xref: /openbmc/linux/fs/dax.c (revision ff17b8df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 static inline bool dax_mapping_is_cow(struct address_space *mapping)
338 {
339 	return (unsigned long)mapping == PAGE_MAPPING_DAX_COW;
340 }
341 
342 /*
343  * Set the page->mapping with FS_DAX_MAPPING_COW flag, increase the refcount.
344  */
345 static inline void dax_mapping_set_cow(struct page *page)
346 {
347 	if ((uintptr_t)page->mapping != PAGE_MAPPING_DAX_COW) {
348 		/*
349 		 * Reset the index if the page was already mapped
350 		 * regularly before.
351 		 */
352 		if (page->mapping)
353 			page->index = 1;
354 		page->mapping = (void *)PAGE_MAPPING_DAX_COW;
355 	}
356 	page->index++;
357 }
358 
359 /*
360  * When it is called in dax_insert_entry(), the cow flag will indicate that
361  * whether this entry is shared by multiple files.  If so, set the page->mapping
362  * FS_DAX_MAPPING_COW, and use page->index as refcount.
363  */
364 static void dax_associate_entry(void *entry, struct address_space *mapping,
365 		struct vm_area_struct *vma, unsigned long address, bool cow)
366 {
367 	unsigned long size = dax_entry_size(entry), pfn, index;
368 	int i = 0;
369 
370 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 		return;
372 
373 	index = linear_page_index(vma, address & ~(size - 1));
374 	for_each_mapped_pfn(entry, pfn) {
375 		struct page *page = pfn_to_page(pfn);
376 
377 		if (cow) {
378 			dax_mapping_set_cow(page);
379 		} else {
380 			WARN_ON_ONCE(page->mapping);
381 			page->mapping = mapping;
382 			page->index = index + i++;
383 		}
384 	}
385 }
386 
387 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
388 		bool trunc)
389 {
390 	unsigned long pfn;
391 
392 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
393 		return;
394 
395 	for_each_mapped_pfn(entry, pfn) {
396 		struct page *page = pfn_to_page(pfn);
397 
398 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
399 		if (dax_mapping_is_cow(page->mapping)) {
400 			/* keep the CoW flag if this page is still shared */
401 			if (page->index-- > 0)
402 				continue;
403 		} else
404 			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
405 		page->mapping = NULL;
406 		page->index = 0;
407 	}
408 }
409 
410 static struct page *dax_busy_page(void *entry)
411 {
412 	unsigned long pfn;
413 
414 	for_each_mapped_pfn(entry, pfn) {
415 		struct page *page = pfn_to_page(pfn);
416 
417 		if (page_ref_count(page) > 1)
418 			return page;
419 	}
420 	return NULL;
421 }
422 
423 /*
424  * dax_lock_page - Lock the DAX entry corresponding to a page
425  * @page: The page whose entry we want to lock
426  *
427  * Context: Process context.
428  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
429  * not be locked.
430  */
431 dax_entry_t dax_lock_page(struct page *page)
432 {
433 	XA_STATE(xas, NULL, 0);
434 	void *entry;
435 
436 	/* Ensure page->mapping isn't freed while we look at it */
437 	rcu_read_lock();
438 	for (;;) {
439 		struct address_space *mapping = READ_ONCE(page->mapping);
440 
441 		entry = NULL;
442 		if (!mapping || !dax_mapping(mapping))
443 			break;
444 
445 		/*
446 		 * In the device-dax case there's no need to lock, a
447 		 * struct dev_pagemap pin is sufficient to keep the
448 		 * inode alive, and we assume we have dev_pagemap pin
449 		 * otherwise we would not have a valid pfn_to_page()
450 		 * translation.
451 		 */
452 		entry = (void *)~0UL;
453 		if (S_ISCHR(mapping->host->i_mode))
454 			break;
455 
456 		xas.xa = &mapping->i_pages;
457 		xas_lock_irq(&xas);
458 		if (mapping != page->mapping) {
459 			xas_unlock_irq(&xas);
460 			continue;
461 		}
462 		xas_set(&xas, page->index);
463 		entry = xas_load(&xas);
464 		if (dax_is_locked(entry)) {
465 			rcu_read_unlock();
466 			wait_entry_unlocked(&xas, entry);
467 			rcu_read_lock();
468 			continue;
469 		}
470 		dax_lock_entry(&xas, entry);
471 		xas_unlock_irq(&xas);
472 		break;
473 	}
474 	rcu_read_unlock();
475 	return (dax_entry_t)entry;
476 }
477 
478 void dax_unlock_page(struct page *page, dax_entry_t cookie)
479 {
480 	struct address_space *mapping = page->mapping;
481 	XA_STATE(xas, &mapping->i_pages, page->index);
482 
483 	if (S_ISCHR(mapping->host->i_mode))
484 		return;
485 
486 	dax_unlock_entry(&xas, (void *)cookie);
487 }
488 
489 /*
490  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
491  * @mapping: the file's mapping whose entry we want to lock
492  * @index: the offset within this file
493  * @page: output the dax page corresponding to this dax entry
494  *
495  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
496  * could not be locked.
497  */
498 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
499 		struct page **page)
500 {
501 	XA_STATE(xas, NULL, 0);
502 	void *entry;
503 
504 	rcu_read_lock();
505 	for (;;) {
506 		entry = NULL;
507 		if (!dax_mapping(mapping))
508 			break;
509 
510 		xas.xa = &mapping->i_pages;
511 		xas_lock_irq(&xas);
512 		xas_set(&xas, index);
513 		entry = xas_load(&xas);
514 		if (dax_is_locked(entry)) {
515 			rcu_read_unlock();
516 			wait_entry_unlocked(&xas, entry);
517 			rcu_read_lock();
518 			continue;
519 		}
520 		if (!entry ||
521 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
522 			/*
523 			 * Because we are looking for entry from file's mapping
524 			 * and index, so the entry may not be inserted for now,
525 			 * or even a zero/empty entry.  We don't think this is
526 			 * an error case.  So, return a special value and do
527 			 * not output @page.
