1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/pmem.h> 29 #include <linux/sched.h> 30 #include <linux/sched/signal.h> 31 #include <linux/uio.h> 32 #include <linux/vmstat.h> 33 #include <linux/pfn_t.h> 34 #include <linux/sizes.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/iomap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/fs_dax.h> 41 42 /* We choose 4096 entries - same as per-zone page wait tables */ 43 #define DAX_WAIT_TABLE_BITS 12 44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 45 46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 47 48 static int __init init_dax_wait_table(void) 49 { 50 int i; 51 52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 53 init_waitqueue_head(wait_table + i); 54 return 0; 55 } 56 fs_initcall(init_dax_wait_table); 57 58 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) 59 { 60 struct request_queue *q = bdev->bd_queue; 61 long rc = -EIO; 62 63 dax->addr = ERR_PTR(-EIO); 64 if (blk_queue_enter(q, true) != 0) 65 return rc; 66 67 rc = bdev_direct_access(bdev, dax); 68 if (rc < 0) { 69 dax->addr = ERR_PTR(rc); 70 blk_queue_exit(q); 71 return rc; 72 } 73 return rc; 74 } 75 76 static void dax_unmap_atomic(struct block_device *bdev, 77 const struct blk_dax_ctl *dax) 78 { 79 if (IS_ERR(dax->addr)) 80 return; 81 blk_queue_exit(bdev->bd_queue); 82 } 83 84 static int dax_is_pmd_entry(void *entry) 85 { 86 return (unsigned long)entry & RADIX_DAX_PMD; 87 } 88 89 static int dax_is_pte_entry(void *entry) 90 { 91 return !((unsigned long)entry & RADIX_DAX_PMD); 92 } 93 94 static int dax_is_zero_entry(void *entry) 95 { 96 return (unsigned long)entry & RADIX_DAX_HZP; 97 } 98 99 static int dax_is_empty_entry(void *entry) 100 { 101 return (unsigned long)entry & RADIX_DAX_EMPTY; 102 } 103 104 struct page *read_dax_sector(struct block_device *bdev, sector_t n) 105 { 106 struct page *page = alloc_pages(GFP_KERNEL, 0); 107 struct blk_dax_ctl dax = { 108 .size = PAGE_SIZE, 109 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), 110 }; 111 long rc; 112 113 if (!page) 114 return ERR_PTR(-ENOMEM); 115 116 rc = dax_map_atomic(bdev, &dax); 117 if (rc < 0) 118 return ERR_PTR(rc); 119 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); 120 dax_unmap_atomic(bdev, &dax); 121 return page; 122 } 123 124 /* 125 * DAX radix tree locking 126 */ 127 struct exceptional_entry_key { 128 struct address_space *mapping; 129 pgoff_t entry_start; 130 }; 131 132 struct wait_exceptional_entry_queue { 133 wait_queue_t wait; 134 struct exceptional_entry_key key; 135 }; 136 137 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 138 pgoff_t index, void *entry, struct exceptional_entry_key *key) 139 { 140 unsigned long hash; 141 142 /* 143 * If 'entry' is a PMD, align the 'index' that we use for the wait 144 * queue to the start of that PMD. This ensures that all offsets in 145 * the range covered by the PMD map to the same bit lock. 146 */ 147 if (dax_is_pmd_entry(entry)) 148 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1); 149 150 key->mapping = mapping; 151 key->entry_start = index; 152 153 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 154 return wait_table + hash; 155 } 156 157 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, 158 int sync, void *keyp) 159 { 160 struct exceptional_entry_key *key = keyp; 161 struct wait_exceptional_entry_queue *ewait = 162 container_of(wait, struct wait_exceptional_entry_queue, wait); 163 164 if (key->mapping != ewait->key.mapping || 165 key->entry_start != ewait->key.entry_start) 166 return 0; 167 return autoremove_wake_function(wait, mode, sync, NULL); 168 } 169 170 /* 171 * Check whether the given slot is locked. The function must be called with 172 * mapping->tree_lock held 173 */ 174 static inline int slot_locked(struct address_space *mapping, void **slot) 175 { 176 unsigned long entry = (unsigned long) 177 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 178 return entry & RADIX_DAX_ENTRY_LOCK; 179 } 180 181 /* 182 * Mark the given slot is locked. The function must be called with 183 * mapping->tree_lock held 184 */ 185 static inline void *lock_slot(struct address_space *mapping, void **slot) 186 { 187 unsigned long entry = (unsigned long) 188 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 189 190 entry |= RADIX_DAX_ENTRY_LOCK; 191 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 192 return (void *)entry; 193 } 194 195 /* 196 * Mark the given slot is unlocked. The function must be called with 197 * mapping->tree_lock held 198 */ 199 static inline void *unlock_slot(struct address_space *mapping, void **slot) 200 { 201 unsigned long entry = (unsigned long) 202 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 203 204 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 205 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 206 return (void *)entry; 207 } 208 209 /* 210 * Lookup entry in radix tree, wait for it to become unlocked if it is 211 * exceptional entry and return it. The caller must call 212 * put_unlocked_mapping_entry() when he decided not to lock the entry or 213 * put_locked_mapping_entry() when he locked the entry and now wants to 214 * unlock it. 215 * 216 * The function must be called with mapping->tree_lock held. 217 */ 218 static void *get_unlocked_mapping_entry(struct address_space *mapping, 219 pgoff_t index, void ***slotp) 220 { 221 void *entry, **slot; 222 struct wait_exceptional_entry_queue ewait; 223 