xref: /openbmc/linux/fs/dax.c (revision e1e38ea1)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
48 
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 
51 static int __init init_dax_wait_table(void)
52 {
53 	int i;
54 
55 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 		init_waitqueue_head(wait_table + i);
57 	return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60 
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 	return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80 
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 			(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86 
87 static unsigned int dax_radix_order(void *entry)
88 {
89 	if ((unsigned long)entry & RADIX_DAX_PMD)
90 		return PMD_SHIFT - PAGE_SHIFT;
91 	return 0;
92 }
93 
94 static int dax_is_pmd_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98 
99 static int dax_is_pte_entry(void *entry)
100 {
101 	return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103 
104 static int dax_is_zero_entry(void *entry)
105 {
106 	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108 
109 static int dax_is_empty_entry(void *entry)
110 {
111 	return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113 
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118 	struct address_space *mapping;
119 	pgoff_t entry_start;
120 };
121 
122 struct wait_exceptional_entry_queue {
123 	wait_queue_entry_t wait;
124 	struct exceptional_entry_key key;
125 };
126 
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 	unsigned long hash;
131 
132 	/*
133 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 	 * queue to the start of that PMD.  This ensures that all offsets in
135 	 * the range covered by the PMD map to the same bit lock.
136 	 */
137 	if (dax_is_pmd_entry(entry))
138 		index &= ~PG_PMD_COLOUR;
139 
140 	key->mapping = mapping;
141 	key->entry_start = index;
142 
143 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 	return wait_table + hash;
145 }
146 
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 				       int sync, void *keyp)
149 {
150 	struct exceptional_entry_key *key = keyp;
151 	struct wait_exceptional_entry_queue *ewait =
152 		container_of(wait, struct wait_exceptional_entry_queue, wait);
153 
154 	if (key->mapping != ewait->key.mapping ||
155 	    key->entry_start != ewait->key.entry_start)
156 		return 0;
157 	return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159 
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 		pgoff_t index, void *entry, bool wake_all)
167 {
168 	struct exceptional_entry_key key;
169 	wait_queue_head_t *wq;
170 
171 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
172 
173 	/*
174 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 	 * under the i_pages lock, ditto for entry handling in our callers.
176 	 * So at this point all tasks that could have seen our entry locked
177 	 * must be in the waitqueue and the following check will see them.
178 	 */
179 	if (waitqueue_active(wq))
180 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182 
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 	unsigned long entry = (unsigned long)
190 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 	return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193 
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 	unsigned long entry = (unsigned long)
200 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201 
202 	entry |= RADIX_DAX_ENTRY_LOCK;
203 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 	return (void *)entry;
205 }
206 
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 	unsigned long entry = (unsigned long)
213 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214 
215 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 	return (void *)entry;
218 }
219 
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230 		pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232 	void *entry, **slot;
233 	struct wait_exceptional_entry_queue ewait;
234 	wait_queue_head_t *wq;
235 
236 	init_wait(&ewait.wait);
237 	ewait.wait.func = wake_exceptional_entry_func;
238 
239 	for (;;) {
240 		bool revalidate;
241 
242 		entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243 					  &slot);
244 		if (!entry ||
245 		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246 		    !slot_locked(mapping, slot)) {
247 			if (slotp)
248 				*slotp = slot;
249 			return entry;
250 		}
251 
252 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253 		prepare_to_wait_exclusive(wq, &ewait.wait,
254 					  TASK_UNINTERRUPTIBLE);
255 		xa_unlock_irq(&mapping->i_pages);
256 		revalidate = wait_fn();
257 		finish_wait(wq, &ewait.wait);
258 		xa_lock_irq(&mapping->i_pages);
259 		if (revalidate)
260 			return ERR_PTR(-EAGAIN);
261 	}
262 }
263 
264 static bool entry_wait(void)
265 {
266 	schedule();
267 	/*
268 	 * Never return an ERR_PTR() from
269 	 * __get_unlocked_mapping_entry(), just keep looping.
270 	 */
271 	return false;
272 }
273 
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275 		pgoff_t index, void ***slotp)
276 {
277 	return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279 
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282 	void *entry, **slot;
283 
284 	xa_lock_irq(&mapping->i_pages);
285 	entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287 			 !slot_locked(mapping, slot))) {
288 		xa_unlock_irq(&mapping->i_pages);
289 		return;
290 	}
291 	unlock_slot(mapping, slot);
292 	xa_unlock_irq(&mapping->i_pages);
293 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295 
296 static void put_locked_mapping_entry(struct address_space *mapping,
297 		pgoff_t index)
298 {
299 	unlock_mapping_entry(mapping, index);
300 }
301 
302 /*
303  * Called when we are done with radix tree entry we looked up via
304  * get_unlocked_mapping_entry() and which we didn't lock in the end.
305  */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307 				       pgoff_t index, void *entry)
308 {
309 	if (!entry)
310 		return;
311 
312 	/* We have to wake up next waiter for the radix tree entry lock */
313 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315 
316 static unsigned long dax_entry_size(void *entry)
317 {
318 	if (dax_is_zero_entry(entry))
319 		return 0;
320 	else if (dax_is_empty_entry(entry))
321 		return 0;
322 	else if (dax_is_pmd_entry(entry))
323 		return PMD_SIZE;
324 	else
325 		return PAGE_SIZE;
326 }
327 
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330 	return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332 
333 /*
334  * Iterate through all mapped pfns represented by an entry, i.e. skip
335  * 'empty' and 'zero' entries.
336  */
337 #define for_each_mapped_pfn(entry, pfn) \
338 	for (pfn = dax_radix_pfn(entry); \
339 			pfn < dax_radix_end_pfn(entry); pfn++)
340 
341 /*
342  * TODO: for reflink+dax we need a way to associate a single page with
343  * multiple address_space instances at different linear_page_index()
344  * offsets.
