xref: /openbmc/linux/fs/dax.c (revision f0702555)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 /*
36  * We use lowest available bit in exceptional entry for locking, other two
37  * bits to determine entry type. In total 3 special bits.
38  */
39 #define RADIX_DAX_SHIFT	(RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
40 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
41 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
42 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
43 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
44 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
45 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
46 		RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
47 		RADIX_TREE_EXCEPTIONAL_ENTRY))
48 
49 /* We choose 4096 entries - same as per-zone page wait tables */
50 #define DAX_WAIT_TABLE_BITS 12
51 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
52 
53 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
54 
55 static int __init init_dax_wait_table(void)
56 {
57 	int i;
58 
59 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
60 		init_waitqueue_head(wait_table + i);
61 	return 0;
62 }
63 fs_initcall(init_dax_wait_table);
64 
65 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
66 					      pgoff_t index)
67 {
68 	unsigned long hash = hash_long((unsigned long)mapping ^ index,
69 				       DAX_WAIT_TABLE_BITS);
70 	return wait_table + hash;
71 }
72 
73 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
74 {
75 	struct request_queue *q = bdev->bd_queue;
76 	long rc = -EIO;
77 
78 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
79 	if (blk_queue_enter(q, true) != 0)
80 		return rc;
81 
82 	rc = bdev_direct_access(bdev, dax);
83 	if (rc < 0) {
84 		dax->addr = (void __pmem *) ERR_PTR(rc);
85 		blk_queue_exit(q);
86 		return rc;
87 	}
88 	return rc;
89 }
90 
91 static void dax_unmap_atomic(struct block_device *bdev,
92 		const struct blk_dax_ctl *dax)
93 {
94 	if (IS_ERR(dax->addr))
95 		return;
96 	blk_queue_exit(bdev->bd_queue);
97 }
98 
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101 	struct page *page = alloc_pages(GFP_KERNEL, 0);
102 	struct blk_dax_ctl dax = {
103 		.size = PAGE_SIZE,
104 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 	};
106 	long rc;
107 
108 	if (!page)
109 		return ERR_PTR(-ENOMEM);
110 
111 	rc = dax_map_atomic(bdev, &dax);
112 	if (rc < 0)
113 		return ERR_PTR(rc);
114 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 	dax_unmap_atomic(bdev, &dax);
116 	return page;
117 }
118 
119 static bool buffer_written(struct buffer_head *bh)
120 {
121 	return buffer_mapped(bh) && !buffer_unwritten(bh);
122 }
123 
124 /*
125  * When ext4 encounters a hole, it returns without modifying the buffer_head
126  * which means that we can't trust b_size.  To cope with this, we set b_state
127  * to 0 before calling get_block and, if any bit is set, we know we can trust
128  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
129  * and would save us time calling get_block repeatedly.
130  */
131 static bool buffer_size_valid(struct buffer_head *bh)
132 {
133 	return bh->b_state != 0;
134 }
135 
136 
137 static sector_t to_sector(const struct buffer_head *bh,
138 		const struct inode *inode)
139 {
140 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
141 
142 	return sector;
143 }
144 
145 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
146 		      loff_t start, loff_t end, get_block_t get_block,
147 		      struct buffer_head *bh)
148 {
149 	loff_t pos = start, max = start, bh_max = start;
150 	bool hole = false, need_wmb = false;
151 	struct block_device *bdev = NULL;
152 	int rw = iov_iter_rw(iter), rc;
153 	long map_len = 0;
154 	struct blk_dax_ctl dax = {
155 		.addr = (void __pmem *) ERR_PTR(-EIO),
156 	};
157 	unsigned blkbits = inode->i_blkbits;
158 	sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
159 								>> blkbits;
160 
161 	if (rw == READ)
162 		end = min(end, i_size_read(inode));
163 
164 	while (pos < end) {
165 		size_t len;
166 		if (pos == max) {
167 			long page = pos >> PAGE_SHIFT;
168 			sector_t block = page << (PAGE_SHIFT - blkbits);
169 			unsigned first = pos - (block << blkbits);
170 			long size;
171 
172 			if (pos == bh_max) {
173 				bh->b_size = PAGE_ALIGN(end - pos);
174 				bh->b_state = 0;
175 				rc = get_block(inode, block, bh, rw == WRITE);
176 				if (rc)
177 					break;
178 				if (!buffer_size_valid(bh))
179 					bh->b_size = 1 << blkbits;
180 				bh_max = pos - first + bh->b_size;
181 				bdev = bh->b_bdev;
182 				/*
183 				 * We allow uninitialized buffers for writes
184 				 * beyond EOF as those cannot race with faults
185 				 */
186 				WARN_ON_ONCE(
187 					(buffer_new(bh) && block < file_blks) ||
188 					(rw == WRITE && buffer_unwritten(bh)));
189 			} else {
190 				unsigned done = bh->b_size -
191 						(bh_max - (pos - first));
192 				bh->b_blocknr += done >> blkbits;
193 				bh->b_size -= done;
194 			}
195 
196 			hole = rw == READ && !buffer_written(bh);
197 			if (hole) {