wait_queue_head_t *wq; 224 225 init_wait(&ewait.wait); 226 ewait.wait.func = wake_exceptional_entry_func; 227 228 for (;;) { 229 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, 230 &slot); 231 if (!entry || !radix_tree_exceptional_entry(entry) || 232 !slot_locked(mapping, slot)) { 233 if (slotp) 234 *slotp = slot; 235 return entry; 236 } 237 238 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 239 prepare_to_wait_exclusive(wq, &ewait.wait, 240 TASK_UNINTERRUPTIBLE); 241 spin_unlock_irq(&mapping->tree_lock); 242 schedule(); 243 finish_wait(wq, &ewait.wait); 244 spin_lock_irq(&mapping->tree_lock); 245 } 246 } 247 248 static void dax_unlock_mapping_entry(struct address_space *mapping, 249 pgoff_t index) 250 { 251 void *entry, **slot; 252 253 spin_lock_irq(&mapping->tree_lock); 254 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 255 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 256 !slot_locked(mapping, slot))) { 257 spin_unlock_irq(&mapping->tree_lock); 258 return; 259 } 260 unlock_slot(mapping, slot); 261 spin_unlock_irq(&mapping->tree_lock); 262 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 263 } 264 265 static void put_locked_mapping_entry(struct address_space *mapping, 266 pgoff_t index, void *entry) 267 { 268 if (!radix_tree_exceptional_entry(entry)) { 269 unlock_page(entry); 270 put_page(entry); 271 } else { 272 dax_unlock_mapping_entry(mapping, index); 273 } 274 } 275 276 /* 277 * Called when we are done with radix tree entry we looked up via 278 * get_unlocked_mapping_entry() and which we didn't lock in the end. 279 */ 280 static void put_unlocked_mapping_entry(struct address_space *mapping, 281 pgoff_t index, void *entry) 282 { 283 if (!radix_tree_exceptional_entry(entry)) 284 return; 285 286 /* We have to wake up next waiter for the radix tree entry lock */ 287 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 288 } 289 290 /* 291 * Find radix tree entry at given index. If it points to a page, return with 292 * the page locked. If it points to the exceptional entry, return with the 293 * radix tree entry locked. If the radix tree doesn't contain given index, 294 * create empty exceptional entry for the index and return with it locked. 295 * 296 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 297 * either return that locked entry or will return an error. This error will 298 * happen if there are any 4k entries (either zero pages or DAX entries) 299 * within the 2MiB range that we are requesting. 300 * 301 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 302 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 303 * insertion will fail if it finds any 4k entries already in the tree, and a 304 * 4k insertion will cause an existing 2MiB entry to be unmapped and 305 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 306 * well as 2MiB empty entries. 307 * 308 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 309 * real storage backing them. We will leave these real 2MiB DAX entries in 310 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 311 * 312 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 313 * persistent memory the benefit is doubtful. We can add that later if we can 314 * show it helps. 315 */ 316 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 317 unsigned long size_flag) 318 { 319 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 320 void *entry, **slot; 321 322 restart: 323 spin_lock_irq(&mapping->tree_lock); 324 entry = get_unlocked_mapping_entry(mapping, index, &slot); 325 326 if (entry) { 327 if (size_flag & RADIX_DAX_PMD) { 328 if (!radix_tree_exceptional_entry(entry) || 329 dax_is_pte_entry(entry)) { 330 put_unlocked_mapping_entry(mapping, index, 331 entry); 332 entry = ERR_PTR(-EEXIST); 333 goto out_unlock; 334 } 335 } else { /* trying to grab a PTE entry */ 336 if (radix_tree_exceptional_entry(entry) && 337 dax_is_pmd_entry(entry) && 338 (dax_is_zero_entry(entry) || 339 dax_is_empty_entry(entry))) { 340 pmd_downgrade = true; 341 } 342 } 343 } 344 345 /* No entry for given index? Make sure radix tree is big enough. */ 346 if (!entry || pmd_downgrade) { 347 int err; 348 349 if (pmd_downgrade) { 350 /* 351 * Make sure 'entry' remains valid while we drop 352 * mapping->tree_lock. 353 */ 354 entry = lock_slot(mapping, slot); 355 } 356 357 spin_unlock_irq(&mapping->tree_lock); 358 /* 359 * Besides huge zero pages the only other thing that gets 360 * downgraded are empty entries which don't need to be 361 * unmapped. 362 */ 363 if (pmd_downgrade && dax_is_zero_entry(entry)) 364 unmap_mapping_range(mapping, 365 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 366 367 err = radix_tree_preload( 368 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 369 if (err) { 370 if (pmd_downgrade) 371 put_locked_mapping_entry(mapping, index, entry); 372 return ERR_PTR(err); 373 } 374 spin_lock_irq(&mapping->tree_lock); 375 376 if (pmd_downgrade) { 377 radix_tree_delete(&mapping->page_tree, index); 378 mapping->nrexceptional--; 379 dax_wake_mapping_entry_waiter(mapping, index, entry, 380 true); 381 } 382 383 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 384 385 err = __radix_tree_insert(&mapping->page_tree, index, 386 dax_radix_order(entry), entry); 387 radix_tree_preload_end(); 388 if (err) { 389 spin_unlock_irq(&mapping->tree_lock); 390 /* 391 * Someone already created the entry? This is a 392 * normal failure when inserting PMDs in a range 393 * that already contains PTEs. In that case we want 394 * to return -EEXIST immediately. 