528 			 */
529 			entry = (void *)~0UL;
530 		} else {
531 			*page = pfn_to_page(dax_to_pfn(entry));
532 			dax_lock_entry(&xas, entry);
533 		}
534 		xas_unlock_irq(&xas);
535 		break;
536 	}
537 	rcu_read_unlock();
538 	return (dax_entry_t)entry;
539 }
540 
541 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
542 		dax_entry_t cookie)
543 {
544 	XA_STATE(xas, &mapping->i_pages, index);
545 
546 	if (cookie == ~0UL)
547 		return;
548 
549 	dax_unlock_entry(&xas, (void *)cookie);
550 }
551 
552 /*
553  * Find page cache entry at given index. If it is a DAX entry, return it
554  * with the entry locked. If the page cache doesn't contain an entry at
555  * that index, add a locked empty entry.
556  *
557  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
558  * either return that locked entry or will return VM_FAULT_FALLBACK.
559  * This will happen if there are any PTE entries within the PMD range
560  * that we are requesting.
561  *
562  * We always favor PTE entries over PMD entries. There isn't a flow where we
563  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
564  * insertion will fail if it finds any PTE entries already in the tree, and a
565  * PTE insertion will cause an existing PMD entry to be unmapped and
566  * downgraded to PTE entries.  This happens for both PMD zero pages as
567  * well as PMD empty entries.
568  *
569  * The exception to this downgrade path is for PMD entries that have
570  * real storage backing them.  We will leave these real PMD entries in
571  * the tree, and PTE writes will simply dirty the entire PMD entry.
572  *
573  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
574  * persistent memory the benefit is doubtful. We can add that later if we can
575  * show it helps.
576  *
577  * On error, this function does not return an ERR_PTR.  Instead it returns
578  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
579  * overlap with xarray value entries.
580  */
581 static void *grab_mapping_entry(struct xa_state *xas,
582 		struct address_space *mapping, unsigned int order)
583 {
584 	unsigned long index = xas->xa_index;
585 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
586 	void *entry;
587 
588 retry:
589 	pmd_downgrade = false;
590 	xas_lock_irq(xas);
591 	entry = get_unlocked_entry(xas, order);
592 
593 	if (entry) {
594 		if (dax_is_conflict(entry))
595 			goto fallback;
596 		if (!xa_is_value(entry)) {
597 			xas_set_err(xas, -EIO);
598 			goto out_unlock;
599 		}
600 
601 		if (order == 0) {
602 			if (dax_is_pmd_entry(entry) &&
603 			    (dax_is_zero_entry(entry) ||
604 			     dax_is_empty_entry(entry))) {
605 				pmd_downgrade = true;
606 			}
607 		}
608 	}
609 
610 	if (pmd_downgrade) {
611 		/*
612 		 * Make sure 'entry' remains valid while we drop
613 		 * the i_pages lock.
614 		 */
615 		dax_lock_entry(xas, entry);
616 
617 		/*
618 		 * Besides huge zero pages the only other thing that gets
619 		 * downgraded are empty entries which don't need to be
620 		 * unmapped.
621 		 */
622 		if (dax_is_zero_entry(entry)) {
623 			xas_unlock_irq(xas);
624 			unmap_mapping_pages(mapping,
625 					xas->xa_index & ~PG_PMD_COLOUR,
626 					PG_PMD_NR, false);
627 			xas_reset(xas);
628 			xas_lock_irq(xas);
629 		}
630 
631 		dax_disassociate_entry(entry, mapping, false);
632 		xas_store(xas, NULL);	/* undo the PMD join */
633 		dax_wake_entry(xas, entry, WAKE_ALL);
634 		mapping->nrpages -= PG_PMD_NR;
635 		entry = NULL;
636 		xas_set(xas, index);
637 	}
638 
639 	if (entry) {
640 		dax_lock_entry(xas, entry);
641 	} else {
642 		unsigned long flags = DAX_EMPTY;
643 
644 		if (order > 0)
645 			flags |= DAX_PMD;
646 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
647 		dax_lock_entry(xas, entry);
648 		if (xas_error(xas))
649 			goto out_unlock;
650 		mapping->nrpages += 1UL << order;
651 	}
652 
653 out_unlock:
654 	xas_unlock_irq(xas);
655 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
656 		goto retry;
657 	if (xas->xa_node == XA_ERROR(-ENOMEM))
658 		return xa_mk_internal(VM_FAULT_OOM);
659 	if (xas_error(xas))
660 		return xa_mk_internal(VM_FAULT_SIGBUS);
661 	return entry;
662 fallback:
663 	xas_unlock_irq(xas);
664 	return xa_mk_internal(VM_FAULT_FALLBACK);
665 }
666 
667 /**
668  * dax_layout_busy_page_range - find first pinned page in @mapping
669  * @mapping: address space to scan for a page with ref count > 1
670  * @start: Starting offset. Page containing 'start' is included.
671  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
672  *       pages from 'start' till the end of file are included.
673  *
674  * DAX requires ZONE_DEVICE mapped pages. These pages are never
675  * 'onlined' to the page allocator so they are considered idle when
676  * page->count == 1. A filesystem uses this interface to determine if
677  * any page in the mapping is busy, i.e. for DMA, or other
678  * get_user_pages() usages.
679  *
680  * It is expected that the filesystem is holding locks to block the
681  * establishment of new mappings in this address_space. I.e. it expects
682  * to be able to run unmap_mapping_range() and subsequently not race
683  * mapping_mapped() becoming true.
684  */
685 struct page *dax_layout_busy_page_range(struct address_space *mapping,
686 					loff_t start, loff_t end)
687 {
688 	void *entry;
689 	unsigned int scanned = 0;
690 	struct page *page = NULL;
691 	pgoff_t start_idx = start >> PAGE_SHIFT;
692 	pgoff_t end_idx;
693 	XA_STATE(xas, &mapping->i_pages, start_idx);
694 
695 	/*
696 	 * In the 'limited' case get_user_pages() for dax is disabled.
