lock);
505 }
506 EXPORT_SYMBOL(d_drop);
507 
508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
509 {
510 	struct dentry *next;
511 	/*
512 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 	 * attached to the dentry tree
514 	 */
515 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
516 	if (unlikely(list_empty(&dentry->d_child)))
517 		return;
518 	__list_del_entry(&dentry->d_child);
519 	/*
520 	 * Cursors can move around the list of children.  While we'd been
521 	 * a normal list member, it didn't matter - ->d_child.next would've
522 	 * been updated.  However, from now on it won't be and for the
523 	 * things like d_walk() it might end up with a nasty surprise.
524 	 * Normally d_walk() doesn't care about cursors moving around -
525 	 * ->d_lock on parent prevents that and since a cursor has no children
526 	 * of its own, we get through it without ever unlocking the parent.
527 	 * There is one exception, though - if we ascend from a child that
528 	 * gets killed as soon as we unlock it, the next sibling is found
529 	 * using the value left in its ->d_child.next.  And if _that_
530 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 	 * before d_walk() regains parent->d_lock, we'll end up skipping
532 	 * everything the cursor had been moved past.
533 	 *
534 	 * Solution: make sure that the pointer left behind in ->d_child.next
535 	 * points to something that won't be moving around.  I.e. skip the
536 	 * cursors.
537 	 */
538 	while (dentry->d_child.next != &parent->d_subdirs) {
539 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
540 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
541 			break;
542 		dentry->d_child.next = next->d_child.next;
543 	}
544 }
545 
546 static void __dentry_kill(struct dentry *dentry)
547 {
548 	struct dentry *parent = NULL;
549 	bool can_free = true;
550 	if (!IS_ROOT(dentry))
551 		parent = dentry->d_parent;
552 
553 	/*
554 	 * The dentry is now unrecoverably dead to the world.
555 	 */
556 	lockref_mark_dead(&dentry->d_lockref);
557 
558 	/*
559 	 * inform the fs via d_prune that this dentry is about to be
560 	 * unhashed and destroyed.
561 	 */
562 	if (dentry->d_flags & DCACHE_OP_PRUNE)
563 		dentry->d_op->d_prune(dentry);
564 
565 	if (dentry->d_flags & DCACHE_LRU_LIST) {
566 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
567 			d_lru_del(dentry);
568 	}
569 	/* if it was on the hash then remove it */
570 	__d_drop(dentry);
571 	dentry_unlist(dentry, parent);
572 	if (parent)
573 		spin_unlock(&parent->d_lock);
574 	if (dentry->d_inode)
575 		dentry_unlink_inode(dentry);
576 	else
577 		spin_unlock(&dentry->d_lock);
578 	this_cpu_dec(nr_dentry);
579 	if (dentry->d_op && dentry->d_op->d_release)
580 		dentry->d_op->d_release(dentry);
581 
582 	spin_lock(&dentry->d_lock);
583 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
584 		dentry->d_flags |= DCACHE_MAY_FREE;
585 		can_free = false;
586 	}
587 	spin_unlock(&dentry->d_lock);
588 	if (likely(can_free))
589 		dentry_free(dentry);
590 }
591 
592 /*
593  * Finish off a dentry we've decided to kill.
594  * dentry->d_lock must be held, returns with it unlocked.
595  * If ref is non-zero, then decrement the refcount too.
596  * Returns dentry requiring refcount drop, or NULL if we're done.
597  */
598 static struct dentry *dentry_kill(struct dentry *dentry)
599 	__releases(dentry->d_lock)
600 {
601 	struct inode *inode = dentry->d_inode;
602 	struct dentry *parent = NULL;
603 
604 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
605 		goto failed;
606 
607 	if (!IS_ROOT(dentry)) {
608 		parent = dentry->d_parent;
609 		if (unlikely(!spin_trylock(&parent->d_lock))) {
610 			if (inode)
611 				spin_unlock(&inode->i_lock);
612 			goto failed;
613 		}
614 	}
615 
616 	__dentry_kill(dentry);
617 	return parent;
618 
619 failed:
620 	spin_unlock(&dentry->d_lock);
621 	return dentry; /* try again with same dentry */
622 }
623 
624 static inline struct dentry *lock_parent(struct dentry *dentry)
625 {
626 	struct dentry *parent = dentry->d_parent;
627 	if (IS_ROOT(dentry))
628 		return NULL;
629 	if (unlikely(dentry->d_lockref.count < 0))
630 		return NULL;
631 	if (likely(spin_trylock(&parent->d_lock)))
632 		return parent;
633 	rcu_read_lock();
634 	spin_unlock(&dentry->d_lock);
635 again:
636 	parent = READ_ONCE(dentry->d_parent);
637 	spin_lock(&parent->d_lock);
638 	/*
639 	 * We can't blindly lock dentry until we are sure
640 	 * that we won't violate the locking order.
641 	 * Any changes of dentry->d_parent must have
642 	 * been done with parent->d_lock held, so
643 	 * spin_lock() above is enough of a barrier
644 	 * for checking if it's still our child.
645 	 */
646 	if (unlikely(parent != dentry->d_parent)) {
647 		spin_unlock(&parent->d_lock);
648 		goto again;
649 	}
650 	rcu_read_unlock();
651 	if (parent != dentry)
652 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
653 	else
654 		parent = NULL;
655 	return parent;
656 }
657 
658 /*
659  * Try to do a lockless dput(), and return whether that was successful.
660  *
661  * If unsuccessful, we return false, having already taken the dentry lock.
662  *
663  * The caller needs to hold the RCU read lock, so that the dentry is
664  * guaranteed to stay around even if the refcount goes down to zero!
665  */
666 static inline bool fast_dput(struct dentry *dentry)
667 {
668 	int ret;
669 	unsigned int d_flags;
670 
671 	/*
672 	 * If we have a d_op->d_delete() operation, we sould not
673 	 * let the dentry count go to zero, so use "put_or_lock".
674 	 */
675 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
676 		return lockref_put_or_lock(&dentry->d_lockref);
677 
678 	/*
679 	 * .. otherwise, we can try to just decrement the
680 	 * lockref optimistically.
681 	 */
682 	ret = lockref_put_return(&dentry->d_lockref);
683 
684 	/*
685 	 * If the lockref_put_return() failed due to the lock being held
686 	 * by somebody else, the fast path has failed. We will need to
687 	 * get the lock, and then check the count again.
688 	 */
689 	if (unlikely(ret < 0)) {
690 		spin_lock(&dentry->d_lock);
691 		if (dentry->d_lockref.count > 1) {
692 			dentry->d_lockref.count--;
693 			spin_unlock(&dentry->d_lock);
694 			return 1;
695 		}
696 		return 0;
697 	}
698 
699 	/*
700 	 * If we weren't the last ref, we're done.
701 	 */
702 	if (ret)
703 		return 1;
704 
705 	/*
706 	 * Careful, careful. The reference count went down
707 	 * to zero, but we don't hold the dentry lock, so
708 	 * somebody else could get it again, and do another
709 	 * dput(), and we need to not race with that.
710 	 *
711 	 * However, there is a very special and common case
712 	 * where we don't care, because there is nothing to
713 	 * do: the dentry is still hashed, it does not have
714 	 * a 'delete' op, and it's referenced and already on
715 	 * the LRU list.
716 	 *
717 	 * NOTE! Since we aren't locked, these values are
718 	 * not "stable". However, it is sufficient that at
719 	 * some point after we dropped the reference the
720 	 * dentry was hashed and the flags had the proper
721 	 * value. Other dentry users may have re-gotten
722 	 * a reference to the dentry and change that, but
723 	 * our work is done - we can leave the dentry
724 	 * around with a zero refcount.
725 	 */
726 	smp_rmb();
727 	d_flags = READ_ONCE(dentry->d_flags);
728 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
729 
730 	/* Nothing to do? Dropping the reference was all we needed? */
731 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
732 		return 1;
733 
734 	/*
735 	 * Not the fast normal case? Get the lock. We've already decremented
736 	 * the refcount, but we'll need to re-check the situation after
737 	 * getting the lock.
738 	 */
739 	spin_lock(&dentry->d_lock);
740 
741 	/*
742 	 * Did somebody else grab a reference to it in the meantime, and
743 	 * we're no longer the last user after all? Alternatively, somebody
744 	 * else could have killed it and marked it dead. Either way, we
745 	 * don't need to do anything else.
746 	 */
747 	if (dentry->d_lockref.count) {
748 		spin_unlock(&dentry->d_lock);
749 		return 1;
750 	}
751 
752 	/*
753 	 * Re-get the reference we optimistically dropped. We hold the
754 	 * lock, and we just tested that it was zero, so we can just
755 	 * set it to 1.
756 	 */
757 	dentry->d_lockref.count = 1;
758 	return 0;
759 }
760 
761 
762 /*
763  * This is dput
764  *
765  * This is complicated by the fact that we do not want to put
766  * dentries that are no longer on any hash chain on the unused
767  * list: we'd much rather just get rid of them immediately.
768  *
769  * However, that implies that we have to traverse the dentry
770  * tree upwards to the parents which might _also_ now be
771  * scheduled for deletion (it may have been only waiting for
772  * its last child to go away).
773  *
774  * This tail recursion is done by hand as we don't want to depend
775  * on the compiler to always get this right (gcc generally doesn't).
776  * Real recursion would eat up our stack space.
777  */
778 
779 /*
780  * dput - release a dentry
781  * @dentry: dentry to release
782  *
783  * Release a dentry. This will drop the usage count and if appropriate
784  * call the dentry unlink method as well as removing it from the queues and
785  * releasing its resources. If the parent dentries were scheduled for release
786  * they too may now get deleted.
787  */
788 void dput(struct dentry *dentry)
789 {
790 	if (unlikely(!dentry))
791 		return;
792 
793 repeat:
794 	might_sleep();
795 
796 	rcu_read_lock();
797 	if (likely(fast_dput(dentry))) {
798 		rcu_read_unlock();
799 		return;
800 	}
801 
802 	/* Slow case: now with the dentry lock held */
803 	rcu_read_unlock();
804 
805 	WARN_ON(d_in_lookup(dentry));
806 
807 	/* Unreachable? Get rid of it */
808 	if (unlikely(d_unhashed(dentry)))
809 		goto kill_it;
810 
811 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
812 		goto kill_it;
813 
814 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
815 		if (dentry->d_op->d_delete(dentry))
816 			goto kill_it;
817 	}
818 
819 	dentry_lru_add(dentry);
820 
821 	dentry->d_lockref.count--;
822 	spin_unlock(&dentry->d_lock);
823 	return;
824 
825 kill_it:
826 	dentry = dentry_kill(dentry);
827 	if (dentry) {
828 		cond_resched();
829 		goto repeat;
830 	}
831 }
832 EXPORT_SYMBOL(dput);
833 
834 
835 /* This must be called with d_lock held */
836 static inline void __dget_dlock(struct dentry *dentry)
837 {
838 	dentry->d_lockref.count++;
839 }
840 
841 static inline void __dget(struct dentry *dentry)
842 {
843 	lockref_get(&dentry->d_lockref);
844 }
845 
846 struct dentry *dget_parent(struct dentry *dentry)
847 {
848 	int gotref;
849 	struct dentry *ret;
850 
851 	/*
852 	 * Do optimistic parent lookup without any
853 	 * locking.
854 	 */
855 	rcu_read_lock();
856 	ret = READ_ONCE(dentry->d_parent);
857 	gotref = lockref_get_not_zero(&ret->d_lockref);
858 	rcu_read_unlock();
859 	if (likely(gotref)) {
860 		if (likely(ret == READ_ONCE(dentry->d_parent)))
861 			return ret;
862 		dput(ret);
863 	}
864 
865 repeat:
866 	/*
867 	 * Don't need rcu_dereference because we re-check it was correct under
868 	 * the lock.
869 	 */
870 	rcu_read_lock();
871 	ret = dentry->d_parent;
872 	spin_lock(&ret->d_lock);
873 	if (unlikely(ret != dentry->d_parent)) {
874 		spin_unlock(&ret->d_lock);
875 		rcu_read_unlock();
876 		goto repeat;
877 	}
878 	rcu_read_unlock();
879 	BUG_ON(!ret->d_lockref.count);
880 	ret->d_lockref.count++;
881 	spin_unlock(&ret->d_lock);
882 	return ret;
883 }
884 EXPORT_SYMBOL(dget_parent);
885 
886 /**
887  * d_find_alias - grab a hashed alias of inode
888  * @inode: inode in question
889  *
890  * If inode has a hashed alias, or is a directory and has any alias,
891  * acquire the reference to alias and return it. Otherwise return NULL.
892  * Notice that if inode is a directory there can be only one alias and
893  * it can be unhashed only if it has no children, or if it is the root
894  * of a filesystem, or if the directory was renamed and d_revalidate
895  * was the first vfs operation to notice.
896  *
897  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
898  * any other hashed alias over that one.