198 				size = bh->b_size - first;
199 			} else {
200 				dax_unmap_atomic(bdev, &dax);
201 				dax.sector = to_sector(bh, inode);
202 				dax.size = bh->b_size;
203 				map_len = dax_map_atomic(bdev, &dax);
204 				if (map_len < 0) {
205 					rc = map_len;
206 					break;
207 				}
208 				dax.addr += first;
209 				size = map_len - first;
210 			}
211 			max = min(pos + size, end);
212 		}
213 
214 		if (iov_iter_rw(iter) == WRITE) {
215 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
216 			need_wmb = true;
217 		} else if (!hole)
218 			len = copy_to_iter((void __force *) dax.addr, max - pos,
219 					iter);
220 		else
221 			len = iov_iter_zero(max - pos, iter);
222 
223 		if (!len) {
224 			rc = -EFAULT;
225 			break;
226 		}
227 
228 		pos += len;
229 		if (!IS_ERR(dax.addr))
230 			dax.addr += len;
231 	}
232 
233 	if (need_wmb)
234 		wmb_pmem();
235 	dax_unmap_atomic(bdev, &dax);
236 
237 	return (pos == start) ? rc : pos - start;
238 }
239 
240 /**
241  * dax_do_io - Perform I/O to a DAX file
242  * @iocb: The control block for this I/O
243  * @inode: The file which the I/O is directed at
244  * @iter: The addresses to do I/O from or to
245  * @get_block: The filesystem method used to translate file offsets to blocks
246  * @end_io: A filesystem callback for I/O completion
247  * @flags: See below
248  *
249  * This function uses the same locking scheme as do_blockdev_direct_IO:
250  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
251  * caller for writes.  For reads, we take and release the i_mutex ourselves.
252  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
253  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
254  * is in progress.
255  */
256 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
257 		  struct iov_iter *iter, get_block_t get_block,
258 		  dio_iodone_t end_io, int flags)
259 {
260 	struct buffer_head bh;
261 	ssize_t retval = -EINVAL;
262 	loff_t pos = iocb->ki_pos;
263 	loff_t end = pos + iov_iter_count(iter);
264 
265 	memset(&bh, 0, sizeof(bh));
266 	bh.b_bdev = inode->i_sb->s_bdev;
267 
268 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
269 		inode_lock(inode);
270 
271 	/* Protects against truncate */
272 	if (!(flags & DIO_SKIP_DIO_COUNT))
273 		inode_dio_begin(inode);
274 
275 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
276 
277 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
278 		inode_unlock(inode);
279 
280 	if (end_io) {
281 		int err;
282 
283 		err = end_io(iocb, pos, retval, bh.b_private);
284 		if (err)
285 			retval = err;
286 	}
287 
288 	if (!(flags & DIO_SKIP_DIO_COUNT))
289 		inode_dio_end(inode);
290 	return retval;
291 }
292 EXPORT_SYMBOL_GPL(dax_do_io);
293 
294 /*
295  * DAX radix tree locking
296  */
297 struct exceptional_entry_key {
298 	struct address_space *mapping;
299 	unsigned long index;
300 };
301 
302 struct wait_exceptional_entry_queue {
303 	wait_queue_t wait;
304 	struct exceptional_entry_key key;
305 };
306 
307 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
308 				       int sync, void *keyp)
309 {
310 	struct exceptional_entry_key *key = keyp;
311 	struct wait_exceptional_entry_queue *ewait =
312 		container_of(wait, struct wait_exceptional_entry_queue, wait);
313 
314 	if (key->mapping != ewait->key.mapping ||
315 	    key->index != ewait->key.index)
316 		return 0;
317 	return autoremove_wake_function(wait, mode, sync, NULL);
318 }
319 
320 /*
321  * Check whether the given slot is locked. The function must be called with
322  * mapping->tree_lock held
323  */
324 static inline int slot_locked(struct address_space *mapping, void **slot)
325 {
326 	unsigned long entry = (unsigned long)
327 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
328 	return entry & RADIX_DAX_ENTRY_LOCK;
329 }
330 
331 /*
332  * Mark the given slot is locked. The function must be called with
333  * mapping->tree_lock held
334  */
335 static inline void *lock_slot(struct address_space *mapping, void **slot)
336 {
337 	unsigned long entry = (unsigned long)
338 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
339 
340 	entry |= RADIX_DAX_ENTRY_LOCK;
341 	radix_tree_replace_slot(slot, (void *)entry);
342 	return (void *)entry;
343 }
344 
345 /*
346  * Mark the given slot is unlocked. The function must be called with
347  * mapping->tree_lock held
348  */
349 static inline void *unlock_slot(struct address_space *mapping, void **slot)
350 {
351 	unsigned long entry = (unsigned long)
352 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
353 
354 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
355 	radix_tree_replace_slot(slot, (void *)entry);
356 	return (void *)entry;
357 }
358 
359 /*
360  * Lookup entry in radix tree, wait for it to become unlocked if it is
361  * exceptional entry and return it. The caller must call
362  * put_unlocked_mapping_entry() when he decided not to lock the entry or
363  * put_locked_mapping_entry() when he locked the entry and now wants to
364  * unlock it.
365  *
366  * The function must be called with mapping->tree_lock held.
