xref: /openbmc/linux/fs/dax.c (revision eb3fcf00)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31 
32 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
33 {
34 	struct block_device *bdev = inode->i_sb->s_bdev;
35 	sector_t sector = block << (inode->i_blkbits - 9);
36 
37 	might_sleep();
38 	do {
39 		void __pmem *addr;
40 		unsigned long pfn;
41 		long count;
42 
43 		count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
44 		if (count < 0)
45 			return count;
46 		BUG_ON(size < count);
47 		while (count > 0) {
48 			unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
49 			if (pgsz > count)
50 				pgsz = count;
51 			clear_pmem(addr, pgsz);
52 			addr += pgsz;
53 			size -= pgsz;
54 			count -= pgsz;
55 			BUG_ON(pgsz & 511);
56 			sector += pgsz / 512;
57 			cond_resched();
58 		}
59 	} while (size);
60 
61 	wmb_pmem();
62 	return 0;
63 }
64 EXPORT_SYMBOL_GPL(dax_clear_blocks);
65 
66 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
67 		unsigned blkbits)
68 {
69 	unsigned long pfn;
70 	sector_t sector = bh->b_blocknr << (blkbits - 9);
71 	return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
72 }
73 
74 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
75 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
76 		loff_t pos, loff_t end)
77 {
78 	loff_t final = end - pos + first; /* The final byte of the buffer */
79 
80 	if (first > 0)
81 		clear_pmem(addr, first);
82 	if (final < size)
83 		clear_pmem(addr + final, size - final);
84 }
85 
86 static bool buffer_written(struct buffer_head *bh)
87 {
88 	return buffer_mapped(bh) && !buffer_unwritten(bh);
89 }
90 
91 /*
92  * When ext4 encounters a hole, it returns without modifying the buffer_head
93  * which means that we can't trust b_size.  To cope with this, we set b_state
94  * to 0 before calling get_block and, if any bit is set, we know we can trust
95  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
96  * and would save us time calling get_block repeatedly.
97  */
98 static bool buffer_size_valid(struct buffer_head *bh)
99 {
100 	return bh->b_state != 0;
101 }
102 
103 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
104 		      loff_t start, loff_t end, get_block_t get_block,
105 		      struct buffer_head *bh)
106 {
107 	ssize_t retval = 0;
108 	loff_t pos = start;
109 	loff_t max = start;
110 	loff_t bh_max = start;
111 	void __pmem *addr;
112 	bool hole = false;
113 	bool need_wmb = false;
114 
115 	if (iov_iter_rw(iter) != WRITE)
116 		end = min(end, i_size_read(inode));
117 
118 	while (pos < end) {
119 		size_t len;
120 		if (pos == max) {
121 			unsigned blkbits = inode->i_blkbits;
122 			long page = pos >> PAGE_SHIFT;
123 			sector_t block = page << (PAGE_SHIFT - blkbits);
124 			unsigned first = pos - (block << blkbits);
125 			long size;
126 
127 			if (pos == bh_max) {
128 				bh->b_size = PAGE_ALIGN(end - pos);
129 				bh->b_state = 0;
130 				retval = get_block(inode, block, bh,
131 						   iov_iter_rw(iter) == WRITE);
132 				if (retval)
133 					break;
134 				if (!buffer_size_valid(bh))
135 					bh->b_size = 1 << blkbits;
136 				bh_max = pos - first + bh->b_size;
137 			} else {
138 				unsigned done = bh->b_size -
139 						(bh_max - (pos - first));
140 				bh->b_blocknr += done >> blkbits;
141 				bh->b_size -= done;
142 			}
143 
144 			hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
145 			if (hole) {
146 				addr = NULL;
147 				size = bh->b_size - first;
148 			} else {
149 				retval = dax_get_addr(bh, &addr, blkbits);
150 				if (retval < 0)
151 					break;
152 				if (buffer_unwritten(bh) || buffer_new(bh)) {
153 					dax_new_buf(addr, retval, first, pos,
154 									end);
155 					need_wmb = true;
156 				}
157 				addr += first;
158 				size = retval - first;
159 			}
160 			max = min(pos + size, end);
161 		}
162 
163 		if (iov_iter_rw(iter) == WRITE) {
164 			len = copy_from_iter_pmem(addr, max - pos, iter);
165 			need_wmb = true;
166 		} else if (!hole)
167 			len = copy_to_iter((void __force *)addr, max - pos,