899  */
900 static struct dentry *__d_find_alias(struct inode *inode)
901 {
902 	struct dentry *alias, *discon_alias;
903 
904 again:
905 	discon_alias = NULL;
906 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
907 		spin_lock(&alias->d_lock);
908  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
909 			if (IS_ROOT(alias) &&
910 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
911 				discon_alias = alias;
912 			} else {
913 				__dget_dlock(alias);
914 				spin_unlock(&alias->d_lock);
915 				return alias;
916 			}
917 		}
918 		spin_unlock(&alias->d_lock);
919 	}
920 	if (discon_alias) {
921 		alias = discon_alias;
922 		spin_lock(&alias->d_lock);
923 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
924 			__dget_dlock(alias);
925 			spin_unlock(&alias->d_lock);
926 			return alias;
927 		}
928 		spin_unlock(&alias->d_lock);
929 		goto again;
930 	}
931 	return NULL;
932 }
933 
934 struct dentry *d_find_alias(struct inode *inode)
935 {
936 	struct dentry *de = NULL;
937 
938 	if (!hlist_empty(&inode->i_dentry)) {
939 		spin_lock(&inode->i_lock);
940 		de = __d_find_alias(inode);
941 		spin_unlock(&inode->i_lock);
942 	}
943 	return de;
944 }
945 EXPORT_SYMBOL(d_find_alias);
946 
947 /*
948  *	Try to kill dentries associated with this inode.
949  * WARNING: you must own a reference to inode.
950  */
951 void d_prune_aliases(struct inode *inode)
952 {
953 	struct dentry *dentry;
954 restart:
955 	spin_lock(&inode->i_lock);
956 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
957 		spin_lock(&dentry->d_lock);
958 		if (!dentry->d_lockref.count) {
959 			struct dentry *parent = lock_parent(dentry);
960 			if (likely(!dentry->d_lockref.count)) {
961 				__dentry_kill(dentry);
962 				dput(parent);
963 				goto restart;
964 			}
965 			if (parent)
966 				spin_unlock(&parent->d_lock);
967 		}
968 		spin_unlock(&dentry->d_lock);
969 	}
970 	spin_unlock(&inode->i_lock);
971 }
972 EXPORT_SYMBOL(d_prune_aliases);
973 
974 static void shrink_dentry_list(struct list_head *list)
975 {
976 	struct dentry *dentry, *parent;
977 
978 	while (!list_empty(list)) {
979 		struct inode *inode;
980 		dentry = list_entry(list->prev, struct dentry, d_lru);
981 		spin_lock(&dentry->d_lock);
982 		parent = lock_parent(dentry);
983 
984 		/*
985 		 * The dispose list is isolated and dentries are not accounted
986 		 * to the LRU here, so we can simply remove it from the list
987 		 * here regardless of whether it is referenced or not.
988 		 */
989 		d_shrink_del(dentry);
990 
991 		/*
992 		 * We found an inuse dentry which was not removed from
993 		 * the LRU because of laziness during lookup. Do not free it.
994 		 */
995 		if (dentry->d_lockref.count > 0) {
996 			spin_unlock(&dentry->d_lock);
997 			if (parent)
998 				spin_unlock(&parent->d_lock);
999 			continue;
1000 		}
1001 
1002 
1003 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1004 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1005 			spin_unlock(&dentry->d_lock);
1006 			if (parent)
1007 				spin_unlock(&parent->d_lock);
1008 			if (can_free)
1009 				dentry_free(dentry);
1010 			continue;
1011 		}
1012 
1013 		inode = dentry->d_inode;
1014 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1015 			d_shrink_add(dentry, list);
1016 			spin_unlock(&dentry->d_lock);
1017 			if (parent)
1018 				spin_unlock(&parent->d_lock);
1019 			continue;
1020 		}
1021 
1022 		__dentry_kill(dentry);
1023 
1024 		/*
1025 		 * We need to prune ancestors too. This is necessary to prevent
1026 		 * quadratic behavior of shrink_dcache_parent(), but is also
1027 		 * expected to be beneficial in reducing dentry cache
1028 		 * fragmentation.
1029 		 */
1030 		dentry = parent;
1031 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1032 			parent = lock_parent(dentry);
1033 			if (dentry->d_lockref.count != 1) {
1034 				dentry->d_lockref.count--;
1035 				spin_unlock(&dentry->d_lock);
1036 				if (parent)
1037 					spin_unlock(&parent->d_lock);
1038 				break;
1039 			}
1040 			inode = dentry->d_inode;	/* can't be NULL */
1041 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1042 				spin_unlock(&dentry->d_lock);
1043 				if (parent)
1044 					spin_unlock(&parent->d_lock);
1045 				cpu_relax();
1046 				continue;
1047 			}
1048 			__dentry_kill(dentry);
1049 			dentry = parent;
1050 		}
1051 	}
1052 }
1053 
1054 static enum lru_status dentry_lru_isolate(struct list_head *item,
1055 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1056 {
1057 	struct list_head *freeable = arg;
1058 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1059 
1060 
1061 	/*
1062 	 * we are inverting the lru lock/dentry->d_lock here,
1063 	 * so use a trylock. If we fail to get the lock, just skip
1064 	 * it
1065 	 */
1066 	if (!spin_trylock(&dentry->d_lock))
1067 		return LRU_SKIP;
1068 
1069 	/*
1070 	 * Referenced dentries are still in use. If they have active
1071 	 * counts, just remove them from the LRU. Otherwise give them
1072 	 * another pass through the LRU.
1073 	 */
1074 	if (dentry->d_lockref.count) {
1075 		d_lru_isolate(lru, dentry);
1076 		spin_unlock(&dentry->d_lock);
1077 		return LRU_REMOVED;
1078 	}
1079 
1080 	if (dentry->d_flags & DCACHE_REFERENCED) {
1081 		dentry->d_flags &= ~DCACHE_REFERENCED;
1082 		spin_unlock(&dentry->d_lock);
1083 
1084 		/*
1085 		 * The list move itself will be made by the common LRU code. At
1086 		 * this point, we've dropped the dentry->d_lock but keep the
1087 		 * lru lock. This is safe to do, since every list movement is
1088 		 * protected by the lru lock even if both locks are held.
1089 		 *
1090 		 * This is guaranteed by the fact that all LRU management
1091 		 * functions are intermediated by the LRU API calls like
1092 		 * list_lru_add and list_lru_del. List movement in this file
1093 		 * only ever occur through this functions or through callbacks
1094 		 * like this one, that are called from the LRU API.
1095 		 *
1096 		 * The only exceptions to this are functions like
1097 		 * shrink_dentry_list, and code that first checks for the
1098 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1099 		 * operating only with stack provided lists after they are
1100 		 * properly isolated from the main list.  It is thus, always a
1101 		 * local access.
1102 		 */
1103 		return LRU_ROTATE;
1104 	}
1105 
1106 	d_lru_shrink_move(lru, dentry, freeable);
1107 	spin_unlock(&dentry->d_lock);
1108 
1109 	return LRU_REMOVED;
1110 }
1111 
1112 /**
1113  * prune_dcache_sb - shrink the dcache
1114  * @sb: superblock
1115  * @sc: shrink control, passed to list_lru_shrink_walk()
1116  *
1117  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1118  * is done when we need more memory and called from the superblock shrinker
1119  * function.
1120  *
1121  * This function may fail to free any resources if all the dentries are in
1122  * use.
1123  */
1124 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1125 {
1126 	LIST_HEAD(dispose);
1127 	long freed;
1128 
1129 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1130 				     dentry_lru_isolate, &dispose);
1131 	shrink_dentry_list(&dispose);
1132 	return freed;
1133 }
1134 
1135 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1136 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1137 {
1138 	struct list_head *freeable = arg;
1139 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1140 
1141 	/*
1142 	 * we are inverting the lru lock/dentry->d_lock here,
1143 	 * so use a trylock. If we fail to get the lock, just skip
1144 	 * it
1145 	 */
1146 	if (!spin_trylock(&dentry->d_lock))
1147 		return LRU_SKIP;
1148 
1149 	d_lru_shrink_move(lru, dentry, freeable);
1150 	spin_unlock(&dentry->d_lock);
1151 
1152 	return LRU_REMOVED;
1153 }
1154 
1155 
1156 /**
1157  * shrink_dcache_sb - shrink dcache for a superblock
1158  * @sb: superblock
1159  *
1160  * Shrink the dcache for the specified super block. This is used to free
1161  * the dcache before unmounting a file system.
1162  */
1163 void shrink_dcache_sb(struct super_block *sb)
1164 {
1165 	long freed;
1166 
1167 	do {
1168 		LIST_HEAD(dispose);
1169 
1170 		freed = list_lru_walk(&sb->s_dentry_lru,
1171 			dentry_lru_isolate_shrink, &dispose, 1024);
1172 
1173 		this_cpu_sub(nr_dentry_unused, freed);
1174 		shrink_dentry_list(&dispose);
1175 		cond_resched();
1176 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1177 }
1178 EXPORT_SYMBOL(shrink_dcache_sb);
1179 
1180 /**
1181  * enum d_walk_ret - action to talke during tree walk
1182  * @D_WALK_CONTINUE:	contrinue walk
1183  * @D_WALK_QUIT:	quit walk
1184  * @D_WALK_NORETRY:	quit when retry is needed
1185  * @D_WALK_SKIP:	skip this dentry and its children
1186  */
1187 enum d_walk_ret {
1188 	D_WALK_CONTINUE,
1189 	D_WALK_QUIT,
1190 	D_WALK_NORETRY,
1191 	D_WALK_SKIP,
1192 };
1193 
1194 /**
1195  * d_walk - walk the dentry tree
1196  * @parent:	start of walk
1197  * @data:	data passed to @enter() and @finish()
1198  * @enter:	callback when first entering the dentry
1199  * @finish:	callback when successfully finished the walk
1200  *
1201  * The @enter() and @finish() callbacks are called with d_lock held.
1202  */
1203 static void d_walk(struct dentry *parent, void *data,
1204 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1205 		   void (*finish)(void *))
1206 {
1207 	struct dentry *this_parent;
1208 	struct list_head *next;
1209 	unsigned seq = 0;
1210 	enum d_walk_ret ret;
1211 	bool retry = true;
1212 
1213 again:
1214 	read_seqbegin_or_lock(&rename_lock, &seq);
1215 	this_parent = parent;
1216 	spin_lock(&this_parent->d_lock);
1217 
1218 	ret = enter(data, this_parent);
1219 	switch (ret) {
1220 	case D_WALK_CONTINUE:
1221 		break;
1222 	case D_WALK_QUIT:
1223 	case D_WALK_SKIP:
1224 		goto out_unlock;
1225 	case D_WALK_NORETRY:
1226 		retry = false;
1227 		break;
1228 	}
1229 repeat:
1230 	next = this_parent->d_subdirs.next;
1231 resume:
1232 	while (next != &this_parent->d_subdirs) {
1233 		struct list_head *tmp = next;
1234 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1235 		next = tmp->next;
1236 
1237 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1238 			continue;
1239 
1240 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1241 
1242 		ret = enter(data, dentry);
1243 		switch (ret) {
1244 		case D_WALK_CONTINUE:
1245 			break;
1246 		case D_WALK_QUIT:
1247 			spin_unlock(&dentry->d_lock);
1248 			goto out_unlock;
1249 		case D_WALK_NORETRY:
1250 			retry = false;
1251 			break;
1252 		case D_WALK_SKIP:
1253 			spin_unlock(&dentry->d_lock);
1254 			continue;
1255 		}
1256 
1257 		if (!list_empty(&dentry->d_subdirs)) {
1258 			spin_unlock(&this_parent->d_lock);
1259 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1260 			this_parent = dentry;
1261 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1262 			goto repeat;
1263 		}
1264 		spin_unlock(&dentry->d_lock);
1265 	}
1266 	/*
1267 	 * All done at this level ... ascend and resume the search.
1268 	 */
1269 	rcu_read_lock();
1270 ascend:
1271 	if (this_parent != parent) {
1272 		struct dentry *child = this_parent;
1273 		this_parent = child->d_parent;
1274 
1275 		spin_unlock(&child->d_lock);
1276 		spin_lock(&this_parent->d_lock);
1277 
1278 		/* might go back up the wrong parent if we have had a rename. */
1279 		if (need_seqretry(&rename_lock, seq))
1280 			goto rename_retry;
1281 		/* go into the first sibling still alive */
1282 		do {
1283 			next = child->d_child.next;
1284 			if (next == &this_parent->d_subdirs)
1285 				goto ascend;
1286 			child = list_entry(next, struct dentry, d_child);
1287 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1288 		rcu_read_unlock();
1289 		goto resume;
1290 	}
1291 	if (need_seqretry(&rename_lock, seq))
1292 		goto rename_retry;
1293 	rcu_read_unlock();
1294 	if (finish)
1295 		finish(data);
1296 
1297 out_unlock:
1298 	spin_unlock(&this_parent->d_lock);
1299 	done_seqretry(&rename_lock, seq);
1300 	return;
1301 
1302 rename_retry:
1303 	spin_unlock(&this_parent->d_lock);
1304 	rcu_read_unlock();
1305 	BUG_ON(seq & 1);
1306 	if (!retry)
1307 		return;
1308 	seq = 1;
1309 	goto again;
1310 }
1311 
1312 struct check_mount {
1313 	struct vfsmount *mnt;
1314 	unsigned int mounted;
1315 };
1316 
1317 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1318 {
1319 	struct check_mount *info = data;
1320 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1321 
1322 	if (likely(!d_mountpoint(dentry)))
1323 		return D_WALK_CONTINUE;
1324 	if (__path_is_mountpoint(&path)) {
1325 		info->mounted = 1;
1326 		return D_WALK_QUIT;
1327 	}
1328 	return D_WALK_CONTINUE;
1329 }
1330 
1331 /**
1332  * path_has_submounts - check for mounts over a dentry in the
1333  *                      current namespace.