367  */
368 static void *get_unlocked_mapping_entry(struct address_space *mapping,
369 					pgoff_t index, void ***slotp)
370 {
371 	void *ret, **slot;
372 	struct wait_exceptional_entry_queue ewait;
373 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
374 
375 	init_wait(&ewait.wait);
376 	ewait.wait.func = wake_exceptional_entry_func;
377 	ewait.key.mapping = mapping;
378 	ewait.key.index = index;
379 
380 	for (;;) {
381 		ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
382 					  &slot);
383 		if (!ret || !radix_tree_exceptional_entry(ret) ||
384 		    !slot_locked(mapping, slot)) {
385 			if (slotp)
386 				*slotp = slot;
387 			return ret;
388 		}
389 		prepare_to_wait_exclusive(wq, &ewait.wait,
390 					  TASK_UNINTERRUPTIBLE);
391 		spin_unlock_irq(&mapping->tree_lock);
392 		schedule();
393 		finish_wait(wq, &ewait.wait);
394 		spin_lock_irq(&mapping->tree_lock);
395 	}
396 }
397 
398 /*
399  * Find radix tree entry at given index. If it points to a page, return with
400  * the page locked. If it points to the exceptional entry, return with the
401  * radix tree entry locked. If the radix tree doesn't contain given index,
402  * create empty exceptional entry for the index and return with it locked.
403  *
404  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
405  * persistent memory the benefit is doubtful. We can add that later if we can
406  * show it helps.
407  */
408 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
409 {
410 	void *ret, **slot;
411 
412 restart:
413 	spin_lock_irq(&mapping->tree_lock);
414 	ret = get_unlocked_mapping_entry(mapping, index, &slot);
415 	/* No entry for given index? Make sure radix tree is big enough. */
416 	if (!ret) {
417 		int err;
418 
419 		spin_unlock_irq(&mapping->tree_lock);
420 		err = radix_tree_preload(
421 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
422 		if (err)
423 			return ERR_PTR(err);
424 		ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
425 			       RADIX_DAX_ENTRY_LOCK);
426 		spin_lock_irq(&mapping->tree_lock);
427 		err = radix_tree_insert(&mapping->page_tree, index, ret);
428 		radix_tree_preload_end();
429 		if (err) {
430 			spin_unlock_irq(&mapping->tree_lock);
431 			/* Someone already created the entry? */
432 			if (err == -EEXIST)
433 				goto restart;
434 			return ERR_PTR(err);
435 		}
436 		/* Good, we have inserted empty locked entry into the tree. */
437 		mapping->nrexceptional++;
438 		spin_unlock_irq(&mapping->tree_lock);
439 		return ret;
440 	}
441 	/* Normal page in radix tree? */
442 	if (!radix_tree_exceptional_entry(ret)) {
443 		struct page *page = ret;
444 
445 		get_page(page);
446 		spin_unlock_irq(&mapping->tree_lock);
447 		lock_page(page);
448 		/* Page got truncated? Retry... */
449 		if (unlikely(page->mapping != mapping)) {
450 			unlock_page(page);
451 			put_page(page);
452 			goto restart;
453 		}
454 		return page;
455 	}
456 	ret = lock_slot(mapping, slot);
457 	spin_unlock_irq(&mapping->tree_lock);
458 	return ret;
459 }
460 
461 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
462 				   pgoff_t index, bool wake_all)
463 {
464 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
465 
466 	/*
467 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
468 	 * under mapping->tree_lock, ditto for entry handling in our callers.
469 	 * So at this point all tasks that could have seen our entry locked
470 	 * must be in the waitqueue and the following check will see them.
471 	 */
472 	if (waitqueue_active(wq)) {
473 		struct exceptional_entry_key key;
474 
475 		key.mapping = mapping;
476 		key.index = index;
477 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
478 	}
479 }
480 
481 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
482 {
483 	void *ret, **slot;
484 
485 	spin_lock_irq(&mapping->tree_lock);
486 	ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
487 	if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
488 			 !slot_locked(mapping, slot))) {
489 		spin_unlock_irq(&mapping->tree_lock);
490 		return;
491 	}
492 	unlock_slot(mapping, slot);
493 	spin_unlock_irq(&mapping->tree_lock);
494 	dax_wake_mapping_entry_waiter(mapping, index, false);
495 }
496 
497 static void put_locked_mapping_entry(struct address_space *mapping,
498 				     pgoff_t index, void *entry)
499 {
500 	if (!radix_tree_exceptional_entry(entry)) {
501 		unlock_page(entry);
502 		put_page(entry);
503 	} else {
504 		dax_unlock_mapping_entry(mapping, index);
505 	}
506 }
507 
508 /*
509  * Called when we are done with radix tree entry we looked up via
510  * get_unlocked_mapping_entry() and which we didn't lock in the end.
511  */
512 static void put_unlocked_mapping_entry(struct address_space *mapping,
513 				       pgoff_t index, void *entry)
514 {
515 	if (!radix_tree_exceptional_entry(entry))
516 		return;
517 
518 	/* We have to wake up next waiter for the radix tree entry lock */
519 	dax_wake_mapping_entry_waiter(mapping, index, false);
520 }
521 
522 /*
523  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
524  * entry to get unlocked before deleting it.