345  */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347 		struct vm_area_struct *vma, unsigned long address)
348 {
349 	unsigned long size = dax_entry_size(entry), pfn, index;
350 	int i = 0;
351 
352 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353 		return;
354 
355 	index = linear_page_index(vma, address & ~(size - 1));
356 	for_each_mapped_pfn(entry, pfn) {
357 		struct page *page = pfn_to_page(pfn);
358 
359 		WARN_ON_ONCE(page->mapping);
360 		page->mapping = mapping;
361 		page->index = index + i++;
362 	}
363 }
364 
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366 		bool trunc)
367 {
368 	unsigned long pfn;
369 
370 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 		return;
372 
373 	for_each_mapped_pfn(entry, pfn) {
374 		struct page *page = pfn_to_page(pfn);
375 
376 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378 		page->mapping = NULL;
379 		page->index = 0;
380 	}
381 }
382 
383 static struct page *dax_busy_page(void *entry)
384 {
385 	unsigned long pfn;
386 
387 	for_each_mapped_pfn(entry, pfn) {
388 		struct page *page = pfn_to_page(pfn);
389 
390 		if (page_ref_count(page) > 1)
391 			return page;
392 	}
393 	return NULL;
394 }
395 
396 static bool entry_wait_revalidate(void)
397 {
398 	rcu_read_unlock();
399 	schedule();
400 	rcu_read_lock();
401 
402 	/*
403 	 * Tell __get_unlocked_mapping_entry() to take a break, we need
404 	 * to revalidate page->mapping after dropping locks
405 	 */
406 	return true;
407 }
408 
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411 	pgoff_t index;
412 	struct inode *inode;
413 	bool did_lock = false;
414 	void *entry = NULL, **slot;
415 	struct address_space *mapping;
416 
417 	rcu_read_lock();
418 	for (;;) {
419 		mapping = READ_ONCE(page->mapping);
420 
421 		if (!dax_mapping(mapping))
422 			break;
423 
424 		/*
425 		 * In the device-dax case there's no need to lock, a
426 		 * struct dev_pagemap pin is sufficient to keep the
427 		 * inode alive, and we assume we have dev_pagemap pin
428 		 * otherwise we would not have a valid pfn_to_page()
429 		 * translation.
430 		 */
431 		inode = mapping->host;
432 		if (S_ISCHR(inode->i_mode)) {
433 			did_lock = true;
434 			break;
435 		}
436 
437 		xa_lock_irq(&mapping->i_pages);
438 		if (mapping != page->mapping) {
439 			xa_unlock_irq(&mapping->i_pages);
440 			continue;
441 		}
442 		index = page->index;
443 
444 		entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445 				entry_wait_revalidate);
446 		if (!entry) {
447 			xa_unlock_irq(&mapping->i_pages);
448 			break;
449 		} else if (IS_ERR(entry)) {
450 			WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
451 			continue;
452 		}
453 		lock_slot(mapping, slot);
454 		did_lock = true;
455 		xa_unlock_irq(&mapping->i_pages);
456 		break;
457 	}
458 	rcu_read_unlock();
459 
460 	return did_lock;
461 }
462 
463 void dax_unlock_mapping_entry(struct page *page)
464 {
465 	struct address_space *mapping = page->mapping;
466 	struct inode *inode = mapping->host;
467 
468 	if (S_ISCHR(inode->i_mode))
469 		return;
470 
471 	unlock_mapping_entry(mapping, page->index);
472 }
473 
474 /*
475  * Find radix tree entry at given index. If it points to an exceptional entry,
476  * return it with the radix tree entry locked. If the radix tree doesn't
477  * contain given index, create an empty exceptional entry for the index and
478  * return with it locked.
479  *
480  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
481  * either return that locked entry or will return an error.  This error will
482  * happen if there are any 4k entries within the 2MiB range that we are
483  * requesting.
484  *
485  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
486  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
487  * insertion will fail if it finds any 4k entries already in the tree, and a
488  * 4k insertion will cause an existing 2MiB entry to be unmapped and
489  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
490  * well as 2MiB empty entries.
491  *
492  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
493  * real storage backing them.  We will leave these real 2MiB DAX entries in
494  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
495  *
496  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
497  * persistent memory the benefit is doubtful. We can add that later if we can
498  * show it helps.
499  */
500 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
501 		unsigned long size_flag)
502 {
503 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
504 	void *entry, **slot;
505 
506 restart:
507 	xa_lock_irq(&mapping->i_pages);
508 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
509 
510 	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
511 		entry = ERR_PTR(-EIO);
512 		goto out_unlock;
513 	}
514 
515 	if (entry) {
516 		if (size_flag & RADIX_DAX_PMD) {
517 			if (dax_is_pte_entry(entry)) {
518 				put_unlocked_mapping_entry(mapping, index,
519 						entry);
520 				entry = ERR_PTR(-EEXIST);
521 				goto out_unlock;
522 			}
523 		} else { /* trying to grab a PTE entry */
524 			if (dax_is_pmd_entry(entry) &&
525 			    (dax_is_zero_entry(entry) ||
526 			     dax_is_empty_entry(entry))) {
527 				pmd_downgrade = true;
528 			}
529 		}
530 	}
531 
532 	/* No entry for given index? Make sure radix tree is big enough. */
533 	if (!entry || pmd_downgrade) {
534 		int err;
535 
536 		if (pmd_downgrade) {
537 			/*
538 			 * Make sure 'entry' remains valid while we drop
539 			 * the i_pages lock.
540 			 */
541 			entry = lock_slot(mapping, slot);
542 		}
543 
544 		xa_unlock_irq(&mapping->i_pages);
545 		/*
546 		 * Besides huge zero pages the only other thing that gets
547 		 * downgraded are empty entries which don't need to be
548 		 * unmapped.