697 	 */
698 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
699 		return NULL;
700 
701 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
702 		return NULL;
703 
704 	/* If end == LLONG_MAX, all pages from start to till end of file */
705 	if (end == LLONG_MAX)
706 		end_idx = ULONG_MAX;
707 	else
708 		end_idx = end >> PAGE_SHIFT;
709 	/*
710 	 * If we race get_user_pages_fast() here either we'll see the
711 	 * elevated page count in the iteration and wait, or
712 	 * get_user_pages_fast() will see that the page it took a reference
713 	 * against is no longer mapped in the page tables and bail to the
714 	 * get_user_pages() slow path.  The slow path is protected by
715 	 * pte_lock() and pmd_lock(). New references are not taken without
716 	 * holding those locks, and unmap_mapping_pages() will not zero the
717 	 * pte or pmd without holding the respective lock, so we are
718 	 * guaranteed to either see new references or prevent new
719 	 * references from being established.
720 	 */
721 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
722 
723 	xas_lock_irq(&xas);
724 	xas_for_each(&xas, entry, end_idx) {
725 		if (WARN_ON_ONCE(!xa_is_value(entry)))
726 			continue;
727 		if (unlikely(dax_is_locked(entry)))
728 			entry = get_unlocked_entry(&xas, 0);
729 		if (entry)
730 			page = dax_busy_page(entry);
731 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
732 		if (page)
733 			break;
734 		if (++scanned % XA_CHECK_SCHED)
735 			continue;
736 
737 		xas_pause(&xas);
738 		xas_unlock_irq(&xas);
739 		cond_resched();
740 		xas_lock_irq(&xas);
741 	}
742 	xas_unlock_irq(&xas);
743 	return page;
744 }
745 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
746 
747 struct page *dax_layout_busy_page(struct address_space *mapping)
748 {
749 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
752 
753 static int __dax_invalidate_entry(struct address_space *mapping,
754 					  pgoff_t index, bool trunc)
755 {
756 	XA_STATE(xas, &mapping->i_pages, index);
757 	int ret = 0;
758 	void *entry;
759 
760 	xas_lock_irq(&xas);
761 	entry = get_unlocked_entry(&xas, 0);
762 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
763 		goto out;
764 	if (!trunc &&
765 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
766 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
767 		goto out;
768 	dax_disassociate_entry(entry, mapping, trunc);
769 	xas_store(&xas, NULL);
770 	mapping->nrpages -= 1UL << dax_entry_order(entry);
771 	ret = 1;
772 out:
773 	put_unlocked_entry(&xas, entry, WAKE_ALL);
774 	xas_unlock_irq(&xas);
775 	return ret;
776 }
777 
778 /*
779  * Delete DAX entry at @index from @mapping.  Wait for it
780  * to be unlocked before deleting it.
781  */
782 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
783 {
784 	int ret = __dax_invalidate_entry(mapping, index, true);
785 
786 	/*
787 	 * This gets called from truncate / punch_hole path. As such, the caller
788 	 * must hold locks protecting against concurrent modifications of the
789 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
790 	 * caller has seen a DAX entry for this index, we better find it
791 	 * at that index as well...
792 	 */
793 	WARN_ON_ONCE(!ret);
794 	return ret;
795 }
796 
797 /*
798  * Invalidate DAX entry if it is clean.
799  */
800 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
801 				      pgoff_t index)
802 {
803 	return __dax_invalidate_entry(mapping, index, false);
804 }
805 
806 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
807 {
808 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
809 }
810 
811 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
812 {
813 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
814 	void *vto, *kaddr;
815 	long rc;
816 	int id;
817 
818 	id = dax_read_lock();
819 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
820 				&kaddr, NULL);
821 	if (rc < 0) {
822 		dax_read_unlock(id);
823 		return rc;
824 	}
825 	vto = kmap_atomic(vmf->cow_page);
826 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
827 	kunmap_atomic(vto);
828 	dax_read_unlock(id);
829 	return 0;
830 }
831 
832 /*
833  * By this point grab_mapping_entry() has ensured that we have a locked entry
834  * of the appropriate size so we don't have to worry about downgrading PMDs to
835  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
836  * already in the tree, we will skip the insertion and just dirty the PMD as
837  * appropriate.
838  */
839 static void *dax_insert_entry(struct xa_state *xas,
840 		struct address_space *mapping, struct vm_fault *vmf,
841 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
842 {
843 	void *new_entry = dax_make_entry(pfn, flags);
844 
845 	if (dirty)
846 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
847 
848 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
849 		unsigned long index = xas->xa_index;
850 		/* we are replacing a zero page with block mapping */
851 		if (dax_is_pmd_entry(entry))
852 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
853 					PG_PMD_NR, false);
854 		else /* pte entry */
855 			unmap_mapping_pages(mapping, index, 1, false);
856 	}
857 
858 	xas_reset(xas);
859 	xas_lock_irq(xas);
860 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
861 		void *old;
862 
863 		dax_disassociate_entry(entry, mapping, false);
864 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
865 				false);
866 		/*
867 		 * Only swap our new entry into the page cache if the current
868 		 * entry is a zero page or an empty entry.  If a normal PTE or
869 		 * PMD entry is already in the cache, we leave it alone.  This
870 		 * means that if we are trying to insert a PTE and the
871 		 * existing entry is a PMD, we will just leave the PMD in the
872 		 * tree and dirty it if necessary.
873 		 */
874 		old = dax_lock_entry(xas, new_entry);
875 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
876 					DAX_LOCKED));
877 		entry = new_entry;
878 	} else {
879 		xas_load(xas);	/* Walk the xa_state */
880 	}
881 
882 	if (dirty)
883 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
884 
885 	xas_unlock_irq(xas);
886 	return entry;
887 }
888 
889 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
890 		struct address_space *mapping, void *entry)
891 {
892 	unsigned long pfn, index, count, end;
893 	long ret = 0;
894 	struct vm_area_struct *vma;
895 
896 	/*
897 	 * A page got tagged dirty in DAX mapping? Something is seriously
898 	 * wrong.