168 					iter);
169 		else
170 			len = iov_iter_zero(max - pos, iter);
171 
172 		if (!len)
173 			break;
174 
175 		pos += len;
176 		addr += len;
177 	}
178 
179 	if (need_wmb)
180 		wmb_pmem();
181 
182 	return (pos == start) ? retval : pos - start;
183 }
184 
185 /**
186  * dax_do_io - Perform I/O to a DAX file
187  * @iocb: The control block for this I/O
188  * @inode: The file which the I/O is directed at
189  * @iter: The addresses to do I/O from or to
190  * @pos: The file offset where the I/O starts
191  * @get_block: The filesystem method used to translate file offsets to blocks
192  * @end_io: A filesystem callback for I/O completion
193  * @flags: See below
194  *
195  * This function uses the same locking scheme as do_blockdev_direct_IO:
196  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
197  * caller for writes.  For reads, we take and release the i_mutex ourselves.
198  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
199  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
200  * is in progress.
201  */
202 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
203 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
204 		  dio_iodone_t end_io, int flags)
205 {
206 	struct buffer_head bh;
207 	ssize_t retval = -EINVAL;
208 	loff_t end = pos + iov_iter_count(iter);
209 
210 	memset(&bh, 0, sizeof(bh));
211 
212 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
213 		struct address_space *mapping = inode->i_mapping;
214 		mutex_lock(&inode->i_mutex);
215 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
216 		if (retval) {
217 			mutex_unlock(&inode->i_mutex);
218 			goto out;
219 		}
220 	}
221 
222 	/* Protects against truncate */
223 	if (!(flags & DIO_SKIP_DIO_COUNT))
224 		inode_dio_begin(inode);
225 
226 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
227 
228 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
229 		mutex_unlock(&inode->i_mutex);
230 
231 	if ((retval > 0) && end_io)
232 		end_io(iocb, pos, retval, bh.b_private);
233 
234 	if (!(flags & DIO_SKIP_DIO_COUNT))
235 		inode_dio_end(inode);
236  out:
237 	return retval;
238 }
239 EXPORT_SYMBOL_GPL(dax_do_io);
240 
241 /*
242  * The user has performed a load from a hole in the file.  Allocating
243  * a new page in the file would cause excessive storage usage for
244  * workloads with sparse files.  We allocate a page cache page instead.
245  * We'll kick it out of the page cache if it's ever written to,
246  * otherwise it will simply fall out of the page cache under memory
247  * pressure without ever having been dirtied.
248  */
249 static int dax_load_hole(struct address_space *mapping, struct page *page,
250 							struct vm_fault *vmf)
251 {
252 	unsigned long size;
253 	struct inode *inode = mapping->host;
254 	if (!page)
255 		page = find_or_create_page(mapping, vmf->pgoff,
256 						GFP_KERNEL | __GFP_ZERO);
257 	if (!page)
258 		return VM_FAULT_OOM;
259 	/* Recheck i_size under page lock to avoid truncate race */
260 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
261 	if (vmf->pgoff >= size) {
262 		unlock_page(page);
263 		page_cache_release(page);
264 		return VM_FAULT_SIGBUS;
265 	}
266 
267 	vmf->page = page;
268 	return VM_FAULT_LOCKED;
269 }
270 
271 static int copy_user_bh(struct page *to, struct buffer_head *bh,
272 			unsigned blkbits, unsigned long vaddr)
273 {
274 	void __pmem *vfrom;
275 	void *vto;
276 
277 	if (dax_get_addr(bh, &vfrom, blkbits) < 0)
278 		return -EIO;
279 	vto = kmap_atomic(to);
280 	copy_user_page(vto, (void __force *)vfrom, vaddr, to);
281 	kunmap_atomic(vto);
282 	return 0;
283 }
284 
285 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
286 			struct vm_area_struct *vma, struct vm_fault *vmf)
287 {
288 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
289 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
290 	void __pmem *addr;
291 	unsigned long pfn;
292 	pgoff_t size;
293 	int error;
294 
295 	/*
296 	 * Check truncate didn't happen while we were allocating a block.