1334  * @parent: path to check.
1335  *
1336  * Return true if the parent or its subdirectories contain
1337  * a mount point in the current namespace.
1338  */
1339 int path_has_submounts(const struct path *parent)
1340 {
1341 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1342 
1343 	read_seqlock_excl(&mount_lock);
1344 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1345 	read_sequnlock_excl(&mount_lock);
1346 
1347 	return data.mounted;
1348 }
1349 EXPORT_SYMBOL(path_has_submounts);
1350 
1351 /*
1352  * Called by mount code to set a mountpoint and check if the mountpoint is
1353  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1354  * subtree can become unreachable).
1355  *
1356  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1357  * this reason take rename_lock and d_lock on dentry and ancestors.
1358  */
1359 int d_set_mounted(struct dentry *dentry)
1360 {
1361 	struct dentry *p;
1362 	int ret = -ENOENT;
1363 	write_seqlock(&rename_lock);
1364 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1365 		/* Need exclusion wrt. d_invalidate() */
1366 		spin_lock(&p->d_lock);
1367 		if (unlikely(d_unhashed(p))) {
1368 			spin_unlock(&p->d_lock);
1369 			goto out;
1370 		}
1371 		spin_unlock(&p->d_lock);
1372 	}
1373 	spin_lock(&dentry->d_lock);
1374 	if (!d_unlinked(dentry)) {
1375 		ret = -EBUSY;
1376 		if (!d_mountpoint(dentry)) {
1377 			dentry->d_flags |= DCACHE_MOUNTED;
1378 			ret = 0;
1379 		}
1380 	}
1381  	spin_unlock(&dentry->d_lock);
1382 out:
1383 	write_sequnlock(&rename_lock);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Search the dentry child list of the specified parent,
1389  * and move any unused dentries to the end of the unused
1390  * list for prune_dcache(). We descend to the next level
1391  * whenever the d_subdirs list is non-empty and continue
1392  * searching.
1393  *
1394  * It returns zero iff there are no unused children,
1395  * otherwise  it returns the number of children moved to
1396  * the end of the unused list. This may not be the total
1397  * number of unused children, because select_parent can
1398  * drop the lock and return early due to latency
1399  * constraints.
1400  */
1401 
1402 struct select_data {
1403 	struct dentry *start;
1404 	struct list_head dispose;
1405 	int found;
1406 };
1407 
1408 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1409 {
1410 	struct select_data *data = _data;
1411 	enum d_walk_ret ret = D_WALK_CONTINUE;
1412 
1413 	if (data->start == dentry)
1414 		goto out;
1415 
1416 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1417 		data->found++;
1418 	} else {
1419 		if (dentry->d_flags & DCACHE_LRU_LIST)
1420 			d_lru_del(dentry);
1421 		if (!dentry->d_lockref.count) {
1422 			d_shrink_add(dentry, &data->dispose);
1423 			data->found++;
1424 		}
1425 	}
1426 	/*
1427 	 * We can return to the caller if we have found some (this
1428 	 * ensures forward progress). We'll be coming back to find
1429 	 * the rest.
1430 	 */
1431 	if (!list_empty(&data->dispose))
1432 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1433 out:
1434 	return ret;
1435 }
1436 
1437 /**
1438  * shrink_dcache_parent - prune dcache
1439  * @parent: parent of entries to prune
1440  *
1441  * Prune the dcache to remove unused children of the parent dentry.
1442  */
1443 void shrink_dcache_parent(struct dentry *parent)
1444 {
1445 	for (;;) {
1446 		struct select_data data;
1447 
1448 		INIT_LIST_HEAD(&data.dispose);
1449 		data.start = parent;
1450 		data.found = 0;
1451 
1452 		d_walk(parent, &data, select_collect, NULL);
1453 		if (!data.found)
1454 			break;
1455 
1456 		shrink_dentry_list(&data.dispose);
1457 		cond_resched();
1458 	}
1459 }
1460 EXPORT_SYMBOL(shrink_dcache_parent);
1461 
1462 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1463 {
1464 	/* it has busy descendents; complain about those instead */
1465 	if (!list_empty(&dentry->d_subdirs))
1466 		return D_WALK_CONTINUE;
1467 
1468 	/* root with refcount 1 is fine */
1469 	if (dentry == _data && dentry->d_lockref.count == 1)
1470 		return D_WALK_CONTINUE;
1471 
1472 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1473 			" still in use (%d) [unmount of %s %s]\n",
1474 		       dentry,
1475 		       dentry->d_inode ?
1476 		       dentry->d_inode->i_ino : 0UL,
1477 		       dentry,
1478 		       dentry->d_lockref.count,
1479 		       dentry->d_sb->s_type->name,
1480 		       dentry->d_sb->s_id);
1481 	WARN_ON(1);
1482 	return D_WALK_CONTINUE;
1483 }
1484 
1485 static void do_one_tree(struct dentry *dentry)
1486 {
1487 	shrink_dcache_parent(dentry);
1488 	d_walk(dentry, dentry, umount_check, NULL);
1489 	d_drop(dentry);
1490 	dput(dentry);
1491 }
1492 
1493 /*
1494  * destroy the dentries attached to a superblock on unmounting
1495  */
1496 void shrink_dcache_for_umount(struct super_block *sb)
1497 {
1498 	struct dentry *dentry;
1499 
1500 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1501 
1502 	dentry = sb->s_root;
1503 	sb->s_root = NULL;
1504 	do_one_tree(dentry);
1505 
1506 	while (!hlist_bl_empty(&sb->s_roots)) {
1507 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1508 		do_one_tree(dentry);
1509 	}
1510 }
1511 
1512 struct detach_data {
1513 	struct select_data select;
1514 	struct dentry *mountpoint;
1515 };
1516 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1517 {
1518 	struct detach_data *data = _data;
1519 
1520 	if (d_mountpoint(dentry)) {
1521 		__dget_dlock(dentry);
1522 		data->mountpoint = dentry;
1523 		return D_WALK_QUIT;
1524 	}
1525 
1526 	return select_collect(&data->select, dentry);
1527 }
1528 
1529 static void check_and_drop(void *_data)
1530 {
1531 	struct detach_data *data = _data;
1532 
1533 	if (!data->mountpoint && list_empty(&data->select.dispose))
1534 		__d_drop(data->select.start);
1535 }
1536 
1537 /**
1538  * d_invalidate - detach submounts, prune dcache, and drop
1539  * @dentry: dentry to invalidate (aka detach, prune and drop)
1540  *
1541  * no dcache lock.
1542  *
1543  * The final d_drop is done as an atomic operation relative to
1544  * rename_lock ensuring there are no races with d_set_mounted.  This
1545  * ensures there are no unhashed dentries on the path to a mountpoint.
1546  */
1547 void d_invalidate(struct dentry *dentry)
1548 {
1549 	/*
1550 	 * If it's already been dropped, return OK.
1551 	 */
1552 	spin_lock(&dentry->d_lock);
1553 	if (d_unhashed(dentry)) {
1554 		spin_unlock(&dentry->d_lock);
1555 		return;
1556 	}
1557 	spin_unlock(&dentry->d_lock);
1558 
1559 	/* Negative dentries can be dropped without further checks */
1560 	if (!dentry->d_inode) {
1561 		d_drop(dentry);
1562 		return;
1563 	}
1564 
1565 	for (;;) {
1566 		struct detach_data data;
1567 
1568 		data.mountpoint = NULL;
1569 		INIT_LIST_HEAD(&data.select.dispose);
1570 		data.select.start = dentry;
1571 		data.select.found = 0;
1572 
1573 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1574 
1575 		if (!list_empty(&data.select.dispose))
1576 			shrink_dentry_list(&data.select.dispose);
1577 		else if (!data.mountpoint)
1578 			return;
1579 
1580 		if (data.mountpoint) {
1581 			detach_mounts(data.mountpoint);
1582 			dput(data.mountpoint);
1583 		}
1584 		cond_resched();
1585 	}
1586 }
1587 EXPORT_SYMBOL(d_invalidate);
1588 
1589 /**
1590  * __d_alloc	-	allocate a dcache entry
1591  * @sb: filesystem it will belong to
1592  * @name: qstr of the name
1593  *
1594  * Allocates a dentry. It returns %NULL if there is insufficient memory
1595  * available. On a success the dentry is returned. The name passed in is
1596  * copied and the copy passed in may be reused after this call.
1597  */
1598 
1599 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1600 {
1601 	struct dentry *dentry;
1602 	char *dname;
1603 	int err;
1604 
1605 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1606 	if (!dentry)
1607 		return NULL;
1608 
1609 	/*
1610 	 * We guarantee that the inline name is always NUL-terminated.
1611 	 * This way the memcpy() done by the name switching in rename
1612 	 * will still always have a NUL at the end, even if we might
1613 	 * be overwriting an internal NUL character
1614 	 */
1615 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1616 	if (unlikely(!name)) {
1617 		name = &slash_name;
1618 		dname = dentry->d_iname;
1619 	} else if (name->len > DNAME_INLINE_LEN-1) {
1620 		size_t size = offsetof(struct external_name, name[1]);
1621 		struct external_name *p = kmalloc(size + name->len,
1622 						  GFP_KERNEL_ACCOUNT);
1623 		if (!p) {
1624 			kmem_cache_free(dentry_cache, dentry);
1625 			return NULL;
1626 		}
1627 		atomic_set(&p->u.count, 1);
1628 		dname = p->name;
1629 	} else  {
1630 		dname = dentry->d_iname;
1631 	}
1632 
1633 	dentry->d_name.len = name->len;
1634 	dentry->d_name.hash = name->hash;
1635 	memcpy(dname, name->name, name->len);
1636 	dname[name->len] = 0;
1637 
1638 	/* Make sure we always see the terminating NUL character */
1639 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1640 
1641 	dentry->d_lockref.count = 1;
1642 	dentry->d_flags = 0;
1643 	spin_lock_init(&dentry->d_lock);
1644 	seqcount_init(&dentry->d_seq);
1645 	dentry->d_inode = NULL;
1646 	dentry->d_parent = dentry;
1647 	dentry->d_sb = sb;
1648 	dentry->d_op = NULL;
1649 	dentry->d_fsdata = NULL;
1650 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1651 	INIT_LIST_HEAD(&dentry->d_lru);
1652 	INIT_LIST_HEAD(&dentry->d_subdirs);
1653 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1654 	INIT_LIST_HEAD(&dentry->d_child);
1655 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1656 
1657 	if (dentry->d_op && dentry->d_op->d_init) {
1658 		err = dentry->d_op->d_init(dentry);
1659 		if (err) {
1660 			if (dname_external(dentry))
1661 				kfree(external_name(dentry));
1662 			kmem_cache_free(dentry_cache, dentry);
1663 			return NULL;
1664 		}
1665 	}
1666 
1667 	this_cpu_inc(nr_dentry);
1668 
1669 	return dentry;
1670 }
1671 
1672 /**
1673  * d_alloc	-	allocate a dcache entry
1674  * @parent: parent of entry to allocate
1675  * @name: qstr of the name
1676  *
1677  * Allocates a dentry. It returns %NULL if there is insufficient memory
1678  * available. On a success the dentry is returned. The name passed in is
1679  * copied and the copy passed in may be reused after this call.
1680  */
1681 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1682 {
1683 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1684 	if (!dentry)
1685 		return NULL;
1686 	dentry->d_flags |= DCACHE_RCUACCESS;
1687 	spin_lock(&parent->d_lock);
1688 	/*
1689 	 * don't need child lock because it is not subject
1690 	 * to concurrency here
1691 	 */
1692 	__dget_dlock(parent);
1693 	dentry->d_parent = parent;
1694 	list_add(&dentry->d_child, &parent->d_subdirs);
1695 	spin_unlock(&parent->d_lock);
1696 
1697 	return dentry;
1698 }
1699 EXPORT_SYMBOL(d_alloc);
1700 
1701 struct dentry *d_alloc_anon(struct super_block *sb)
1702 {
1703 	return __d_alloc(sb, NULL);
1704 }
1705 EXPORT_SYMBOL(d_alloc_anon);
1706 
1707 struct dentry *d_alloc_cursor(struct dentry * parent)
1708 {
1709 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1710 	if (dentry) {
1711 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1712 		dentry->d_parent = dget(parent);
1713 	}
1714 	return dentry;
1715 }
1716 
1717 /**
1718  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1719  * @sb: the superblock
1720  * @name: qstr of the name
1721  *
1722  * For a filesystem that just pins its dentries in memory and never
1723  * performs lookups at all, return an unhashed IS_ROOT dentry.