549 		 */
550 		if (pmd_downgrade && dax_is_zero_entry(entry))
551 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
552 							PG_PMD_NR, false);
553 
554 		err = radix_tree_preload(
555 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
556 		if (err) {
557 			if (pmd_downgrade)
558 				put_locked_mapping_entry(mapping, index);
559 			return ERR_PTR(err);
560 		}
561 		xa_lock_irq(&mapping->i_pages);
562 
563 		if (!entry) {
564 			/*
565 			 * We needed to drop the i_pages lock while calling
566 			 * radix_tree_preload() and we didn't have an entry to
567 			 * lock.  See if another thread inserted an entry at
568 			 * our index during this time.
569 			 */
570 			entry = __radix_tree_lookup(&mapping->i_pages, index,
571 					NULL, &slot);
572 			if (entry) {
573 				radix_tree_preload_end();
574 				xa_unlock_irq(&mapping->i_pages);
575 				goto restart;
576 			}
577 		}
578 
579 		if (pmd_downgrade) {
580 			dax_disassociate_entry(entry, mapping, false);
581 			radix_tree_delete(&mapping->i_pages, index);
582 			mapping->nrexceptional--;
583 			dax_wake_mapping_entry_waiter(mapping, index, entry,
584 					true);
585 		}
586 
587 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
588 
589 		err = __radix_tree_insert(&mapping->i_pages, index,
590 				dax_radix_order(entry), entry);
591 		radix_tree_preload_end();
592 		if (err) {
593 			xa_unlock_irq(&mapping->i_pages);
594 			/*
595 			 * Our insertion of a DAX entry failed, most likely
596 			 * because we were inserting a PMD entry and it
597 			 * collided with a PTE sized entry at a different
598 			 * index in the PMD range.  We haven't inserted
599 			 * anything into the radix tree and have no waiters to
600 			 * wake.
601 			 */
602 			return ERR_PTR(err);
603 		}
604 		/* Good, we have inserted empty locked entry into the tree. */
605 		mapping->nrexceptional++;
606 		xa_unlock_irq(&mapping->i_pages);
607 		return entry;
608 	}
609 	entry = lock_slot(mapping, slot);
610  out_unlock:
611 	xa_unlock_irq(&mapping->i_pages);
612 	return entry;
613 }
614 
615 /**
616  * dax_layout_busy_page - find first pinned page in @mapping
617  * @mapping: address space to scan for a page with ref count > 1
618  *
619  * DAX requires ZONE_DEVICE mapped pages. These pages are never
620  * 'onlined' to the page allocator so they are considered idle when
621  * page->count == 1. A filesystem uses this interface to determine if
622  * any page in the mapping is busy, i.e. for DMA, or other
623  * get_user_pages() usages.
624  *
625  * It is expected that the filesystem is holding locks to block the
626  * establishment of new mappings in this address_space. I.e. it expects
627  * to be able to run unmap_mapping_range() and subsequently not race
628  * mapping_mapped() becoming true.
629  */
630 struct page *dax_layout_busy_page(struct address_space *mapping)
631 {
632 	pgoff_t	indices[PAGEVEC_SIZE];
633 	struct page *page = NULL;
634 	struct pagevec pvec;
635 	pgoff_t	index, end;
636 	unsigned i;
637 
638 	/*
639 	 * In the 'limited' case get_user_pages() for dax is disabled.
640 	 */
641 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
642 		return NULL;
643 
644 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
645 		return NULL;
646 
647 	pagevec_init(&pvec);
648 	index = 0;
649 	end = -1;
650 
651 	/*
652 	 * If we race get_user_pages_fast() here either we'll see the
653 	 * elevated page count in the pagevec_lookup and wait, or
654 	 * get_user_pages_fast() will see that the page it took a reference
655 	 * against is no longer mapped in the page tables and bail to the
656 	 * get_user_pages() slow path.  The slow path is protected by
657 	 * pte_lock() and pmd_lock(). New references are not taken without
658 	 * holding those locks, and unmap_mapping_range() will not zero the
659 	 * pte or pmd without holding the respective lock, so we are
660 	 * guaranteed to either see new references or prevent new
661 	 * references from being established.
662 	 */
663 	unmap_mapping_range(mapping, 0, 0, 1);
664 
665 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
666 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
667 				indices)) {
668 		for (i = 0; i < pagevec_count(&pvec); i++) {
669 			struct page *pvec_ent = pvec.pages[i];
670 			void *entry;
671 
672 			index = indices[i];
673 			if (index >= end)
674 				break;
675 
676 			if (WARN_ON_ONCE(
677 			     !radix_tree_exceptional_entry(pvec_ent)))
678 				continue;
679 
680 			xa_lock_irq(&mapping->i_pages);
681 			entry = get_unlocked_mapping_entry(mapping, index, NULL);
682 			if (entry)
683 				page = dax_busy_page(entry);
684 			put_unlocked_mapping_entry(mapping, index, entry);
685 			xa_unlock_irq(&mapping->i_pages);
686 			if (page)
687 				break;
688 		}
689 
690 		/*
691 		 * We don't expect normal struct page entries to exist in our
692 		 * tree, but we keep these pagevec calls so that this code is
693 		 * consistent with the common pattern for handling pagevecs
694 		 * throughout the kernel.
695 		 */
696 		pagevec_remove_exceptionals(&pvec);
697 		pagevec_release(&pvec);
698 		index++;
699 
700 		if (page)
701 			break;
702 	}
703 	return page;
704 }
705 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
706 
707 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
708 					  pgoff_t index, bool trunc)
709 {
710 	int ret = 0;
711 	void *entry;
712 	struct radix_tree_root *pages = &mapping->i_pages;
713 
714 	xa_lock_irq(pages);
715 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
716 	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
717 		goto out;
718 	if (!trunc &&
719 	    (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
720 	     radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
721 		goto out;
722 	dax_disassociate_entry(entry, mapping, trunc);
723 	radix_tree_delete(pages, index);
724 	mapping->nrexceptional--;
725 	ret = 1;
726 out:
727 	put_unlocked_mapping_entry(mapping, index, entry);
728 	xa_unlock_irq(pages);
729 	return ret;
730 }
731 /*
732  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
733  * entry to get unlocked before deleting it.