395 */ 396 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD)) 397 goto restart; 398 /* 399 * Our insertion of a DAX PMD entry failed, most 400 * likely because it collided with a PTE sized entry 401 * at a different index in the PMD range. We haven't 402 * inserted anything into the radix tree and have no 403 * waiters to wake. 404 */ 405 return ERR_PTR(err); 406 } 407 /* Good, we have inserted empty locked entry into the tree. */ 408 mapping->nrexceptional++; 409 spin_unlock_irq(&mapping->tree_lock); 410 return entry; 411 } 412 /* Normal page in radix tree? */ 413 if (!radix_tree_exceptional_entry(entry)) { 414 struct page *page = entry; 415 416 get_page(page); 417 spin_unlock_irq(&mapping->tree_lock); 418 lock_page(page); 419 /* Page got truncated? Retry... */ 420 if (unlikely(page->mapping != mapping)) { 421 unlock_page(page); 422 put_page(page); 423 goto restart; 424 } 425 return page; 426 } 427 entry = lock_slot(mapping, slot); 428 out_unlock: 429 spin_unlock_irq(&mapping->tree_lock); 430 return entry; 431 } 432 433 /* 434 * We do not necessarily hold the mapping->tree_lock when we call this 435 * function so it is possible that 'entry' is no longer a valid item in the 436 * radix tree. This is okay because all we really need to do is to find the 437 * correct waitqueue where tasks might be waiting for that old 'entry' and 438 * wake them. 439 */ 440 void dax_wake_mapping_entry_waiter(struct address_space *mapping, 441 pgoff_t index, void *entry, bool wake_all) 442 { 443 struct exceptional_entry_key key; 444 wait_queue_head_t *wq; 445 446 wq = dax_entry_waitqueue(mapping, index, entry, &key); 447 448 /* 449 * Checking for locked entry and prepare_to_wait_exclusive() happens 450 * under mapping->tree_lock, ditto for entry handling in our callers. 451 * So at this point all tasks that could have seen our entry locked 452 * must be in the waitqueue and the following check will see them. 453 */ 454 if (waitqueue_active(wq)) 455 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 456 } 457 458 static int __dax_invalidate_mapping_entry(struct address_space *mapping, 459 pgoff_t index, bool trunc) 460 { 461 int ret = 0; 462 void *entry; 463 struct radix_tree_root *page_tree = &mapping->page_tree; 464 465 spin_lock_irq(&mapping->tree_lock); 466 entry = get_unlocked_mapping_entry(mapping, index, NULL); 467 if (!entry || !radix_tree_exceptional_entry(entry)) 468 goto out; 469 if (!trunc && 470 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || 471 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))) 472 goto out; 473 radix_tree_delete(page_tree, index); 474 mapping->nrexceptional--; 475 ret = 1; 476 out: 477 put_unlocked_mapping_entry(mapping, index, entry); 478 spin_unlock_irq(&mapping->tree_lock); 479 return ret; 480 } 481 /* 482 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 483 * entry to get unlocked before deleting it. 484 */ 485 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 486 { 487 int ret = __dax_invalidate_mapping_entry(mapping, index, true); 488 489 /* 490 * This gets called from truncate / punch_hole path. As such, the caller 491 * must hold locks protecting against concurrent modifications of the 492 * radix tree (usually fs-private i_mmap_sem for writing). Since the 493 * caller has seen exceptional entry for this index, we better find it 494 * at that index as well... 495 */ 496 WARN_ON_ONCE(!ret); 497 return ret; 498 } 499 500 /* 501 * Invalidate exceptional DAX entry if easily possible. This handles DAX 502 * entries for invalidate_inode_pages() so we evict the entry only if we can 503 * do so without blocking. 504 */ 505 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index) 506 { 507 int ret = 0; 508 void *entry, **slot; 509 struct radix_tree_root *page_tree = &mapping->page_tree; 510 511 spin_lock_irq(&mapping->tree_lock); 512 entry = __radix_tree_lookup(page_tree, index, NULL, &slot); 513 if (!entry || !radix_tree_exceptional_entry(entry) || 514 slot_locked(mapping, slot)) 515 goto out; 516 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || 517 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 518 goto out; 519 radix_tree_delete(page_tree, index); 520 mapping->nrexceptional--; 521 ret = 1; 522 out: 523 spin_unlock_irq(&mapping->tree_lock); 524 if (ret) 525 dax_wake_mapping_entry_waiter(mapping, index, entry, true); 526 return ret; 527 } 528 529 /* 530 * Invalidate exceptional DAX entry if it is clean. 531 */ 532 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 533 pgoff_t index) 534 { 535 return __dax_invalidate_mapping_entry(mapping, index, false); 536 } 537 538 /* 539 * The user has performed a load from a hole in the file. Allocating 540 * a new page in the file would cause excessive storage usage for 541 * workloads with sparse files. We allocate a page cache page instead. 542 * We'll kick it out of the page cache if it's ever written to, 543 * otherwise it will simply fall out of the page cache under memory 544 * pressure without ever having been dirtied. 