xref: /openbmc/linux/fs/dcache.c (revision 015d239a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 	/* retain; LRU fodder */
651 	dentry->d_lockref.count--;
652 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 		d_lru_add(dentry);
654 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 		dentry->d_flags |= DCACHE_REFERENCED;
656 	return true;
657 }
658 
659 /*
660  * Finish off a dentry we've decided to kill.
661  * dentry->d_lock must be held, returns with it unlocked.
662  * Returns dentry requiring refcount drop, or NULL if we're done.
663  */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665 	__releases(dentry->d_lock)
666 {
667 	struct inode *inode = dentry->d_inode;
668 	struct dentry *parent = NULL;
669 
670 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 		goto slow_positive;
672 
673 	if (!IS_ROOT(dentry)) {
674 		parent = dentry->d_parent;
675 		if (unlikely(!spin_trylock(&parent->d_lock))) {
676 			parent = __lock_parent(dentry);
677 			if (likely(inode || !dentry->d_inode))
678 				goto got_locks;
679 			/* negative that became positive */
680 			if (parent)
681 				spin_unlock(&parent->d_lock);
682 			inode = dentry->d_inode;
683 			goto slow_positive;
684 		}
685 	}
686 	__dentry_kill(dentry);
687 	return parent;
688 
689 slow_positive:
690 	spin_unlock(&dentry->d_lock);
691 	spin_lock(&inode->i_lock);
692 	spin_lock(&dentry->d_lock);
693 	parent = lock_parent(dentry);
694 got_locks:
695 	if (unlikely(dentry->d_lockref.count != 1)) {
696 		dentry->d_lockref.count--;
697 	} else if (likely(!retain_dentry(dentry))) {
698 		__dentry_kill(dentry);
699 		return parent;
700 	}
701 	/* we are keeping it, after all */
702 	if (inode)
703 		spin_unlock(&inode->i_lock);
704 	if (parent)
705 		spin_unlock(&parent->d_lock);
706 	spin_unlock(&dentry->d_lock);
707 	return NULL;
708 }
709 
710 /*
711  * Try to do a lockless dput(), and return whether that was successful.
712  *
713  * If unsuccessful, we return false, having already taken the dentry lock.
714  *
715  * The caller needs to hold the RCU read lock, so that the dentry is
716  * guaranteed to stay around even if the refcount goes down to zero!
717  */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 	int ret;
721 	unsigned int d_flags;
722 
723 	/*
724 	 * If we have a d_op->d_delete() operation, we sould not
725 	 * let the dentry count go to zero, so use "put_or_lock".
726 	 */
727 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 		return lockref_put_or_lock(&dentry->d_lockref);
729 
730 	/*
731 	 * .. otherwise, we can try to just decrement the
732 	 * lockref optimistically.
733 	 */
734 	ret = lockref_put_return(&dentry->d_lockref);
735 
736 	/*
737 	 * If the lockref_put_return() failed due to the lock being held
738 	 * by somebody else, the fast path has failed. We will need to
739 	 * get the lock, and then check the count again.
740 	 */
741 	if (unlikely(ret < 0)) {
742 		spin_lock(&dentry->d_lock);
743 		if (dentry->d_lockref.count > 1) {
744 			dentry->d_lockref.count--;
745 			spin_unlock(&dentry->d_lock);
746 			return true;
747 		}
748 		return false;
749 	}
750 
751 	/*
752 	 * If we weren't the last ref, we're done.
753 	 */
754 	if (ret)
755 		return true;
756 
757 	/*
758 	 * Careful, careful. The reference count went down
759 	 * to zero, but we don't hold the dentry lock, so
760 	 * somebody else could get it again, and do another
761 	 * dput(), and we need to not race with that.
762 	 *
763 	 * However, there is a very special and common case
764 	 * where we don't care, because there is nothing to
765 	 * do: the dentry is still hashed, it does not have
766 	 * a 'delete' op, and it's referenced and already on
767 	 * the LRU list.
768 	 *
769 	 * NOTE! Since we aren't locked, these values are
770 	 * not "stable". However, it is sufficient that at
771 	 * some point after we dropped the reference the
772 	 * dentry was hashed and the flags had the proper
773 	 * value. Other dentry users may have re-gotten
774 	 * a reference to the dentry and change that, but
775 	 * our work is done - we can leave the dentry
776 	 * around with a zero refcount.
777 	 */
778 	smp_rmb();
779 	d_flags = READ_ONCE(dentry->d_flags);
780 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781 
782 	/* Nothing to do? Dropping the reference was all we needed? */
783 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 		return true;
785 
786 	/*
787 	 * Not the fast normal case? Get the lock. We've already decremented
788 	 * the refcount, but we'll need to re-check the situation after
789 	 * getting the lock.
790 	 */
791 	spin_lock(&dentry->d_lock);
792 
793 	/*
794 	 * Did somebody else grab a reference to it in the meantime, and
795 	 * we're no longer the last user after all? Alternatively, somebody
796 	 * else could have killed it and marked it dead. Either way, we
797 	 * don't need to do anything else.
798 	 */
799 	if (dentry->d_lockref.count) {
800 		spin_unlock(&dentry->d_lock);
801 		return true;
802 	}
803 
804 	/*
805 	 * Re-get the reference we optimistically dropped. We hold the
806 	 * lock, and we just tested that it was zero, so we can just
807 	 * set it to 1.
808 	 */
809 	dentry->d_lockref.count = 1;
810 	return false;
811 }
812 
813 
814 /*
815  * This is dput
816  *
817  * This is complicated by the fact that we do not want to put
818  * dentries that are no longer on any hash chain on the unused
819  * list: we'd much rather just get rid of them immediately.
820  *
821  * However, that implies that we have to traverse the dentry
822  * tree upwards to the parents which might _also_ now be
823  * scheduled for deletion (it may have been only waiting for
824  * its last child to go away).
825  *
826  * This tail recursion is done by hand as we don't want to depend
827  * on the compiler to always get this right (gcc generally doesn't).
828  * Real recursion would eat up our stack space.
829  */
830 
831 /*
832  * dput - release a dentry
833  * @dentry: dentry to release
834  *
835  * Release a dentry. This will drop the usage count and if appropriate
836  * call the dentry unlink method as well as removing it from the queues and
837  * releasing its resources. If the parent dentries were scheduled for release
838  * they too may now get deleted.
839  */
840 void dput(struct dentry *dentry)
841 {
842 	while (dentry) {
843 		might_sleep();
844 
845 		rcu_read_lock();
846 		if (likely(fast_dput(dentry))) {
847 			rcu_read_unlock();
848 			return;
849 		}
850 
851 		/* Slow case: now with the dentry lock held */
852 		rcu_read_unlock();
853 
854 		if (likely(retain_dentry(dentry))) {
855 			spin_unlock(&dentry->d_lock);
856 			return;
857 		}
858 
859 		dentry = dentry_kill(dentry);
860 	}
861 }
862 EXPORT_SYMBOL(dput);
863 
864 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865 __must_hold(&dentry->d_lock)
866 {
867 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 		/* let the owner of the list it's on deal with it */
869 		--dentry->d_lockref.count;
870 	} else {
871 		if (dentry->d_flags & DCACHE_LRU_LIST)
872 			d_lru_del(dentry);
873 		if (!--dentry->d_lockref.count)
874 			d_shrink_add(dentry, list);
875 	}
876 }
877 
878 void dput_to_list(struct dentry *dentry, struct list_head *list)
879 {
880 	rcu_read_lock();
881 	if (likely(fast_dput(dentry))) {
882 		rcu_read_unlock();
883 		return;
884 	}
885 	rcu_read_unlock();
886 	if (!retain_dentry(dentry))
887 		__dput_to_list(dentry, list);
888 	spin_unlock(&dentry->d_lock);
889 }
890 
891 /* This must be called with d_lock held */
892 static inline void __dget_dlock(struct dentry *dentry)
893 {
894 	dentry->d_lockref.count++;
895 }
896 
897 static inline void __dget(struct dentry *dentry)
898 {
899 	lockref_get(&dentry->d_lockref);
900 }
901 
902 struct dentry *dget_parent(struct dentry *dentry)
903 {
904 	int gotref;
905 	struct dentry *ret;
906 	unsigned seq;
907 
908 	/*
909 	 * Do optimistic parent lookup without any
910 	 * locking.
911 	 */
912 	rcu_read_lock();
913 	seq = raw_seqcount_begin(&dentry->d_seq);
914 	ret = READ_ONCE(dentry->d_parent);
915 	gotref = lockref_get_not_zero(&ret->d_lockref);
916 	rcu_read_unlock();
917 	if (likely(gotref)) {
918 		if (!read_seqcount_retry(&dentry->d_seq, seq))
919 			return ret;
920 		dput(ret);
921 	}
922 
923 repeat:
924 	/*
925 	 * Don't need rcu_dereference because we re-check it was correct under
926 	 * the lock.
927 	 */
928 	rcu_read_lock();
929 	ret = dentry->d_parent;
930 	spin_lock(&ret->d_lock);
931 	if (unlikely(ret != dentry->d_parent)) {
932 		spin_unlock(&ret->d_lock);
933 		rcu_read_unlock();
934 		goto repeat;
935 	}
936 	rcu_read_unlock();
937 	BUG_ON(!ret->d_lockref.count);
938 	ret->d_lockref.count++;
939 	spin_unlock(&ret->d_lock);
940 	return ret;
941 }
942 EXPORT_SYMBOL(dget_parent);
943 
944 static struct dentry * __d_find_any_alias(struct inode *inode)
945 {
946 	struct dentry *alias;
947 
948 	if (hlist_empty(&inode->i_dentry))
949 		return NULL;
950 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
951 	__dget(alias);
952 	return alias;
953 }
954 
955 /**
956  * d_find_any_alias - find any alias for a given inode
957  * @inode: inode to find an alias for
958  *
959  * If any aliases exist for the given inode, take and return a
960  * reference for one of them.  If no aliases exist, return %NULL.
961  */
962 struct dentry *d_find_any_alias(struct inode *inode)
963 {
964 	struct dentry *de;
965 
966 	spin_lock(&inode->i_lock);
967 	de = __d_find_any_alias(inode);
968 	spin_unlock(&inode->i_lock);
969 	return de;
970 }
971 EXPORT_SYMBOL(d_find_any_alias);
972 
973 /**
974  * d_find_alias - grab a hashed alias of inode
975  * @inode: inode in question
976  *
977  * If inode has a hashed alias, or is a directory and has any alias,
978  * acquire the reference to alias and return it. Otherwise return NULL.
979  * Notice that if inode is a directory there can be only one alias and
980  * it can be unhashed only if it has no children, or if it is the root
981  * of a filesystem, or if the directory was renamed and d_revalidate
982  * was the first vfs operation to notice.