734  */
735 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
736 {
737 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
738 
739 	/*
740 	 * This gets called from truncate / punch_hole path. As such, the caller
741 	 * must hold locks protecting against concurrent modifications of the
742 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
743 	 * caller has seen exceptional entry for this index, we better find it
744 	 * at that index as well...
745 	 */
746 	WARN_ON_ONCE(!ret);
747 	return ret;
748 }
749 
750 /*
751  * Invalidate exceptional DAX entry if it is clean.
752  */
753 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
754 				      pgoff_t index)
755 {
756 	return __dax_invalidate_mapping_entry(mapping, index, false);
757 }
758 
759 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
760 		sector_t sector, size_t size, struct page *to,
761 		unsigned long vaddr)
762 {
763 	void *vto, *kaddr;
764 	pgoff_t pgoff;
765 	long rc;
766 	int id;
767 
768 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
769 	if (rc)
770 		return rc;
771 
772 	id = dax_read_lock();
773 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
774 	if (rc < 0) {
775 		dax_read_unlock(id);
776 		return rc;
777 	}
778 	vto = kmap_atomic(to);
779 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
780 	kunmap_atomic(vto);
781 	dax_read_unlock(id);
782 	return 0;
783 }
784 
785 /*
786  * By this point grab_mapping_entry() has ensured that we have a locked entry
787  * of the appropriate size so we don't have to worry about downgrading PMDs to
788  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
789  * already in the tree, we will skip the insertion and just dirty the PMD as
790  * appropriate.
791  */
792 static void *dax_insert_mapping_entry(struct address_space *mapping,
793 				      struct vm_fault *vmf,
794 				      void *entry, pfn_t pfn_t,
795 				      unsigned long flags, bool dirty)
796 {
797 	struct radix_tree_root *pages = &mapping->i_pages;
798 	unsigned long pfn = pfn_t_to_pfn(pfn_t);
799 	pgoff_t index = vmf->pgoff;
800 	void *new_entry;
801 
802 	if (dirty)
803 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
804 
805 	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
806 		/* we are replacing a zero page with block mapping */
807 		if (dax_is_pmd_entry(entry))
808 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
809 							PG_PMD_NR, false);
810 		else /* pte entry */
811 			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
812 	}
813 
814 	xa_lock_irq(pages);
815 	new_entry = dax_radix_locked_entry(pfn, flags);
816 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
817 		dax_disassociate_entry(entry, mapping, false);
818 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
819 	}
820 
821 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
822 		/*
823 		 * Only swap our new entry into the radix tree if the current
824 		 * entry is a zero page or an empty entry.  If a normal PTE or
825 		 * PMD entry is already in the tree, we leave it alone.  This
826 		 * means that if we are trying to insert a PTE and the
827 		 * existing entry is a PMD, we will just leave the PMD in the
828 		 * tree and dirty it if necessary.
829 		 */
830 		struct radix_tree_node *node;
831 		void **slot;
832 		void *ret;
833 
834 		ret = __radix_tree_lookup(pages, index, &node, &slot);
835 		WARN_ON_ONCE(ret != entry);
836 		__radix_tree_replace(pages, node, slot,
837 				     new_entry, NULL);
838 		entry = new_entry;
839 	}
840 
841 	if (dirty)
842 		radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
843 
844 	xa_unlock_irq(pages);
845 	return entry;
846 }
847 
848 static inline unsigned long
849 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
850 {
851 	unsigned long address;
852 
853 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
854 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
855 	return address;
856 }
857 
858 /* Walk all mappings of a given index of a file and writeprotect them */
859 static void dax_mapping_entry_mkclean(struct address_space *mapping,
860 				      pgoff_t index, unsigned long pfn)
861 {
862 	struct vm_area_struct *vma;
863 	pte_t pte, *ptep = NULL;
864 	pmd_t *pmdp = NULL;
865 	spinlock_t *ptl;
866 
867 	i_mmap_lock_read(mapping);
868 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
869 		unsigned long address, start, end;
870 
871 		cond_resched();
872 
873 		if (!(vma->vm_flags & VM_SHARED))
874 			continue;
875 
876 		address = pgoff_address(index, vma);
877 
878 		/*
879 		 * Note because we provide start/end to follow_pte_pmd it will
880 		 * call mmu_notifier_invalidate_range_start() on our behalf
881 		 * before taking any lock.
882 		 */
883 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
884 			continue;
885 
886 		/*
887 		 * No need to call mmu_notifier_invalidate_range() as we are
888 		 * downgrading page table protection not changing it to point
889 		 * to a new page.
890 		 *
891 		 * See Documentation/vm/mmu_notifier.rst
892 		 */
893 		if (pmdp) {
894 #ifdef CONFIG_FS_DAX_PMD
895 			pmd_t pmd;
896 
897 			if (pfn != pmd_pfn(*pmdp))
898 				goto unlock_pmd;
899 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
900 				goto unlock_pmd;
901 
902 			flush_cache_page(vma, address, pfn);
903 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
904 			pmd = pmd_wrprotect(pmd);
905 			pmd = pmd_mkclean(pmd);
906 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
907 unlock_pmd:
908 #endif
909 			spin_unlock(ptl);
910 		} else {
911 			if (pfn != pte_pfn(*ptep))
912 				goto unlock_pte;
913 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
914 				goto unlock_pte;
915 
916 			flush_cache_page(vma, address, pfn);
917 			pte = ptep_clear_flush(vma, address, ptep);
918 			pte = pte_wrprotect(pte);
919 			pte = pte_mkclean(pte);
920 			set_pte_at(vma->vm_mm, address, ptep, pte);
921 unlock_pte:
922 			pte_unmap_unlock(ptep, ptl);
923 		}
924 
925 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
926 	}
927 	i_mmap_unlock_read(mapping);
928 }
929 
930 static int dax_writeback_one(struct dax_device *dax_dev,
931 		struct address_space *mapping, pgoff_t index, void *entry)
932 {
933 	struct radix_tree_root *pages = &mapping->i_pages;
934 	void *entry2, **slot;
935 	unsigned long pfn;
936 	long ret = 0;
937 	size_t size;
938 
939 	/*
940 	 * A page got tagged dirty in DAX mapping? Something is seriously
941 	 * wrong.