899 	 */
900 	if (WARN_ON(!xa_is_value(entry)))
901 		return -EIO;
902 
903 	if (unlikely(dax_is_locked(entry))) {
904 		void *old_entry = entry;
905 
906 		entry = get_unlocked_entry(xas, 0);
907 
908 		/* Entry got punched out / reallocated? */
909 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
910 			goto put_unlocked;
911 		/*
912 		 * Entry got reallocated elsewhere? No need to writeback.
913 		 * We have to compare pfns as we must not bail out due to
914 		 * difference in lockbit or entry type.
915 		 */
916 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
917 			goto put_unlocked;
918 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
919 					dax_is_zero_entry(entry))) {
920 			ret = -EIO;
921 			goto put_unlocked;
922 		}
923 
924 		/* Another fsync thread may have already done this entry */
925 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
926 			goto put_unlocked;
927 	}
928 
929 	/* Lock the entry to serialize with page faults */
930 	dax_lock_entry(xas, entry);
931 
932 	/*
933 	 * We can clear the tag now but we have to be careful so that concurrent
934 	 * dax_writeback_one() calls for the same index cannot finish before we
935 	 * actually flush the caches. This is achieved as the calls will look
936 	 * at the entry only under the i_pages lock and once they do that
937 	 * they will see the entry locked and wait for it to unlock.
938 	 */
939 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
940 	xas_unlock_irq(xas);
941 
942 	/*
943 	 * If dax_writeback_mapping_range() was given a wbc->range_start
944 	 * in the middle of a PMD, the 'index' we use needs to be
945 	 * aligned to the start of the PMD.
946 	 * This allows us to flush for PMD_SIZE and not have to worry about
947 	 * partial PMD writebacks.
948 	 */
949 	pfn = dax_to_pfn(entry);
950 	count = 1UL << dax_entry_order(entry);
951 	index = xas->xa_index & ~(count - 1);
952 	end = index + count - 1;
953 
954 	/* Walk all mappings of a given index of a file and writeprotect them */
955 	i_mmap_lock_read(mapping);
956 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
957 		pfn_mkclean_range(pfn, count, index, vma);
958 		cond_resched();
959 	}
960 	i_mmap_unlock_read(mapping);
961 
962 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
963 	/*
964 	 * After we have flushed the cache, we can clear the dirty tag. There
965 	 * cannot be new dirty data in the pfn after the flush has completed as
966 	 * the pfn mappings are writeprotected and fault waits for mapping
967 	 * entry lock.
968 	 */
969 	xas_reset(xas);
970 	xas_lock_irq(xas);
971 	xas_store(xas, entry);
972 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
973 	dax_wake_entry(xas, entry, WAKE_NEXT);
974 
975 	trace_dax_writeback_one(mapping->host, index, count);
976 	return ret;
977 
978  put_unlocked:
979 	put_unlocked_entry(xas, entry, WAKE_NEXT);
980 	return ret;
981 }
982 
983 /*
984  * Flush the mapping to the persistent domain within the byte range of [start,
985  * end]. This is required by data integrity operations to ensure file data is
986  * on persistent storage prior to completion of the operation.
987  */
988 int dax_writeback_mapping_range(struct address_space *mapping,
989 		struct dax_device *dax_dev, struct writeback_control *wbc)
990 {
991 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
992 	struct inode *inode = mapping->host;
993 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
994 	void *entry;
995 	int ret = 0;
996 	unsigned int scanned = 0;
997 
998 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
999 		return -EIO;
1000 
1001 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1002 		return 0;
1003 
1004 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1005 
1006 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1007 
1008 	xas_lock_irq(&xas);
1009 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1010 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1011 		if (ret < 0) {
1012 			mapping_set_error(mapping, ret);
1013 			break;
1014 		}
1015 		if (++scanned % XA_CHECK_SCHED)
1016 			continue;
1017 
1018 		xas_pause(&xas);
1019 		xas_unlock_irq(&xas);
1020 		cond_resched();
1021 		xas_lock_irq(&xas);
1022 	}
1023 	xas_unlock_irq(&xas);
1024 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1028 
1029 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1030 		size_t size, void **kaddr, pfn_t *pfnp)
1031 {
1032 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1033 	int id, rc = 0;
1034 	long length;
1035 
1036 	id = dax_read_lock();
1037 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1038 				   DAX_ACCESS, kaddr, pfnp);
1039 	if (length < 0) {
1040 		rc = length;
1041 		goto out;
1042 	}
1043 	if (!pfnp)
1044 		goto out_check_addr;
1045 	rc = -EINVAL;
1046 	if (PFN_PHYS(length) < size)
1047 		goto out;
1048 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1049 		goto out;
1050 	/* For larger pages we need devmap */
1051 	if (length > 1 && !pfn_t_devmap(*pfnp))
1052 		goto out;
1053 	rc = 0;
1054 
1055 out_check_addr:
1056 	if (!kaddr)
1057 		goto out;
1058 	if (!*kaddr)
1059 		rc = -EFAULT;
1060 out:
1061 	dax_read_unlock(id);
1062 	return rc;
1063 }
1064 
1065 /**
1066  * dax_iomap_cow_copy - Copy the data from source to destination before write
1067  * @pos:	address to do copy from.
1068  * @length:	size of copy operation.
1069  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1070  * @srcmap:	iomap srcmap
1071  * @daddr:	destination address to copy to.
1072  *
1073  * This can be called from two places. Either during DAX write fault (page
1074  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1075  * write operation, dax_iomap_actor() might call this to do the copy of either
1076  * start or end unaligned address. In the latter case the rest of the copy of
1077  * aligned ranges is taken care by dax_iomap_actor() itself.