1724  */
1725 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1726 {
1727 	return __d_alloc(sb, name);
1728 }
1729 EXPORT_SYMBOL(d_alloc_pseudo);
1730 
1731 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1732 {
1733 	struct qstr q;
1734 
1735 	q.name = name;
1736 	q.hash_len = hashlen_string(parent, name);
1737 	return d_alloc(parent, &q);
1738 }
1739 EXPORT_SYMBOL(d_alloc_name);
1740 
1741 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1742 {
1743 	WARN_ON_ONCE(dentry->d_op);
1744 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1745 				DCACHE_OP_COMPARE	|
1746 				DCACHE_OP_REVALIDATE	|
1747 				DCACHE_OP_WEAK_REVALIDATE	|
1748 				DCACHE_OP_DELETE	|
1749 				DCACHE_OP_REAL));
1750 	dentry->d_op = op;
1751 	if (!op)
1752 		return;
1753 	if (op->d_hash)
1754 		dentry->d_flags |= DCACHE_OP_HASH;
1755 	if (op->d_compare)
1756 		dentry->d_flags |= DCACHE_OP_COMPARE;
1757 	if (op->d_revalidate)
1758 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1759 	if (op->d_weak_revalidate)
1760 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1761 	if (op->d_delete)
1762 		dentry->d_flags |= DCACHE_OP_DELETE;
1763 	if (op->d_prune)
1764 		dentry->d_flags |= DCACHE_OP_PRUNE;
1765 	if (op->d_real)
1766 		dentry->d_flags |= DCACHE_OP_REAL;
1767 
1768 }
1769 EXPORT_SYMBOL(d_set_d_op);
1770 
1771 
1772 /*
1773  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1774  * @dentry - The dentry to mark
1775  *
1776  * Mark a dentry as falling through to the lower layer (as set with
1777  * d_pin_lower()).  This flag may be recorded on the medium.
1778  */
1779 void d_set_fallthru(struct dentry *dentry)
1780 {
1781 	spin_lock(&dentry->d_lock);
1782 	dentry->d_flags |= DCACHE_FALLTHRU;
1783 	spin_unlock(&dentry->d_lock);
1784 }
1785 EXPORT_SYMBOL(d_set_fallthru);
1786 
1787 static unsigned d_flags_for_inode(struct inode *inode)
1788 {
1789 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1790 
1791 	if (!inode)
1792 		return DCACHE_MISS_TYPE;
1793 
1794 	if (S_ISDIR(inode->i_mode)) {
1795 		add_flags = DCACHE_DIRECTORY_TYPE;
1796 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1797 			if (unlikely(!inode->i_op->lookup))
1798 				add_flags = DCACHE_AUTODIR_TYPE;
1799 			else
1800 				inode->i_opflags |= IOP_LOOKUP;
1801 		}
1802 		goto type_determined;
1803 	}
1804 
1805 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1806 		if (unlikely(inode->i_op->get_link)) {
1807 			add_flags = DCACHE_SYMLINK_TYPE;
1808 			goto type_determined;
1809 		}
1810 		inode->i_opflags |= IOP_NOFOLLOW;
1811 	}
1812 
1813 	if (unlikely(!S_ISREG(inode->i_mode)))
1814 		add_flags = DCACHE_SPECIAL_TYPE;
1815 
1816 type_determined:
1817 	if (unlikely(IS_AUTOMOUNT(inode)))
1818 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1819 	return add_flags;
1820 }
1821 
1822 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1823 {
1824 	unsigned add_flags = d_flags_for_inode(inode);
1825 	WARN_ON(d_in_lookup(dentry));
1826 
1827 	spin_lock(&dentry->d_lock);
1828 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1829 	raw_write_seqcount_begin(&dentry->d_seq);
1830 	__d_set_inode_and_type(dentry, inode, add_flags);
1831 	raw_write_seqcount_end(&dentry->d_seq);
1832 	fsnotify_update_flags(dentry);
1833 	spin_unlock(&dentry->d_lock);
1834 }
1835 
1836 /**
1837  * d_instantiate - fill in inode information for a dentry
1838  * @entry: dentry to complete
1839  * @inode: inode to attach to this dentry
1840  *
1841  * Fill in inode information in the entry.
1842  *
1843  * This turns negative dentries into productive full members
1844  * of society.
1845  *
1846  * NOTE! This assumes that the inode count has been incremented
1847  * (or otherwise set) by the caller to indicate that it is now
1848  * in use by the dcache.
1849  */
1850 
1851 void d_instantiate(struct dentry *entry, struct inode * inode)
1852 {
1853 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1854 	if (inode) {
1855 		security_d_instantiate(entry, inode);
1856 		spin_lock(&inode->i_lock);
1857 		__d_instantiate(entry, inode);
1858 		spin_unlock(&inode->i_lock);
1859 	}
1860 }
1861 EXPORT_SYMBOL(d_instantiate);
1862 
1863 /**
1864  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1865  * @entry: dentry to complete
1866  * @inode: inode to attach to this dentry
1867  *
1868  * Fill in inode information in the entry.  If a directory alias is found, then
1869  * return an error (and drop inode).  Together with d_materialise_unique() this
1870  * guarantees that a directory inode may never have more than one alias.
1871  */
1872 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1873 {
1874 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1875 
1876 	security_d_instantiate(entry, inode);
1877 	spin_lock(&inode->i_lock);
1878 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1879 		spin_unlock(&inode->i_lock);
1880 		iput(inode);
1881 		return -EBUSY;
1882 	}
1883 	__d_instantiate(entry, inode);
1884 	spin_unlock(&inode->i_lock);
1885 
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL(d_instantiate_no_diralias);
1889 
1890 struct dentry *d_make_root(struct inode *root_inode)
1891 {
1892 	struct dentry *res = NULL;
1893 
1894 	if (root_inode) {
1895 		res = d_alloc_anon(root_inode->i_sb);
1896 		if (res)
1897 			d_instantiate(res, root_inode);
1898 		else
1899 			iput(root_inode);
1900 	}
1901 	return res;
1902 }
1903 EXPORT_SYMBOL(d_make_root);
1904 
1905 static struct dentry * __d_find_any_alias(struct inode *inode)
1906 {
1907 	struct dentry *alias;
1908 
1909 	if (hlist_empty(&inode->i_dentry))
1910 		return NULL;
1911 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1912 	__dget(alias);
1913 	return alias;
1914 }
1915 
1916 /**
1917  * d_find_any_alias - find any alias for a given inode
1918  * @inode: inode to find an alias for
1919  *
1920  * If any aliases exist for the given inode, take and return a
1921  * reference for one of them.  If no aliases exist, return %NULL.
1922  */
1923 struct dentry *d_find_any_alias(struct inode *inode)
1924 {
1925 	struct dentry *de;
1926 
1927 	spin_lock(&inode->i_lock);
1928 	de = __d_find_any_alias(inode);
1929 	spin_unlock(&inode->i_lock);
1930 	return de;
1931 }
1932 EXPORT_SYMBOL(d_find_any_alias);
1933 
1934 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1935 					   struct inode *inode,
1936 					   bool disconnected)
1937 {
1938 	struct dentry *res;
1939 	unsigned add_flags;
1940 
1941 	security_d_instantiate(dentry, inode);
1942 	spin_lock(&inode->i_lock);
1943 	res = __d_find_any_alias(inode);
1944 	if (res) {
1945 		spin_unlock(&inode->i_lock);
1946 		dput(dentry);
1947 		goto out_iput;
1948 	}
1949 
1950 	/* attach a disconnected dentry */
1951 	add_flags = d_flags_for_inode(inode);
1952 
1953 	if (disconnected)
1954 		add_flags |= DCACHE_DISCONNECTED;
1955 
1956 	spin_lock(&dentry->d_lock);
1957 	__d_set_inode_and_type(dentry, inode, add_flags);
1958 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1959 	if (!disconnected) {
1960 		hlist_bl_lock(&dentry->d_sb->s_roots);
1961 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1962 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1963 	}
1964 	spin_unlock(&dentry->d_lock);
1965 	spin_unlock(&inode->i_lock);
1966 
1967 	return dentry;
1968 
1969  out_iput:
1970 	iput(inode);
1971 	return res;
1972 }
1973 
1974 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1975 {
1976 	return __d_instantiate_anon(dentry, inode, true);
1977 }
1978 EXPORT_SYMBOL(d_instantiate_anon);
1979 
1980 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1981 {
1982 	struct dentry *tmp;
1983 	struct dentry *res;
1984 
1985 	if (!inode)
1986 		return ERR_PTR(-ESTALE);
1987 	if (IS_ERR(inode))
1988 		return ERR_CAST(inode);
1989 
1990 	res = d_find_any_alias(inode);
1991 	if (res)
1992 		goto out_iput;
1993 
1994 	tmp = d_alloc_anon(inode->i_sb);
1995 	if (!tmp) {
1996 		res = ERR_PTR(-ENOMEM);
1997 		goto out_iput;
1998 	}
1999 
2000 	return __d_instantiate_anon(tmp, inode, disconnected);
2001 
2002 out_iput:
2003 	iput(inode);
2004 	return res;
2005 }
2006 
2007 /**
2008  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2009  * @inode: inode to allocate the dentry for
2010  *
2011  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2012  * similar open by handle operations.  The returned dentry may be anonymous,
2013  * or may have a full name (if the inode was already in the cache).
2014  *
2015  * When called on a directory inode, we must ensure that the inode only ever
2016  * has one dentry.  If a dentry is found, that is returned instead of
2017  * allocating a new one.
2018  *
2019  * On successful return, the reference to the inode has been transferred
2020  * to the dentry.  In case of an error the reference on the inode is released.
2021  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2022  * be passed in and the error will be propagated to the return value,
2023  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2024  */
2025 struct dentry *d_obtain_alias(struct inode *inode)
2026 {
2027 	return __d_obtain_alias(inode, true);
2028 }
2029 EXPORT_SYMBOL(d_obtain_alias);
2030 
2031 /**
2032  * d_obtain_root - find or allocate a dentry for a given inode
2033  * @inode: inode to allocate the dentry for
2034  *
2035  * Obtain an IS_ROOT dentry for the root of a filesystem.
2036  *
2037  * We must ensure that directory inodes only ever have one dentry.  If a
2038  * dentry is found, that is returned instead of allocating a new one.
2039  *
2040  * On successful return, the reference to the inode has been transferred
2041  * to the dentry.  In case of an error the reference on the inode is
2042  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2043  * error will be propagate to the return value, with a %NULL @inode
2044  * replaced by ERR_PTR(-ESTALE).
2045  */
2046 struct dentry *d_obtain_root(struct inode *inode)
2047 {
2048 	return __d_obtain_alias(inode, false);
2049 }
2050 EXPORT_SYMBOL(d_obtain_root);
2051 
2052 /**
2053  * d_add_ci - lookup or allocate new dentry with case-exact name
2054  * @inode:  the inode case-insensitive lookup has found
2055  * @dentry: the negative dentry that was passed to the parent's lookup func
2056  * @name:   the case-exact name to be associated with the returned dentry
2057  *
2058  * This is to avoid filling the dcache with case-insensitive names to the
2059  * same inode, only the actual correct case is stored in the dcache for
2060  * case-insensitive filesystems.
2061  *
2062  * For a case-insensitive lookup match and if the the case-exact dentry
2063  * already exists in in the dcache, use it and return it.
2064  *
2065  * If no entry exists with the exact case name, allocate new dentry with
2066  * the exact case, and return the spliced entry.
2067  */
2068 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2069 			struct qstr *name)
2070 {
2071 	struct dentry *found, *res;
2072 
2073 	/*
2074 	 * First check if a dentry matching the name already exists,
2075 	 * if not go ahead and create it now.