525  */
526 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
527 {
528 	void *entry;
529 
530 	spin_lock_irq(&mapping->tree_lock);
531 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
532 	/*
533 	 * This gets called from truncate / punch_hole path. As such, the caller
534 	 * must hold locks protecting against concurrent modifications of the
535 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
536 	 * caller has seen exceptional entry for this index, we better find it
537 	 * at that index as well...
538 	 */
539 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
540 		spin_unlock_irq(&mapping->tree_lock);
541 		return 0;
542 	}
543 	radix_tree_delete(&mapping->page_tree, index);
544 	mapping->nrexceptional--;
545 	spin_unlock_irq(&mapping->tree_lock);
546 	dax_wake_mapping_entry_waiter(mapping, index, true);
547 
548 	return 1;
549 }
550 
551 /*
552  * The user has performed a load from a hole in the file.  Allocating
553  * a new page in the file would cause excessive storage usage for
554  * workloads with sparse files.  We allocate a page cache page instead.
555  * We'll kick it out of the page cache if it's ever written to,
556  * otherwise it will simply fall out of the page cache under memory
557  * pressure without ever having been dirtied.
558  */
559 static int dax_load_hole(struct address_space *mapping, void *entry,
560 			 struct vm_fault *vmf)
561 {
562 	struct page *page;
563 
564 	/* Hole page already exists? Return it...  */
565 	if (!radix_tree_exceptional_entry(entry)) {
566 		vmf->page = entry;
567 		return VM_FAULT_LOCKED;
568 	}
569 
570 	/* This will replace locked radix tree entry with a hole page */
571 	page = find_or_create_page(mapping, vmf->pgoff,
572 				   vmf->gfp_mask | __GFP_ZERO);
573 	if (!page) {
574 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
575 		return VM_FAULT_OOM;
576 	}
577 	vmf->page = page;
578 	return VM_FAULT_LOCKED;
579 }
580 
581 static int copy_user_bh(struct page *to, struct inode *inode,
582 		struct buffer_head *bh, unsigned long vaddr)
583 {
584 	struct blk_dax_ctl dax = {
585 		.sector = to_sector(bh, inode),
586 		.size = bh->b_size,
587 	};
588 	struct block_device *bdev = bh->b_bdev;
589 	void *vto;
590 
591 	if (dax_map_atomic(bdev, &dax) < 0)
592 		return PTR_ERR(dax.addr);
593 	vto = kmap_atomic(to);
594 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
595 	kunmap_atomic(vto);
596 	dax_unmap_atomic(bdev, &dax);
597 	return 0;
598 }
599 
600 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
601 
602 static void *dax_insert_mapping_entry(struct address_space *mapping,
603 				      struct vm_fault *vmf,
604 				      void *entry, sector_t sector)
605 {
606 	struct radix_tree_root *page_tree = &mapping->page_tree;
607 	int error = 0;
608 	bool hole_fill = false;
609 	void *new_entry;
610 	pgoff_t index = vmf->pgoff;
611 
612 	if (vmf->flags & FAULT_FLAG_WRITE)
613 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
614 
615 	/* Replacing hole page with block mapping? */
616 	if (!radix_tree_exceptional_entry(entry)) {
617 		hole_fill = true;
618 		/*
619 		 * Unmap the page now before we remove it from page cache below.
620 		 * The page is locked so it cannot be faulted in again.
621 		 */
622 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
623 				    PAGE_SIZE, 0);
624 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
625 		if (error)
626 			return ERR_PTR(error);
627 	}
628 
629 	spin_lock_irq(&mapping->tree_lock);
630 	new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
631 		       RADIX_DAX_ENTRY_LOCK);
632 	if (hole_fill) {
633 		__delete_from_page_cache(entry, NULL);
634 		/* Drop pagecache reference */
635 		put_page(entry);
636 		error = radix_tree_insert(page_tree, index, new_entry);
637 		if (error) {
638 			new_entry = ERR_PTR(error);
639 			goto unlock;
640 		}
641 		mapping->nrexceptional++;
642 	} else {
643 		void **slot;
644 		void *ret;
645 
646 		ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
647 		WARN_ON_ONCE(ret != entry);
648 		radix_tree_replace_slot(slot, new_entry);
649 	}
650 	if (vmf->flags & FAULT_FLAG_WRITE)
651 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
652  unlock:
653 	spin_unlock_irq(&mapping->tree_lock);
654 	if (hole_fill) {
655 		radix_tree_preload_end();
656 		/*
657 		 * We don't need hole page anymore, it has been replaced with
658 		 * locked radix tree entry now.
659 		 */
660 		if (mapping->a_ops->freepage)
661 			mapping->a_ops->freepage(entry);
662 		unlock_page(entry);
663 		put_page(entry);
664 	}
665 	return new_entry;
666 }
667 
668 static int dax_writeback_one(struct block_device *bdev,
669 		struct address_space *mapping, pgoff_t index, void *entry)
670 {
671 	struct radix_tree_root *page_tree = &mapping->page_tree;
672 	int type = RADIX_DAX_TYPE(entry);
673 	struct radix_tree_node *node;
674 	struct blk_dax_ctl dax;
675 	void **slot;
676 	int ret = 0;
677 
678 	spin_lock_irq(&mapping->tree_lock);
679 	/*
680 	 * Regular page slots are stabilized by the page lock even
681 	 * without the tree itself locked.  These unlocked entries
682 	 * need verification under the tree lock.