545 */ 546 static int dax_load_hole(struct address_space *mapping, void **entry, 547 struct vm_fault *vmf) 548 { 549 struct page *page; 550 int ret; 551 552 /* Hole page already exists? Return it... */ 553 if (!radix_tree_exceptional_entry(*entry)) { 554 page = *entry; 555 goto out; 556 } 557 558 /* This will replace locked radix tree entry with a hole page */ 559 page = find_or_create_page(mapping, vmf->pgoff, 560 vmf->gfp_mask | __GFP_ZERO); 561 if (!page) 562 return VM_FAULT_OOM; 563 out: 564 vmf->page = page; 565 ret = finish_fault(vmf); 566 vmf->page = NULL; 567 *entry = page; 568 if (!ret) { 569 /* Grab reference for PTE that is now referencing the page */ 570 get_page(page); 571 return VM_FAULT_NOPAGE; 572 } 573 return ret; 574 } 575 576 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, 577 struct page *to, unsigned long vaddr) 578 { 579 struct blk_dax_ctl dax = { 580 .sector = sector, 581 .size = size, 582 }; 583 void *vto; 584 585 if (dax_map_atomic(bdev, &dax) < 0) 586 return PTR_ERR(dax.addr); 587 vto = kmap_atomic(to); 588 copy_user_page(vto, (void __force *)dax.addr, vaddr, to); 589 kunmap_atomic(vto); 590 dax_unmap_atomic(bdev, &dax); 591 return 0; 592 } 593 594 /* 595 * By this point grab_mapping_entry() has ensured that we have a locked entry 596 * of the appropriate size so we don't have to worry about downgrading PMDs to 597 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 598 * already in the tree, we will skip the insertion and just dirty the PMD as 599 * appropriate. 600 */ 601 static void *dax_insert_mapping_entry(struct address_space *mapping, 602 struct vm_fault *vmf, 603 void *entry, sector_t sector, 604 unsigned long flags) 605 { 606 struct radix_tree_root *page_tree = &mapping->page_tree; 607 int error = 0; 608 bool hole_fill = false; 609 void *new_entry; 610 pgoff_t index = vmf->pgoff; 611 612 if (vmf->flags & FAULT_FLAG_WRITE) 613 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 614 615 /* Replacing hole page with block mapping? */ 616 if (!radix_tree_exceptional_entry(entry)) { 617 hole_fill = true; 618 /* 619 * Unmap the page now before we remove it from page cache below. 620 * The page is locked so it cannot be faulted in again. 621 */ 622 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 623 PAGE_SIZE, 0); 624 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); 625 if (error) 626 return ERR_PTR(error); 627 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) { 628 /* replacing huge zero page with PMD block mapping */ 629 unmap_mapping_range(mapping, 630 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 631 } 632 633 spin_lock_irq(&mapping->tree_lock); 634 new_entry = dax_radix_locked_entry(sector, flags); 635 636 if (hole_fill) { 637 __delete_from_page_cache(entry, NULL); 638 /* Drop pagecache reference */ 639 put_page(entry); 640 error = __radix_tree_insert(page_tree, index, 641 dax_radix_order(new_entry), new_entry); 642 if (error) { 643 new_entry = ERR_PTR(error); 644 goto unlock; 645 } 646 mapping->nrexceptional++; 647 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 648 /* 649 * Only swap our new entry into the radix tree if the current 650 * entry is a zero page or an empty entry. If a normal PTE or 651 * PMD entry is already in the tree, we leave it alone. This 652 * means that if we are trying to insert a PTE and the 653 * existing entry is a PMD, we will just leave the PMD in the 654 * tree and dirty it if necessary. 655 */ 656 struct radix_tree_node *node; 657 void **slot; 658 void *ret; 659 660 ret = __radix_tree_lookup(page_tree, index, &node, &slot); 661 WARN_ON_ONCE(ret != entry); 662 __radix_tree_replace(page_tree, node, slot, 663 new_entry, NULL, NULL); 664 } 665 if (vmf->flags & FAULT_FLAG_WRITE) 666 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 667 unlock: 668 spin_unlock_irq(&mapping->tree_lock); 669 if (hole_fill) { 670 radix_tree_preload_end(); 671 /* 672 * We don't need hole page anymore, it has been replaced with 673 * locked radix tree entry now. 674 */ 675 if (mapping->a_ops->freepage) 676 mapping->a_ops->freepage(entry); 677 unlock_page(entry); 678 put_page(entry); 679 } 680 return new_entry; 681 } 682 683 static inline unsigned long 684 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 685 { 686 unsigned long address; 687 688 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 689 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 690 return address; 691 } 692 693 /* Walk all mappings of a given index of a file and writeprotect them */ 694 static void dax_mapping_entry_mkclean(struct address_space *mapping, 695 pgoff_t index, unsigned long pfn) 696 { 697 struct vm_area_struct *vma; 698 pte_t pte, *ptep = NULL; 699 pmd_t *pmdp = NULL; 700 spinlock_t *ptl; 701 bool changed; 702 703 i_mmap_lock_read(mapping); 704 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 705 unsigned long address; 706 707 cond_resched(); 708 709 if (!(vma->vm_flags & VM_SHARED)) 710 continue; 711 712 address = pgoff_address(index, vma); 713 changed = false; 714 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl)) 715 continue; 716 717 if (pmdp) { 718 #ifdef CONFIG_FS_DAX_PMD 719 pmd_t pmd; 720 721 if (pfn != pmd_pfn(*pmdp)) 722 goto unlock_pmd; 723 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 724 goto unlock_pmd; 725 726 flush_cache_page(vma, address, pfn); 727 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 728 pmd = pmd_wrprotect(pmd); 729 pmd = pmd_mkclean(pmd); 730 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 731 changed = true; 732 unlock_pmd: 733 spin_unlock(ptl); 734 #endif 735 } else { 736 if (pfn != pte_pfn(*ptep)) 737 goto unlock_pte; 738 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 739 goto unlock_pte; 740 741 flush_cache_page(vma, address, pfn); 742 pte = ptep_clear_flush(vma, address, ptep); 743 pte = pte_wrprotect(pte); 744 pte = pte_mkclean(pte); 745 set_pte_at(vma->vm_mm, address, ptep, pte); 746 changed = true; 747 unlock_pte: 748 pte_unmap_unlock(ptep, ptl); 749 } 750 751 if (changed) 752 mmu_notifier_invalidate_page(vma->vm_mm, address); 753 } 754 i_mmap_unlock_read(mapping); 755 } 756 757 static int dax_writeback_one(struct block_device *bdev, 758 struct address_space *mapping, pgoff_t index, void *entry) 759 { 760 struct radix_tree_root *page_tree = &mapping->page_tree; 761 struct blk_dax_ctl dax; 762 void *entry2, **slot; 763 int ret = 0; 764 765 /* 766 * A page got tagged dirty in DAX mapping? Something is seriously 767 * wrong. 