983  *
984  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
985  * any other hashed alias over that one.
986  */
987 static struct dentry *__d_find_alias(struct inode *inode)
988 {
989 	struct dentry *alias;
990 
991 	if (S_ISDIR(inode->i_mode))
992 		return __d_find_any_alias(inode);
993 
994 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
995 		spin_lock(&alias->d_lock);
996  		if (!d_unhashed(alias)) {
997 			__dget_dlock(alias);
998 			spin_unlock(&alias->d_lock);
999 			return alias;
1000 		}
1001 		spin_unlock(&alias->d_lock);
1002 	}
1003 	return NULL;
1004 }
1005 
1006 struct dentry *d_find_alias(struct inode *inode)
1007 {
1008 	struct dentry *de = NULL;
1009 
1010 	if (!hlist_empty(&inode->i_dentry)) {
1011 		spin_lock(&inode->i_lock);
1012 		de = __d_find_alias(inode);
1013 		spin_unlock(&inode->i_lock);
1014 	}
1015 	return de;
1016 }
1017 EXPORT_SYMBOL(d_find_alias);
1018 
1019 /*
1020  *	Try to kill dentries associated with this inode.
1021  * WARNING: you must own a reference to inode.
1022  */
1023 void d_prune_aliases(struct inode *inode)
1024 {
1025 	struct dentry *dentry;
1026 restart:
1027 	spin_lock(&inode->i_lock);
1028 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1029 		spin_lock(&dentry->d_lock);
1030 		if (!dentry->d_lockref.count) {
1031 			struct dentry *parent = lock_parent(dentry);
1032 			if (likely(!dentry->d_lockref.count)) {
1033 				__dentry_kill(dentry);
1034 				dput(parent);
1035 				goto restart;
1036 			}
1037 			if (parent)
1038 				spin_unlock(&parent->d_lock);
1039 		}
1040 		spin_unlock(&dentry->d_lock);
1041 	}
1042 	spin_unlock(&inode->i_lock);
1043 }
1044 EXPORT_SYMBOL(d_prune_aliases);
1045 
1046 /*
1047  * Lock a dentry from shrink list.
1048  * Called under rcu_read_lock() and dentry->d_lock; the former
1049  * guarantees that nothing we access will be freed under us.
1050  * Note that dentry is *not* protected from concurrent dentry_kill(),
1051  * d_delete(), etc.
1052  *
1053  * Return false if dentry has been disrupted or grabbed, leaving
1054  * the caller to kick it off-list.  Otherwise, return true and have
1055  * that dentry's inode and parent both locked.
1056  */
1057 static bool shrink_lock_dentry(struct dentry *dentry)
1058 {
1059 	struct inode *inode;
1060 	struct dentry *parent;
1061 
1062 	if (dentry->d_lockref.count)
1063 		return false;
1064 
1065 	inode = dentry->d_inode;
1066 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1067 		spin_unlock(&dentry->d_lock);
1068 		spin_lock(&inode->i_lock);
1069 		spin_lock(&dentry->d_lock);
1070 		if (unlikely(dentry->d_lockref.count))
1071 			goto out;
1072 		/* changed inode means that somebody had grabbed it */
1073 		if (unlikely(inode != dentry->d_inode))
1074 			goto out;
1075 	}
1076 
1077 	parent = dentry->d_parent;
1078 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1079 		return true;
1080 
1081 	spin_unlock(&dentry->d_lock);
1082 	spin_lock(&parent->d_lock);
1083 	if (unlikely(parent != dentry->d_parent)) {
1084 		spin_unlock(&parent->d_lock);
1085 		spin_lock(&dentry->d_lock);
1086 		goto out;
1087 	}
1088 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1089 	if (likely(!dentry->d_lockref.count))
1090 		return true;
1091 	spin_unlock(&parent->d_lock);
1092 out:
1093 	if (inode)
1094 		spin_unlock(&inode->i_lock);
1095 	return false;
1096 }
1097 
1098 void shrink_dentry_list(struct list_head *list)
1099 {
1100 	while (!list_empty(list)) {
1101 		struct dentry *dentry, *parent;
1102 
1103 		dentry = list_entry(list->prev, struct dentry, d_lru);
1104 		spin_lock(&dentry->d_lock);
1105 		rcu_read_lock();
1106 		if (!shrink_lock_dentry(dentry)) {
1107 			bool can_free = false;
1108 			rcu_read_unlock();
1109 			d_shrink_del(dentry);
1110 			if (dentry->d_lockref.count < 0)
1111 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1112 			spin_unlock(&dentry->d_lock);
1113 			if (can_free)
1114 				dentry_free(dentry);
1115 			continue;
1116 		}
1117 		rcu_read_unlock();
1118 		d_shrink_del(dentry);
1119 		parent = dentry->d_parent;
1120 		if (parent != dentry)
1121 			__dput_to_list(parent, list);
1122 		__dentry_kill(dentry);
1123 	}
1124 }
1125 
1126 static enum lru_status dentry_lru_isolate(struct list_head *item,
1127 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1128 {
1129 	struct list_head *freeable = arg;
1130 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1131 
1132 
1133 	/*
1134 	 * we are inverting the lru lock/dentry->d_lock here,
1135 	 * so use a trylock. If we fail to get the lock, just skip
1136 	 * it
1137 	 */
1138 	if (!spin_trylock(&dentry->d_lock))
1139 		return LRU_SKIP;
1140 
1141 	/*
1142 	 * Referenced dentries are still in use. If they have active
1143 	 * counts, just remove them from the LRU. Otherwise give them
1144 	 * another pass through the LRU.
1145 	 */
1146 	if (dentry->d_lockref.count) {
1147 		d_lru_isolate(lru, dentry);
1148 		spin_unlock(&dentry->d_lock);
1149 		return LRU_REMOVED;
1150 	}
1151 
1152 	if (dentry->d_flags & DCACHE_REFERENCED) {
1153 		dentry->d_flags &= ~DCACHE_REFERENCED;
1154 		spin_unlock(&dentry->d_lock);
1155 
1156 		/*
1157 		 * The list move itself will be made by the common LRU code. At
1158 		 * this point, we've dropped the dentry->d_lock but keep the
1159 		 * lru lock. This is safe to do, since every list movement is
1160 		 * protected by the lru lock even if both locks are held.
1161 		 *
1162 		 * This is guaranteed by the fact that all LRU management
1163 		 * functions are intermediated by the LRU API calls like
1164 		 * list_lru_add and list_lru_del. List movement in this file
1165 		 * only ever occur through this functions or through callbacks
1166 		 * like this one, that are called from the LRU API.
1167 		 *
1168 		 * The only exceptions to this are functions like
1169 		 * shrink_dentry_list, and code that first checks for the
1170 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1171 		 * operating only with stack provided lists after they are
1172 		 * properly isolated from the main list.  It is thus, always a
1173 		 * local access.
1174 		 */
1175 		return LRU_ROTATE;
1176 	}
1177 
1178 	d_lru_shrink_move(lru, dentry, freeable);
1179 	spin_unlock(&dentry->d_lock);
1180 
1181 	return LRU_REMOVED;
1182 }
1183 
1184 /**
1185  * prune_dcache_sb - shrink the dcache
1186  * @sb: superblock
1187  * @sc: shrink control, passed to list_lru_shrink_walk()
1188  *
1189  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1190  * is done when we need more memory and called from the superblock shrinker
1191  * function.
1192  *
1193  * This function may fail to free any resources if all the dentries are in
1194  * use.
1195  */
1196 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1197 {
1198 	LIST_HEAD(dispose);
1199 	long freed;
1200 
1201 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1202 				     dentry_lru_isolate, &dispose);
1203 	shrink_dentry_list(&dispose);
1204 	return freed;
1205 }
1206 
1207 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1208 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1209 {
1210 	struct list_head *freeable = arg;
1211 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1212 
1213 	/*
1214 	 * we are inverting the lru lock/dentry->d_lock here,
1215 	 * so use a trylock. If we fail to get the lock, just skip
1216 	 * it
1217 	 */
1218 	if (!spin_trylock(&dentry->d_lock))
1219 		return LRU_SKIP;
1220 
1221 	d_lru_shrink_move(lru, dentry, freeable);
1222 	spin_unlock(&dentry->d_lock);
1223 
1224 	return LRU_REMOVED;
1225 }
1226 
1227 
1228 /**
1229  * shrink_dcache_sb - shrink dcache for a superblock
1230  * @sb: superblock
1231  *
1232  * Shrink the dcache for the specified super block. This is used to free
1233  * the dcache before unmounting a file system.
1234  */
1235 void shrink_dcache_sb(struct super_block *sb)
1236 {
1237 	do {
1238 		LIST_HEAD(dispose);
1239 
1240 		list_lru_walk(&sb->s_dentry_lru,
1241 			dentry_lru_isolate_shrink, &dispose, 1024);
1242 		shrink_dentry_list(&dispose);
1243 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1244 }
1245 EXPORT_SYMBOL(shrink_dcache_sb);
1246 
1247 /**
1248  * enum d_walk_ret - action to talke during tree walk
1249  * @D_WALK_CONTINUE:	contrinue walk
1250  * @D_WALK_QUIT:	quit walk
1251  * @D_WALK_NORETRY:	quit when retry is needed
1252  * @D_WALK_SKIP:	skip this dentry and its children
1253  */
1254 enum d_walk_ret {
1255 	D_WALK_CONTINUE,
1256 	D_WALK_QUIT,
1257 	D_WALK_NORETRY,
1258 	D_WALK_SKIP,
1259 };
1260 
1261 /**
1262  * d_walk - walk the dentry tree
1263  * @parent:	start of walk
1264  * @data:	data passed to @enter() and @finish()
1265  * @enter:	callback when first entering the dentry
1266  *
1267  * The @enter() callbacks are called with d_lock held.