942 	 */
943 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
944 		return -EIO;
945 
946 	xa_lock_irq(pages);
947 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
948 	/* Entry got punched out / reallocated? */
949 	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
950 		goto put_unlocked;
951 	/*
952 	 * Entry got reallocated elsewhere? No need to writeback. We have to
953 	 * compare pfns as we must not bail out due to difference in lockbit
954 	 * or entry type.
955 	 */
956 	if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
957 		goto put_unlocked;
958 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
959 				dax_is_zero_entry(entry))) {
960 		ret = -EIO;
961 		goto put_unlocked;
962 	}
963 
964 	/* Another fsync thread may have already written back this entry */
965 	if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
966 		goto put_unlocked;
967 	/* Lock the entry to serialize with page faults */
968 	entry = lock_slot(mapping, slot);
969 	/*
970 	 * We can clear the tag now but we have to be careful so that concurrent
971 	 * dax_writeback_one() calls for the same index cannot finish before we
972 	 * actually flush the caches. This is achieved as the calls will look
973 	 * at the entry only under the i_pages lock and once they do that
974 	 * they will see the entry locked and wait for it to unlock.
975 	 */
976 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
977 	xa_unlock_irq(pages);
978 
979 	/*
980 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
981 	 * in the middle of a PMD, the 'index' we are given will be aligned to
982 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
983 	 * This allows us to flush for PMD_SIZE and not have to worry about
984 	 * partial PMD writebacks.
985 	 */
986 	pfn = dax_radix_pfn(entry);
987 	size = PAGE_SIZE << dax_radix_order(entry);
988 
989 	dax_mapping_entry_mkclean(mapping, index, pfn);
990 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
991 	/*
992 	 * After we have flushed the cache, we can clear the dirty tag. There
993 	 * cannot be new dirty data in the pfn after the flush has completed as
994 	 * the pfn mappings are writeprotected and fault waits for mapping
995 	 * entry lock.
996 	 */
997 	xa_lock_irq(pages);
998 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
999 	xa_unlock_irq(pages);
1000 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1001 	put_locked_mapping_entry(mapping, index);
1002 	return ret;
1003 
1004  put_unlocked:
1005 	put_unlocked_mapping_entry(mapping, index, entry2);
1006 	xa_unlock_irq(pages);
1007 	return ret;
1008 }
1009 
1010 /*
1011  * Flush the mapping to the persistent domain within the byte range of [start,
1012  * end]. This is required by data integrity operations to ensure file data is
1013  * on persistent storage prior to completion of the operation.
1014  */
1015 int dax_writeback_mapping_range(struct address_space *mapping,
1016 		struct block_device *bdev, struct writeback_control *wbc)
1017 {
1018 	struct inode *inode = mapping->host;
1019 	pgoff_t start_index, end_index;
1020 	pgoff_t indices[PAGEVEC_SIZE];
1021 	struct dax_device *dax_dev;
1022 	struct pagevec pvec;
1023 	bool done = false;
1024 	int i, ret = 0;
1025 
1026 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1027 		return -EIO;
1028 
1029 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1030 		return 0;
1031 
1032 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1033 	if (!dax_dev)
1034 		return -EIO;
1035 
1036 	start_index = wbc->range_start >> PAGE_SHIFT;
1037 	end_index = wbc->range_end >> PAGE_SHIFT;
1038 
1039 	trace_dax_writeback_range(inode, start_index, end_index);
1040 
1041 	tag_pages_for_writeback(mapping, start_index, end_index);
1042 
1043 	pagevec_init(&pvec);
1044 	while (!done) {
1045 		pvec.nr = find_get_entries_tag(mapping, start_index,
1046 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1047 				pvec.pages, indices);
1048 
1049 		if (pvec.nr == 0)
1050 			break;
1051 
1052 		for (i = 0; i < pvec.nr; i++) {
1053 			if (indices[i] > end_index) {
1054 				done = true;
1055 				break;
1056 			}
1057 
1058 			ret = dax_writeback_one(dax_dev, mapping, indices[i],
1059 					pvec.pages[i]);
1060 			if (ret < 0) {
1061 				mapping_set_error(mapping, ret);
1062 				goto out;
1063 			}
1064 		}
1065 		start_index = indices[pvec.nr - 1] + 1;
1066 	}
1067 out:
1068 	put_dax(dax_dev);
1069 	trace_dax_writeback_range_done(inode, start_index, end_index);
1070 	return (ret < 0 ? ret : 0);
1071 }
1072 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1073 
1074 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1075 {
1076 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1077 }
1078 
1079 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1080 			 pfn_t *pfnp)
1081 {
1082 	const sector_t sector = dax_iomap_sector(iomap, pos);
1083 	pgoff_t pgoff;
1084 	int id, rc;
1085 	long length;
1086 
1087 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1088 	if (rc)
1089 		return rc;
1090 	id = dax_read_lock();
1091 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1092 				   NULL, pfnp);
1093 	if (length < 0) {
1094 		rc = length;
1095 		goto out;
1096 	}
1097 	rc = -EINVAL;
1098 	if (PFN_PHYS(length) < size)
1099 		goto out;
1100 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1101 		goto out;
1102 	/* For larger pages we need devmap */
1103 	if (length > 1 && !pfn_t_devmap(*pfnp))
1104 		goto out;
1105 	rc = 0;
1106 out:
1107 	dax_read_unlock(id);
1108 	return rc;
1109 }
1110 
1111 /*
1112  * The user has performed a load from a hole in the file.  Allocating a new
1113  * page in the file would cause excessive storage usage for workloads with
1114  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1115  * If this page is ever written to we will re-fault and change the mapping to
1116  * point to real DAX storage instead.