768 */ 769 if (WARN_ON(!radix_tree_exceptional_entry(entry))) 770 return -EIO; 771 772 spin_lock_irq(&mapping->tree_lock); 773 entry2 = get_unlocked_mapping_entry(mapping, index, &slot); 774 /* Entry got punched out / reallocated? */ 775 if (!entry2 || !radix_tree_exceptional_entry(entry2)) 776 goto put_unlocked; 777 /* 778 * Entry got reallocated elsewhere? No need to writeback. We have to 779 * compare sectors as we must not bail out due to difference in lockbit 780 * or entry type. 781 */ 782 if (dax_radix_sector(entry2) != dax_radix_sector(entry)) 783 goto put_unlocked; 784 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 785 dax_is_zero_entry(entry))) { 786 ret = -EIO; 787 goto put_unlocked; 788 } 789 790 /* Another fsync thread may have already written back this entry */ 791 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 792 goto put_unlocked; 793 /* Lock the entry to serialize with page faults */ 794 entry = lock_slot(mapping, slot); 795 /* 796 * We can clear the tag now but we have to be careful so that concurrent 797 * dax_writeback_one() calls for the same index cannot finish before we 798 * actually flush the caches. This is achieved as the calls will look 799 * at the entry only under tree_lock and once they do that they will 800 * see the entry locked and wait for it to unlock. 801 */ 802 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 803 spin_unlock_irq(&mapping->tree_lock); 804 805 /* 806 * Even if dax_writeback_mapping_range() was given a wbc->range_start 807 * in the middle of a PMD, the 'index' we are given will be aligned to 808 * the start index of the PMD, as will the sector we pull from 809 * 'entry'. This allows us to flush for PMD_SIZE and not have to 810 * worry about partial PMD writebacks. 811 */ 812 dax.sector = dax_radix_sector(entry); 813 dax.size = PAGE_SIZE << dax_radix_order(entry); 814 815 /* 816 * We cannot hold tree_lock while calling dax_map_atomic() because it 817 * eventually calls cond_resched(). 818 */ 819 ret = dax_map_atomic(bdev, &dax); 820 if (ret < 0) { 821 put_locked_mapping_entry(mapping, index, entry); 822 return ret; 823 } 824 825 if (WARN_ON_ONCE(ret < dax.size)) { 826 ret = -EIO; 827 goto unmap; 828 } 829 830 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn)); 831 wb_cache_pmem(dax.addr, dax.size); 832 /* 833 * After we have flushed the cache, we can clear the dirty tag. There 834 * cannot be new dirty data in the pfn after the flush has completed as 835 * the pfn mappings are writeprotected and fault waits for mapping 836 * entry lock. 837 */ 838 spin_lock_irq(&mapping->tree_lock); 839 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); 840 spin_unlock_irq(&mapping->tree_lock); 841 unmap: 842 dax_unmap_atomic(bdev, &dax); 843 put_locked_mapping_entry(mapping, index, entry); 844 return ret; 845 846 put_unlocked: 847 put_unlocked_mapping_entry(mapping, index, entry2); 848 spin_unlock_irq(&mapping->tree_lock); 849 return ret; 850 } 851 852 /* 853 * Flush the mapping to the persistent domain within the byte range of [start, 854 * end]. This is required by data integrity operations to ensure file data is 855 * on persistent storage prior to completion of the operation. 856 */ 857 int dax_writeback_mapping_range(struct address_space *mapping, 858 struct block_device *bdev, struct writeback_control *wbc) 859 { 860 struct inode *inode = mapping->host; 861 pgoff_t start_index, end_index; 862 pgoff_t indices[PAGEVEC_SIZE]; 863 struct pagevec pvec; 864 bool done = false; 865 int i, ret = 0; 866 867 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 868 return -EIO; 869 870 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 871 return 0; 872 873 start_index = wbc->range_start >> PAGE_SHIFT; 874 end_index = wbc->range_end >> PAGE_SHIFT; 875 876 tag_pages_for_writeback(mapping, start_index, end_index); 877 878 pagevec_init(&pvec, 0); 879 while (!done) { 880 pvec.nr = find_get_entries_tag(mapping, start_index, 881 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 882 pvec.pages, indices); 883 884 if (pvec.nr == 0) 885 break; 886 887 for (i = 0; i < pvec.nr; i++) { 888 if (indices[i] > end_index) { 889 done = true; 890 break; 891 } 892 893 ret = dax_writeback_one(bdev, mapping, indices[i], 894 pvec.pages[i]); 895 if (ret < 0) 896 return ret; 897 } 898 } 899 return 0; 900 } 901 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 902 903 static int dax_insert_mapping(struct address_space *mapping, 904 struct block_device *bdev, sector_t sector, size_t size, 905 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) 906 { 907 unsigned long vaddr = vmf->address; 908 struct blk_dax_ctl dax = { 909 .sector = sector, 910 .size = size, 911 }; 912 void *ret; 913 void *entry = *entryp; 914 915 if (dax_map_atomic(bdev, &dax) < 0) 916 return PTR_ERR(dax.addr); 917 dax_unmap_atomic(bdev, &dax); 918 919 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0); 920 if (IS_ERR(ret)) 921 return PTR_ERR(ret); 922 *entryp = ret; 923 924 return vm_insert_mixed(vma, vaddr, dax.pfn); 925 } 926 927 /** 928 * dax_pfn_mkwrite - handle first write to DAX page 929 * @vmf: The description of the fault 930 */ 931 int dax_pfn_mkwrite(struct vm_fault *vmf) 932 { 933 struct file *file = vmf->vma->vm_file; 934 struct address_space *mapping = file->f_mapping; 935 void *entry, **slot; 936 pgoff_t index = vmf->pgoff; 937 938 spin_lock_irq(&mapping->tree_lock); 939 entry = get_unlocked_mapping_entry(mapping, index, &slot); 940 if (!entry || !radix_tree_exceptional_entry(entry)) { 941 if (entry) 942 put_unlocked_mapping_entry(mapping, index, entry); 943 spin_unlock_irq(&mapping->tree_lock); 944 return VM_FAULT_NOPAGE; 945 } 946 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 947 entry = lock_slot(mapping, slot); 948 spin_unlock_irq(&mapping->tree_lock); 949 /* 950 * If we race with somebody updating the PTE and finish_mkwrite_fault() 951 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry 952 * the fault in either case. 953 */ 954 finish_mkwrite_fault(vmf); 955 put_locked_mapping_entry(mapping, index, entry); 956 return VM_FAULT_NOPAGE; 957 } 958 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 959 960 static bool dax_range_is_aligned(struct block_device *bdev, 961 unsigned int offset, unsigned int length) 962 { 963 unsigned short sector_size = bdev_logical_block_size(bdev); 964 965 if (!IS_ALIGNED(offset, sector_size)) 966 return false; 967 if (!IS_ALIGNED(length, sector_size)) 968 return false; 969 970 return true; 971 } 972 973 int __dax_zero_page_range(struct block_device *bdev, sector_t sector, 974 unsigned int offset, unsigned int length) 975 { 976 struct blk_dax_ctl dax = { 977 .sector = sector, 978 .size = PAGE_SIZE, 979 }; 980 981 if (dax_range_is_aligned(bdev, offset, length)) { 982 sector_t start_sector = dax.sector + (offset >> 9); 983 984 return blkdev_issue_zeroout(bdev, start_sector, 985 length >> 9, GFP_NOFS, true); 986 } else { 987 if (dax_map_atomic(bdev, &dax) < 0) 988 return PTR_ERR(dax.addr); 989 clear_pmem(dax.addr + offset, length); 990 dax_unmap_atomic(bdev, &dax); 991 } 992 return 0; 993 } 994 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 995 996 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 997 { 998 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9); 999 } 1000 1001 static loff_t 1002 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1003 struct iomap *iomap) 1004 { 1005 struct iov_iter *iter = data; 1006 loff_t end = pos + length, done = 0; 1007 ssize_t ret = 0; 1008 1009 if (iov_iter_rw(iter) == READ) { 1010 end = min(end, i_size_read(inode)); 1011 if (pos >= end) 1012 return 0; 1013 1014 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1015 return iov_iter_zero(min(length, end - pos), iter); 1016 } 1017 1018 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1019 return -EIO; 1020 1021 /* 1022 * Write can allocate block for an area which has a hole page mapped 1023 * into page tables. We have to tear down these mappings so that data 1024 * written by write(2) is visible in mmap. 1025 */ 1026 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) { 1027 invalidate_inode_pages2_range(inode->i_mapping, 1028 pos >> PAGE_SHIFT, 1029 (end - 1) >> PAGE_SHIFT); 1030 } 1031 1032 while (pos < end) { 1033 unsigned offset = pos & (PAGE_SIZE - 1); 1034 struct blk_dax_ctl dax = { 0 }; 1035 ssize_t map_len; 1036 1037 if (fatal_signal_pending(current)) { 1038 ret = -EINTR; 1039 break; 1040 } 1041 1042 dax.sector = dax_iomap_sector(iomap, pos); 1043 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; 1044 map_len = dax_map_atomic(iomap->bdev, &dax); 1045 if (map_len < 0) { 1046 ret = map_len; 1047 break; 1048 } 1049 1050 dax.addr += offset; 1051 map_len -= offset; 1052 if (map_len > end - pos) 1053 map_len = end - pos; 1054 1055 if (iov_iter_rw(iter) == WRITE) 1056 map_len = copy_from_iter_pmem(dax.addr, map_len, iter); 1057 else 1058 map_len = copy_to_iter(dax.addr, map_len, iter); 1059 dax_unmap_atomic(iomap->bdev, &dax); 1060 if (map_len <= 0) { 1061 ret = map_len ? map_len : -EFAULT; 1062 break; 1063 } 1064 1065 pos += map_len; 1066 length -= map_len; 1067 done += map_len; 1068 } 1069 1070 return done ? done : ret; 1071 } 1072 1073 /** 1074 * dax_iomap_rw - Perform I/O to a DAX file 1075 * @iocb: The control block for this I/O 1076 * @iter: The addresses to do I/O from or to 1077 * @ops: iomap ops passed from the file system 1078 * 1079 * This function performs read and write operations to directly mapped 1080 * persistent memory. The callers needs to take care of read/write exclusion 1081 * and evicting any page cache pages in the region under I/O. 1082 */ 1083 ssize_t 1084 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1085 const struct iomap_ops *ops) 1086 { 1087 struct address_space *mapping = iocb->ki_filp->f_mapping; 1088 struct inode *inode = mapping->host; 1089 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1090 unsigned flags = 0; 1091 1092 if (iov_iter_rw(iter) == WRITE) { 1093 lockdep_assert_held_exclusive(&inode->i_rwsem); 1094 flags |= IOMAP_WRITE; 1095 } else { 1096 lockdep_assert_held(&inode->i_rwsem); 1097 } 1098 1099 while (iov_iter_count(iter)) { 