1078  */
1079 static int dax_iomap_cow_copy(loff_t pos, uint64_t length, size_t align_size,
1080 		const struct iomap *srcmap, void *daddr)
1081 {
1082 	loff_t head_off = pos & (align_size - 1);
1083 	size_t size = ALIGN(head_off + length, align_size);
1084 	loff_t end = pos + length;
1085 	loff_t pg_end = round_up(end, align_size);
1086 	bool copy_all = head_off == 0 && end == pg_end;
1087 	void *saddr = 0;
1088 	int ret = 0;
1089 
1090 	ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1091 	if (ret)
1092 		return ret;
1093 
1094 	if (copy_all) {
1095 		ret = copy_mc_to_kernel(daddr, saddr, length);
1096 		return ret ? -EIO : 0;
1097 	}
1098 
1099 	/* Copy the head part of the range */
1100 	if (head_off) {
1101 		ret = copy_mc_to_kernel(daddr, saddr, head_off);
1102 		if (ret)
1103 			return -EIO;
1104 	}
1105 
1106 	/* Copy the tail part of the range */
1107 	if (end < pg_end) {
1108 		loff_t tail_off = head_off + length;
1109 		loff_t tail_len = pg_end - end;
1110 
1111 		ret = copy_mc_to_kernel(daddr + tail_off, saddr + tail_off,
1112 					tail_len);
1113 		if (ret)
1114 			return -EIO;
1115 	}
1116 	return 0;
1117 }
1118 
1119 /*
1120  * The user has performed a load from a hole in the file.  Allocating a new
1121  * page in the file would cause excessive storage usage for workloads with
1122  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1123  * If this page is ever written to we will re-fault and change the mapping to
1124  * point to real DAX storage instead.
1125  */
1126 static vm_fault_t dax_load_hole(struct xa_state *xas,
1127 		struct address_space *mapping, void **entry,
1128 		struct vm_fault *vmf)
1129 {
1130 	struct inode *inode = mapping->host;
1131 	unsigned long vaddr = vmf->address;
1132 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1133 	vm_fault_t ret;
1134 
1135 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1136 			DAX_ZERO_PAGE, false);
1137 
1138 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1139 	trace_dax_load_hole(inode, vmf, ret);
1140 	return ret;
1141 }
1142 
1143 #ifdef CONFIG_FS_DAX_PMD
1144 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1145 		const struct iomap *iomap, void **entry)
1146 {
1147 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1148 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1149 	struct vm_area_struct *vma = vmf->vma;
1150 	struct inode *inode = mapping->host;
1151 	pgtable_t pgtable = NULL;
1152 	struct page *zero_page;
1153 	spinlock_t *ptl;
1154 	pmd_t pmd_entry;
1155 	pfn_t pfn;
1156 
1157 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1158 
1159 	if (unlikely(!zero_page))
1160 		goto fallback;
1161 
1162 	pfn = page_to_pfn_t(zero_page);
1163 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1164 			DAX_PMD | DAX_ZERO_PAGE, false);
1165 
1166 	if (arch_needs_pgtable_deposit()) {
1167 		pgtable = pte_alloc_one(vma->vm_mm);
1168 		if (!pgtable)
1169 			return VM_FAULT_OOM;
1170 	}
1171 
1172 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1173 	if (!pmd_none(*(vmf->pmd))) {
1174 		spin_unlock(ptl);
1175 		goto fallback;
1176 	}
1177 
1178 	if (pgtable) {
1179 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1180 		mm_inc_nr_ptes(vma->vm_mm);
1181 	}
1182 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1183 	pmd_entry = pmd_mkhuge(pmd_entry);
1184 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1185 	spin_unlock(ptl);
1186 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1187 	return VM_FAULT_NOPAGE;
1188 
1189 fallback:
1190 	if (pgtable)
1191 		pte_free(vma->vm_mm, pgtable);
1192 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1193 	return VM_FAULT_FALLBACK;
1194 }
1195 #else
1196 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1197 		const struct iomap *iomap, void **entry)
1198 {
1199 	return VM_FAULT_FALLBACK;
1200 }
1201 #endif /* CONFIG_FS_DAX_PMD */
1202 
1203 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1204 		unsigned int offset, size_t size)
1205 {
1206 	void *kaddr;
1207 	long ret;
1208 
1209 	ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
1210 	if (ret > 0) {
1211 		memset(kaddr + offset, 0, size);
1212 		dax_flush(dax_dev, kaddr + offset, size);
1213 	}
1214 	return ret;
1215 }
1216 
1217 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1218 {
1219 	const struct iomap *iomap = &iter->iomap;
1220 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1221 	loff_t pos = iter->pos;
1222 	u64 length = iomap_length(iter);
1223 	s64 written = 0;
1224 
1225 	/* already zeroed?  we're done. */
1226 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1227 		return length;
1228 
1229 	do {
1230 		unsigned offset = offset_in_page(pos);
1231 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1232 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1233 		long rc;
1234 		int id;
1235 
1236 		id = dax_read_lock();
1237 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1238 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1239 		else
1240 			rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1241 		dax_read_unlock(id);
1242 
1243 		if (rc < 0)
1244 			return rc;
1245 		pos += size;
1246 		length -= size;
1247 		written += size;
1248 		if (did_zero)
1249 			*did_zero = true;
1250 	} while (length > 0);
1251 
1252 	return written;
1253 }
1254 
1255 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1256 		const struct iomap_ops *ops)
1257 {
1258 	struct iomap_iter iter = {
1259 		.inode		= inode,
1260 		.pos		= pos,
1261 		.len		= len,
1262 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1263 	};
1264 	int ret;
1265 
1266 	while ((ret = iomap_iter(&iter, ops)) > 0)
1267 		iter.processed = dax_zero_iter(&iter, did_zero);
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL_GPL(dax_zero_range);
1271 
1272 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1273 		const struct iomap_ops *ops)
1274 {
1275 	unsigned int blocksize = i_blocksize(inode);
1276 	unsigned int off = pos & (blocksize - 1);
1277 
1278 	/* Block boundary? Nothing to do */
1279 	if (!off)
1280 		return 0;
1281 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1282 }
1283 EXPORT_SYMBOL_GPL(dax_truncate_page);
1284 
1285 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1286 		struct iov_iter *iter)
1287 {
1288 	const struct iomap *iomap = &iomi->iomap;
1289 	const struct iomap *srcmap = &iomi->srcmap;
1290 	loff_t length = iomap_length(iomi);
1291 	loff_t pos = iomi->pos;
1292 	struct dax_device *dax_dev = iomap->dax_dev;
1293 	loff_t end = pos + length, done = 0;
1294 	bool write = iov_iter_rw(iter) == WRITE;
1295 	ssize_t ret = 0;
1296 	size_t xfer;
1297 	int id;
1298 
1299 	if (!write) {
1300 		end = min(end, i_size_read(iomi->inode));
1301 		if (pos >= end)
1302 			return 0;
1303 
1304 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1305 			return iov_iter_zero(min(length, end - pos), iter);
1306 	}
1307 
1308 	/*
1309 	 * In DAX mode, enforce either pure overwrites of written extents, or
1310 	 * writes to unwritten extents as part of a copy-on-write operation.