1117  */
1118 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1119 			 struct vm_fault *vmf)
1120 {
1121 	struct inode *inode = mapping->host;
1122 	unsigned long vaddr = vmf->address;
1123 	vm_fault_t ret = VM_FAULT_NOPAGE;
1124 	struct page *zero_page;
1125 	pfn_t pfn;
1126 
1127 	zero_page = ZERO_PAGE(0);
1128 	if (unlikely(!zero_page)) {
1129 		ret = VM_FAULT_OOM;
1130 		goto out;
1131 	}
1132 
1133 	pfn = page_to_pfn_t(zero_page);
1134 	dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1135 			false);
1136 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1137 out:
1138 	trace_dax_load_hole(inode, vmf, ret);
1139 	return ret;
1140 }
1141 
1142 static bool dax_range_is_aligned(struct block_device *bdev,
1143 				 unsigned int offset, unsigned int length)
1144 {
1145 	unsigned short sector_size = bdev_logical_block_size(bdev);
1146 
1147 	if (!IS_ALIGNED(offset, sector_size))
1148 		return false;
1149 	if (!IS_ALIGNED(length, sector_size))
1150 		return false;
1151 
1152 	return true;
1153 }
1154 
1155 int __dax_zero_page_range(struct block_device *bdev,
1156 		struct dax_device *dax_dev, sector_t sector,
1157 		unsigned int offset, unsigned int size)
1158 {
1159 	if (dax_range_is_aligned(bdev, offset, size)) {
1160 		sector_t start_sector = sector + (offset >> 9);
1161 
1162 		return blkdev_issue_zeroout(bdev, start_sector,
1163 				size >> 9, GFP_NOFS, 0);
1164 	} else {
1165 		pgoff_t pgoff;
1166 		long rc, id;
1167 		void *kaddr;
1168 
1169 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1170 		if (rc)
1171 			return rc;
1172 
1173 		id = dax_read_lock();
1174 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1175 		if (rc < 0) {
1176 			dax_read_unlock(id);
1177 			return rc;
1178 		}
1179 		memset(kaddr + offset, 0, size);
1180 		dax_flush(dax_dev, kaddr + offset, size);
1181 		dax_read_unlock(id);
1182 	}
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1186 
1187 static loff_t
1188 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1189 		struct iomap *iomap)
1190 {
1191 	struct block_device *bdev = iomap->bdev;
1192 	struct dax_device *dax_dev = iomap->dax_dev;
1193 	struct iov_iter *iter = data;
1194 	loff_t end = pos + length, done = 0;
1195 	ssize_t ret = 0;
1196 	size_t xfer;
1197 	int id;
1198 
1199 	if (iov_iter_rw(iter) == READ) {
1200 		end = min(end, i_size_read(inode));
1201 		if (pos >= end)
1202 			return 0;
1203 
1204 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1205 			return iov_iter_zero(min(length, end - pos), iter);
1206 	}
1207 
1208 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1209 		return -EIO;
1210 
1211 	/*
1212 	 * Write can allocate block for an area which has a hole page mapped
1213 	 * into page tables. We have to tear down these mappings so that data
1214 	 * written by write(2) is visible in mmap.
1215 	 */
1216 	if (iomap->flags & IOMAP_F_NEW) {
1217 		invalidate_inode_pages2_range(inode->i_mapping,
1218 					      pos >> PAGE_SHIFT,
1219 					      (end - 1) >> PAGE_SHIFT);
1220 	}
1221 
1222 	id = dax_read_lock();
1223 	while (pos < end) {
1224 		unsigned offset = pos & (PAGE_SIZE - 1);
1225 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1226 		const sector_t sector = dax_iomap_sector(iomap, pos);
1227 		ssize_t map_len;
1228 		pgoff_t pgoff;
1229 		void *kaddr;
1230 
1231 		if (fatal_signal_pending(current)) {
1232 			ret = -EINTR;
1233 			break;
1234 		}
1235 
1236 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1237 		if (ret)
1238 			break;
1239 
1240 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1241 				&kaddr, NULL);
1242 		if (map_len < 0) {
1243 			ret = map_len;
1244 			break;
1245 		}
1246 
1247 		map_len = PFN_PHYS(map_len);
1248 		kaddr += offset;
1249 		map_len -= offset;
1250 		if (map_len > end - pos)
1251 			map_len = end - pos;
1252 
1253 		/*
1254 		 * The userspace address for the memory copy has already been
1255 		 * validated via access_ok() in either vfs_read() or
1256 		 * vfs_write(), depending on which operation we are doing.
1257 		 */
1258 		if (iov_iter_rw(iter) == WRITE)
1259 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1260 					map_len, iter);
1261 		else
1262 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1263 					map_len, iter);
1264 
1265 		pos += xfer;
1266 		length -= xfer;
1267 		done += xfer;
1268 
1269 		if (xfer == 0)
1270 			ret = -EFAULT;
1271 		if (xfer < map_len)
1272 			break;
1273 	}
1274 	dax_read_unlock(id);
1275 
1276 	return done ? done : ret;
1277 }
1278 
1279 /**
1280  * dax_iomap_rw - Perform I/O to a DAX file
1281  * @iocb:	The control block for this I/O
1282  * @iter:	The addresses to do I/O from or to
1283  * @ops:	iomap ops passed from the file system
1284  *
1285  * This function performs read and write operations to directly mapped
1286  * persistent memory.  The callers needs to take care of read/write exclusion
1287  * and evicting any page cache pages in the region under I/O.