297 	 * If it did, this block may or may not be still allocated to the
298 	 * file.  We can't tell the filesystem to free it because we can't
299 	 * take i_mutex here.  In the worst case, the file still has blocks
300 	 * allocated past the end of the file.
301 	 */
302 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 	if (unlikely(vmf->pgoff >= size)) {
304 		error = -EIO;
305 		goto out;
306 	}
307 
308 	error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
309 	if (error < 0)
310 		goto out;
311 	if (error < PAGE_SIZE) {
312 		error = -EIO;
313 		goto out;
314 	}
315 
316 	if (buffer_unwritten(bh) || buffer_new(bh)) {
317 		clear_pmem(addr, PAGE_SIZE);
318 		wmb_pmem();
319 	}
320 
321 	error = vm_insert_mixed(vma, vaddr, pfn);
322 
323  out:
324 	return error;
325 }
326 
327 /**
328  * __dax_fault - handle a page fault on a DAX file
329  * @vma: The virtual memory area where the fault occurred
330  * @vmf: The description of the fault
331  * @get_block: The filesystem method used to translate file offsets to blocks
332  * @complete_unwritten: The filesystem method used to convert unwritten blocks
333  *	to written so the data written to them is exposed. This is required for
334  *	required by write faults for filesystems that will return unwritten
335  *	extent mappings from @get_block, but it is optional for reads as
336  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
337  *	not support unwritten extents, the it should pass NULL.
338  *
339  * When a page fault occurs, filesystems may call this helper in their
340  * fault handler for DAX files. __dax_fault() assumes the caller has done all
341  * the necessary locking for the page fault to proceed successfully.
342  */
343 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
344 			get_block_t get_block, dax_iodone_t complete_unwritten)
345 {
346 	struct file *file = vma->vm_file;
347 	struct address_space *mapping = file->f_mapping;
348 	struct inode *inode = mapping->host;
349 	struct page *page;
350 	struct buffer_head bh;
351 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
352 	unsigned blkbits = inode->i_blkbits;
353 	sector_t block;
354 	pgoff_t size;
355 	int error;
356 	int major = 0;
357 
358 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
359 	if (vmf->pgoff >= size)
360 		return VM_FAULT_SIGBUS;
361 
362 	memset(&bh, 0, sizeof(bh));
363 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
364 	bh.b_size = PAGE_SIZE;
365 
366  repeat:
367 	page = find_get_page(mapping, vmf->pgoff);
368 	if (page) {
369 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
370 			page_cache_release(page);
371 			return VM_FAULT_RETRY;
372 		}
373 		if (unlikely(page->mapping != mapping)) {
374 			unlock_page(page);
375 			page_cache_release(page);
376 			goto repeat;
377 		}
378 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
379 		if (unlikely(vmf->pgoff >= size)) {
380 			/*
381 			 * We have a struct page covering a hole in the file
382 			 * from a read fault and we've raced with a truncate
383 			 */
384 			error = -EIO;
385 			goto unlock;
386 		}
387 	} else {
388 		i_mmap_lock_write(mapping);
389 	}
390 
391 	error = get_block(inode, block, &bh, 0);
392 	if (!error && (bh.b_size < PAGE_SIZE))
393 		error = -EIO;		/* fs corruption? */
394 	if (error)
395 		goto unlock;
396 
397 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
398 		if (vmf->flags & FAULT_FLAG_WRITE) {
399 			error = get_block(inode, block, &bh, 1);
400 			count_vm_event(PGMAJFAULT);
401 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