683 	 */
684 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
685 		goto unlock;
686 	if (*slot != entry)
687 		goto unlock;
688 
689 	/* another fsync thread may have already written back this entry */
690 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
691 		goto unlock;
692 
693 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
694 		ret = -EIO;
695 		goto unlock;
696 	}
697 
698 	dax.sector = RADIX_DAX_SECTOR(entry);
699 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
700 	spin_unlock_irq(&mapping->tree_lock);
701 
702 	/*
703 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
704 	 * eventually calls cond_resched().
705 	 */
706 	ret = dax_map_atomic(bdev, &dax);
707 	if (ret < 0)
708 		return ret;
709 
710 	if (WARN_ON_ONCE(ret < dax.size)) {
711 		ret = -EIO;
712 		goto unmap;
713 	}
714 
715 	wb_cache_pmem(dax.addr, dax.size);
716 
717 	spin_lock_irq(&mapping->tree_lock);
718 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
719 	spin_unlock_irq(&mapping->tree_lock);
720  unmap:
721 	dax_unmap_atomic(bdev, &dax);
722 	return ret;
723 
724  unlock:
725 	spin_unlock_irq(&mapping->tree_lock);
726 	return ret;
727 }
728 
729 /*
730  * Flush the mapping to the persistent domain within the byte range of [start,
731  * end]. This is required by data integrity operations to ensure file data is
732  * on persistent storage prior to completion of the operation.
733  */
734 int dax_writeback_mapping_range(struct address_space *mapping,
735 		struct block_device *bdev, struct writeback_control *wbc)
736 {
737 	struct inode *inode = mapping->host;
738 	pgoff_t start_index, end_index, pmd_index;
739 	pgoff_t indices[PAGEVEC_SIZE];
740 	struct pagevec pvec;
741 	bool done = false;
742 	int i, ret = 0;
743 	void *entry;
744 
745 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
746 		return -EIO;
747 
748 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
749 		return 0;
750 
751 	start_index = wbc->range_start >> PAGE_SHIFT;
752 	end_index = wbc->range_end >> PAGE_SHIFT;
753 	pmd_index = DAX_PMD_INDEX(start_index);
754 
755 	rcu_read_lock();
756 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
757 	rcu_read_unlock();
758 
759 	/* see if the start of our range is covered by a PMD entry */
760 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
761 		start_index = pmd_index;
762 
763 	tag_pages_for_writeback(mapping, start_index, end_index);
764 
765 	pagevec_init(&pvec, 0);
766 	while (!done) {
767 		pvec.nr = find_get_entries_tag(mapping, start_index,
768 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
769 				pvec.pages, indices);
770 
771 		if (pvec.nr == 0)
772 			break;
773 
774 		for (i = 0; i < pvec.nr; i++) {
775 			if (indices[i] > end_index) {
776 				done = true;
777 				break;
778 			}
779 
780 			ret = dax_writeback_one(bdev, mapping, indices[i],
781 					pvec.pages[i]);
782 			if (ret < 0)
783 				return ret;
784 		}
785 	}
786 	wmb_pmem();
787 	return 0;
788 }
789 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
790 
791 static int dax_insert_mapping(struct address_space *mapping,
792 			struct buffer_head *bh, void **entryp,
793 			struct vm_area_struct *vma, struct vm_fault *vmf)
794 {
795 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
796 	struct block_device *bdev = bh->b_bdev;
797 	struct blk_dax_ctl dax = {
798 		.sector = to_sector(bh, mapping->host),
799 		.size = bh->b_size,
800 	};
801 	void *ret;
802 	void *entry = *entryp;
803 
804 	if (dax_map_atomic(bdev, &dax) < 0)
805 		return PTR_ERR(dax.addr);
806 	dax_unmap_atomic(bdev, &dax);
807 
808 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
809 	if (IS_ERR(ret))
810 		return PTR_ERR(ret);
811 	*entryp = ret;
812 
813 	return vm_insert_mixed(vma, vaddr, dax.pfn);
814 }
815 
816 /**
817  * __dax_fault - handle a page fault on a DAX file
818  * @vma: The virtual memory area where the fault occurred
819  * @vmf: The description of the fault
820  * @get_block: The filesystem method used to translate file offsets to blocks
821  *
822  * When a page fault occurs, filesystems may call this helper in their
823  * fault handler for DAX files. __dax_fault() assumes the caller has done all
824  * the necessary locking for the page fault to proceed successfully.
825  */
826 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
827 			get_block_t get_block)
828 {
829 	struct file *file = vma->vm_file;
830 	struct address_space *mapping = file->f_mapping;
831 	struct inode *inode = mapping->host;
832 	void *entry;
833 	struct buffer_head bh;
834 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
835 	unsigned blkbits = inode->i_blkbits;
836 	sector_t block;
837 	pgoff_t size;
838 	int error;
839 	int major = 0;
840 
841 	/*
842 	 * Check whether offset isn't beyond end of file now. Caller is supposed
843 	 * to hold locks serializing us with truncate / punch hole so this is
844 	 * a reliable test.