1311 	 */
1312 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1313 			!(iomap->flags & IOMAP_F_SHARED)))
1314 		return -EIO;
1315 
1316 	/*
1317 	 * Write can allocate block for an area which has a hole page mapped
1318 	 * into page tables. We have to tear down these mappings so that data
1319 	 * written by write(2) is visible in mmap.
1320 	 */
1321 	if (iomap->flags & IOMAP_F_NEW) {
1322 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1323 					      pos >> PAGE_SHIFT,
1324 					      (end - 1) >> PAGE_SHIFT);
1325 	}
1326 
1327 	id = dax_read_lock();
1328 	while (pos < end) {
1329 		unsigned offset = pos & (PAGE_SIZE - 1);
1330 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1331 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1332 		ssize_t map_len;
1333 		bool recovery = false;
1334 		void *kaddr;
1335 
1336 		if (fatal_signal_pending(current)) {
1337 			ret = -EINTR;
1338 			break;
1339 		}
1340 
1341 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1342 				DAX_ACCESS, &kaddr, NULL);
1343 		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1344 			map_len = dax_direct_access(dax_dev, pgoff,
1345 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1346 					&kaddr, NULL);
1347 			if (map_len > 0)
1348 				recovery = true;
1349 		}
1350 		if (map_len < 0) {
1351 			ret = map_len;
1352 			break;
1353 		}
1354 
1355 		if (write &&
1356 		    srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1357 			ret = dax_iomap_cow_copy(pos, length, PAGE_SIZE, srcmap,
1358 						 kaddr);
1359 			if (ret)
1360 				break;
1361 		}
1362 
1363 		map_len = PFN_PHYS(map_len);
1364 		kaddr += offset;
1365 		map_len -= offset;
1366 		if (map_len > end - pos)
1367 			map_len = end - pos;
1368 
1369 		if (recovery)
1370 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1371 					map_len, iter);
1372 		else if (write)
1373 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1374 					map_len, iter);
1375 		else
1376 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1377 					map_len, iter);
1378 
1379 		pos += xfer;
1380 		length -= xfer;
1381 		done += xfer;
1382 
1383 		if (xfer == 0)
1384 			ret = -EFAULT;
1385 		if (xfer < map_len)
1386 			break;
1387 	}
1388 	dax_read_unlock(id);
1389 
1390 	return done ? done : ret;
1391 }
1392 
1393 /**
1394  * dax_iomap_rw - Perform I/O to a DAX file
1395  * @iocb:	The control block for this I/O
1396  * @iter:	The addresses to do I/O from or to
1397  * @ops:	iomap ops passed from the file system
1398  *
1399  * This function performs read and write operations to directly mapped
1400  * persistent memory.  The callers needs to take care of read/write exclusion
1401  * and evicting any page cache pages in the region under I/O.
1402  */
1403 ssize_t
1404 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1405 		const struct iomap_ops *ops)
1406 {
1407 	struct iomap_iter iomi = {
1408 		.inode		= iocb->ki_filp->f_mapping->host,
1409 		.pos		= iocb->ki_pos,
1410 		.len		= iov_iter_count(iter),
1411 		.flags		= IOMAP_DAX,
1412 	};
1413 	loff_t done = 0;
1414 	int ret;
1415 
1416 	if (iov_iter_rw(iter) == WRITE) {
1417 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1418 		iomi.flags |= IOMAP_WRITE;
1419 	} else {
1420 		lockdep_assert_held(&iomi.inode->i_rwsem);
1421 	}
1422 
1423 	if (iocb->ki_flags & IOCB_NOWAIT)
1424 		iomi.flags |= IOMAP_NOWAIT;
1425 
1426 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1427 		iomi.processed = dax_iomap_iter(&iomi, iter);
1428 
1429 	done = iomi.pos - iocb->ki_pos;
1430 	iocb->ki_pos = iomi.pos;
1431 	return done ? done : ret;
1432 }
1433 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1434 
1435 static vm_fault_t dax_fault_return(int error)
1436 {
1437 	if (error == 0)
1438 		return VM_FAULT_NOPAGE;
1439 	return vmf_error(error);
1440 }
1441 
1442 /*
1443  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1444  * flushed on write-faults (non-cow), but not read-faults.
1445  */
1446 static bool dax_fault_is_synchronous(unsigned long flags,
1447 		struct vm_area_struct *vma, const struct iomap *iomap)
1448 {
1449 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1450 		&& (iomap->flags & IOMAP_F_DIRTY);
1451 }
1452 
1453 /*
1454  * When handling a synchronous page fault and the inode need a fsync, we can
1455  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1456  * insertion for now and return the pfn so that caller can insert it after the
1457  * fsync is done.