402 			major = VM_FAULT_MAJOR;
403 			if (!error && (bh.b_size < PAGE_SIZE))
404 				error = -EIO;
405 			if (error)
406 				goto unlock;
407 		} else {
408 			i_mmap_unlock_write(mapping);
409 			return dax_load_hole(mapping, page, vmf);
410 		}
411 	}
412 
413 	if (vmf->cow_page) {
414 		struct page *new_page = vmf->cow_page;
415 		if (buffer_written(&bh))
416 			error = copy_user_bh(new_page, &bh, blkbits, vaddr);
417 		else
418 			clear_user_highpage(new_page, vaddr);
419 		if (error)
420 			goto unlock;
421 		vmf->page = page;
422 		if (!page) {
423 			/* Check we didn't race with truncate */
424 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
425 								PAGE_SHIFT;
426 			if (vmf->pgoff >= size) {
427 				error = -EIO;
428 				goto unlock;
429 			}
430 		}
431 		return VM_FAULT_LOCKED;
432 	}
433 
434 	/* Check we didn't race with a read fault installing a new page */
435 	if (!page && major)
436 		page = find_lock_page(mapping, vmf->pgoff);
437 
438 	if (page) {
439 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
440 							PAGE_CACHE_SIZE, 0);
441 		delete_from_page_cache(page);
442 		unlock_page(page);
443 		page_cache_release(page);
444 	}
445 
446 	/*
447 	 * If we successfully insert the new mapping over an unwritten extent,
448 	 * we need to ensure we convert the unwritten extent. If there is an
449 	 * error inserting the mapping, the filesystem needs to leave it as
450 	 * unwritten to prevent exposure of the stale underlying data to
451 	 * userspace, but we still need to call the completion function so
452 	 * the private resources on the mapping buffer can be released. We
453 	 * indicate what the callback should do via the uptodate variable, same
454 	 * as for normal BH based IO completions.
455 	 */
456 	error = dax_insert_mapping(inode, &bh, vma, vmf);
457 	if (buffer_unwritten(&bh)) {
458 		if (complete_unwritten)
459 			complete_unwritten(&bh, !error);
460 		else
461 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
462 	}
463 
464 	if (!page)
465 		i_mmap_unlock_write(mapping);
466  out:
467 	if (error == -ENOMEM)
468 		return VM_FAULT_OOM | major;
469 	/* -EBUSY is fine, somebody else faulted on the same PTE */
470 	if ((error < 0) && (error != -EBUSY))
471 		return VM_FAULT_SIGBUS | major;
472 	return VM_FAULT_NOPAGE | major;
473 
474  unlock:
475 	if (page) {
476 		unlock_page(page);
477 		page_cache_release(page);
478 	} else {
479 		i_mmap_unlock_write(mapping);
480 	}
481 
482 	goto out;
483 }
484 EXPORT_SYMBOL(__dax_fault);
485 
486 /**
487  * dax_fault - handle a page fault on a DAX file
488  * @vma: The virtual memory area where the fault occurred
489  * @vmf: The description of the fault
490  * @get_block: The filesystem method used to translate file offsets to blocks
491  *
492  * When a page fault occurs, filesystems may call this helper in their
493  * fault handler for DAX files.
494  */
495 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
496 	      get_block_t get_block, dax_iodone_t complete_unwritten)
497 {
498 	int result;
499 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
500 
501 	if (vmf->flags & FAULT_FLAG_WRITE) {
502 		sb_start_pagefault(sb);
503 		file_update_time(vma->vm_file);
504 	}
505 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
506 	if (vmf->flags & FAULT_FLAG_WRITE)
507 		sb_end_pagefault(sb);
508 
509 	return result;
510 }
511 EXPORT_SYMBOL_GPL(dax_fault);
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 /*
515  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
516  * more often than one might expect in the below function.