2076 	 */
2077 	found = d_hash_and_lookup(dentry->d_parent, name);
2078 	if (found) {
2079 		iput(inode);
2080 		return found;
2081 	}
2082 	if (d_in_lookup(dentry)) {
2083 		found = d_alloc_parallel(dentry->d_parent, name,
2084 					dentry->d_wait);
2085 		if (IS_ERR(found) || !d_in_lookup(found)) {
2086 			iput(inode);
2087 			return found;
2088 		}
2089 	} else {
2090 		found = d_alloc(dentry->d_parent, name);
2091 		if (!found) {
2092 			iput(inode);
2093 			return ERR_PTR(-ENOMEM);
2094 		}
2095 	}
2096 	res = d_splice_alias(inode, found);
2097 	if (res) {
2098 		dput(found);
2099 		return res;
2100 	}
2101 	return found;
2102 }
2103 EXPORT_SYMBOL(d_add_ci);
2104 
2105 
2106 static inline bool d_same_name(const struct dentry *dentry,
2107 				const struct dentry *parent,
2108 				const struct qstr *name)
2109 {
2110 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2111 		if (dentry->d_name.len != name->len)
2112 			return false;
2113 		return dentry_cmp(dentry, name->name, name->len) == 0;
2114 	}
2115 	return parent->d_op->d_compare(dentry,
2116 				       dentry->d_name.len, dentry->d_name.name,
2117 				       name) == 0;
2118 }
2119 
2120 /**
2121  * __d_lookup_rcu - search for a dentry (racy, store-free)
2122  * @parent: parent dentry
2123  * @name: qstr of name we wish to find
2124  * @seqp: returns d_seq value at the point where the dentry was found
2125  * Returns: dentry, or NULL
2126  *
2127  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2128  * resolution (store-free path walking) design described in
2129  * Documentation/filesystems/path-lookup.txt.
2130  *
2131  * This is not to be used outside core vfs.
2132  *
2133  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2134  * held, and rcu_read_lock held. The returned dentry must not be stored into
2135  * without taking d_lock and checking d_seq sequence count against @seq
2136  * returned here.
2137  *
2138  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2139  * function.
2140  *
2141  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2142  * the returned dentry, so long as its parent's seqlock is checked after the
2143  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2144  * is formed, giving integrity down the path walk.
2145  *
2146  * NOTE! The caller *has* to check the resulting dentry against the sequence
2147  * number we've returned before using any of the resulting dentry state!
2148  */
2149 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2150 				const struct qstr *name,
2151 				unsigned *seqp)
2152 {
2153 	u64 hashlen = name->hash_len;
2154 	const unsigned char *str = name->name;
2155 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2156 	struct hlist_bl_node *node;
2157 	struct dentry *dentry;
2158 
2159 	/*
2160 	 * Note: There is significant duplication with __d_lookup_rcu which is
2161 	 * required to prevent single threaded performance regressions
2162 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2163 	 * Keep the two functions in sync.
2164 	 */
2165 
2166 	/*
2167 	 * The hash list is protected using RCU.
2168 	 *
2169 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2170 	 * races with d_move().
2171 	 *
2172 	 * It is possible that concurrent renames can mess up our list
2173 	 * walk here and result in missing our dentry, resulting in the
2174 	 * false-negative result. d_lookup() protects against concurrent
2175 	 * renames using rename_lock seqlock.
2176 	 *
2177 	 * See Documentation/filesystems/path-lookup.txt for more details.
2178 	 */
2179 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2180 		unsigned seq;
2181 
2182 seqretry:
2183 		/*
2184 		 * The dentry sequence count protects us from concurrent
2185 		 * renames, and thus protects parent and name fields.
2186 		 *
2187 		 * The caller must perform a seqcount check in order
2188 		 * to do anything useful with the returned dentry.
2189 		 *
2190 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2191 		 * we don't wait for the sequence count to stabilize if it
2192 		 * is in the middle of a sequence change. If we do the slow
2193 		 * dentry compare, we will do seqretries until it is stable,
2194 		 * and if we end up with a successful lookup, we actually
2195 		 * want to exit RCU lookup anyway.
2196 		 *
2197 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2198 		 * we are still guaranteed NUL-termination of ->d_name.name.
2199 		 */
2200 		seq = raw_seqcount_begin(&dentry->d_seq);
2201 		if (dentry->d_parent != parent)
2202 			continue;
2203 		if (d_unhashed(dentry))
2204 			continue;
2205 
2206 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2207 			int tlen;
2208 			const char *tname;
2209 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2210 				continue;
2211 			tlen = dentry->d_name.len;
2212 			tname = dentry->d_name.name;
2213 			/* we want a consistent (name,len) pair */
2214 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2215 				cpu_relax();
2216 				goto seqretry;
2217 			}
2218 			if (parent->d_op->d_compare(dentry,
2219 						    tlen, tname, name) != 0)
2220 				continue;
2221 		} else {
2222 			if (dentry->d_name.hash_len != hashlen)
2223 				continue;
2224 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2225 				continue;
2226 		}
2227 		*seqp = seq;
2228 		return dentry;
2229 	}
2230 	return NULL;
2231 }
2232 
2233 /**
2234  * d_lookup - search for a dentry
2235  * @parent: parent dentry
2236  * @name: qstr of name we wish to find
2237  * Returns: dentry, or NULL
2238  *
2239  * d_lookup searches the children of the parent dentry for the name in
2240  * question. If the dentry is found its reference count is incremented and the
2241  * dentry is returned. The caller must use dput to free the entry when it has
2242  * finished using it. %NULL is returned if the dentry does not exist.
2243  */
2244 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2245 {
2246 	struct dentry *dentry;
2247 	unsigned seq;
2248 
2249 	do {
2250 		seq = read_seqbegin(&rename_lock);
2251 		dentry = __d_lookup(parent, name);
2252 		if (dentry)
2253 			break;
2254 	} while (read_seqretry(&rename_lock, seq));
2255 	return dentry;
2256 }
2257 EXPORT_SYMBOL(d_lookup);
2258 
2259 /**
2260  * __d_lookup - search for a dentry (racy)
2261  * @parent: parent dentry
2262  * @name: qstr of name we wish to find
2263  * Returns: dentry, or NULL
2264  *
2265  * __d_lookup is like d_lookup, however it may (rarely) return a
2266  * false-negative result due to unrelated rename activity.
2267  *
2268  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2269  * however it must be used carefully, eg. with a following d_lookup in
2270  * the case of failure.
2271  *
2272  * __d_lookup callers must be commented.
2273  */
2274 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2275 {
2276 	unsigned int hash = name->hash;
2277 	struct hlist_bl_head *b = d_hash(hash);
2278 	struct hlist_bl_node *node;
2279 	struct dentry *found = NULL;
2280 	struct dentry *dentry;
2281 
2282 	/*
2283 	 * Note: There is significant duplication with __d_lookup_rcu which is
2284 	 * required to prevent single threaded performance regressions
2285 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2286 	 * Keep the two functions in sync.
2287 	 */
2288 
2289 	/*
2290 	 * The hash list is protected using RCU.
2291 	 *
2292 	 * Take d_lock when comparing a candidate dentry, to avoid races
2293 	 * with d_move().
2294 	 *
2295 	 * It is possible that concurrent renames can mess up our list
2296 	 * walk here and result in missing our dentry, resulting in the
2297 	 * false-negative result. d_lookup() protects against concurrent
2298 	 * renames using rename_lock seqlock.
2299 	 *
2300 	 * See Documentation/filesystems/path-lookup.txt for more details.
2301 	 */
2302 	rcu_read_lock();
2303 
2304 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2305 
2306 		if (dentry->d_name.hash != hash)
2307 			continue;
2308 
2309 		spin_lock(&dentry->d_lock);
2310 		if (dentry->d_parent != parent)
2311 			goto next;
2312 		if (d_unhashed(dentry))
2313 			goto next;
2314 
2315 		if (!d_same_name(dentry, parent, name))
2316 			goto next;
2317 
2318 		dentry->d_lockref.count++;
2319 		found = dentry;
2320 		spin_unlock(&dentry->d_lock);
2321 		break;
2322 next:
2323 		spin_unlock(&dentry->d_lock);
2324  	}
2325  	rcu_read_unlock();
2326 
2327  	return found;
2328 }
2329 
2330 /**
2331  * d_hash_and_lookup - hash the qstr then search for a dentry
2332  * @dir: Directory to search in
2333  * @name: qstr of name we wish to find
2334  *
2335  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2336  */
2337 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2338 {
2339 	/*
2340 	 * Check for a fs-specific hash function. Note that we must
2341 	 * calculate the standard hash first, as the d_op->d_hash()
2342 	 * routine may choose to leave the hash value unchanged.
2343 	 */
2344 	name->hash = full_name_hash(dir, name->name, name->len);
2345 	if (dir->d_flags & DCACHE_OP_HASH) {
2346 		int err = dir->d_op->d_hash(dir, name);
2347 		if (unlikely(err < 0))
2348 			return ERR_PTR(err);
2349 	}
2350 	return d_lookup(dir, name);
2351 }
2352 EXPORT_SYMBOL(d_hash_and_lookup);
2353 
2354 /*
2355  * When a file is deleted, we have two options:
2356  * - turn this dentry into a negative dentry
2357  * - unhash this dentry and free it.
2358  *
2359  * Usually, we want to just turn this into
2360  * a negative dentry, but if anybody else is
2361  * currently using the dentry or the inode
2362  * we can't do that and we fall back on removing
2363  * it from the hash queues and waiting for
2364  * it to be deleted later when it has no users
2365  */
2366 
2367 /**
2368  * d_delete - delete a dentry
2369  * @dentry: The dentry to delete
2370  *
2371  * Turn the dentry into a negative dentry if possible, otherwise
2372  * remove it from the hash queues so it can be deleted later
2373  */
2374 
2375 void d_delete(struct dentry * dentry)
2376 {
2377 	struct inode *inode;
2378 	int isdir = 0;
2379 	/*
2380 	 * Are we the only user?
2381 	 */
2382 again:
2383 	spin_lock(&dentry->d_lock);
2384 	inode = dentry->d_inode;
2385 	isdir = S_ISDIR(inode->i_mode);
2386 	if (dentry->d_lockref.count == 1) {
2387 		if (!spin_trylock(&inode->i_lock)) {
2388 			spin_unlock(&dentry->d_lock);
2389 			cpu_relax();
2390 			goto again;
2391 		}
2392 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2393 		dentry_unlink_inode(dentry);
2394 		fsnotify_nameremove(dentry, isdir);
2395 		return;
2396 	}
2397 
2398 	if (!d_unhashed(dentry))
2399 		__d_drop(dentry);
2400 
2401 	spin_unlock(&dentry->d_lock);
2402 
2403 	fsnotify_nameremove(dentry, isdir);
2404 }
2405 EXPORT_SYMBOL(d_delete);
2406 
2407 static void __d_rehash(struct dentry *entry)
2408 {
2409 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2410 
2411 	hlist_bl_lock(b);
2412 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2413 	hlist_bl_unlock(b);
2414 }
2415 
2416 /**
2417  * d_rehash	- add an entry back to the hash
2418  * @entry: dentry to add to the hash
2419  *
2420  * Adds a dentry to the hash according to its name.
2421  */
2422 
2423 void d_rehash(struct dentry * entry)
2424 {
2425 	spin_lock(&entry->d_lock);
2426 	__d_rehash(entry);
2427 	spin_unlock(&entry->d_lock);
2428 }
2429 EXPORT_SYMBOL(d_rehash);
2430 
2431 static inline unsigned start_dir_add(struct inode *dir)
2432 {
2433 
2434 	for (;;) {
2435 		unsigned n = dir->i_dir_seq;
2436 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437 			return n;
2438 		cpu_relax();
2439 	}
2440 }
2441 
2442 static inline void end_dir_add(struct inode *dir, unsigned n)
2443 {
2444 	smp_store_release(&dir->i_dir_seq, n + 2);
2445 }
2446 
2447 static void d_wait_lookup(struct dentry *dentry)
2448 {
2449 	if (d_in_lookup(dentry)) {
2450 		DECLARE_WAITQUEUE(wait, current);
2451 		add_wait_queue(dentry->d_wait, &wait);
2452 		do {
2453 			set_current_state(TASK_UNINTERRUPTIBLE);
2454 			spin_unlock(&dentry->d_lock);
2455 			schedule();
2456 			spin_lock(&dentry->d_lock);
2457 		} while (d_in_lookup(dentry));
2458 	}
2459 }
2460 
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462 				const struct qstr *name,
2463 				wait_queue_head_t *wq)
2464 {
2465 	unsigned int hash = name->hash;
2466 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467 	struct hlist_bl_node *node;
2468 	struct dentry *new = d_alloc(parent, name);
2469 	struct dentry *dentry;
2470 	unsigned seq, r_seq, d_seq;
2471 
2472 	if (unlikely(!new))
2473 		return ERR_PTR(-ENOMEM);
2474 
2475 retry:
2476 	rcu_read_lock();
2477 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2478 	r_seq = read_seqbegin(&rename_lock);
2479 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2480 	if (unlikely(dentry)) {
2481 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482 			rcu_read_unlock();
2483 			goto retry;
2484 		}
2485 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486 			rcu_read_unlock();
2487 			dput(dentry);
2488 			goto retry;
2489 		}
2490 		rcu_read_unlock();
2491 		dput(new);
2492 		return dentry;
2493 	}
2494 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495 		rcu_read_unlock();
2496 		goto retry;
2497 	}
2498 	hlist_bl_lock(b);
2499 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2500 		hlist_bl_unlock(b);
2501 		rcu_read_unlock();
2502 		goto retry;
2503 	}
2504 	/*
2505 	 * No changes for the parent since the beginning of d_lookup().