1268  */
1269 static void d_walk(struct dentry *parent, void *data,
1270 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1271 {
1272 	struct dentry *this_parent;
1273 	struct list_head *next;
1274 	unsigned seq = 0;
1275 	enum d_walk_ret ret;
1276 	bool retry = true;
1277 
1278 again:
1279 	read_seqbegin_or_lock(&rename_lock, &seq);
1280 	this_parent = parent;
1281 	spin_lock(&this_parent->d_lock);
1282 
1283 	ret = enter(data, this_parent);
1284 	switch (ret) {
1285 	case D_WALK_CONTINUE:
1286 		break;
1287 	case D_WALK_QUIT:
1288 	case D_WALK_SKIP:
1289 		goto out_unlock;
1290 	case D_WALK_NORETRY:
1291 		retry = false;
1292 		break;
1293 	}
1294 repeat:
1295 	next = this_parent->d_subdirs.next;
1296 resume:
1297 	while (next != &this_parent->d_subdirs) {
1298 		struct list_head *tmp = next;
1299 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1300 		next = tmp->next;
1301 
1302 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1303 			continue;
1304 
1305 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1306 
1307 		ret = enter(data, dentry);
1308 		switch (ret) {
1309 		case D_WALK_CONTINUE:
1310 			break;
1311 		case D_WALK_QUIT:
1312 			spin_unlock(&dentry->d_lock);
1313 			goto out_unlock;
1314 		case D_WALK_NORETRY:
1315 			retry = false;
1316 			break;
1317 		case D_WALK_SKIP:
1318 			spin_unlock(&dentry->d_lock);
1319 			continue;
1320 		}
1321 
1322 		if (!list_empty(&dentry->d_subdirs)) {
1323 			spin_unlock(&this_parent->d_lock);
1324 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1325 			this_parent = dentry;
1326 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1327 			goto repeat;
1328 		}
1329 		spin_unlock(&dentry->d_lock);
1330 	}
1331 	/*
1332 	 * All done at this level ... ascend and resume the search.
1333 	 */
1334 	rcu_read_lock();
1335 ascend:
1336 	if (this_parent != parent) {
1337 		struct dentry *child = this_parent;
1338 		this_parent = child->d_parent;
1339 
1340 		spin_unlock(&child->d_lock);
1341 		spin_lock(&this_parent->d_lock);
1342 
1343 		/* might go back up the wrong parent if we have had a rename. */
1344 		if (need_seqretry(&rename_lock, seq))
1345 			goto rename_retry;
1346 		/* go into the first sibling still alive */
1347 		do {
1348 			next = child->d_child.next;
1349 			if (next == &this_parent->d_subdirs)
1350 				goto ascend;
1351 			child = list_entry(next, struct dentry, d_child);
1352 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1353 		rcu_read_unlock();
1354 		goto resume;
1355 	}
1356 	if (need_seqretry(&rename_lock, seq))
1357 		goto rename_retry;
1358 	rcu_read_unlock();
1359 
1360 out_unlock:
1361 	spin_unlock(&this_parent->d_lock);
1362 	done_seqretry(&rename_lock, seq);
1363 	return;
1364 
1365 rename_retry:
1366 	spin_unlock(&this_parent->d_lock);
1367 	rcu_read_unlock();
1368 	BUG_ON(seq & 1);
1369 	if (!retry)
1370 		return;
1371 	seq = 1;
1372 	goto again;
1373 }
1374 
1375 struct check_mount {
1376 	struct vfsmount *mnt;
1377 	unsigned int mounted;
1378 };
1379 
1380 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1381 {
1382 	struct check_mount *info = data;
1383 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1384 
1385 	if (likely(!d_mountpoint(dentry)))
1386 		return D_WALK_CONTINUE;
1387 	if (__path_is_mountpoint(&path)) {
1388 		info->mounted = 1;
1389 		return D_WALK_QUIT;
1390 	}
1391 	return D_WALK_CONTINUE;
1392 }
1393 
1394 /**
1395  * path_has_submounts - check for mounts over a dentry in the
1396  *                      current namespace.
1397  * @parent: path to check.
1398  *
1399  * Return true if the parent or its subdirectories contain
1400  * a mount point in the current namespace.
1401  */
1402 int path_has_submounts(const struct path *parent)
1403 {
1404 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1405 
1406 	read_seqlock_excl(&mount_lock);
1407 	d_walk(parent->dentry, &data, path_check_mount);
1408 	read_sequnlock_excl(&mount_lock);
1409 
1410 	return data.mounted;
1411 }
1412 EXPORT_SYMBOL(path_has_submounts);
1413 
1414 /*
1415  * Called by mount code to set a mountpoint and check if the mountpoint is
1416  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1417  * subtree can become unreachable).
1418  *
1419  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1420  * this reason take rename_lock and d_lock on dentry and ancestors.
1421  */
1422 int d_set_mounted(struct dentry *dentry)
1423 {
1424 	struct dentry *p;
1425 	int ret = -ENOENT;
1426 	write_seqlock(&rename_lock);
1427 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1428 		/* Need exclusion wrt. d_invalidate() */
1429 		spin_lock(&p->d_lock);
1430 		if (unlikely(d_unhashed(p))) {
1431 			spin_unlock(&p->d_lock);
1432 			goto out;
1433 		}
1434 		spin_unlock(&p->d_lock);
1435 	}
1436 	spin_lock(&dentry->d_lock);
1437 	if (!d_unlinked(dentry)) {
1438 		ret = -EBUSY;
1439 		if (!d_mountpoint(dentry)) {
1440 			dentry->d_flags |= DCACHE_MOUNTED;
1441 			ret = 0;
1442 		}
1443 	}
1444  	spin_unlock(&dentry->d_lock);
1445 out:
1446 	write_sequnlock(&rename_lock);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * Search the dentry child list of the specified parent,
1452  * and move any unused dentries to the end of the unused
1453  * list for prune_dcache(). We descend to the next level
1454  * whenever the d_subdirs list is non-empty and continue
1455  * searching.
1456  *
1457  * It returns zero iff there are no unused children,
1458  * otherwise  it returns the number of children moved to
1459  * the end of the unused list. This may not be the total
1460  * number of unused children, because select_parent can
1461  * drop the lock and return early due to latency
1462  * constraints.
1463  */
1464 
1465 struct select_data {
1466 	struct dentry *start;
1467 	union {
1468 		long found;
1469 		struct dentry *victim;
1470 	};
1471 	struct list_head dispose;
1472 };
1473 
1474 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1475 {
1476 	struct select_data *data = _data;
1477 	enum d_walk_ret ret = D_WALK_CONTINUE;
1478 
1479 	if (data->start == dentry)
1480 		goto out;
1481 
1482 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1483 		data->found++;
1484 	} else {
1485 		if (dentry->d_flags & DCACHE_LRU_LIST)
1486 			d_lru_del(dentry);
1487 		if (!dentry->d_lockref.count) {
1488 			d_shrink_add(dentry, &data->dispose);
1489 			data->found++;
1490 		}
1491 	}
1492 	/*
1493 	 * We can return to the caller if we have found some (this
1494 	 * ensures forward progress). We'll be coming back to find
1495 	 * the rest.
1496 	 */
1497 	if (!list_empty(&data->dispose))
1498 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1499 out:
1500 	return ret;
1501 }
1502 
1503 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1504 {
1505 	struct select_data *data = _data;
1506 	enum d_walk_ret ret = D_WALK_CONTINUE;
1507 
1508 	if (data->start == dentry)
1509 		goto out;
1510 
1511 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1512 		if (!dentry->d_lockref.count) {
1513 			rcu_read_lock();
1514 			data->victim = dentry;
1515 			return D_WALK_QUIT;
1516 		}
1517 	} else {
1518 		if (dentry->d_flags & DCACHE_LRU_LIST)
1519 			d_lru_del(dentry);
1520 		if (!dentry->d_lockref.count)
1521 			d_shrink_add(dentry, &data->dispose);
1522 	}
1523 	/*
1524 	 * We can return to the caller if we have found some (this
1525 	 * ensures forward progress). We'll be coming back to find
1526 	 * the rest.
1527 	 */
1528 	if (!list_empty(&data->dispose))
1529 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1530 out:
1531 	return ret;
1532 }
1533 
1534 /**
1535  * shrink_dcache_parent - prune dcache
1536  * @parent: parent of entries to prune
1537  *
1538  * Prune the dcache to remove unused children of the parent dentry.
1539  */
1540 void shrink_dcache_parent(struct dentry *parent)
1541 {
1542 	for (;;) {
1543 		struct select_data data = {.start = parent};
1544 
1545 		INIT_LIST_HEAD(&data.dispose);
1546 		d_walk(parent, &data, select_collect);
1547 
1548 		if (!list_empty(&data.dispose)) {
1549 			shrink_dentry_list(&data.dispose);
1550 			continue;
1551 		}
1552 
1553 		cond_resched();
1554 		if (!data.found)
1555 			break;
1556 		data.victim = NULL;
1557 		d_walk(parent, &data, select_collect2);
1558 		if (data.victim) {
1559 			struct dentry *parent;
1560 			spin_lock(&data.victim->d_lock);
1561 			if (!shrink_lock_dentry(data.victim)) {
1562 				spin_unlock(&data.victim->d_lock);
1563 				rcu_read_unlock();
1564 			} else {
1565 				rcu_read_unlock();
1566 				parent = data.victim->d_parent;
1567 				if (parent != data.victim)
1568 					__dput_to_list(parent, &data.dispose);
1569 				__dentry_kill(data.victim);
1570 			}
1571 		}
1572 		if (!list_empty(&data.dispose))
1573 			shrink_dentry_list(&data.dispose);
1574 	}
1575 }
1576 EXPORT_SYMBOL(shrink_dcache_parent);
1577 
1578 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1579 {
1580 	/* it has busy descendents; complain about those instead */
1581 	if (!list_empty(&dentry->d_subdirs))
1582 		return D_WALK_CONTINUE;
1583 
1584 	/* root with refcount 1 is fine */
1585 	if (dentry == _data && dentry->d_lockref.count == 1)
1586 		return D_WALK_CONTINUE;
1587 
1588 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1589 			" still in use (%d) [unmount of %s %s]\n",
1590 		       dentry,
1591 		       dentry->d_inode ?