1100 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1101 iter, dax_iomap_actor); 1102 if (ret <= 0) 1103 break; 1104 pos += ret; 1105 done += ret; 1106 } 1107 1108 iocb->ki_pos += done; 1109 return done ? done : ret; 1110 } 1111 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1112 1113 static int dax_fault_return(int error) 1114 { 1115 if (error == 0) 1116 return VM_FAULT_NOPAGE; 1117 if (error == -ENOMEM) 1118 return VM_FAULT_OOM; 1119 return VM_FAULT_SIGBUS; 1120 } 1121 1122 static int dax_iomap_pte_fault(struct vm_fault *vmf, 1123 const struct iomap_ops *ops) 1124 { 1125 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1126 struct inode *inode = mapping->host; 1127 unsigned long vaddr = vmf->address; 1128 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1129 sector_t sector; 1130 struct iomap iomap = { 0 }; 1131 unsigned flags = IOMAP_FAULT; 1132 int error, major = 0; 1133 int vmf_ret = 0; 1134 void *entry; 1135 1136 /* 1137 * Check whether offset isn't beyond end of file now. Caller is supposed 1138 * to hold locks serializing us with truncate / punch hole so this is 1139 * a reliable test. 1140 */ 1141 if (pos >= i_size_read(inode)) 1142 return VM_FAULT_SIGBUS; 1143 1144 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1145 flags |= IOMAP_WRITE; 1146 1147 /* 1148 * Note that we don't bother to use iomap_apply here: DAX required 1149 * the file system block size to be equal the page size, which means 1150 * that we never have to deal with more than a single extent here. 1151 */ 1152 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1153 if (error) 1154 return dax_fault_return(error); 1155 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1156 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */ 1157 goto finish_iomap; 1158 } 1159 1160 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 1161 if (IS_ERR(entry)) { 1162 vmf_ret = dax_fault_return(PTR_ERR(entry)); 1163 goto finish_iomap; 1164 } 1165 1166 sector = dax_iomap_sector(&iomap, pos); 1167 1168 if (vmf->cow_page) { 1169 switch (iomap.type) { 1170 case IOMAP_HOLE: 1171 case IOMAP_UNWRITTEN: 1172 clear_user_highpage(vmf->cow_page, vaddr); 1173 break; 1174 case IOMAP_MAPPED: 1175 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, 1176 vmf->cow_page, vaddr); 1177 break; 1178 default: 1179 WARN_ON_ONCE(1); 1180 error = -EIO; 1181 break; 1182 } 1183 1184 if (error) 1185 goto error_unlock_entry; 1186 1187 __SetPageUptodate(vmf->cow_page); 1188 vmf_ret = finish_fault(vmf); 1189 if (!vmf_ret) 1190 vmf_ret = VM_FAULT_DONE_COW; 1191 goto unlock_entry; 1192 } 1193 1194 switch (iomap.type) { 1195 case IOMAP_MAPPED: 1196 if (iomap.flags & IOMAP_F_NEW) { 1197 count_vm_event(PGMAJFAULT); 1198 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 1199 major = VM_FAULT_MAJOR; 1200 } 1201 error = dax_insert_mapping(mapping, iomap.bdev, sector, 1202 PAGE_SIZE, &entry, vmf->vma, vmf); 1203 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1204 if (error == -EBUSY) 1205 error = 0; 1206 break; 1207 case IOMAP_UNWRITTEN: 1208 case IOMAP_HOLE: 1209 if (!(vmf->flags & FAULT_FLAG_WRITE)) { 1210 vmf_ret = dax_load_hole(mapping, &entry, vmf); 1211 goto unlock_entry; 1212 } 1213 /*FALLTHRU*/ 1214 default: 1215 WARN_ON_ONCE(1); 1216 error = -EIO; 1217 break; 1218 } 1219 1220 error_unlock_entry: 1221 vmf_ret = dax_fault_return(error) | major; 1222 unlock_entry: 1223 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 1224 finish_iomap: 1225 if (ops->iomap_end) { 1226 int copied = PAGE_SIZE; 1227 1228 if (vmf_ret & VM_FAULT_ERROR) 1229 copied = 0; 1230 /* 1231 * The fault is done by now and there's no way back (other 1232 * thread may be already happily using PTE we have installed). 1233 * Just ignore error from ->iomap_end since we cannot do much 1234 * with it. 1235 */ 1236 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1237 } 1238 return vmf_ret; 1239 } 1240 1241 #ifdef CONFIG_FS_DAX_PMD 1242 /* 1243 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 1244 * more often than one might expect in the below functions. 1245 */ 1246 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 1247 1248 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap, 1249 loff_t pos, void **entryp) 1250 { 1251 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1252 struct block_device *bdev = iomap->bdev; 1253 struct inode *inode = mapping->host; 1254 struct blk_dax_ctl dax = { 1255 .sector = dax_iomap_sector(iomap, pos), 1256 .size = PMD_SIZE, 1257 }; 1258 long length = dax_map_atomic(bdev, &dax); 1259 void *ret = NULL; 1260 1261 if (length < 0) /* dax_map_atomic() failed */ 1262 goto fallback; 1263 if (length < PMD_SIZE) 1264 goto unmap_fallback; 1265 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) 1266 goto unmap_fallback; 1267 if (!pfn_t_devmap(dax.pfn)) 1268 goto unmap_fallback; 1269 1270 dax_unmap_atomic(bdev, &dax); 1271 1272 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector, 1273 RADIX_DAX_PMD); 1274 if (IS_ERR(ret)) 1275 goto fallback; 1276 *entryp = ret; 1277 1278 trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret); 1279 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1280 dax.pfn, vmf->flags & FAULT_FLAG_WRITE); 1281 1282 unmap_fallback: 1283 dax_unmap_atomic(bdev, &dax); 1284 fallback: 1285 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, 1286 dax.pfn, ret); 1287 return VM_FAULT_FALLBACK; 1288 } 1289 1290 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, 