2506 	 * Since all removals from the chain happen with hlist_bl_lock(),
2507 	 * any potential in-lookup matches are going to stay here until
2508 	 * we unlock the chain.  All fields are stable in everything
2509 	 * we encounter.
2510 	 */
2511 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2512 		if (dentry->d_name.hash != hash)
2513 			continue;
2514 		if (dentry->d_parent != parent)
2515 			continue;
2516 		if (!d_same_name(dentry, parent, name))
2517 			continue;
2518 		hlist_bl_unlock(b);
2519 		/* now we can try to grab a reference */
2520 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521 			rcu_read_unlock();
2522 			goto retry;
2523 		}
2524 
2525 		rcu_read_unlock();
2526 		/*
2527 		 * somebody is likely to be still doing lookup for it;
2528 		 * wait for them to finish
2529 		 */
2530 		spin_lock(&dentry->d_lock);
2531 		d_wait_lookup(dentry);
2532 		/*
2533 		 * it's not in-lookup anymore; in principle we should repeat
2534 		 * everything from dcache lookup, but it's likely to be what
2535 		 * d_lookup() would've found anyway.  If it is, just return it;
2536 		 * otherwise we really have to repeat the whole thing.
2537 		 */
2538 		if (unlikely(dentry->d_name.hash != hash))
2539 			goto mismatch;
2540 		if (unlikely(dentry->d_parent != parent))
2541 			goto mismatch;
2542 		if (unlikely(d_unhashed(dentry)))
2543 			goto mismatch;
2544 		if (unlikely(!d_same_name(dentry, parent, name)))
2545 			goto mismatch;
2546 		/* OK, it *is* a hashed match; return it */
2547 		spin_unlock(&dentry->d_lock);
2548 		dput(new);
2549 		return dentry;
2550 	}
2551 	rcu_read_unlock();
2552 	/* we can't take ->d_lock here; it's OK, though. */
2553 	new->d_flags |= DCACHE_PAR_LOOKUP;
2554 	new->d_wait = wq;
2555 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2556 	hlist_bl_unlock(b);
2557 	return new;
2558 mismatch:
2559 	spin_unlock(&dentry->d_lock);
2560 	dput(dentry);
2561 	goto retry;
2562 }
2563 EXPORT_SYMBOL(d_alloc_parallel);
2564 
2565 void __d_lookup_done(struct dentry *dentry)
2566 {
2567 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2568 						 dentry->d_name.hash);
2569 	hlist_bl_lock(b);
2570 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2571 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2572 	wake_up_all(dentry->d_wait);
2573 	dentry->d_wait = NULL;
2574 	hlist_bl_unlock(b);
2575 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2576 	INIT_LIST_HEAD(&dentry->d_lru);
2577 }
2578 EXPORT_SYMBOL(__d_lookup_done);
2579 
2580 /* inode->i_lock held if inode is non-NULL */
2581 
2582 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2583 {
2584 	struct inode *dir = NULL;
2585 	unsigned n;
2586 	spin_lock(&dentry->d_lock);
2587 	if (unlikely(d_in_lookup(dentry))) {
2588 		dir = dentry->d_parent->d_inode;
2589 		n = start_dir_add(dir);
2590 		__d_lookup_done(dentry);
2591 	}
2592 	if (inode) {
2593 		unsigned add_flags = d_flags_for_inode(inode);
2594 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2595 		raw_write_seqcount_begin(&dentry->d_seq);
2596 		__d_set_inode_and_type(dentry, inode, add_flags);
2597 		raw_write_seqcount_end(&dentry->d_seq);
2598 		fsnotify_update_flags(dentry);
2599 	}
2600 	__d_rehash(dentry);
2601 	if (dir)
2602 		end_dir_add(dir, n);
2603 	spin_unlock(&dentry->d_lock);
2604 	if (inode)
2605 		spin_unlock(&inode->i_lock);
2606 }
2607 
2608 /**
2609  * d_add - add dentry to hash queues
2610  * @entry: dentry to add
2611  * @inode: The inode to attach to this dentry
2612  *
2613  * This adds the entry to the hash queues and initializes @inode.
2614  * The entry was actually filled in earlier during d_alloc().
2615  */
2616 
2617 void d_add(struct dentry *entry, struct inode *inode)
2618 {
2619 	if (inode) {
2620 		security_d_instantiate(entry, inode);
2621 		spin_lock(&inode->i_lock);
2622 	}
2623 	__d_add(entry, inode);
2624 }
2625 EXPORT_SYMBOL(d_add);
2626 
2627 /**
2628  * d_exact_alias - find and hash an exact unhashed alias
2629  * @entry: dentry to add
2630  * @inode: The inode to go with this dentry
2631  *
2632  * If an unhashed dentry with the same name/parent and desired
2633  * inode already exists, hash and return it.  Otherwise, return
2634  * NULL.
2635  *
2636  * Parent directory should be locked.
2637  */
2638 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2639 {
2640 	struct dentry *alias;
2641 	unsigned int hash = entry->d_name.hash;
2642 
2643 	spin_lock(&inode->i_lock);
2644 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2645 		/*
2646 		 * Don't need alias->d_lock here, because aliases with
2647 		 * d_parent == entry->d_parent are not subject to name or
2648 		 * parent changes, because the parent inode i_mutex is held.
2649 		 */
2650 		if (alias->d_name.hash != hash)
2651 			continue;
2652 		if (alias->d_parent != entry->d_parent)
2653 			continue;
2654 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2655 			continue;
2656 		spin_lock(&alias->d_lock);
2657 		if (!d_unhashed(alias)) {
2658 			spin_unlock(&alias->d_lock);
2659 			alias = NULL;
2660 		} else {
2661 			__dget_dlock(alias);
2662 			__d_rehash(alias);
2663 			spin_unlock(&alias->d_lock);
2664 		}
2665 		spin_unlock(&inode->i_lock);
2666 		return alias;
2667 	}
2668 	spin_unlock(&inode->i_lock);
2669 	return NULL;
2670 }
2671 EXPORT_SYMBOL(d_exact_alias);
2672 
2673 /**
2674  * dentry_update_name_case - update case insensitive dentry with a new name
2675  * @dentry: dentry to be updated
2676  * @name: new name
2677  *
2678  * Update a case insensitive dentry with new case of name.
2679  *
2680  * dentry must have been returned by d_lookup with name @name. Old and new
2681  * name lengths must match (ie. no d_compare which allows mismatched name
2682  * lengths).
2683  *
2684  * Parent inode i_mutex must be held over d_lookup and into this call (to
2685  * keep renames and concurrent inserts, and readdir(2) away).
2686  */
2687 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2688 {
2689 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2690 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2691 
2692 	spin_lock(&dentry->d_lock);
2693 	write_seqcount_begin(&dentry->d_seq);
2694 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2695 	write_seqcount_end(&dentry->d_seq);
2696 	spin_unlock(&dentry->d_lock);
2697 }
2698 EXPORT_SYMBOL(dentry_update_name_case);
2699 
2700 static void swap_names(struct dentry *dentry, struct dentry *target)
2701 {
2702 	if (unlikely(dname_external(target))) {
2703 		if (unlikely(dname_external(dentry))) {
2704 			/*
2705 			 * Both external: swap the pointers
2706 			 */
2707 			swap(target->d_name.name, dentry->d_name.name);
2708 		} else {
2709 			/*
2710 			 * dentry:internal, target:external.  Steal target's
2711 			 * storage and make target internal.
2712 			 */
2713 			memcpy(target->d_iname, dentry->d_name.name,
2714 					dentry->d_name.len + 1);
2715 			dentry->d_name.name = target->d_name.name;
2716 			target->d_name.name = target->d_iname;
2717 		}
2718 	} else {
2719 		if (unlikely(dname_external(dentry))) {
2720 			/*
2721 			 * dentry:external, target:internal.  Give dentry's
2722 			 * storage to target and make dentry internal
2723 			 */
2724 			memcpy(dentry->d_iname, target->d_name.name,
2725 					target->d_name.len + 1);
2726 			target->d_name.name = dentry->d_name.name;
2727 			dentry->d_name.name = dentry->d_iname;
2728 		} else {
2729 			/*
2730 			 * Both are internal.
2731 			 */
2732 			unsigned int i;
2733 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2734 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2735 				swap(((long *) &dentry->d_iname)[i],
2736 				     ((long *) &target->d_iname)[i]);
2737 			}
2738 		}
2739 	}
2740 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2741 }
2742 
2743 static void copy_name(struct dentry *dentry, struct dentry *target)
2744 {
2745 	struct external_name *old_name = NULL;
2746 	if (unlikely(dname_external(dentry)))
2747 		old_name = external_name(dentry);
2748 	if (unlikely(dname_external(target))) {
2749 		atomic_inc(&external_name(target)->u.count);
2750 		dentry->d_name = target->d_name;
2751 	} else {
2752 		memcpy(dentry->d_iname, target->d_name.name,
2753 				target->d_name.len + 1);
2754 		dentry->d_name.name = dentry->d_iname;
2755 		dentry->d_name.hash_len = target->d_name.hash_len;
2756 	}
2757 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2758 		kfree_rcu(old_name, u.head);
2759 }
2760 
2761 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2762 {
2763 	/*
2764 	 * XXXX: do we really need to take target->d_lock?
2765 	 */
2766 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2767 		spin_lock(&target->d_parent->d_lock);
2768 	else {
2769 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2770 			spin_lock(&dentry->d_parent->d_lock);
2771 			spin_lock_nested(&target->d_parent->d_lock,
2772 						DENTRY_D_LOCK_NESTED);
2773 		} else {
2774 			spin_lock(&target->d_parent->d_lock);
2775 			spin_lock_nested(&dentry->d_parent->d_lock,
2776 						DENTRY_D_LOCK_NESTED);
2777 		}
2778 	}
2779 	if (target < dentry) {
2780 		spin_lock_nested(&target->d_lock, 2);
2781 		spin_lock_nested(&dentry->d_lock, 3);
2782 	} else {
2783 		spin_lock_nested(&dentry->d_lock, 2);
2784 		spin_lock_nested(&target->d_lock, 3);
2785 	}
2786 }
2787 
2788 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2789 {
2790 	if (target->d_parent != dentry->d_parent)
2791 		spin_unlock(&dentry->d_parent->d_lock);
2792 	if (target->d_parent != target)
2793 		spin_unlock(&target->d_parent->d_lock);
2794 	spin_unlock(&target->d_lock);
2795 	spin_unlock(&dentry->d_lock);
2796 }
2797 
2798 /*
2799  * When switching names, the actual string doesn't strictly have to
2800  * be preserved in the target - because we're dropping the target
2801  * anyway. As such, we can just do a simple memcpy() to copy over
2802  * the new name before we switch, unless we are going to rehash
2803  * it.  Note that if we *do* unhash the target, we are not allowed
2804  * to rehash it without giving it a new name/hash key - whether
2805  * we swap or overwrite the names here, resulting name won't match
2806  * the reality in filesystem; it's only there for d_path() purposes.
2807  * Note that all of this is happening under rename_lock, so the
2808  * any hash lookup seeing it in the middle of manipulations will
2809  * be discarded anyway.  So we do not care what happens to the hash
2810  * key in that case.
2811  */
2812 /*
2813  * __d_move - move a dentry
2814  * @dentry: entry to move
2815  * @target: new dentry
2816  * @exchange: exchange the two dentries
2817  *
2818  * Update the dcache to reflect the move of a file name. Negative
2819  * dcache entries should not be moved in this way. Caller must hold
2820  * rename_lock, the i_mutex of the source and target directories,
2821  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2822  */
2823 static void __d_move(struct dentry *dentry, struct dentry *target,
2824 		     bool exchange)
2825 {
2826 	struct inode *dir = NULL;
2827 	unsigned n;
2828 	if (!dentry->d_inode)
2829 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2830 
2831 	BUG_ON(d_ancestor(dentry, target));
2832 	BUG_ON(d_ancestor(target, dentry));
2833 
2834 	dentry_lock_for_move(dentry, target);
2835 	if (unlikely(d_in_lookup(target))) {
2836 		dir = target->d_parent->d_inode;
2837 		n = start_dir_add(dir);
2838 		__d_lookup_done(target);
2839 	}
2840 
2841 	write_seqcount_begin(&dentry->d_seq);
2842 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2843 
2844 	/* unhash both */
2845 	/* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2846 	___d_drop(dentry);
2847 	___d_drop(target);
2848 
2849 	/* Switch the names.. */
2850 	if (exchange)
2851 		swap_names(dentry, target);
2852 	else
2853 		copy_name(dentry, target);
2854 
2855 	/* rehash in new place(s) */
2856 	__d_rehash(dentry);
2857 	if (exchange)
2858 		__d_rehash(target);
2859 	else
2860 		target->d_hash.pprev = NULL;
2861 
2862 	/* ... and switch them in the tree */
2863 	if (IS_ROOT(dentry)) {
2864 		/* splicing a tree */
2865 		dentry->d_flags |= DCACHE_RCUACCESS;
2866 		dentry->d_parent = target->d_parent;
2867 		target->d_parent = target;
2868 		list_del_init(&target->d_child);
2869 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2870 	} else {
2871 		/* swapping two dentries */
2872 		swap(dentry->d_parent, target->d_parent);
2873 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2874 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2875 		if (exchange)
2876 			fsnotify_update_flags(target);
2877 		fsnotify_update_flags(dentry);
2878 	}
2879 
2880 	write_seqcount_end(&target->d_seq);
2881 	write_seqcount_end(&dentry->d_seq);
2882 
2883 	if (dir)
2884 		end_dir_add(dir, n);
2885 	dentry_unlock_for_move(dentry, target);
2886 }
2887 
2888 /*
2889  * d_move - move a dentry
2890  * @dentry: entry to move
2891  * @target: new dentry
2892  *
2893  * Update the dcache to reflect the move of a file name. Negative
2894  * dcache entries should not be moved in this way. See the locking
2895  * requirements for __d_move.