1592 		       dentry->d_inode->i_ino : 0UL,
1593 		       dentry,
1594 		       dentry->d_lockref.count,
1595 		       dentry->d_sb->s_type->name,
1596 		       dentry->d_sb->s_id);
1597 	WARN_ON(1);
1598 	return D_WALK_CONTINUE;
1599 }
1600 
1601 static void do_one_tree(struct dentry *dentry)
1602 {
1603 	shrink_dcache_parent(dentry);
1604 	d_walk(dentry, dentry, umount_check);
1605 	d_drop(dentry);
1606 	dput(dentry);
1607 }
1608 
1609 /*
1610  * destroy the dentries attached to a superblock on unmounting
1611  */
1612 void shrink_dcache_for_umount(struct super_block *sb)
1613 {
1614 	struct dentry *dentry;
1615 
1616 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1617 
1618 	dentry = sb->s_root;
1619 	sb->s_root = NULL;
1620 	do_one_tree(dentry);
1621 
1622 	while (!hlist_bl_empty(&sb->s_roots)) {
1623 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1624 		do_one_tree(dentry);
1625 	}
1626 }
1627 
1628 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1629 {
1630 	struct dentry **victim = _data;
1631 	if (d_mountpoint(dentry)) {
1632 		__dget_dlock(dentry);
1633 		*victim = dentry;
1634 		return D_WALK_QUIT;
1635 	}
1636 	return D_WALK_CONTINUE;
1637 }
1638 
1639 /**
1640  * d_invalidate - detach submounts, prune dcache, and drop
1641  * @dentry: dentry to invalidate (aka detach, prune and drop)
1642  */
1643 void d_invalidate(struct dentry *dentry)
1644 {
1645 	bool had_submounts = false;
1646 	spin_lock(&dentry->d_lock);
1647 	if (d_unhashed(dentry)) {
1648 		spin_unlock(&dentry->d_lock);
1649 		return;
1650 	}
1651 	__d_drop(dentry);
1652 	spin_unlock(&dentry->d_lock);
1653 
1654 	/* Negative dentries can be dropped without further checks */
1655 	if (!dentry->d_inode)
1656 		return;
1657 
1658 	shrink_dcache_parent(dentry);
1659 	for (;;) {
1660 		struct dentry *victim = NULL;
1661 		d_walk(dentry, &victim, find_submount);
1662 		if (!victim) {
1663 			if (had_submounts)
1664 				shrink_dcache_parent(dentry);
1665 			return;
1666 		}
1667 		had_submounts = true;
1668 		detach_mounts(victim);
1669 		dput(victim);
1670 	}
1671 }
1672 EXPORT_SYMBOL(d_invalidate);
1673 
1674 /**
1675  * __d_alloc	-	allocate a dcache entry
1676  * @sb: filesystem it will belong to
1677  * @name: qstr of the name
1678  *
1679  * Allocates a dentry. It returns %NULL if there is insufficient memory
1680  * available. On a success the dentry is returned. The name passed in is
1681  * copied and the copy passed in may be reused after this call.
1682  */
1683 
1684 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1685 {
1686 	struct dentry *dentry;
1687 	char *dname;
1688 	int err;
1689 
1690 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1691 	if (!dentry)
1692 		return NULL;
1693 
1694 	/*
1695 	 * We guarantee that the inline name is always NUL-terminated.
1696 	 * This way the memcpy() done by the name switching in rename
1697 	 * will still always have a NUL at the end, even if we might
1698 	 * be overwriting an internal NUL character
1699 	 */
1700 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1701 	if (unlikely(!name)) {
1702 		name = &slash_name;
1703 		dname = dentry->d_iname;
1704 	} else if (name->len > DNAME_INLINE_LEN-1) {
1705 		size_t size = offsetof(struct external_name, name[1]);
1706 		struct external_name *p = kmalloc(size + name->len,
1707 						  GFP_KERNEL_ACCOUNT |
1708 						  __GFP_RECLAIMABLE);
1709 		if (!p) {
1710 			kmem_cache_free(dentry_cache, dentry);
1711 			return NULL;
1712 		}
1713 		atomic_set(&p->u.count, 1);
1714 		dname = p->name;
1715 	} else  {
1716 		dname = dentry->d_iname;
1717 	}
1718 
1719 	dentry->d_name.len = name->len;
1720 	dentry->d_name.hash = name->hash;
1721 	memcpy(dname, name->name, name->len);
1722 	dname[name->len] = 0;
1723 
1724 	/* Make sure we always see the terminating NUL character */
1725 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1726 
1727 	dentry->d_lockref.count = 1;
1728 	dentry->d_flags = 0;
1729 	spin_lock_init(&dentry->d_lock);
1730 	seqcount_init(&dentry->d_seq);
1731 	dentry->d_inode = NULL;
1732 	dentry->d_parent = dentry;
1733 	dentry->d_sb = sb;
1734 	dentry->d_op = NULL;
1735 	dentry->d_fsdata = NULL;
1736 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1737 	INIT_LIST_HEAD(&dentry->d_lru);
1738 	INIT_LIST_HEAD(&dentry->d_subdirs);
1739 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1740 	INIT_LIST_HEAD(&dentry->d_child);
1741 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1742 
1743 	if (dentry->d_op && dentry->d_op->d_init) {
1744 		err = dentry->d_op->d_init(dentry);
1745 		if (err) {
1746 			if (dname_external(dentry))
1747 				kfree(external_name(dentry));
1748 			kmem_cache_free(dentry_cache, dentry);
1749 			return NULL;
1750 		}
1751 	}
1752 
1753 	this_cpu_inc(nr_dentry);
1754 
1755 	return dentry;
1756 }
1757 
1758 /**
1759  * d_alloc	-	allocate a dcache entry
1760  * @parent: parent of entry to allocate
1761  * @name: qstr of the name
1762  *
1763  * Allocates a dentry. It returns %NULL if there is insufficient memory
1764  * available. On a success the dentry is returned. The name passed in is
1765  * copied and the copy passed in may be reused after this call.
1766  */
1767 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1768 {
1769 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1770 	if (!dentry)
1771 		return NULL;
1772 	spin_lock(&parent->d_lock);
1773 	/*
1774 	 * don't need child lock because it is not subject
1775 	 * to concurrency here
1776 	 */
1777 	__dget_dlock(parent);
1778 	dentry->d_parent = parent;
1779 	list_add(&dentry->d_child, &parent->d_subdirs);
1780 	spin_unlock(&parent->d_lock);
1781 
1782 	return dentry;
1783 }
1784 EXPORT_SYMBOL(d_alloc);
1785 
1786 struct dentry *d_alloc_anon(struct super_block *sb)
1787 {
1788 	return __d_alloc(sb, NULL);
1789 }
1790 EXPORT_SYMBOL(d_alloc_anon);
1791 
1792 struct dentry *d_alloc_cursor(struct dentry * parent)
1793 {
1794 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1795 	if (dentry) {
1796 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1797 		dentry->d_parent = dget(parent);
1798 	}
1799 	return dentry;
1800 }
1801 
1802 /**
1803  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1804  * @sb: the superblock
1805  * @name: qstr of the name
1806  *
1807  * For a filesystem that just pins its dentries in memory and never
1808  * performs lookups at all, return an unhashed IS_ROOT dentry.
1809  * This is used for pipes, sockets et.al. - the stuff that should
1810  * never be anyone's children or parents.  Unlike all other
1811  * dentries, these will not have RCU delay between dropping the
1812  * last reference and freeing them.
1813  *
1814  * The only user is alloc_file_pseudo() and that's what should
1815  * be considered a public interface.  Don't use directly.
1816  */
1817 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1818 {
1819 	struct dentry *dentry = __d_alloc(sb, name);
1820 	if (likely(dentry))
1821 		dentry->d_flags |= DCACHE_NORCU;
1822 	return dentry;
1823 }
1824 
1825 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1826 {
1827 	struct qstr q;
1828 
1829 	q.name = name;
1830 	q.hash_len = hashlen_string(parent, name);
1831 	return d_alloc(parent, &q);
1832 }
1833 EXPORT_SYMBOL(d_alloc_name);
1834 
1835 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1836 {
1837 	WARN_ON_ONCE(dentry->d_op);
1838 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1839 				DCACHE_OP_COMPARE	|
1840 				DCACHE_OP_REVALIDATE	|
1841 				DCACHE_OP_WEAK_REVALIDATE	|
1842 				DCACHE_OP_DELETE	|
1843 				DCACHE_OP_REAL));
1844 	dentry->d_op = op;
1845 	if (!op)
1846 		return;
1847 	if (op->d_hash)
1848 		dentry->d_flags |= DCACHE_OP_HASH;
1849 	if (op->d_compare)
1850 		dentry->d_flags |= DCACHE_OP_COMPARE;
1851 	if (op->d_revalidate)
1852 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1853 	if (op->d_weak_revalidate)
1854 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1855 	if (op->d_delete)
1856 		dentry->d_flags |= DCACHE_OP_DELETE;
1857 	if (op->d_prune)
1858 		dentry->d_flags |= DCACHE_OP_PRUNE;
1859 	if (op->d_real)
1860 		dentry->d_flags |= DCACHE_OP_REAL;
1861 
1862 }
1863 EXPORT_SYMBOL(d_set_d_op);
1864 
1865 
1866 /*
1867  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1868  * @dentry - The dentry to mark
1869  *
1870  * Mark a dentry as falling through to the lower layer (as set with
1871  * d_pin_lower()).  This flag may be recorded on the medium.
1872  */
1873 void d_set_fallthru(struct dentry *dentry)
1874 {
1875 	spin_lock(&dentry->d_lock);
1876 	dentry->d_flags |= DCACHE_FALLTHRU;
1877 	spin_unlock(&dentry->d_lock);
1878 }
1879 EXPORT_SYMBOL(d_set_fallthru);
1880 
1881 static unsigned d_flags_for_inode(struct inode *inode)
1882 {
1883 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1884 
1885 	if (!inode)
1886 		return DCACHE_MISS_TYPE;
1887 
1888 	if (S_ISDIR(inode->i_mode)) {
1889 		add_flags = DCACHE_DIRECTORY_TYPE;
1890 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1891 			if (unlikely(!inode->i_op->lookup))
1892 				add_flags = DCACHE_AUTODIR_TYPE;
1893 			else
1894 				inode->i_opflags |= IOP_LOOKUP;
1895 		}
1896 		goto type_determined;
1897 	}
1898 
1899 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1900 		if (unlikely(inode->i_op->get_link)) {
1901 			add_flags = DCACHE_SYMLINK_TYPE;
1902 			goto type_determined;
1903 		}
1904 		inode->i_opflags |= IOP_NOFOLLOW;
1905 	}
1906 
1907 	if (unlikely(!S_ISREG(inode->i_mode)))
1908 		add_flags = DCACHE_SPECIAL_TYPE;
1909 
1910 type_determined:
1911 	if (unlikely(IS_AUTOMOUNT(inode)))
1912 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1913 	return add_flags;
1914 }
1915 
1916 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1917 {
1918 	unsigned add_flags = d_flags_for_inode(inode);
1919 	WARN_ON(d_in_lookup(dentry));
1920 
1921 	spin_lock(&dentry->d_lock);
1922 	/*
1923 	 * Decrement negative dentry count if it was in the LRU list.
1924 	 */
1925 	if (dentry->d_flags & DCACHE_LRU_LIST)
1926 		this_cpu_dec(nr_dentry_negative);
1927 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1928 	raw_write_seqcount_begin(&dentry->d_seq);
1929 	__d_set_inode_and_type(dentry, inode, add_flags);
1930 	raw_write_seqcount_end(&dentry->d_seq);
1931 	fsnotify_update_flags(dentry);
1932 	spin_unlock(&dentry->d_lock);
1933 }
1934 
1935 /**
1936  * d_instantiate - fill in inode information for a dentry
1937  * @entry: dentry to complete
1938  * @inode: inode to attach to this dentry
1939  *
1940  * Fill in inode information in the entry.