845 	 */
846 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 	if (vmf->pgoff >= size)
848 		return VM_FAULT_SIGBUS;
849 
850 	memset(&bh, 0, sizeof(bh));
851 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
852 	bh.b_bdev = inode->i_sb->s_bdev;
853 	bh.b_size = PAGE_SIZE;
854 
855 	entry = grab_mapping_entry(mapping, vmf->pgoff);
856 	if (IS_ERR(entry)) {
857 		error = PTR_ERR(entry);
858 		goto out;
859 	}
860 
861 	error = get_block(inode, block, &bh, 0);
862 	if (!error && (bh.b_size < PAGE_SIZE))
863 		error = -EIO;		/* fs corruption? */
864 	if (error)
865 		goto unlock_entry;
866 
867 	if (vmf->cow_page) {
868 		struct page *new_page = vmf->cow_page;
869 		if (buffer_written(&bh))
870 			error = copy_user_bh(new_page, inode, &bh, vaddr);
871 		else
872 			clear_user_highpage(new_page, vaddr);
873 		if (error)
874 			goto unlock_entry;
875 		if (!radix_tree_exceptional_entry(entry)) {
876 			vmf->page = entry;
877 			return VM_FAULT_LOCKED;
878 		}
879 		vmf->entry = entry;
880 		return VM_FAULT_DAX_LOCKED;
881 	}
882 
883 	if (!buffer_mapped(&bh)) {
884 		if (vmf->flags & FAULT_FLAG_WRITE) {
885 			error = get_block(inode, block, &bh, 1);
886 			count_vm_event(PGMAJFAULT);
887 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
888 			major = VM_FAULT_MAJOR;
889 			if (!error && (bh.b_size < PAGE_SIZE))
890 				error = -EIO;
891 			if (error)
892 				goto unlock_entry;
893 		} else {
894 			return dax_load_hole(mapping, entry, vmf);
895 		}
896 	}
897 
898 	/* Filesystem should not return unwritten buffers to us! */
899 	WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
900 	error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf);
901  unlock_entry:
902 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
903  out:
904 	if (error == -ENOMEM)
905 		return VM_FAULT_OOM | major;
906 	/* -EBUSY is fine, somebody else faulted on the same PTE */
907 	if ((error < 0) && (error != -EBUSY))
908 		return VM_FAULT_SIGBUS | major;
909 	return VM_FAULT_NOPAGE | major;
910 }
911 EXPORT_SYMBOL(__dax_fault);
912 
913 /**
914  * dax_fault - handle a page fault on a DAX file
915  * @vma: The virtual memory area where the fault occurred
916  * @vmf: The description of the fault
917  * @get_block: The filesystem method used to translate file offsets to blocks
918  *
919  * When a page fault occurs, filesystems may call this helper in their
920  * fault handler for DAX files.
921  */
922 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
923 	      get_block_t get_block)
924 {
925 	int result;
926 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
927 
928 	if (vmf->flags & FAULT_FLAG_WRITE) {
929 		sb_start_pagefault(sb);
930 		file_update_time(vma->vm_file);
931 	}
932 	result = __dax_fault(vma, vmf, get_block);
933 	if (vmf->flags & FAULT_FLAG_WRITE)
934 		sb_end_pagefault(sb);
935 
936 	return result;
937 }
938 EXPORT_SYMBOL_GPL(dax_fault);
939 
940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
941 /*
942  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
943  * more often than one might expect in the below function.
944  */
945 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
946 
947 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
948 		const char *reason, const char *fn)
949 {
950 	if (bh) {
951 		char bname[BDEVNAME_SIZE];
952 		bdevname(bh->b_bdev, bname);
953 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
954 			"length %zd fallback: %s\n", fn, current->comm,
955 			address, bname, bh->b_state, (u64)bh->b_blocknr,
956 			bh->b_size, reason);
957 	} else {
958 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
959 			current->comm, address, reason);
960 	}
961 }
962 
963 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
964 
965 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
966 		pmd_t *pmd, unsigned int flags, get_block_t get_block)
967 {
968 	struct file *file = vma->vm_file;
969 	struct address_space *mapping = file->f_mapping;
970 	struct inode *inode = mapping->host;
971 	struct buffer_head bh;
972 	unsigned blkbits = inode->i_blkbits;
973 	unsigned long pmd_addr = address & PMD_MASK;
974 	bool write = flags & FAULT_FLAG_WRITE;
975 	struct block_device *bdev;
976 	pgoff_t size, pgoff;
977 	sector_t block;
978 	int result = 0;
979 	bool alloc = false;
980 
981 	/* dax pmd mappings require pfn_t_devmap() */
982 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
983 		return VM_FAULT_FALLBACK;
984 
985 	/* Fall back to PTEs if we're going to COW */
986 	if (write && !(vma->vm_flags & VM_SHARED)) {
987 		split_huge_pmd(vma, pmd, address);
988 		dax_pmd_dbg(NULL, address, "cow write");
989 		return VM_FAULT_FALLBACK;
990 	}
991 	/* If the PMD would extend outside the VMA */
992 	if (pmd_addr < vma->vm_start) {
993 		dax_pmd_dbg(NULL, address, "vma start unaligned");
994 		return VM_FAULT_FALLBACK;
995 	}
996 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
997 		dax_pmd_dbg(NULL, address, "vma end unaligned");
998 		return VM_FAULT_FALLBACK;
999 	}
1000 
1001 	pgoff = linear_page_index(vma, pmd_addr);
1002 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1003 	if (pgoff >= size)
1004 		return VM_FAULT_SIGBUS;
1005 	/* If the PMD would cover blocks out of the file */
1006 	if ((pgoff | PG_PMD_COLOUR) >= size) {
1007 		dax_pmd_dbg(NULL, address,
1008 				"offset + huge page size > file size");
1009 		return VM_FAULT_FALLBACK;
1010 	}
1011 
1012 	memset(&bh, 0, sizeof(bh));
1013 	bh.b_bdev = inode->i_sb->s_bdev;
1014 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
1015 
1016 	bh.b_size = PMD_SIZE;
1017 
1018 	if (get_block(inode, block, &bh, 0) != 0)
1019 		return VM_FAULT_SIGBUS;
1020 
1021 	if (!buffer_mapped(&bh) && write) {
1022 		if (get_block(inode, block, &bh, 1) != 0)
1023 			return VM_FAULT_SIGBUS;
1024 		alloc = true;
1025 		WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1026 	}
1027 
1028 	bdev = bh.b_bdev;
1029 
1030 	/*
1031 	 * If the filesystem isn't willing to tell us the length of a hole,
1032 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
1033 	 * would be silly.