517  */
518 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
519 
520 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
521 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
522 		dax_iodone_t complete_unwritten)
523 {
524 	struct file *file = vma->vm_file;
525 	struct address_space *mapping = file->f_mapping;
526 	struct inode *inode = mapping->host;
527 	struct buffer_head bh;
528 	unsigned blkbits = inode->i_blkbits;
529 	unsigned long pmd_addr = address & PMD_MASK;
530 	bool write = flags & FAULT_FLAG_WRITE;
531 	long length;
532 	void __pmem *kaddr;
533 	pgoff_t size, pgoff;
534 	sector_t block, sector;
535 	unsigned long pfn;
536 	int result = 0;
537 
538 	/* Fall back to PTEs if we're going to COW */
539 	if (write && !(vma->vm_flags & VM_SHARED))
540 		return VM_FAULT_FALLBACK;
541 	/* If the PMD would extend outside the VMA */
542 	if (pmd_addr < vma->vm_start)
543 		return VM_FAULT_FALLBACK;
544 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
545 		return VM_FAULT_FALLBACK;
546 
547 	pgoff = linear_page_index(vma, pmd_addr);
548 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
549 	if (pgoff >= size)
550 		return VM_FAULT_SIGBUS;
551 	/* If the PMD would cover blocks out of the file */
552 	if ((pgoff | PG_PMD_COLOUR) >= size)
553 		return VM_FAULT_FALLBACK;
554 
555 	memset(&bh, 0, sizeof(bh));
556 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
557 
558 	bh.b_size = PMD_SIZE;
559 	i_mmap_lock_write(mapping);
560 	length = get_block(inode, block, &bh, write);
561 	if (length)
562 		return VM_FAULT_SIGBUS;
563 
564 	/*
565 	 * If the filesystem isn't willing to tell us the length of a hole,
566 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
567 	 * would be silly.
568 	 */
569 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
570 		goto fallback;
571 
572 	if (buffer_unwritten(&bh) || buffer_new(&bh)) {
573 		int i;
574 		for (i = 0; i < PTRS_PER_PMD; i++)
575 			clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
576 		wmb_pmem();
577 		count_vm_event(PGMAJFAULT);
578 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
579 		result |= VM_FAULT_MAJOR;
580 	}
581 
582 	/*
583 	 * If we allocated new storage, make sure no process has any
584 	 * zero pages covering this hole
585 	 */
586 	if (buffer_new(&bh)) {
587 		i_mmap_unlock_write(mapping);
588 		unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
589 		i_mmap_lock_write(mapping);
590 	}
591 
592 	/*
593 	 * If a truncate happened while we were allocating blocks, we may
594 	 * leave blocks allocated to the file that are beyond EOF.  We can't
595 	 * take i_mutex here, so just leave them hanging; they'll be freed
596 	 * when the file is deleted.
597 	 */
598 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
599 	if (pgoff >= size) {
600 		result = VM_FAULT_SIGBUS;
601 		goto out;
602 	}
603 	if ((pgoff | PG_PMD_COLOUR) >= size)
604 		goto fallback;
605 
606 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
607 		spinlock_t *ptl;
608 		pmd_t entry;
609 		struct page *zero_page = get_huge_zero_page();
610 
611 		if (unlikely(!zero_page))
612 			goto fallback;
613 
614 		ptl = pmd_lock(vma->vm_mm, pmd);
615 		if (!pmd_none(*pmd)) {
616 			spin_unlock(ptl);
617 			goto fallback;
618 		}
619 
620 		entry = mk_pmd(zero_page, vma->vm_page_prot);
621 		entry = pmd_mkhuge(entry);
622 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
623 		result = VM_FAULT_NOPAGE;
624 		spin_unlock(ptl);
625 	} else {
626 		sector = bh.b_blocknr << (blkbits - 9);
627 		length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
628 						bh.b_size);
629 		if (length < 0) {
630 			result = VM_FAULT_SIGBUS;
631 			goto out;
632 		}
633 		if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
634 			goto fallback;
635 
636 		result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
637 	}
638 
639  out:
640 	if (buffer_unwritten(&bh))
641 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
642 
643 	i_mmap_unlock_write(mapping);
644 
645 	return result;
646 
647  fallback:
648 	count_vm_event(THP_FAULT_FALLBACK);
649 	result = VM_FAULT_FALLBACK;
650 	goto out;
651 }
652 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
653 
654 /**
655  * dax_pmd_fault - handle a PMD fault on a DAX file
656  * @vma: The virtual memory area where the fault occurred
657  * @vmf: The description of the fault
658  * @get_block: The filesystem method used to translate file offsets to blocks
659  *
660  * When a page fault occurs, filesystems may call this helper in their
661  * pmd_fault handler for DAX files.