1458  */
1459 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1460 {
1461 	if (WARN_ON_ONCE(!pfnp))
1462 		return VM_FAULT_SIGBUS;
1463 	*pfnp = pfn;
1464 	return VM_FAULT_NEEDDSYNC;
1465 }
1466 
1467 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1468 		const struct iomap_iter *iter)
1469 {
1470 	vm_fault_t ret;
1471 	int error = 0;
1472 
1473 	switch (iter->iomap.type) {
1474 	case IOMAP_HOLE:
1475 	case IOMAP_UNWRITTEN:
1476 		clear_user_highpage(vmf->cow_page, vmf->address);
1477 		break;
1478 	case IOMAP_MAPPED:
1479 		error = copy_cow_page_dax(vmf, iter);
1480 		break;
1481 	default:
1482 		WARN_ON_ONCE(1);
1483 		error = -EIO;
1484 		break;
1485 	}
1486 
1487 	if (error)
1488 		return dax_fault_return(error);
1489 
1490 	__SetPageUptodate(vmf->cow_page);
1491 	ret = finish_fault(vmf);
1492 	if (!ret)
1493 		return VM_FAULT_DONE_COW;
1494 	return ret;
1495 }
1496 
1497 /**
1498  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1499  * @vmf:	vm fault instance
1500  * @iter:	iomap iter
1501  * @pfnp:	pfn to be returned
1502  * @xas:	the dax mapping tree of a file
1503  * @entry:	an unlocked dax entry to be inserted
1504  * @pmd:	distinguish whether it is a pmd fault
1505  */
1506 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1507 		const struct iomap_iter *iter, pfn_t *pfnp,
1508 		struct xa_state *xas, void **entry, bool pmd)
1509 {
1510 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1511 	const struct iomap *iomap = &iter->iomap;
1512 	const struct iomap *srcmap = &iter->srcmap;
1513 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1514 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1515 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1516 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1517 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1518 	int err = 0;
1519 	pfn_t pfn;
1520 	void *kaddr;
1521 
1522 	if (!pmd && vmf->cow_page)
1523 		return dax_fault_cow_page(vmf, iter);
1524 
1525 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1526 	if (!write &&
1527 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1528 		if (!pmd)
1529 			return dax_load_hole(xas, mapping, entry, vmf);
1530 		return dax_pmd_load_hole(xas, vmf, iomap, entry);
1531 	}
1532 
1533 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1534 		WARN_ON_ONCE(1);
1535 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1536 	}
1537 
1538 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1539 	if (err)
1540 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1541 
1542 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1543 				  write && !sync);
1544 
1545 	if (write &&
1546 	    srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1547 		err = dax_iomap_cow_copy(pos, size, size, srcmap, kaddr);
1548 		if (err)
1549 			return dax_fault_return(err);
1550 	}
1551 
1552 	if (sync)
1553 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1554 
1555 	/* insert PMD pfn */
1556 	if (pmd)
1557 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1558 
1559 	/* insert PTE pfn */
1560 	if (write)
1561 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1562 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1563 }
1564 
1565 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1566 			       int *iomap_errp, const struct iomap_ops *ops)
1567 {
1568 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1569 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1570 	struct iomap_iter iter = {
1571 		.inode		= mapping->host,
1572 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1573 		.len		= PAGE_SIZE,
1574 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1575 	};
1576 	vm_fault_t ret = 0;
1577 	void *entry;
1578 	int error;
1579 
1580 	trace_dax_pte_fault(iter.inode, vmf, ret);
1581 	/*
1582 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1583 	 * to hold locks serializing us with truncate / punch hole so this is
1584 	 * a reliable test.
1585 	 */
1586 	if (iter.pos >= i_size_read(iter.inode)) {
1587 		ret = VM_FAULT_SIGBUS;
1588 		goto out;
1589 	}
1590 
1591 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1592 		iter.flags |= IOMAP_WRITE;
1593 
1594 	entry = grab_mapping_entry(&xas, mapping, 0);
1595 	if (xa_is_internal(entry)) {
1596 		ret = xa_to_internal(entry);
1597 		goto out;
1598 	}
1599 
1600 	/*
1601 	 * It is possible, particularly with mixed reads & writes to private
1602 	 * mappings, that we have raced with a PMD fault that overlaps with
1603 	 * the PTE we need to set up.  If so just return and the fault will be
1604 	 * retried.
1605 	 */
1606 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1607 		ret = VM_FAULT_NOPAGE;
1608 		goto unlock_entry;
1609 	}
1610 
1611 	while ((error = iomap_iter(&iter, ops)) > 0) {
1612 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1613 			iter.processed = -EIO;	/* fs corruption? */
1614 			continue;
1615 		}
1616 
1617 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1618 		if (ret != VM_FAULT_SIGBUS &&
1619 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1620 			count_vm_event(PGMAJFAULT);
1621 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1622 			ret |= VM_FAULT_MAJOR;
1623 		}
1624 
1625 		if (!(ret & VM_FAULT_ERROR))
1626 			iter.processed = PAGE_SIZE;
1627 	}
1628 
1629 	if (iomap_errp)
1630 		*iomap_errp = error;
1631 	if (!ret && error)
1632 		ret = dax_fault_return(error);
1633 
1634 unlock_entry:
1635 	dax_unlock_entry(&xas, entry);
1636 out:
1637 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1638 	return ret;
1639 }
1640 
1641 #ifdef CONFIG_FS_DAX_PMD
1642 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1643 		pgoff_t max_pgoff)
1644 {
1645 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1646 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1647 
1648 	/*
1649 	 * Make sure that the faulting address's PMD offset (color) matches
1650 	 * the PMD offset from the start of the file.  This is necessary so
1651 	 * that a PMD range in the page table overlaps exactly with a PMD
1652 	 * range in the page cache.