2896  */
2897 void d_move(struct dentry *dentry, struct dentry *target)
2898 {
2899 	write_seqlock(&rename_lock);
2900 	__d_move(dentry, target, false);
2901 	write_sequnlock(&rename_lock);
2902 }
2903 EXPORT_SYMBOL(d_move);
2904 
2905 /*
2906  * d_exchange - exchange two dentries
2907  * @dentry1: first dentry
2908  * @dentry2: second dentry
2909  */
2910 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2911 {
2912 	write_seqlock(&rename_lock);
2913 
2914 	WARN_ON(!dentry1->d_inode);
2915 	WARN_ON(!dentry2->d_inode);
2916 	WARN_ON(IS_ROOT(dentry1));
2917 	WARN_ON(IS_ROOT(dentry2));
2918 
2919 	__d_move(dentry1, dentry2, true);
2920 
2921 	write_sequnlock(&rename_lock);
2922 }
2923 
2924 /**
2925  * d_ancestor - search for an ancestor
2926  * @p1: ancestor dentry
2927  * @p2: child dentry
2928  *
2929  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2930  * an ancestor of p2, else NULL.
2931  */
2932 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2933 {
2934 	struct dentry *p;
2935 
2936 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2937 		if (p->d_parent == p1)
2938 			return p;
2939 	}
2940 	return NULL;
2941 }
2942 
2943 /*
2944  * This helper attempts to cope with remotely renamed directories
2945  *
2946  * It assumes that the caller is already holding
2947  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2948  *
2949  * Note: If ever the locking in lock_rename() changes, then please
2950  * remember to update this too...
2951  */
2952 static int __d_unalias(struct inode *inode,
2953 		struct dentry *dentry, struct dentry *alias)
2954 {
2955 	struct mutex *m1 = NULL;
2956 	struct rw_semaphore *m2 = NULL;
2957 	int ret = -ESTALE;
2958 
2959 	/* If alias and dentry share a parent, then no extra locks required */
2960 	if (alias->d_parent == dentry->d_parent)
2961 		goto out_unalias;
2962 
2963 	/* See lock_rename() */
2964 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2965 		goto out_err;
2966 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2967 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2968 		goto out_err;
2969 	m2 = &alias->d_parent->d_inode->i_rwsem;
2970 out_unalias:
2971 	__d_move(alias, dentry, false);
2972 	ret = 0;
2973 out_err:
2974 	if (m2)
2975 		up_read(m2);
2976 	if (m1)
2977 		mutex_unlock(m1);
2978 	return ret;
2979 }
2980 
2981 /**
2982  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2983  * @inode:  the inode which may have a disconnected dentry
2984  * @dentry: a negative dentry which we want to point to the inode.
2985  *
2986  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2987  * place of the given dentry and return it, else simply d_add the inode
2988  * to the dentry and return NULL.
2989  *
2990  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2991  * we should error out: directories can't have multiple aliases.
2992  *
2993  * This is needed in the lookup routine of any filesystem that is exportable
2994  * (via knfsd) so that we can build dcache paths to directories effectively.
2995  *
2996  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2997  * is returned.  This matches the expected return value of ->lookup.
2998  *
2999  * Cluster filesystems may call this function with a negative, hashed dentry.
3000  * In that case, we know that the inode will be a regular file, and also this
3001  * will only occur during atomic_open. So we need to check for the dentry
3002  * being already hashed only in the final case.
3003  */
3004 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3005 {
3006 	if (IS_ERR(inode))
3007 		return ERR_CAST(inode);
3008 
3009 	BUG_ON(!d_unhashed(dentry));
3010 
3011 	if (!inode)
3012 		goto out;
3013 
3014 	security_d_instantiate(dentry, inode);
3015 	spin_lock(&inode->i_lock);
3016 	if (S_ISDIR(inode->i_mode)) {
3017 		struct dentry *new = __d_find_any_alias(inode);
3018 		if (unlikely(new)) {
3019 			/* The reference to new ensures it remains an alias */
3020 			spin_unlock(&inode->i_lock);
3021 			write_seqlock(&rename_lock);
3022 			if (unlikely(d_ancestor(new, dentry))) {
3023 				write_sequnlock(&rename_lock);
3024 				dput(new);
3025 				new = ERR_PTR(-ELOOP);
3026 				pr_warn_ratelimited(
3027 					"VFS: Lookup of '%s' in %s %s"
3028 					" would have caused loop\n",
3029 					dentry->d_name.name,
3030 					inode->i_sb->s_type->name,
3031 					inode->i_sb->s_id);
3032 			} else if (!IS_ROOT(new)) {
3033 				int err = __d_unalias(inode, dentry, new);
3034 				write_sequnlock(&rename_lock);
3035 				if (err) {
3036 					dput(new);
3037 					new = ERR_PTR(err);
3038 				}
3039 			} else {
3040 				__d_move(new, dentry, false);
3041 				write_sequnlock(&rename_lock);
3042 			}
3043 			iput(inode);
3044 			return new;
3045 		}
3046 	}
3047 out:
3048 	__d_add(dentry, inode);
3049 	return NULL;
3050 }
3051 EXPORT_SYMBOL(d_splice_alias);
3052 
3053 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3054 {
3055 	*buflen -= namelen;
3056 	if (*buflen < 0)
3057 		return -ENAMETOOLONG;
3058 	*buffer -= namelen;
3059 	memcpy(*buffer, str, namelen);
3060 	return 0;
3061 }
3062 
3063 /**
3064  * prepend_name - prepend a pathname in front of current buffer pointer
3065  * @buffer: buffer pointer
3066  * @buflen: allocated length of the buffer
3067  * @name:   name string and length qstr structure
3068  *
3069  * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3070  * make sure that either the old or the new name pointer and length are
3071  * fetched. However, there may be mismatch between length and pointer.
3072  * The length cannot be trusted, we need to copy it byte-by-byte until
3073  * the length is reached or a null byte is found. It also prepends "/" at
3074  * the beginning of the name. The sequence number check at the caller will
3075  * retry it again when a d_move() does happen. So any garbage in the buffer
3076  * due to mismatched pointer and length will be discarded.
3077  *
3078  * Load acquire is needed to make sure that we see that terminating NUL.
3079  */
3080 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3081 {
3082 	const char *dname = smp_load_acquire(&name->name); /* ^^^ */
3083 	u32 dlen = READ_ONCE(name->len);
3084 	char *p;
3085 
3086 	*buflen -= dlen + 1;
3087 	if (*buflen < 0)
3088 		return -ENAMETOOLONG;
3089 	p = *buffer -= dlen + 1;
3090 	*p++ = '/';
3091 	while (dlen--) {
3092 		char c = *dname++;
3093 		if (!c)
3094 			break;
3095 		*p++ = c;
3096 	}
3097 	return 0;
3098 }
3099 
3100 /**
3101  * prepend_path - Prepend path string to a buffer
3102  * @path: the dentry/vfsmount to report
3103  * @root: root vfsmnt/dentry
3104  * @buffer: pointer to the end of the buffer
3105  * @buflen: pointer to buffer length
3106  *
3107  * The function will first try to write out the pathname without taking any
3108  * lock other than the RCU read lock to make sure that dentries won't go away.
3109  * It only checks the sequence number of the global rename_lock as any change
3110  * in the dentry's d_seq will be preceded by changes in the rename_lock
3111  * sequence number. If the sequence number had been changed, it will restart
3112  * the whole pathname back-tracing sequence again by taking the rename_lock.
3113  * In this case, there is no need to take the RCU read lock as the recursive
3114  * parent pointer references will keep the dentry chain alive as long as no
3115  * rename operation is performed.
3116  */
3117 static int prepend_path(const struct path *path,
3118 			const struct path *root,
3119 			char **buffer, int *buflen)
3120 {
3121 	struct dentry *dentry;
3122 	struct vfsmount *vfsmnt;
3123 	struct mount *mnt;
3124 	int error = 0;
3125 	unsigned seq, m_seq = 0;
3126 	char *bptr;
3127 	int blen;
3128 
3129 	rcu_read_lock();
3130 restart_mnt:
3131 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3132 	seq = 0;
3133 	rcu_read_lock();
3134 restart:
3135 	bptr = *buffer;
3136 	blen = *buflen;
3137 	error = 0;
3138 	dentry = path->dentry;
3139 	vfsmnt = path->mnt;
3140 	mnt = real_mount(vfsmnt);
3141 	read_seqbegin_or_lock(&rename_lock, &seq);
3142 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3143 		struct dentry * parent;
3144 
3145 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3146 			struct mount *parent = READ_ONCE(mnt->mnt_parent);
3147 			/* Escaped? */
3148 			if (dentry != vfsmnt->mnt_root) {
3149 				bptr = *buffer;
3150 				blen = *buflen;
3151 				error = 3;
3152 				break;
3153 			}
3154 			/* Global root? */
3155 			if (mnt != parent) {
3156 				dentry = READ_ONCE(mnt->mnt_mountpoint);
3157 				mnt = parent;
3158 				vfsmnt = &mnt->mnt;
3159 				continue;
3160 			}
3161 			if (!error)
3162 				error = is_mounted(vfsmnt) ? 1 : 2;
3163 			break;
3164 		}
3165 		parent = dentry->d_parent;
3166 		prefetch(parent);
3167 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3168 		if (error)
3169 			break;
3170 
3171 		dentry = parent;
3172 	}
3173 	if (!(seq & 1))
3174 		rcu_read_unlock();
3175 	if (need_seqretry(&rename_lock, seq)) {
3176 		seq = 1;
3177 		goto restart;
3178 	}
3179 	done_seqretry(&rename_lock, seq);
3180 
3181 	if (!(m_seq & 1))
3182 		rcu_read_unlock();
3183 	if (need_seqretry(&mount_lock, m_seq)) {
3184 		m_seq = 1;
3185 		goto restart_mnt;
3186 	}
3187 	done_seqretry(&mount_lock, m_seq);
3188 
3189 	if (error >= 0 && bptr == *buffer) {
3190 		if (--blen < 0)
3191 			error = -ENAMETOOLONG;
3192 		else
3193 			*--bptr = '/';
3194 	}
3195 	*buffer = bptr;
3196 	*buflen = blen;
3197 	return error;
3198 }
3199 
3200 /**
3201  * __d_path - return the path of a dentry
3202  * @path: the dentry/vfsmount to report
3203  * @root: root vfsmnt/dentry
3204  * @buf: buffer to return value in
3205  * @buflen: buffer length
3206  *
3207  * Convert a dentry into an ASCII path name.
3208  *
3209  * Returns a pointer into the buffer or an error code if the
3210  * path was too long.
3211  *
3212  * "buflen" should be positive.
3213  *
3214  * If the path is not reachable from the supplied root, return %NULL.
3215  */
3216 char *__d_path(const struct path *path,
3217 	       const struct path *root,
3218 	       char *buf, int buflen)
3219 {
3220 	char *res = buf + buflen;
3221 	int error;
3222 
3223 	prepend(&res, &buflen, "\0", 1);
3224 	error = prepend_path(path, root, &res, &buflen);
3225 
3226 	if (error < 0)
3227 		return ERR_PTR(error);
3228 	if (error > 0)
3229 		return NULL;
3230 	return res;
3231 }
3232 
3233 char *d_absolute_path(const struct path *path,
3234 	       char *buf, int buflen)
3235 {
3236 	struct path root = {};
3237 	char *res = buf + buflen;
3238 	int error;
3239 
3240 	prepend(&res, &buflen, "\0", 1);
3241 	error = prepend_path(path, &root, &res, &buflen);
3242 
3243 	if (error > 1)
3244 		error = -EINVAL;
3245 	if (error < 0)
3246 		return ERR_PTR(error);
3247 	return res;
3248 }
3249 
3250 /*
3251  * same as __d_path but appends "(deleted)" for unlinked files.