1941  *
1942  * This turns negative dentries into productive full members
1943  * of society.
1944  *
1945  * NOTE! This assumes that the inode count has been incremented
1946  * (or otherwise set) by the caller to indicate that it is now
1947  * in use by the dcache.
1948  */
1949 
1950 void d_instantiate(struct dentry *entry, struct inode * inode)
1951 {
1952 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1953 	if (inode) {
1954 		security_d_instantiate(entry, inode);
1955 		spin_lock(&inode->i_lock);
1956 		__d_instantiate(entry, inode);
1957 		spin_unlock(&inode->i_lock);
1958 	}
1959 }
1960 EXPORT_SYMBOL(d_instantiate);
1961 
1962 /*
1963  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1964  * with lockdep-related part of unlock_new_inode() done before
1965  * anything else.  Use that instead of open-coding d_instantiate()/
1966  * unlock_new_inode() combinations.
1967  */
1968 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1969 {
1970 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1971 	BUG_ON(!inode);
1972 	lockdep_annotate_inode_mutex_key(inode);
1973 	security_d_instantiate(entry, inode);
1974 	spin_lock(&inode->i_lock);
1975 	__d_instantiate(entry, inode);
1976 	WARN_ON(!(inode->i_state & I_NEW));
1977 	inode->i_state &= ~I_NEW & ~I_CREATING;
1978 	smp_mb();
1979 	wake_up_bit(&inode->i_state, __I_NEW);
1980 	spin_unlock(&inode->i_lock);
1981 }
1982 EXPORT_SYMBOL(d_instantiate_new);
1983 
1984 struct dentry *d_make_root(struct inode *root_inode)
1985 {
1986 	struct dentry *res = NULL;
1987 
1988 	if (root_inode) {
1989 		res = d_alloc_anon(root_inode->i_sb);
1990 		if (res)
1991 			d_instantiate(res, root_inode);
1992 		else
1993 			iput(root_inode);
1994 	}
1995 	return res;
1996 }
1997 EXPORT_SYMBOL(d_make_root);
1998 
1999 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2000 					   struct inode *inode,
2001 					   bool disconnected)
2002 {
2003 	struct dentry *res;
2004 	unsigned add_flags;
2005 
2006 	security_d_instantiate(dentry, inode);
2007 	spin_lock(&inode->i_lock);
2008 	res = __d_find_any_alias(inode);
2009 	if (res) {
2010 		spin_unlock(&inode->i_lock);
2011 		dput(dentry);
2012 		goto out_iput;
2013 	}
2014 
2015 	/* attach a disconnected dentry */
2016 	add_flags = d_flags_for_inode(inode);
2017 
2018 	if (disconnected)
2019 		add_flags |= DCACHE_DISCONNECTED;
2020 
2021 	spin_lock(&dentry->d_lock);
2022 	__d_set_inode_and_type(dentry, inode, add_flags);
2023 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2024 	if (!disconnected) {
2025 		hlist_bl_lock(&dentry->d_sb->s_roots);
2026 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2027 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2028 	}
2029 	spin_unlock(&dentry->d_lock);
2030 	spin_unlock(&inode->i_lock);
2031 
2032 	return dentry;
2033 
2034  out_iput:
2035 	iput(inode);
2036 	return res;
2037 }
2038 
2039 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2040 {
2041 	return __d_instantiate_anon(dentry, inode, true);
2042 }
2043 EXPORT_SYMBOL(d_instantiate_anon);
2044 
2045 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2046 {
2047 	struct dentry *tmp;
2048 	struct dentry *res;
2049 
2050 	if (!inode)
2051 		return ERR_PTR(-ESTALE);
2052 	if (IS_ERR(inode))
2053 		return ERR_CAST(inode);
2054 
2055 	res = d_find_any_alias(inode);
2056 	if (res)
2057 		goto out_iput;
2058 
2059 	tmp = d_alloc_anon(inode->i_sb);
2060 	if (!tmp) {
2061 		res = ERR_PTR(-ENOMEM);
2062 		goto out_iput;
2063 	}
2064 
2065 	return __d_instantiate_anon(tmp, inode, disconnected);
2066 
2067 out_iput:
2068 	iput(inode);
2069 	return res;
2070 }
2071 
2072 /**
2073  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2074  * @inode: inode to allocate the dentry for
2075  *
2076  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2077  * similar open by handle operations.  The returned dentry may be anonymous,
2078  * or may have a full name (if the inode was already in the cache).
2079  *
2080  * When called on a directory inode, we must ensure that the inode only ever
2081  * has one dentry.  If a dentry is found, that is returned instead of
2082  * allocating a new one.
2083  *
2084  * On successful return, the reference to the inode has been transferred
2085  * to the dentry.  In case of an error the reference on the inode is released.
2086  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2087  * be passed in and the error will be propagated to the return value,
2088  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2089  */
2090 struct dentry *d_obtain_alias(struct inode *inode)
2091 {
2092 	return __d_obtain_alias(inode, true);
2093 }
2094 EXPORT_SYMBOL(d_obtain_alias);
2095 
2096 /**
2097  * d_obtain_root - find or allocate a dentry for a given inode
2098  * @inode: inode to allocate the dentry for
2099  *
2100  * Obtain an IS_ROOT dentry for the root of a filesystem.
2101  *
2102  * We must ensure that directory inodes only ever have one dentry.  If a
2103  * dentry is found, that is returned instead of allocating a new one.
2104  *
2105  * On successful return, the reference to the inode has been transferred
2106  * to the dentry.  In case of an error the reference on the inode is
2107  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2108  * error will be propagate to the return value, with a %NULL @inode
2109  * replaced by ERR_PTR(-ESTALE).
2110  */
2111 struct dentry *d_obtain_root(struct inode *inode)
2112 {
2113 	return __d_obtain_alias(inode, false);
2114 }
2115 EXPORT_SYMBOL(d_obtain_root);
2116 
2117 /**
2118  * d_add_ci - lookup or allocate new dentry with case-exact name
2119  * @inode:  the inode case-insensitive lookup has found
2120  * @dentry: the negative dentry that was passed to the parent's lookup func
2121  * @name:   the case-exact name to be associated with the returned dentry
2122  *
2123  * This is to avoid filling the dcache with case-insensitive names to the
2124  * same inode, only the actual correct case is stored in the dcache for
2125  * case-insensitive filesystems.
2126  *
2127  * For a case-insensitive lookup match and if the the case-exact dentry
2128  * already exists in in the dcache, use it and return it.
2129  *
2130  * If no entry exists with the exact case name, allocate new dentry with
2131  * the exact case, and return the spliced entry.
2132  */
2133 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2134 			struct qstr *name)
2135 {
2136 	struct dentry *found, *res;
2137 
2138 	/*
2139 	 * First check if a dentry matching the name already exists,
2140 	 * if not go ahead and create it now.
2141 	 */
2142 	found = d_hash_and_lookup(dentry->d_parent, name);
2143 	if (found) {
2144 		iput(inode);
2145 		return found;
2146 	}
2147 	if (d_in_lookup(dentry)) {
2148 		found = d_alloc_parallel(dentry->d_parent, name,
2149 					dentry->d_wait);
2150 		if (IS_ERR(found) || !d_in_lookup(found)) {
2151 			iput(inode);
2152 			return found;
2153 		}
2154 	} else {
2155 		found = d_alloc(dentry->d_parent, name);
2156 		if (!found) {
2157 			iput(inode);
2158 			return ERR_PTR(-ENOMEM);
2159 		}
2160 	}
2161 	res = d_splice_alias(inode, found);
2162 	if (res) {
2163 		dput(found);
2164 		return res;
2165 	}
2166 	return found;
2167 }
2168 EXPORT_SYMBOL(d_add_ci);
2169 
2170 
2171 static inline bool d_same_name(const struct dentry *dentry,
2172 				const struct dentry *parent,
2173 				const struct qstr *name)
2174 {
2175 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2176 		if (dentry->d_name.len != name->len)
2177 			return false;
2178 		return dentry_cmp(dentry, name->name, name->len) == 0;
2179 	}
2180 	return parent->d_op->d_compare(dentry,
2181 				       dentry->d_name.len, dentry->d_name.name,
2182 				       name) == 0;
2183 }
2184 
2185 /**
2186  * __d_lookup_rcu - search for a dentry (racy, store-free)
2187  * @parent: parent dentry
2188  * @name: qstr of name we wish to find
2189  * @seqp: returns d_seq value at the point where the dentry was found
2190  * Returns: dentry, or NULL
2191  *
2192  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2193  * resolution (store-free path walking) design described in
2194  * Documentation/filesystems/path-lookup.txt.
2195  *
2196  * This is not to be used outside core vfs.
2197  *
2198  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2199  * held, and rcu_read_lock held. The returned dentry must not be stored into
2200  * without taking d_lock and checking d_seq sequence count against @seq
2201  * returned here.
2202  *
2203  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2204  * function.
2205  *
2206  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2207  * the returned dentry, so long as its parent's seqlock is checked after the
2208  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2209  * is formed, giving integrity down the path walk.
2210  *
2211  * NOTE! The caller *has* to check the resulting dentry against the sequence
2212  * number we've returned before using any of the resulting dentry state!
2213  */
2214 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2215 				const struct qstr *name,
2216 				unsigned *seqp)
2217 {
2218 	u64 hashlen = name->hash_len;
2219 	const unsigned char *str = name->name;
2220 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2221 	struct hlist_bl_node *node;
2222 	struct dentry *dentry;
2223 
2224 	/*
2225 	 * Note: There is significant duplication with __d_lookup_rcu which is
2226 	 * required to prevent single threaded performance regressions
2227 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2228 	 * Keep the two functions in sync.
2229 	 */
2230 
2231 	/*
2232 	 * The hash list is protected using RCU.
2233 	 *
2234 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2235 	 * races with d_move().
2236 	 *
2237 	 * It is possible that concurrent renames can mess up our list
2238 	 * walk here and result in missing our dentry, resulting in the
2239 	 * false-negative result. d_lookup() protects against concurrent
2240 	 * renames using rename_lock seqlock.
2241 	 *
2242 	 * See Documentation/filesystems/path-lookup.txt for more details.
2243 	 */
2244 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2245 		unsigned seq;
2246 
2247 seqretry:
2248 		/*
2249 		 * The dentry sequence count protects us from concurrent
2250 		 * renames, and thus protects parent and name fields.
2251 		 *
2252 		 * The caller must perform a seqcount check in order
2253 		 * to do anything useful with the returned dentry.