1288  */
1289 ssize_t
1290 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1291 		const struct iomap_ops *ops)
1292 {
1293 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1294 	struct inode *inode = mapping->host;
1295 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1296 	unsigned flags = 0;
1297 
1298 	if (iov_iter_rw(iter) == WRITE) {
1299 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1300 		flags |= IOMAP_WRITE;
1301 	} else {
1302 		lockdep_assert_held(&inode->i_rwsem);
1303 	}
1304 
1305 	while (iov_iter_count(iter)) {
1306 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1307 				iter, dax_iomap_actor);
1308 		if (ret <= 0)
1309 			break;
1310 		pos += ret;
1311 		done += ret;
1312 	}
1313 
1314 	iocb->ki_pos += done;
1315 	return done ? done : ret;
1316 }
1317 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1318 
1319 static vm_fault_t dax_fault_return(int error)
1320 {
1321 	if (error == 0)
1322 		return VM_FAULT_NOPAGE;
1323 	if (error == -ENOMEM)
1324 		return VM_FAULT_OOM;
1325 	return VM_FAULT_SIGBUS;
1326 }
1327 
1328 /*
1329  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1330  * flushed on write-faults (non-cow), but not read-faults.
1331  */
1332 static bool dax_fault_is_synchronous(unsigned long flags,
1333 		struct vm_area_struct *vma, struct iomap *iomap)
1334 {
1335 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1336 		&& (iomap->flags & IOMAP_F_DIRTY);
1337 }
1338 
1339 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1340 			       int *iomap_errp, const struct iomap_ops *ops)
1341 {
1342 	struct vm_area_struct *vma = vmf->vma;
1343 	struct address_space *mapping = vma->vm_file->f_mapping;
1344 	struct inode *inode = mapping->host;
1345 	unsigned long vaddr = vmf->address;
1346 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1347 	struct iomap iomap = { 0 };
1348 	unsigned flags = IOMAP_FAULT;
1349 	int error, major = 0;
1350 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1351 	bool sync;
1352 	vm_fault_t ret = 0;
1353 	void *entry;
1354 	pfn_t pfn;
1355 
1356 	trace_dax_pte_fault(inode, vmf, ret);
1357 	/*
1358 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1359 	 * to hold locks serializing us with truncate / punch hole so this is
1360 	 * a reliable test.
1361 	 */
1362 	if (pos >= i_size_read(inode)) {
1363 		ret = VM_FAULT_SIGBUS;
1364 		goto out;
1365 	}
1366 
1367 	if (write && !vmf->cow_page)
1368 		flags |= IOMAP_WRITE;
1369 
1370 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1371 	if (IS_ERR(entry)) {
1372 		ret = dax_fault_return(PTR_ERR(entry));
1373 		goto out;
1374 	}
1375 
1376 	/*
1377 	 * It is possible, particularly with mixed reads & writes to private
1378 	 * mappings, that we have raced with a PMD fault that overlaps with
1379 	 * the PTE we need to set up.  If so just return and the fault will be
1380 	 * retried.
1381 	 */
1382 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1383 		ret = VM_FAULT_NOPAGE;
1384 		goto unlock_entry;
1385 	}
1386 
1387 	/*
1388 	 * Note that we don't bother to use iomap_apply here: DAX required
1389 	 * the file system block size to be equal the page size, which means
1390 	 * that we never have to deal with more than a single extent here.
1391 	 */
1392 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1393 	if (iomap_errp)
1394 		*iomap_errp = error;
1395 	if (error) {
1396 		ret = dax_fault_return(error);
1397 		goto unlock_entry;
1398 	}
1399 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1400 		error = -EIO;	/* fs corruption? */
1401 		goto error_finish_iomap;
1402 	}
1403 
1404 	if (vmf->cow_page) {
1405 		sector_t sector = dax_iomap_sector(&iomap, pos);
1406 
1407 		switch (iomap.type) {
1408 		case IOMAP_HOLE:
1409 		case IOMAP_UNWRITTEN:
1410 			clear_user_highpage(vmf->cow_page, vaddr);
1411 			break;
1412 		case IOMAP_MAPPED:
1413 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1414 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1415 			break;
1416 		default:
1417 			WARN_ON_ONCE(1);
1418 			error = -EIO;
1419 			break;
1420 		}
1421 
1422 		if (error)
1423 			goto error_finish_iomap;
1424 
1425 		__SetPageUptodate(vmf->cow_page);
1426 		ret = finish_fault(vmf);
1427 		if (!ret)
1428 			ret = VM_FAULT_DONE_COW;
1429 		goto finish_iomap;
1430 	}
1431 
1432 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1433 
1434 	switch (iomap.type) {
1435 	case IOMAP_MAPPED:
1436 		if (iomap.flags & IOMAP_F_NEW) {
1437 			count_vm_event(PGMAJFAULT);
1438 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1439 			major = VM_FAULT_MAJOR;
1440 		}
1441 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1442 		if (error < 0)
1443 			goto error_finish_iomap;
1444 
1445 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1446 						 0, write && !sync);
1447 
1448 		/*
1449 		 * If we are doing synchronous page fault and inode needs fsync,
1450 		 * we can insert PTE into page tables only after that happens.
1451 		 * Skip insertion for now and return the pfn so that caller can
1452 		 * insert it after fsync is done.