3252  */
3253 static int path_with_deleted(const struct path *path,
3254 			     const struct path *root,
3255 			     char **buf, int *buflen)
3256 {
3257 	prepend(buf, buflen, "\0", 1);
3258 	if (d_unlinked(path->dentry)) {
3259 		int error = prepend(buf, buflen, " (deleted)", 10);
3260 		if (error)
3261 			return error;
3262 	}
3263 
3264 	return prepend_path(path, root, buf, buflen);
3265 }
3266 
3267 static int prepend_unreachable(char **buffer, int *buflen)
3268 {
3269 	return prepend(buffer, buflen, "(unreachable)", 13);
3270 }
3271 
3272 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3273 {
3274 	unsigned seq;
3275 
3276 	do {
3277 		seq = read_seqcount_begin(&fs->seq);
3278 		*root = fs->root;
3279 	} while (read_seqcount_retry(&fs->seq, seq));
3280 }
3281 
3282 /**
3283  * d_path - return the path of a dentry
3284  * @path: path to report
3285  * @buf: buffer to return value in
3286  * @buflen: buffer length
3287  *
3288  * Convert a dentry into an ASCII path name. If the entry has been deleted
3289  * the string " (deleted)" is appended. Note that this is ambiguous.
3290  *
3291  * Returns a pointer into the buffer or an error code if the path was
3292  * too long. Note: Callers should use the returned pointer, not the passed
3293  * in buffer, to use the name! The implementation often starts at an offset
3294  * into the buffer, and may leave 0 bytes at the start.
3295  *
3296  * "buflen" should be positive.
3297  */
3298 char *d_path(const struct path *path, char *buf, int buflen)
3299 {
3300 	char *res = buf + buflen;
3301 	struct path root;
3302 	int error;
3303 
3304 	/*
3305 	 * We have various synthetic filesystems that never get mounted.  On
3306 	 * these filesystems dentries are never used for lookup purposes, and
3307 	 * thus don't need to be hashed.  They also don't need a name until a
3308 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3309 	 * below allows us to generate a name for these objects on demand:
3310 	 *
3311 	 * Some pseudo inodes are mountable.  When they are mounted
3312 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3313 	 * and instead have d_path return the mounted path.
3314 	 */
3315 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3316 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3317 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3318 
3319 	rcu_read_lock();
3320 	get_fs_root_rcu(current->fs, &root);
3321 	error = path_with_deleted(path, &root, &res, &buflen);
3322 	rcu_read_unlock();
3323 
3324 	if (error < 0)
3325 		res = ERR_PTR(error);
3326 	return res;
3327 }
3328 EXPORT_SYMBOL(d_path);
3329 
3330 /*
3331  * Helper function for dentry_operations.d_dname() members
3332  */
3333 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3334 			const char *fmt, ...)
3335 {
3336 	va_list args;
3337 	char temp[64];
3338 	int sz;
3339 
3340 	va_start(args, fmt);
3341 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3342 	va_end(args);
3343 
3344 	if (sz > sizeof(temp) || sz > buflen)
3345 		return ERR_PTR(-ENAMETOOLONG);
3346 
3347 	buffer += buflen - sz;
3348 	return memcpy(buffer, temp, sz);
3349 }
3350 
3351 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3352 {
3353 	char *end = buffer + buflen;
3354 	/* these dentries are never renamed, so d_lock is not needed */
3355 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3356 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3357 	    prepend(&end, &buflen, "/", 1))
3358 		end = ERR_PTR(-ENAMETOOLONG);
3359 	return end;
3360 }
3361 EXPORT_SYMBOL(simple_dname);
3362 
3363 /*
3364  * Write full pathname from the root of the filesystem into the buffer.
3365  */
3366 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3367 {
3368 	struct dentry *dentry;
3369 	char *end, *retval;
3370 	int len, seq = 0;
3371 	int error = 0;
3372 
3373 	if (buflen < 2)
3374 		goto Elong;
3375 
3376 	rcu_read_lock();
3377 restart:
3378 	dentry = d;
3379 	end = buf + buflen;
3380 	len = buflen;
3381 	prepend(&end, &len, "\0", 1);
3382 	/* Get '/' right */
3383 	retval = end-1;
3384 	*retval = '/';
3385 	read_seqbegin_or_lock(&rename_lock, &seq);
3386 	while (!IS_ROOT(dentry)) {
3387 		struct dentry *parent = dentry->d_parent;
3388 
3389 		prefetch(parent);
3390 		error = prepend_name(&end, &len, &dentry->d_name);
3391 		if (error)
3392 			break;
3393 
3394 		retval = end;
3395 		dentry = parent;
3396 	}
3397 	if (!(seq & 1))
3398 		rcu_read_unlock();
3399 	if (need_seqretry(&rename_lock, seq)) {
3400 		seq = 1;
3401 		goto restart;
3402 	}
3403 	done_seqretry(&rename_lock, seq);
3404 	if (error)
3405 		goto Elong;
3406 	return retval;
3407 Elong:
3408 	return ERR_PTR(-ENAMETOOLONG);
3409 }
3410 
3411 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3412 {
3413 	return __dentry_path(dentry, buf, buflen);
3414 }
3415 EXPORT_SYMBOL(dentry_path_raw);
3416 
3417 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3418 {
3419 	char *p = NULL;
3420 	char *retval;
3421 
3422 	if (d_unlinked(dentry)) {
3423 		p = buf + buflen;
3424 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3425 			goto Elong;
3426 		buflen++;
3427 	}
3428 	retval = __dentry_path(dentry, buf, buflen);
3429 	if (!IS_ERR(retval) && p)
3430 		*p = '/';	/* restore '/' overriden with '\0' */
3431 	return retval;
3432 Elong:
3433 	return ERR_PTR(-ENAMETOOLONG);
3434 }
3435 
3436 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3437 				    struct path *pwd)
3438 {
3439 	unsigned seq;
3440 
3441 	do {
3442 		seq = read_seqcount_begin(&fs->seq);
3443 		*root = fs->root;
3444 		*pwd = fs->pwd;
3445 	} while (read_seqcount_retry(&fs->seq, seq));
3446 }
3447 
3448 /*
3449  * NOTE! The user-level library version returns a
3450  * character pointer. The kernel system call just
3451  * returns the length of the buffer filled (which
3452  * includes the ending '\0' character), or a negative
3453  * error value. So libc would do something like
3454  *
3455  *	char *getcwd(char * buf, size_t size)
3456  *	{
3457  *		int retval;
3458  *
3459  *		retval = sys_getcwd(buf, size);
3460  *		if (retval >= 0)
3461  *			return buf;
3462  *		errno = -retval;
3463  *		return NULL;
3464  *	}
3465  */
3466 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3467 {
3468 	int error;
3469 	struct path pwd, root;
3470 	char *page = __getname();
3471 
3472 	if (!page)
3473 		return -ENOMEM;
3474 
3475 	rcu_read_lock();
3476 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3477 
3478 	error = -ENOENT;
3479 	if (!d_unlinked(pwd.dentry)) {
3480 		unsigned long len;
3481 		char *cwd = page + PATH_MAX;
3482 		int buflen = PATH_MAX;
3483 
3484 		prepend(&cwd, &buflen, "\0", 1);
3485 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3486 		rcu_read_unlock();
3487 
3488 		if (error < 0)
3489 			goto out;
3490 
3491 		/* Unreachable from current root */
3492 		if (error > 0) {
3493 			error = prepend_unreachable(&cwd, &buflen);
3494 			if (error)
3495 				goto out;
3496 		}
3497 
3498 		error = -ERANGE;
3499 		len = PATH_MAX + page - cwd;
3500 		if (len <= size) {
3501 			error = len;
3502 			if (copy_to_user(buf, cwd, len))
3503 				error = -EFAULT;
3504 		}
3505 	} else {
3506 		rcu_read_unlock();
3507 	}
3508 
3509 out:
3510 	__putname(page);
3511 	return error;
3512 }
3513 
3514 /*
3515  * Test whether new_dentry is a subdirectory of old_dentry.
3516  *
3517  * Trivially implemented using the dcache structure
3518  */
3519 
3520 /**
3521  * is_subdir - is new dentry a subdirectory of old_dentry
3522  * @new_dentry: new dentry
3523  * @old_dentry: old dentry
3524  *
3525  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3526  * Returns false otherwise.
3527  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3528  */
3529 
3530 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3531 {
3532 	bool result;
3533 	unsigned seq;
3534 
3535 	if (new_dentry == old_dentry)
3536 		return true;
3537 
3538 	do {
3539 		/* for restarting inner loop in case of seq retry */
3540 		seq = read_seqbegin(&rename_lock);
3541 		/*
3542 		 * Need rcu_readlock to protect against the d_parent trashing
3543 		 * due to d_move
3544 		 */
3545 		rcu_read_lock();
3546 		if (d_ancestor(old_dentry, new_dentry))
3547 			result = true;
3548 		else
3549 			result = false;
3550 		rcu_read_unlock();
3551 	} while (read_seqretry(&rename_lock, seq));
3552 
3553 	return result;
3554 }
3555 EXPORT_SYMBOL(is_subdir);
3556 
3557 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3558 {
3559 	struct dentry *root = data;
3560 	if (dentry != root) {
3561 		if (d_unhashed(dentry) || !dentry->d_inode)
3562 			return D_WALK_SKIP;
3563 
3564 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3565 			dentry->d_flags |= DCACHE_GENOCIDE;
3566 			dentry->d_lockref.count--;
3567 		}
3568 	}
3569 	return D_WALK_CONTINUE;
3570 }
3571 
3572 void d_genocide(struct dentry *parent)
3573 {
3574 	d_walk(parent, parent, d_genocide_kill, NULL);
3575 }
3576 
3577 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3578 {
3579 	inode_dec_link_count(inode);
3580 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3581 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3582 		!d_unlinked(dentry));
3583 	spin_lock(&dentry->d_parent->d_lock);
3584 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3585 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3586 				(unsigned long long)inode->i_ino);
3587 	spin_unlock(&dentry->d_lock);
3588 	spin_unlock(&dentry->d_parent->d_lock);
3589 	d_instantiate(dentry, inode);
3590 }
3591 EXPORT_SYMBOL(d_tmpfile);
3592 
3593 static __initdata unsigned long dhash_entries;
3594 static int __init set_dhash_entries(char *str)
3595 {
3596 	if (!str)
3597 		return 0;
3598 	dhash_entries = simple_strtoul(str, &str, 0);
3599 	return 1;
3600 }
3601 __setup("dhash_entries=", set_dhash_entries);
3602 
3603 static void __init dcache_init_early(void)
3604 {
3605 	/* If hashes are distributed across NUMA nodes, defer
3606 	 * hash allocation until vmalloc space is available.
3607 	 */
3608 	if (hashdist)
3609 		return;
3610 
3611 	dentry_hashtable =
3612 		alloc_large_system_hash("Dentry cache",
3613 					sizeof(struct hlist_bl_head),
3614 					dhash_entries,
3615 					13,
3616 					HASH_EARLY | HASH_ZERO,
3617 					&d_hash_shift,
3618 					NULL,
3619 					0,
3620 					0);
3621 	d_hash_shift = 32 - d_hash_shift;
3622 }
3623 
3624 static void __init dcache_init(void)
3625 {
3626 	/*
3627 	 * A constructor could be added for stable state like the lists,
3628 	 * but it is probably not worth it because of the cache nature
3629 	 * of the dcache.
3630 	 */
3631 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3632 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3633 		d_iname);
3634 
3635 	/* Hash may have been set up in dcache_init_early */
3636 	if (!hashdist)
3637 		return;
3638 
3639 	dentry_hashtable =
3640 		alloc_large_system_hash("Dentry cache",
3641 					sizeof(struct hlist_bl_head),
3642 					dhash_entries,
3643 					13,
3644 					HASH_ZERO,
3645 					&d_hash_shift,
3646 					NULL,
3647 					0,
3648 					0);
3649 	d_hash_shift = 32 - d_hash_shift;
3650 }
3651 
3652 /* SLAB cache for __getname() consumers */
3653 struct kmem_cache *names_cachep __read_mostly;
3654 EXPORT_SYMBOL(names_cachep);
3655 
3656 EXPORT_SYMBOL(d_genocide);
3657 
3658 void __init vfs_caches_init_early(void)
3659 {
3660 	int i;
3661 
3662 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3663 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3664 
3665 	dcache_init_early();
3666 	inode_init_early();
3667 }
3668 
3669 void __init vfs_caches_init(void)
3670 {
3671 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3672 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3673 
3674 	dcache_init();
3675 	inode_init();
3676 	files_init();
3677 	files_maxfiles_init();
3678 	mnt_init();
3679 	bdev_cache_init();
3680 	chrdev_init();
3681 }
3682