1034 	 */
1035 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
1036 		dax_pmd_dbg(&bh, address, "allocated block too small");
1037 		return VM_FAULT_FALLBACK;
1038 	}
1039 
1040 	/*
1041 	 * If we allocated new storage, make sure no process has any
1042 	 * zero pages covering this hole
1043 	 */
1044 	if (alloc) {
1045 		loff_t lstart = pgoff << PAGE_SHIFT;
1046 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1047 
1048 		truncate_pagecache_range(inode, lstart, lend);
1049 	}
1050 
1051 	if (!write && !buffer_mapped(&bh)) {
1052 		spinlock_t *ptl;
1053 		pmd_t entry;
1054 		struct page *zero_page = get_huge_zero_page();
1055 
1056 		if (unlikely(!zero_page)) {
1057 			dax_pmd_dbg(&bh, address, "no zero page");
1058 			goto fallback;
1059 		}
1060 
1061 		ptl = pmd_lock(vma->vm_mm, pmd);
1062 		if (!pmd_none(*pmd)) {
1063 			spin_unlock(ptl);
1064 			dax_pmd_dbg(&bh, address, "pmd already present");
1065 			goto fallback;
1066 		}
1067 
1068 		dev_dbg(part_to_dev(bdev->bd_part),
1069 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1070 				__func__, current->comm, address,
1071 				(unsigned long long) to_sector(&bh, inode));
1072 
1073 		entry = mk_pmd(zero_page, vma->vm_page_prot);
1074 		entry = pmd_mkhuge(entry);
1075 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
1076 		result = VM_FAULT_NOPAGE;
1077 		spin_unlock(ptl);
1078 	} else {
1079 		struct blk_dax_ctl dax = {
1080 			.sector = to_sector(&bh, inode),
1081 			.size = PMD_SIZE,
1082 		};
1083 		long length = dax_map_atomic(bdev, &dax);
1084 
1085 		if (length < 0) {
1086 			dax_pmd_dbg(&bh, address, "dax-error fallback");
1087 			goto fallback;
1088 		}
1089 		if (length < PMD_SIZE) {
1090 			dax_pmd_dbg(&bh, address, "dax-length too small");
1091 			dax_unmap_atomic(bdev, &dax);
1092 			goto fallback;
1093 		}
1094 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1095 			dax_pmd_dbg(&bh, address, "pfn unaligned");
1096 			dax_unmap_atomic(bdev, &dax);
1097 			goto fallback;
1098 		}
1099 
1100 		if (!pfn_t_devmap(dax.pfn)) {
1101 			dax_unmap_atomic(bdev, &dax);
1102 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
1103 			goto fallback;
1104 		}
1105 		dax_unmap_atomic(bdev, &dax);
1106 
1107 		/*
1108 		 * For PTE faults we insert a radix tree entry for reads, and
1109 		 * leave it clean.  Then on the first write we dirty the radix
1110 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
1111 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1112 		 * call into get_block() to translate the pgoff to a sector in
1113 		 * order to be able to create a new radix tree entry.
1114 		 *
1115 		 * The PMD path doesn't have an equivalent to
1116 		 * dax_pfn_mkwrite(), though, so for a read followed by a
1117 		 * write we traverse all the way through __dax_pmd_fault()
1118 		 * twice.  This means we can just skip inserting a radix tree
1119 		 * entry completely on the initial read and just wait until
1120 		 * the write to insert a dirty entry.
1121 		 */
1122 		if (write) {
1123 			/*
1124 			 * We should insert radix-tree entry and dirty it here.
1125 			 * For now this is broken...