1291 void **entryp) 1292 { 1293 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1294 unsigned long pmd_addr = vmf->address & PMD_MASK; 1295 struct inode *inode = mapping->host; 1296 struct page *zero_page; 1297 void *ret = NULL; 1298 spinlock_t *ptl; 1299 pmd_t pmd_entry; 1300 1301 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1302 1303 if (unlikely(!zero_page)) 1304 goto fallback; 1305 1306 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0, 1307 RADIX_DAX_PMD | RADIX_DAX_HZP); 1308 if (IS_ERR(ret)) 1309 goto fallback; 1310 *entryp = ret; 1311 1312 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1313 if (!pmd_none(*(vmf->pmd))) { 1314 spin_unlock(ptl); 1315 goto fallback; 1316 } 1317 1318 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1319 pmd_entry = pmd_mkhuge(pmd_entry); 1320 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1321 spin_unlock(ptl); 1322 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); 1323 return VM_FAULT_NOPAGE; 1324 1325 fallback: 1326 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); 1327 return VM_FAULT_FALLBACK; 1328 } 1329 1330 static int dax_iomap_pmd_fault(struct vm_fault *vmf, 1331 const struct iomap_ops *ops) 1332 { 1333 struct vm_area_struct *vma = vmf->vma; 1334 struct address_space *mapping = vma->vm_file->f_mapping; 1335 unsigned long pmd_addr = vmf->address & PMD_MASK; 1336 bool write = vmf->flags & FAULT_FLAG_WRITE; 1337 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1338 struct inode *inode = mapping->host; 1339 int result = VM_FAULT_FALLBACK; 1340 struct iomap iomap = { 0 }; 1341 pgoff_t max_pgoff, pgoff; 1342 void *entry; 1343 loff_t pos; 1344 int error; 1345 1346 /* 1347 * Check whether offset isn't beyond end of file now. Caller is 1348 * supposed to hold locks serializing us with truncate / punch hole so 1349 * this is a reliable test. 1350 */ 1351 pgoff = linear_page_index(vma, pmd_addr); 1352 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT; 1353 1354 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1355 1356 /* Fall back to PTEs if we're going to COW */ 1357 if (write && !(vma->vm_flags & VM_SHARED)) 1358 goto fallback; 1359 1360 /* If the PMD would extend outside the VMA */ 1361 if (pmd_addr < vma->vm_start) 1362 goto fallback; 1363 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1364 goto fallback; 1365 1366 if (pgoff > max_pgoff) { 1367 result = VM_FAULT_SIGBUS; 1368 goto out; 1369 } 1370 1371 /* If the PMD would extend beyond the file size */ 1372 if ((pgoff | PG_PMD_COLOUR) > max_pgoff) 1373 goto fallback; 1374 1375 /* 1376 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1377 * setting up a mapping, so really we're using iomap_begin() as a way 1378 * to look up our filesystem block. 1379 */ 1380 pos = (loff_t)pgoff << PAGE_SHIFT; 1381 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1382 if (error) 1383 goto fallback; 1384 1385 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1386 goto finish_iomap; 1387 1388 /* 1389 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX 1390 * PMD or a HZP entry. If it can't (because a 4k page is already in 1391 * the tree, for instance), it will return -EEXIST and we just fall 1392 * back to 4k entries. 1393 */ 1394 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1395 if (IS_ERR(entry)) 1396 goto finish_iomap; 1397 1398 switch (iomap.type) { 1399 case IOMAP_MAPPED: 1400 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry); 1401 break; 1402 case IOMAP_UNWRITTEN: 1403 case IOMAP_HOLE: 1404 if (WARN_ON_ONCE(write)) 1405 goto unlock_entry; 1406 result = dax_pmd_load_hole(vmf, &iomap, &entry); 1407 break; 1408 default: 1409 WARN_ON_ONCE(1); 1410 break; 1411 } 1412 1413 unlock_entry: 1414 put_locked_mapping_entry(mapping, pgoff, entry); 1415 finish_iomap: 1416 if (ops->iomap_end) { 1417 int copied = PMD_SIZE; 1418 1419 if (result == VM_FAULT_FALLBACK) 1420 copied = 0; 1421 /* 1422 * The fault is done by now and there's no way back (other 1423 * thread may be already happily using PMD we have installed). 1424 * Just ignore error from ->iomap_end since we cannot do much 1425 * with it. 1426 */ 1427 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1428 &iomap); 1429 } 1430 fallback: 1431 if (result == VM_FAULT_FALLBACK) { 1432 split_huge_pmd(vma, vmf->pmd, vmf->address); 1433 count_vm_event(THP_FAULT_FALLBACK); 1434 } 1435 out: 1436 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1437 return result; 1438 } 1439 #else 1440 static int dax_iomap_pmd_fault(struct vm_fault *vmf, 1441 const struct iomap_ops *ops) 1442 { 1443 return VM_FAULT_FALLBACK; 1444 } 1445 #endif /* CONFIG_FS_DAX_PMD */ 1446 1447 /** 1448 * dax_iomap_fault - handle a page fault on a DAX file 1449 * @vmf: The description of the fault 1450 * @ops: iomap ops passed from the file system 1451 * 1452 * When a page fault occurs, filesystems may call this helper in 1453 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1454 * has done all the necessary locking for page fault to proceed 1455 * successfully. 1456 */ 1457 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1458 const struct iomap_ops *ops) 1459 { 1460 switch (pe_size) { 1461 case PE_SIZE_PTE: 1462 return dax_iomap_pte_fault(vmf, ops); 1463 case PE_SIZE_PMD: 1464 return dax_iomap_pmd_fault(vmf, ops); 1465 default: 1466 return VM_FAULT_FALLBACK; 1467 } 1468 } 1469 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1470