662  */
663 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
664 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
665 			dax_iodone_t complete_unwritten)
666 {
667 	int result;
668 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
669 
670 	if (flags & FAULT_FLAG_WRITE) {
671 		sb_start_pagefault(sb);
672 		file_update_time(vma->vm_file);
673 	}
674 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
675 				complete_unwritten);
676 	if (flags & FAULT_FLAG_WRITE)
677 		sb_end_pagefault(sb);
678 
679 	return result;
680 }
681 EXPORT_SYMBOL_GPL(dax_pmd_fault);
682 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
683 
684 /**
685  * dax_pfn_mkwrite - handle first write to DAX page
686  * @vma: The virtual memory area where the fault occurred
687  * @vmf: The description of the fault
688  *
689  */
690 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
691 {
692 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
693 
694 	sb_start_pagefault(sb);
695 	file_update_time(vma->vm_file);
696 	sb_end_pagefault(sb);
697 	return VM_FAULT_NOPAGE;
698 }
699 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
700 
701 /**
702  * dax_zero_page_range - zero a range within a page of a DAX file
703  * @inode: The file being truncated
704  * @from: The file offset that is being truncated to
705  * @length: The number of bytes to zero
706  * @get_block: The filesystem method used to translate file offsets to blocks
707  *
708  * This function can be called by a filesystem when it is zeroing part of a
709  * page in a DAX file.  This is intended for hole-punch operations.  If
710  * you are truncating a file, the helper function dax_truncate_page() may be
711  * more convenient.
712  *
713  * We work in terms of PAGE_CACHE_SIZE here for commonality with
714  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
715  * took care of disposing of the unnecessary blocks.  Even if the filesystem
716  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
717  * since the file might be mmapped.
718  */
719 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
720 							get_block_t get_block)
721 {
722 	struct buffer_head bh;
723 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
724 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
725 	int err;
726 
727 	/* Block boundary? Nothing to do */
728 	if (!length)
729 		return 0;
730 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
731 
732 	memset(&bh, 0, sizeof(bh));
733 	bh.b_size = PAGE_CACHE_SIZE;
734 	err = get_block(inode, index, &bh, 0);
735 	if (err < 0)
736 		return err;
737 	if (buffer_written(&bh)) {
738 		void __pmem *addr;
739 		err = dax_get_addr(&bh, &addr, inode->i_blkbits);
740 		if (err < 0)
741 			return err;
742 		clear_pmem(addr + offset, length);
743 		wmb_pmem();
744 	}
745 
746 	return 0;
747 }
748 EXPORT_SYMBOL_GPL(dax_zero_page_range);
749 
750 /**
751  * dax_truncate_page - handle a partial page being truncated in a DAX file
752  * @inode: The file being truncated
753  * @from: The file offset that is being truncated to
754  * @get_block: The filesystem method used to translate file offsets to blocks
755  *
756  * Similar to block_truncate_page(), this function can be called by a
757  * filesystem when it is truncating a DAX file to handle the partial page.
758  *
759  * We work in terms of PAGE_CACHE_SIZE here for commonality with
760  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
761  * took care of disposing of the unnecessary blocks.  Even if the filesystem
762  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
763  * since the file might be mmapped.
764  */
765 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
766 {
767 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
768 	return dax_zero_page_range(inode, from, length, get_block);
769 }
770 EXPORT_SYMBOL_GPL(dax_truncate_page);
771