1653 	 */
1654 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1655 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1656 		return true;
1657 
1658 	/* Fall back to PTEs if we're going to COW */
1659 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1660 		return true;
1661 
1662 	/* If the PMD would extend outside the VMA */
1663 	if (pmd_addr < vmf->vma->vm_start)
1664 		return true;
1665 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1666 		return true;
1667 
1668 	/* If the PMD would extend beyond the file size */
1669 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1670 		return true;
1671 
1672 	return false;
1673 }
1674 
1675 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1676 			       const struct iomap_ops *ops)
1677 {
1678 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1679 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1680 	struct iomap_iter iter = {
1681 		.inode		= mapping->host,
1682 		.len		= PMD_SIZE,
1683 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1684 	};
1685 	vm_fault_t ret = VM_FAULT_FALLBACK;
1686 	pgoff_t max_pgoff;
1687 	void *entry;
1688 	int error;
1689 
1690 	if (vmf->flags & FAULT_FLAG_WRITE)
1691 		iter.flags |= IOMAP_WRITE;
1692 
1693 	/*
1694 	 * Check whether offset isn't beyond end of file now. Caller is
1695 	 * supposed to hold locks serializing us with truncate / punch hole so
1696 	 * this is a reliable test.
1697 	 */
1698 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1699 
1700 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1701 
1702 	if (xas.xa_index >= max_pgoff) {
1703 		ret = VM_FAULT_SIGBUS;
1704 		goto out;
1705 	}
1706 
1707 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1708 		goto fallback;
1709 
1710 	/*
1711 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1712 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1713 	 * entry is already in the array, for instance), it will return
1714 	 * VM_FAULT_FALLBACK.
1715 	 */
1716 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1717 	if (xa_is_internal(entry)) {
1718 		ret = xa_to_internal(entry);
1719 		goto fallback;
1720 	}
1721 
1722 	/*
1723 	 * It is possible, particularly with mixed reads & writes to private
1724 	 * mappings, that we have raced with a PTE fault that overlaps with
1725 	 * the PMD we need to set up.  If so just return and the fault will be
1726 	 * retried.
1727 	 */
1728 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1729 			!pmd_devmap(*vmf->pmd)) {
1730 		ret = 0;
1731 		goto unlock_entry;
1732 	}
1733 
1734 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1735 	while ((error = iomap_iter(&iter, ops)) > 0) {
1736 		if (iomap_length(&iter) < PMD_SIZE)
1737 			continue; /* actually breaks out of the loop */
1738 
1739 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1740 		if (ret != VM_FAULT_FALLBACK)
1741 			iter.processed = PMD_SIZE;
1742 	}
1743 
1744 unlock_entry:
1745 	dax_unlock_entry(&xas, entry);
1746 fallback:
1747 	if (ret == VM_FAULT_FALLBACK) {
1748 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1749 		count_vm_event(THP_FAULT_FALLBACK);
1750 	}
1751 out:
1752 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1753 	return ret;
1754 }
1755 #else
1756 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1757 			       const struct iomap_ops *ops)
1758 {
1759 	return VM_FAULT_FALLBACK;
1760 }
1761 #endif /* CONFIG_FS_DAX_PMD */
1762 
1763 /**
1764  * dax_iomap_fault - handle a page fault on a DAX file
1765  * @vmf: The description of the fault
1766  * @pe_size: Size of the page to fault in
1767  * @pfnp: PFN to insert for synchronous faults if fsync is required
1768  * @iomap_errp: Storage for detailed error code in case of error
1769  * @ops: Iomap ops passed from the file system
1770  *
1771  * When a page fault occurs, filesystems may call this helper in
1772  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1773  * has done all the necessary locking for page fault to proceed
1774  * successfully.
1775  */
1776 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1777 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1778 {
1779 	switch (pe_size) {
1780 	case PE_SIZE_PTE:
1781 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1782 	case PE_SIZE_PMD:
1783 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1784 	default:
1785 		return VM_FAULT_FALLBACK;
1786 	}
1787 }
1788 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1789 
1790 /*
1791  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1792  * @vmf: The description of the fault
1793  * @pfn: PFN to insert
1794  * @order: Order of entry to insert.
1795  *
1796  * This function inserts a writeable PTE or PMD entry into the page tables
1797  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1798  */
1799 static vm_fault_t
1800 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1801 {
1802 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1803 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1804 	void *entry;
1805 	vm_fault_t ret;
1806 
1807 	xas_lock_irq(&xas);
1808 	entry = get_unlocked_entry(&xas, order);
1809 	/* Did we race with someone splitting entry or so? */
1810 	if (!entry || dax_is_conflict(entry) ||
1811 	    (order == 0 && !dax_is_pte_entry(entry))) {
1812 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1813 		xas_unlock_irq(&xas);
1814 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1815 						      VM_FAULT_NOPAGE);
1816 		return VM_FAULT_NOPAGE;
1817 	}
1818 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1819 	dax_lock_entry(&xas, entry);
1820 	xas_unlock_irq(&xas);
1821 	if (order == 0)
1822 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1823 #ifdef CONFIG_FS_DAX_PMD
1824 	else if (order == PMD_ORDER)
1825 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1826 #endif
1827 	else
1828 		ret = VM_FAULT_FALLBACK;
1829 	dax_unlock_entry(&xas, entry);
1830 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1831 	return ret;
1832 }
1833 
1834 /**
1835  * dax_finish_sync_fault - finish synchronous page fault
1836  * @vmf: The description of the fault
1837  * @pe_size: Size of entry to be inserted
1838  * @pfn: PFN to insert
1839  *
1840  * This function ensures that the file range touched by the page fault is
1841  * stored persistently on the media and handles inserting of appropriate page
1842  * table entry.
1843  */
1844 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1845 		enum page_entry_size pe_size, pfn_t pfn)
1846 {
1847 	int err;
1848 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1849 	unsigned int order = pe_order(pe_size);
1850 	size_t len = PAGE_SIZE << order;
1851 
1852 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1853 	if (err)
1854 		return VM_FAULT_SIGBUS;
1855 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1856 }
1857 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1858