2254 		 *
2255 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2256 		 * we don't wait for the sequence count to stabilize if it
2257 		 * is in the middle of a sequence change. If we do the slow
2258 		 * dentry compare, we will do seqretries until it is stable,
2259 		 * and if we end up with a successful lookup, we actually
2260 		 * want to exit RCU lookup anyway.
2261 		 *
2262 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2263 		 * we are still guaranteed NUL-termination of ->d_name.name.
2264 		 */
2265 		seq = raw_seqcount_begin(&dentry->d_seq);
2266 		if (dentry->d_parent != parent)
2267 			continue;
2268 		if (d_unhashed(dentry))
2269 			continue;
2270 
2271 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2272 			int tlen;
2273 			const char *tname;
2274 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2275 				continue;
2276 			tlen = dentry->d_name.len;
2277 			tname = dentry->d_name.name;
2278 			/* we want a consistent (name,len) pair */
2279 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2280 				cpu_relax();
2281 				goto seqretry;
2282 			}
2283 			if (parent->d_op->d_compare(dentry,
2284 						    tlen, tname, name) != 0)
2285 				continue;
2286 		} else {
2287 			if (dentry->d_name.hash_len != hashlen)
2288 				continue;
2289 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2290 				continue;
2291 		}
2292 		*seqp = seq;
2293 		return dentry;
2294 	}
2295 	return NULL;
2296 }
2297 
2298 /**
2299  * d_lookup - search for a dentry
2300  * @parent: parent dentry
2301  * @name: qstr of name we wish to find
2302  * Returns: dentry, or NULL
2303  *
2304  * d_lookup searches the children of the parent dentry for the name in
2305  * question. If the dentry is found its reference count is incremented and the
2306  * dentry is returned. The caller must use dput to free the entry when it has
2307  * finished using it. %NULL is returned if the dentry does not exist.
2308  */
2309 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2310 {
2311 	struct dentry *dentry;
2312 	unsigned seq;
2313 
2314 	do {
2315 		seq = read_seqbegin(&rename_lock);
2316 		dentry = __d_lookup(parent, name);
2317 		if (dentry)
2318 			break;
2319 	} while (read_seqretry(&rename_lock, seq));
2320 	return dentry;
2321 }
2322 EXPORT_SYMBOL(d_lookup);
2323 
2324 /**
2325  * __d_lookup - search for a dentry (racy)
2326  * @parent: parent dentry
2327  * @name: qstr of name we wish to find
2328  * Returns: dentry, or NULL
2329  *
2330  * __d_lookup is like d_lookup, however it may (rarely) return a
2331  * false-negative result due to unrelated rename activity.
2332  *
2333  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2334  * however it must be used carefully, eg. with a following d_lookup in
2335  * the case of failure.
2336  *
2337  * __d_lookup callers must be commented.
2338  */
2339 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2340 {
2341 	unsigned int hash = name->hash;
2342 	struct hlist_bl_head *b = d_hash(hash);
2343 	struct hlist_bl_node *node;
2344 	struct dentry *found = NULL;
2345 	struct dentry *dentry;
2346 
2347 	/*
2348 	 * Note: There is significant duplication with __d_lookup_rcu which is
2349 	 * required to prevent single threaded performance regressions
2350 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2351 	 * Keep the two functions in sync.
2352 	 */
2353 
2354 	/*
2355 	 * The hash list is protected using RCU.
2356 	 *
2357 	 * Take d_lock when comparing a candidate dentry, to avoid races
2358 	 * with d_move().
2359 	 *
2360 	 * It is possible that concurrent renames can mess up our list
2361 	 * walk here and result in missing our dentry, resulting in the
2362 	 * false-negative result. d_lookup() protects against concurrent
2363 	 * renames using rename_lock seqlock.
2364 	 *
2365 	 * See Documentation/filesystems/path-lookup.txt for more details.
2366 	 */
2367 	rcu_read_lock();
2368 
2369 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2370 
2371 		if (dentry->d_name.hash != hash)
2372 			continue;
2373 
2374 		spin_lock(&dentry->d_lock);
2375 		if (dentry->d_parent != parent)
2376 			goto next;
2377 		if (d_unhashed(dentry))
2378 			goto next;
2379 
2380 		if (!d_same_name(dentry, parent, name))
2381 			goto next;
2382 
2383 		dentry->d_lockref.count++;
2384 		found = dentry;
2385 		spin_unlock(&dentry->d_lock);
2386 		break;
2387 next:
2388 		spin_unlock(&dentry->d_lock);
2389  	}
2390  	rcu_read_unlock();
2391 
2392  	return found;
2393 }
2394 
2395 /**
2396  * d_hash_and_lookup - hash the qstr then search for a dentry
2397  * @dir: Directory to search in
2398  * @name: qstr of name we wish to find
2399  *
2400  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2401  */
2402 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2403 {
2404 	/*
2405 	 * Check for a fs-specific hash function. Note that we must
2406 	 * calculate the standard hash first, as the d_op->d_hash()
2407 	 * routine may choose to leave the hash value unchanged.
2408 	 */
2409 	name->hash = full_name_hash(dir, name->name, name->len);
2410 	if (dir->d_flags & DCACHE_OP_HASH) {
2411 		int err = dir->d_op->d_hash(dir, name);
2412 		if (unlikely(err < 0))
2413 			return ERR_PTR(err);
2414 	}
2415 	return d_lookup(dir, name);
2416 }
2417 EXPORT_SYMBOL(d_hash_and_lookup);
2418 
2419 /*
2420  * When a file is deleted, we have two options:
2421  * - turn this dentry into a negative dentry
2422  * - unhash this dentry and free it.
2423  *
2424  * Usually, we want to just turn this into
2425  * a negative dentry, but if anybody else is
2426  * currently using the dentry or the inode
2427  * we can't do that and we fall back on removing
2428  * it from the hash queues and waiting for
2429  * it to be deleted later when it has no users
2430  */
2431 
2432 /**
2433  * d_delete - delete a dentry
2434  * @dentry: The dentry to delete
2435  *
2436  * Turn the dentry into a negative dentry if possible, otherwise
2437  * remove it from the hash queues so it can be deleted later
2438  */
2439 
2440 void d_delete(struct dentry * dentry)
2441 {
2442 	struct inode *inode = dentry->d_inode;
2443 
2444 	spin_lock(&inode->i_lock);
2445 	spin_lock(&dentry->d_lock);
2446 	/*
2447 	 * Are we the only user?
2448 	 */
2449 	if (dentry->d_lockref.count == 1) {
2450 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2451 		dentry_unlink_inode(dentry);
2452 	} else {
2453 		__d_drop(dentry);
2454 		spin_unlock(&dentry->d_lock);
2455 		spin_unlock(&inode->i_lock);
2456 	}
2457 }
2458 EXPORT_SYMBOL(d_delete);
2459 
2460 static void __d_rehash(struct dentry *entry)
2461 {
2462 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2463 
2464 	hlist_bl_lock(b);
2465 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2466 	hlist_bl_unlock(b);
2467 }
2468 
2469 /**
2470  * d_rehash	- add an entry back to the hash
2471  * @entry: dentry to add to the hash
2472  *
2473  * Adds a dentry to the hash according to its name.
2474  */
2475 
2476 void d_rehash(struct dentry * entry)
2477 {
2478 	spin_lock(&entry->d_lock);
2479 	__d_rehash(entry);
2480 	spin_unlock(&entry->d_lock);
2481 }
2482 EXPORT_SYMBOL(d_rehash);
2483 
2484 static inline unsigned start_dir_add(struct inode *dir)
2485 {
2486 
2487 	for (;;) {
2488 		unsigned n = dir->i_dir_seq;
2489 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2490 			return n;
2491 		cpu_relax();
2492 	}
2493 }
2494 
2495 static inline void end_dir_add(struct inode *dir, unsigned n)
2496 {
2497 	smp_store_release(&dir->i_dir_seq, n + 2);
2498 }
2499 
2500 static void d_wait_lookup(struct dentry *dentry)
2501 {
2502 	if (d_in_lookup(dentry)) {
2503 		DECLARE_WAITQUEUE(wait, current);
2504 		add_wait_queue(dentry->d_wait, &wait);
2505 		do {
2506 			set_current_state(TASK_UNINTERRUPTIBLE);
2507 			spin_unlock(&dentry->d_lock);
2508 			schedule();
2509 			spin_lock(&dentry->d_lock);
2510 		} while (d_in_lookup(dentry));
2511 	}
2512 }
2513 
2514 struct dentry *d_alloc_parallel(struct dentry *parent,
2515 				const struct qstr *name,
2516 				wait_queue_head_t *wq)
2517 {
2518 	unsigned int hash = name->hash;
2519 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2520 	struct hlist_bl_node *node;
2521 	struct dentry *new = d_alloc(parent, name);
2522 	struct dentry *dentry;
2523 	unsigned seq, r_seq, d_seq;
2524 
2525 	if (unlikely(!new))
2526 		return ERR_PTR(-ENOMEM);
2527 
2528 retry:
2529 	rcu_read_lock();
2530 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2531 	r_seq = read_seqbegin(&rename_lock);
2532 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2533 	if (unlikely(dentry)) {
2534 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2535 			rcu_read_unlock();
2536 			goto retry;
2537 		}
2538 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2539 			rcu_read_unlock();
2540 			dput(dentry);
2541 			goto retry;
2542 		}
2543 		rcu_read_unlock();
2544 		dput(new);
2545 		return dentry;
2546 	}
2547 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2548 		rcu_read_unlock();
2549 		goto retry;
2550 	}
2551 
2552 	if (unlikely(seq & 1)) {
2553 		rcu_read_unlock();
2554 		goto retry;
2555 	}
2556 
2557 	hlist_bl_lock(b);
2558 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2559 		hlist_bl_unlock(b);
2560 		rcu_read_unlock();
2561 		goto retry;
2562 	}
2563 	/*
2564 	 * No changes for the parent since the beginning of d_lookup().
2565 	 * Since all removals from the chain happen with hlist_bl_lock(),
2566 	 * any potential in-lookup matches are going to stay here until
2567 	 * we unlock the chain.  All fields are stable in everything
2568 	 * we encounter.