1126 			 */
1127 		}
1128 
1129 		dev_dbg(part_to_dev(bdev->bd_part),
1130 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
1131 				__func__, current->comm, address,
1132 				pfn_t_to_pfn(dax.pfn),
1133 				(unsigned long long) dax.sector);
1134 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1135 				dax.pfn, write);
1136 	}
1137 
1138  out:
1139 	return result;
1140 
1141  fallback:
1142 	count_vm_event(THP_FAULT_FALLBACK);
1143 	result = VM_FAULT_FALLBACK;
1144 	goto out;
1145 }
1146 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1147 
1148 /**
1149  * dax_pmd_fault - handle a PMD fault on a DAX file
1150  * @vma: The virtual memory area where the fault occurred
1151  * @vmf: The description of the fault
1152  * @get_block: The filesystem method used to translate file offsets to blocks
1153  *
1154  * When a page fault occurs, filesystems may call this helper in their
1155  * pmd_fault handler for DAX files.
1156  */
1157 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1158 			pmd_t *pmd, unsigned int flags, get_block_t get_block)
1159 {
1160 	int result;
1161 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1162 
1163 	if (flags & FAULT_FLAG_WRITE) {
1164 		sb_start_pagefault(sb);
1165 		file_update_time(vma->vm_file);
1166 	}
1167 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block);
1168 	if (flags & FAULT_FLAG_WRITE)
1169 		sb_end_pagefault(sb);
1170 
1171 	return result;
1172 }
1173 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1174 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1175 
1176 /**
1177  * dax_pfn_mkwrite - handle first write to DAX page
1178  * @vma: The virtual memory area where the fault occurred
1179  * @vmf: The description of the fault
1180  */
1181 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1182 {
1183 	struct file *file = vma->vm_file;
1184 	struct address_space *mapping = file->f_mapping;
1185 	void *entry;
1186 	pgoff_t index = vmf->pgoff;
1187 
1188 	spin_lock_irq(&mapping->tree_lock);
1189 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
1190 	if (!entry || !radix_tree_exceptional_entry(entry))
1191 		goto out;
1192 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1193 	put_unlocked_mapping_entry(mapping, index, entry);
1194 out:
1195 	spin_unlock_irq(&mapping->tree_lock);
1196 	return VM_FAULT_NOPAGE;
1197 }
1198 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1199 
1200 static bool dax_range_is_aligned(struct block_device *bdev,
1201 				 unsigned int offset, unsigned int length)
1202 {
1203 	unsigned short sector_size = bdev_logical_block_size(bdev);
1204 
1205 	if (!IS_ALIGNED(offset, sector_size))
1206 		return false;
1207 	if (!IS_ALIGNED(length, sector_size))
1208 		return false;
1209 
1210 	return true;
1211 }
1212 
1213 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1214 		unsigned int offset, unsigned int length)
1215 {
1216 	struct blk_dax_ctl dax = {
1217 		.sector		= sector,
1218 		.size		= PAGE_SIZE,
1219 	};
1220 
1221 	if (dax_range_is_aligned(bdev, offset, length)) {
1222 		sector_t start_sector = dax.sector + (offset >> 9);
1223 
1224 		return blkdev_issue_zeroout(bdev, start_sector,
1225 				length >> 9, GFP_NOFS, true);
1226 	} else {
1227 		if (dax_map_atomic(bdev, &dax) < 0)
1228 			return PTR_ERR(dax.addr);
1229 		clear_pmem(dax.addr + offset, length);
1230 		wmb_pmem();
1231 		dax_unmap_atomic(bdev, &dax);
1232 	}
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1236 
1237 /**
1238  * dax_zero_page_range - zero a range within a page of a DAX file
1239  * @inode: The file being truncated
1240  * @from: The file offset that is being truncated to
1241  * @length: The number of bytes to zero
1242  * @get_block: The filesystem method used to translate file offsets to blocks
1243  *
1244  * This function can be called by a filesystem when it is zeroing part of a
1245  * page in a DAX file.  This is intended for hole-punch operations.  If
1246  * you are truncating a file, the helper function dax_truncate_page() may be
1247  * more convenient.
1248  */
1249 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1250 							get_block_t get_block)
1251 {
1252 	struct buffer_head bh;
1253 	pgoff_t index = from >> PAGE_SHIFT;
1254 	unsigned offset = from & (PAGE_SIZE-1);
1255 	int err;
1256 
1257 	/* Block boundary? Nothing to do */
1258 	if (!length)
1259 		return 0;
1260 	BUG_ON((offset + length) > PAGE_SIZE);
1261 
1262 	memset(&bh, 0, sizeof(bh));
1263 	bh.b_bdev = inode->i_sb->s_bdev;
1264 	bh.b_size = PAGE_SIZE;
1265 	err = get_block(inode, index, &bh, 0);
1266 	if (err < 0 || !buffer_written(&bh))
1267 		return err;
1268 
1269 	return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1270 			offset, length);
1271 }
1272 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1273 
1274 /**
1275  * dax_truncate_page - handle a partial page being truncated in a DAX file
1276  * @inode: The file being truncated
1277  * @from: The file offset that is being truncated to
1278  * @get_block: The filesystem method used to translate file offsets to blocks
1279  *
1280  * Similar to block_truncate_page(), this function can be called by a
1281  * filesystem when it is truncating a DAX file to handle the partial page.
1282  */
1283 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1284 {
1285 	unsigned length = PAGE_ALIGN(from) - from;
1286 	return dax_zero_page_range(inode, from, length, get_block);
1287 }
1288 EXPORT_SYMBOL_GPL(dax_truncate_page);
1289