2569 	 */
2570 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2571 		if (dentry->d_name.hash != hash)
2572 			continue;
2573 		if (dentry->d_parent != parent)
2574 			continue;
2575 		if (!d_same_name(dentry, parent, name))
2576 			continue;
2577 		hlist_bl_unlock(b);
2578 		/* now we can try to grab a reference */
2579 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2580 			rcu_read_unlock();
2581 			goto retry;
2582 		}
2583 
2584 		rcu_read_unlock();
2585 		/*
2586 		 * somebody is likely to be still doing lookup for it;
2587 		 * wait for them to finish
2588 		 */
2589 		spin_lock(&dentry->d_lock);
2590 		d_wait_lookup(dentry);
2591 		/*
2592 		 * it's not in-lookup anymore; in principle we should repeat
2593 		 * everything from dcache lookup, but it's likely to be what
2594 		 * d_lookup() would've found anyway.  If it is, just return it;
2595 		 * otherwise we really have to repeat the whole thing.
2596 		 */
2597 		if (unlikely(dentry->d_name.hash != hash))
2598 			goto mismatch;
2599 		if (unlikely(dentry->d_parent != parent))
2600 			goto mismatch;
2601 		if (unlikely(d_unhashed(dentry)))
2602 			goto mismatch;
2603 		if (unlikely(!d_same_name(dentry, parent, name)))
2604 			goto mismatch;
2605 		/* OK, it *is* a hashed match; return it */
2606 		spin_unlock(&dentry->d_lock);
2607 		dput(new);
2608 		return dentry;
2609 	}
2610 	rcu_read_unlock();
2611 	/* we can't take ->d_lock here; it's OK, though. */
2612 	new->d_flags |= DCACHE_PAR_LOOKUP;
2613 	new->d_wait = wq;
2614 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2615 	hlist_bl_unlock(b);
2616 	return new;
2617 mismatch:
2618 	spin_unlock(&dentry->d_lock);
2619 	dput(dentry);
2620 	goto retry;
2621 }
2622 EXPORT_SYMBOL(d_alloc_parallel);
2623 
2624 void __d_lookup_done(struct dentry *dentry)
2625 {
2626 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2627 						 dentry->d_name.hash);
2628 	hlist_bl_lock(b);
2629 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2630 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2631 	wake_up_all(dentry->d_wait);
2632 	dentry->d_wait = NULL;
2633 	hlist_bl_unlock(b);
2634 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2635 	INIT_LIST_HEAD(&dentry->d_lru);
2636 }
2637 EXPORT_SYMBOL(__d_lookup_done);
2638 
2639 /* inode->i_lock held if inode is non-NULL */
2640 
2641 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2642 {
2643 	struct inode *dir = NULL;
2644 	unsigned n;
2645 	spin_lock(&dentry->d_lock);
2646 	if (unlikely(d_in_lookup(dentry))) {
2647 		dir = dentry->d_parent->d_inode;
2648 		n = start_dir_add(dir);
2649 		__d_lookup_done(dentry);
2650 	}
2651 	if (inode) {
2652 		unsigned add_flags = d_flags_for_inode(inode);
2653 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2654 		raw_write_seqcount_begin(&dentry->d_seq);
2655 		__d_set_inode_and_type(dentry, inode, add_flags);
2656 		raw_write_seqcount_end(&dentry->d_seq);
2657 		fsnotify_update_flags(dentry);
2658 	}
2659 	__d_rehash(dentry);
2660 	if (dir)
2661 		end_dir_add(dir, n);
2662 	spin_unlock(&dentry->d_lock);
2663 	if (inode)
2664 		spin_unlock(&inode->i_lock);
2665 }
2666 
2667 /**
2668  * d_add - add dentry to hash queues
2669  * @entry: dentry to add
2670  * @inode: The inode to attach to this dentry
2671  *
2672  * This adds the entry to the hash queues and initializes @inode.
2673  * The entry was actually filled in earlier during d_alloc().
2674  */
2675 
2676 void d_add(struct dentry *entry, struct inode *inode)
2677 {
2678 	if (inode) {
2679 		security_d_instantiate(entry, inode);
2680 		spin_lock(&inode->i_lock);
2681 	}
2682 	__d_add(entry, inode);
2683 }
2684 EXPORT_SYMBOL(d_add);
2685 
2686 /**
2687  * d_exact_alias - find and hash an exact unhashed alias
2688  * @entry: dentry to add
2689  * @inode: The inode to go with this dentry
2690  *
2691  * If an unhashed dentry with the same name/parent and desired
2692  * inode already exists, hash and return it.  Otherwise, return
2693  * NULL.
2694  *
2695  * Parent directory should be locked.
2696  */
2697 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2698 {
2699 	struct dentry *alias;
2700 	unsigned int hash = entry->d_name.hash;
2701 
2702 	spin_lock(&inode->i_lock);
2703 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2704 		/*
2705 		 * Don't need alias->d_lock here, because aliases with
2706 		 * d_parent == entry->d_parent are not subject to name or
2707 		 * parent changes, because the parent inode i_mutex is held.
2708 		 */
2709 		if (alias->d_name.hash != hash)
2710 			continue;
2711 		if (alias->d_parent != entry->d_parent)
2712 			continue;
2713 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2714 			continue;
2715 		spin_lock(&alias->d_lock);
2716 		if (!d_unhashed(alias)) {
2717 			spin_unlock(&alias->d_lock);
2718 			alias = NULL;
2719 		} else {
2720 			__dget_dlock(alias);
2721 			__d_rehash(alias);
2722 			spin_unlock(&alias->d_lock);
2723 		}
2724 		spin_unlock(&inode->i_lock);
2725 		return alias;
2726 	}
2727 	spin_unlock(&inode->i_lock);
2728 	return NULL;
2729 }
2730 EXPORT_SYMBOL(d_exact_alias);
2731 
2732 static void swap_names(struct dentry *dentry, struct dentry *target)
2733 {
2734 	if (unlikely(dname_external(target))) {
2735 		if (unlikely(dname_external(dentry))) {
2736 			/*
2737 			 * Both external: swap the pointers
2738 			 */
2739 			swap(target->d_name.name, dentry->d_name.name);
2740 		} else {
2741 			/*
2742 			 * dentry:internal, target:external.  Steal target's
2743 			 * storage and make target internal.
2744 			 */
2745 			memcpy(target->d_iname, dentry->d_name.name,
2746 					dentry->d_name.len + 1);
2747 			dentry->d_name.name = target->d_name.name;
2748 			target->d_name.name = target->d_iname;
2749 		}
2750 	} else {
2751 		if (unlikely(dname_external(dentry))) {
2752 			/*
2753 			 * dentry:external, target:internal.  Give dentry's
2754 			 * storage to target and make dentry internal
2755 			 */
2756 			memcpy(dentry->d_iname, target->d_name.name,
2757 					target->d_name.len + 1);
2758 			target->d_name.name = dentry->d_name.name;
2759 			dentry->d_name.name = dentry->d_iname;
2760 		} else {
2761 			/*
2762 			 * Both are internal.
2763 			 */
2764 			unsigned int i;
2765 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2766 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2767 				swap(((long *) &dentry->d_iname)[i],
2768 				     ((long *) &target->d_iname)[i]);
2769 			}
2770 		}
2771 	}
2772 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2773 }
2774 
2775 static void copy_name(struct dentry *dentry, struct dentry *target)
2776 {
2777 	struct external_name *old_name = NULL;
2778 	if (unlikely(dname_external(dentry)))
2779 		old_name = external_name(dentry);
2780 	if (unlikely(dname_external(target))) {
2781 		atomic_inc(&external_name(target)->u.count);
2782 		dentry->d_name = target->d_name;
2783 	} else {
2784 		memcpy(dentry->d_iname, target->d_name.name,
2785 				target->d_name.len + 1);
2786 		dentry->d_name.name = dentry->d_iname;
2787 		dentry->d_name.hash_len = target->d_name.hash_len;
2788 	}
2789 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2790 		kfree_rcu(old_name, u.head);
2791 }
2792 
2793 /*
2794  * __d_move - move a dentry
2795  * @dentry: entry to move
2796  * @target: new dentry
2797  * @exchange: exchange the two dentries
2798  *
2799  * Update the dcache to reflect the move of a file name. Negative
2800  * dcache entries should not be moved in this way. Caller must hold
2801  * rename_lock, the i_mutex of the source and target directories,
2802  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2803  */
2804 static void __d_move(struct dentry *dentry, struct dentry *target,
2805 		     bool exchange)
2806 {
2807 	struct dentry *old_parent, *p;
2808 	struct inode *dir = NULL;
2809 	unsigned n;
2810 
2811 	WARN_ON(!dentry->d_inode);
2812 	if (WARN_ON(dentry == target))
2813 		return;
2814 
2815 	BUG_ON(d_ancestor(target, dentry));
2816 	old_parent = dentry->d_parent;
2817 	p = d_ancestor(old_parent, target);
2818 	if (IS_ROOT(dentry)) {
2819 		BUG_ON(p);
2820 		spin_lock(&target->d_parent->d_lock);
2821 	} else if (!p) {
2822 		/* target is not a descendent of dentry->d_parent */
2823 		spin_lock(&target->d_parent->d_lock);
2824 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2825 	} else {
2826 		BUG_ON(p == dentry);
2827 		spin_lock(&old_parent->d_lock);
2828 		if (p != target)
2829 			spin_lock_nested(&target->d_parent->d_lock,
2830 					DENTRY_D_LOCK_NESTED);
2831 	}
2832 	spin_lock_nested(&dentry->d_lock, 2);
2833 	spin_lock_nested(&target->d_lock, 3);
2834 
2835 	if (unlikely(d_in_lookup(target))) {
2836 		dir = target->d_parent->d_inode;
2837 		n = start_dir_add(dir);
2838 		__d_lookup_done(target);
2839 	}
2840 
2841 	write_seqcount_begin(&dentry->d_seq);
2842 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2843 
2844 	/* unhash both */
2845 	if (!d_unhashed(dentry))
2846 		___d_drop(dentry);
2847 	if (!d_unhashed(target))
2848 		___d_drop(target);
2849 
2850 	/* ... and switch them in the tree */
2851 	dentry->d_parent = target->d_parent;
2852 	if (!exchange) {
2853 		copy_name(dentry, target);
2854 		target->d_hash.pprev = NULL;
2855 		dentry->d_parent->d_lockref.count++;
2856 		if (dentry != old_parent) /* wasn't IS_ROOT */
2857 			WARN_ON(!--old_parent->d_lockref.count);
2858 	} else {
2859 		target->d_parent = old_parent;
2860 		swap_names(dentry, target);
2861 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2862 		__d_rehash(target);
2863 		fsnotify_update_flags(target);
2864 	}
2865 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2866 	__d_rehash(dentry);
2867 	fsnotify_update_flags(dentry);
2868 	fscrypt_handle_d_move(dentry);
2869 
2870 	write_seqcount_end(&target->d_seq);
2871 	write_seqcount_end(&dentry->d_seq);
2872 
2873 	if (dir)
2874 		end_dir_add(dir, n);
2875 
2876 	if (dentry->d_parent != old_parent)
2877 		spin_unlock(&dentry->d_parent->d_lock);
2878 	if (dentry != old_parent)
2879 		spin_unlock(&old_parent->d_lock);
2880 	spin_unlock(&target->d_lock);
2881 	spin_unlock(&dentry->d_lock);
2882 }
2883 
2884 /*
2885  * d_move - move a dentry
2886  * @dentry: entry to move
2887  * @target: new dentry
2888  *
2889  * Update the dcache to reflect the move of a file name. Negative
2890  * dcache entries should not be moved in this way. See the locking
2891  * requirements for __d_move.
2892  */
2893 void d_move(struct dentry *dentry, struct dentry *target)
2894 {
2895 	write_seqlock(&rename_lock);
2896 	__d_move(dentry, target, false);
2897 	write_sequnlock(&rename_lock);
2898 }
2899 EXPORT_SYMBOL(d_move);
2900 
2901 /*
2902  * d_exchange - exchange two dentries
2903  * @dentry1: first dentry
2904  * @dentry2: second dentry
2905  */
2906 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2907 {
2908 	write_seqlock(&rename_lock);
2909 
2910 	WARN_ON(!dentry1->d_inode);
2911 	WARN_ON(!dentry2->d_inode);
2912 	WARN_ON(IS_ROOT(dentry1));
2913 	WARN_ON(IS_ROOT(dentry2));
2914 
2915 	__d_move(dentry1, dentry2, true);
2916 
2917 	write_sequnlock(&rename_lock);
2918 }
2919 
2920 /**
2921  * d_ancestor - search for an ancestor
2922  * @p1: ancestor dentry
2923  * @p2: child dentry
2924  *
2925  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2926  * an ancestor of p2, else NULL.
2927  */
2928 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2929 {
2930 	struct dentry *p;
2931 
2932 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2933 		if (p->d_parent == p1)
2934 			return p;
2935 	}
2936 	return NULL;
2937 }
2938 
2939 /*
2940  * This helper attempts to cope with remotely renamed directories
2941  *
2942  * It assumes that the caller is already holding
2943  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2944  *
2945  * Note: If ever the locking in lock_rename() changes, then please
2946  * remember to update this too...
2947  */
2948 static int __d_unalias(struct inode *inode,
2949 		struct dentry *dentry, struct dentry *alias)
2950 {
2951 	struct mutex *m1 = NULL;
2952 	struct rw_semaphore *m2 = NULL;
2953 	int ret = -ESTALE;
2954 
2955 	/* If alias and dentry share a parent, then no extra locks required */
2956 	if (alias->d_parent == dentry->d_parent)
2957 		goto out_unalias;
2958 
2959 	/* See lock_rename() */
2960 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2961 		goto out_err;
2962 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2963 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2964 		goto out_err;
2965 	m2 = &alias->d_parent->d_inode->i_rwsem;
2966 out_unalias:
2967 	__d_move(alias, dentry, false);
2968 	ret = 0;
2969 out_err:
2970 	if (m2)
2971 		up_read(m2);
2972 	if (m1)
2973 		mutex_unlock(m1);
2974 	return ret;
2975 }
2976 
2977 /**
2978  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2979  * @inode:  the inode which may have a disconnected dentry
2980  * @dentry: a negative dentry which we want to point to the inode.
2981  *
2982  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2983  * place of the given dentry and return it, else simply d_add the inode
2984  * to the dentry and return NULL.
2985  *
2986  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2987  * we should error out: directories can't have multiple aliases.
2988  *
2989  * This is needed in the lookup routine of any filesystem that is exportable
2990  * (via knfsd) so that we can build dcache paths to directories effectively.
2991  *
2992  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2993  * is returned.  This matches the expected return value of ->lookup.
2994  *
2995  * Cluster filesystems may call this function with a negative, hashed dentry.
2996  * In that case, we know that the inode will be a regular file, and also this
2997  * will only occur during atomic_open. So we need to check for the dentry
2998  * being already hashed only in the final case.
2999  */
3000 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3001 {
3002 	if (IS_ERR(inode))
3003 		return ERR_CAST(inode);
3004 
3005 	BUG_ON(!d_unhashed(dentry));
3006 
3007 	if (!inode)
3008 		goto out;
3009 
3010 	security_d_instantiate(dentry, inode);
3011 	spin_lock(&inode->i_lock);
3012 	if (S_ISDIR(inode->i_mode)) {
3013 		struct dentry *new = __d_find_any_alias(inode);
3014 		if (unlikely(new)) {
3015 			/* The reference to new ensures it remains an alias */
3016 			spin_unlock(&inode->i_lock);
3017 			write_seqlock(&rename_lock);
3018 			if (unlikely(d_ancestor(new, dentry))) {
3019 				write_sequnlock(&rename_lock);
3020 				dput(new);
3021 				new = ERR_PTR(-ELOOP);
3022 				pr_warn_ratelimited(
3023 					"VFS: Lookup of '%s' in %s %s"
3024 					" would have caused loop\n",
3025 					dentry->d_name.name,
3026 					inode->i_sb->s_type->name,
3027 					inode->i_sb->s_id);
3028 			} else if (!IS_ROOT(new)) {
3029 				struct dentry *old_parent = dget(new->d_parent);
3030 				int err = __d_unalias(inode, dentry, new);
3031 				write_sequnlock(&rename_lock);
3032 				if (err) {
3033 					dput(new);
3034 					new = ERR_PTR(err);
3035 				}
3036 				dput(old_parent);
3037 			} else {
3038 				__d_move(new, dentry, false);
3039 				write_sequnlock(&rename_lock);
3040 			}
3041 			iput(inode);
3042 			return new;
3043 		}
3044 	}
3045 out:
3046 	__d_add(dentry, inode);
3047 	return NULL;
3048 }
3049 EXPORT_SYMBOL(d_splice_alias);
3050 
3051 /*
3052  * Test whether new_dentry is a subdirectory of old_dentry.
3053  *
3054  * Trivially implemented using the dcache structure
3055  */
3056 
3057 /**
3058  * is_subdir - is new dentry a subdirectory of old_dentry
3059  * @new_dentry: new dentry
3060  * @old_dentry: old dentry
3061  *
3062  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3063  * Returns false otherwise.
3064  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3065  */
3066 
3067 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3068 {
3069 	bool result;
3070 	unsigned seq;
3071 
3072 	if (new_dentry == old_dentry)
3073 		return true;
3074 
3075 	do {
3076 		/* for restarting inner loop in case of seq retry */
3077 		seq = read_seqbegin(&rename_lock);
3078 		/*
3079 		 * Need rcu_readlock to protect against the d_parent trashing
3080 		 * due to d_move
3081 		 */
3082 		rcu_read_lock();
3083 		if (d_ancestor(old_dentry, new_dentry))
3084 			result = true;
3085 		else
3086 			result = false;
3087 		rcu_read_unlock();
3088 	} while (read_seqretry(&rename_lock, seq));
3089 
3090 	return result;
3091 }
3092 EXPORT_SYMBOL(is_subdir);
3093 
3094 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3095 {
3096 	struct dentry *root = data;
3097 	if (dentry != root) {
3098 		if (d_unhashed(dentry) || !dentry->d_inode)
3099 			return D_WALK_SKIP;
3100 
3101 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3102 			dentry->d_flags |= DCACHE_GENOCIDE;
3103 			dentry->d_lockref.count--;
3104 		}
3105 	}
3106 	return D_WALK_CONTINUE;
3107 }
3108 
3109 void d_genocide(struct dentry *parent)
3110 {
3111 	d_walk(parent, parent, d_genocide_kill);
3112 }
3113 
3114 EXPORT_SYMBOL(d_genocide);
3115 
3116 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3117 {
3118 	inode_dec_link_count(inode);
3119 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3120 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3121 		!d_unlinked(dentry));
3122 	spin_lock(&dentry->d_parent->d_lock);
3123 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3124 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3125 				(unsigned long long)inode->i_ino);
3126 	spin_unlock(&dentry->d_lock);
3127 	spin_unlock(&dentry->d_parent->d_lock);
3128 	d_instantiate(dentry, inode);
3129 }
3130 EXPORT_SYMBOL(d_tmpfile);
3131 
3132 static __initdata unsigned long dhash_entries;
3133 static int __init set_dhash_entries(char *str)
3134 {
3135 	if (!str)
3136 		return 0;
3137 	dhash_entries = simple_strtoul(str, &str, 0);
3138 	return 1;
3139 }
3140 __setup("dhash_entries=", set_dhash_entries);
3141 
3142 static void __init dcache_init_early(void)
3143 {
3144 	/* If hashes are distributed across NUMA nodes, defer
3145 	 * hash allocation until vmalloc space is available.
3146 	 */
3147 	if (hashdist)
3148 		return;
3149 
3150 	dentry_hashtable =
3151 		alloc_large_system_hash("Dentry cache",
3152 					sizeof(struct hlist_bl_head),
3153 					dhash_entries,
3154 					13,
3155 					HASH_EARLY | HASH_ZERO,
3156 					&d_hash_shift,
3157 					NULL,
3158 					0,
3159 					0);
3160 	d_hash_shift = 32 - d_hash_shift;
3161 }
3162 
3163 static void __init dcache_init(void)
3164 {
3165 	/*
3166 	 * A constructor could be added for stable state like the lists,
3167 	 * but it is probably not worth it because of the cache nature
3168 	 * of the dcache.
3169 	 */
3170 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3171 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3172 		d_iname);
3173 
3174 	/* Hash may have been set up in dcache_init_early */
3175 	if (!hashdist)
3176 		return;
3177 
3178 	dentry_hashtable =
3179 		alloc_large_system_hash("Dentry cache",
3180 					sizeof(struct hlist_bl_head),
3181 					dhash_entries,
3182 					13,
3183 					HASH_ZERO,
3184 					&d_hash_shift,
3185 					NULL,
3186 					0,
3187 					0);
3188 	d_hash_shift = 32 - d_hash_shift;
3189 }
3190 
3191 /* SLAB cache for __getname() consumers */
3192 struct kmem_cache *names_cachep __read_mostly;
3193 EXPORT_SYMBOL(names_cachep);
3194 
3195 void __init vfs_caches_init_early(void)
3196 {
3197 	int i;
3198 
3199 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3200 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3201 
3202 	dcache_init_early();
3203 	inode_init_early();
3204 }
3205 
3206 void __init vfs_caches_init(void)
3207 {
3208 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3209 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3210 
3211 	dcache_init();
3212 	inode_init();
3213 	files_init();
3214 	files_maxfiles_init();
3215 	mnt_init();
3216 	bdev_cache_init();
3217 	chrdev_init();
3218 }
3219