1453 		 */
1454 		if (sync) {
1455 			if (WARN_ON_ONCE(!pfnp)) {
1456 				error = -EIO;
1457 				goto error_finish_iomap;
1458 			}
1459 			*pfnp = pfn;
1460 			ret = VM_FAULT_NEEDDSYNC | major;
1461 			goto finish_iomap;
1462 		}
1463 		trace_dax_insert_mapping(inode, vmf, entry);
1464 		if (write)
1465 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1466 		else
1467 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1468 
1469 		goto finish_iomap;
1470 	case IOMAP_UNWRITTEN:
1471 	case IOMAP_HOLE:
1472 		if (!write) {
1473 			ret = dax_load_hole(mapping, entry, vmf);
1474 			goto finish_iomap;
1475 		}
1476 		/*FALLTHRU*/
1477 	default:
1478 		WARN_ON_ONCE(1);
1479 		error = -EIO;
1480 		break;
1481 	}
1482 
1483  error_finish_iomap:
1484 	ret = dax_fault_return(error);
1485  finish_iomap:
1486 	if (ops->iomap_end) {
1487 		int copied = PAGE_SIZE;
1488 
1489 		if (ret & VM_FAULT_ERROR)
1490 			copied = 0;
1491 		/*
1492 		 * The fault is done by now and there's no way back (other
1493 		 * thread may be already happily using PTE we have installed).
1494 		 * Just ignore error from ->iomap_end since we cannot do much
1495 		 * with it.
1496 		 */
1497 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1498 	}
1499  unlock_entry:
1500 	put_locked_mapping_entry(mapping, vmf->pgoff);
1501  out:
1502 	trace_dax_pte_fault_done(inode, vmf, ret);
1503 	return ret | major;
1504 }
1505 
1506 #ifdef CONFIG_FS_DAX_PMD
1507 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1508 		void *entry)
1509 {
1510 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1511 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1512 	struct inode *inode = mapping->host;
1513 	struct page *zero_page;
1514 	void *ret = NULL;
1515 	spinlock_t *ptl;
1516 	pmd_t pmd_entry;
1517 	pfn_t pfn;
1518 
1519 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1520 
1521 	if (unlikely(!zero_page))
1522 		goto fallback;
1523 
1524 	pfn = page_to_pfn_t(zero_page);
1525 	ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1526 			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1527 
1528 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1529 	if (!pmd_none(*(vmf->pmd))) {
1530 		spin_unlock(ptl);
1531 		goto fallback;
1532 	}
1533 
1534 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1535 	pmd_entry = pmd_mkhuge(pmd_entry);
1536 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1537 	spin_unlock(ptl);
1538 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1539 	return VM_FAULT_NOPAGE;
1540 
1541 fallback:
1542 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1543 	return VM_FAULT_FALLBACK;
1544 }
1545 
1546 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1547 			       const struct iomap_ops *ops)
1548 {
1549 	struct vm_area_struct *vma = vmf->vma;
1550 	struct address_space *mapping = vma->vm_file->f_mapping;
1551 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1552 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1553 	bool sync;
1554 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1555 	struct inode *inode = mapping->host;
1556 	vm_fault_t result = VM_FAULT_FALLBACK;
1557 	struct iomap iomap = { 0 };
1558 	pgoff_t max_pgoff, pgoff;
1559 	void *entry;
1560 	loff_t pos;
1561 	int error;
1562 	pfn_t pfn;
1563 
1564 	/*
1565 	 * Check whether offset isn't beyond end of file now. Caller is
1566 	 * supposed to hold locks serializing us with truncate / punch hole so
1567 	 * this is a reliable test.
1568 	 */
1569 	pgoff = linear_page_index(vma, pmd_addr);
1570 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1571 
1572 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1573 
1574 	/*
1575 	 * Make sure that the faulting address's PMD offset (color) matches
1576 	 * the PMD offset from the start of the file.  This is necessary so
1577 	 * that a PMD range in the page table overlaps exactly with a PMD
1578 	 * range in the radix tree.
1579 	 */
1580 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1581 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1582 		goto fallback;
1583 
1584 	/* Fall back to PTEs if we're going to COW */
1585 	if (write && !(vma->vm_flags & VM_SHARED))
1586 		goto fallback;
1587 
1588 	/* If the PMD would extend outside the VMA */
1589 	if (pmd_addr < vma->vm_start)
1590 		goto fallback;
1591 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1592 		goto fallback;
1593 
1594 	if (pgoff >= max_pgoff) {
1595 		result = VM_FAULT_SIGBUS;
1596 		goto out;
1597 	}
1598 
1599 	/* If the PMD would extend beyond the file size */
1600 	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1601 		goto fallback;
1602 
1603 	/*
1604 	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1605 	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1606 	 * is already in the tree, for instance), it will return -EEXIST and
1607 	 * we just fall back to 4k entries.
1608 	 */
1609 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1610 	if (IS_ERR(entry))
1611 		goto fallback;
1612 
1613 	/*
1614 	 * It is possible, particularly with mixed reads & writes to private
1615 	 * mappings, that we have raced with a PTE fault that overlaps with
1616 	 * the PMD we need to set up.  If so just return and the fault will be
1617 	 * retried.
1618 	 */
1619 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1620 			!pmd_devmap(*vmf->pmd)) {
1621 		result = 0;
1622 		goto unlock_entry;
1623 	}
1624 
1625 	/*
1626 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1627 	 * setting up a mapping, so really we're using iomap_begin() as a way
1628 	 * to look up our filesystem block.
1629 	 */
1630 	pos = (loff_t)pgoff << PAGE_SHIFT;
1631 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1632 	if (error)
1633 		goto unlock_entry;
1634 
1635 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1636 		goto finish_iomap;
1637 
1638 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1639 
1640 	switch (iomap.type) {
1641 	case IOMAP_MAPPED:
1642 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1643 		if (error < 0)
1644 			goto finish_iomap;
1645 
1646 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1647 						RADIX_DAX_PMD, write && !sync);
1648 
1649 		/*
1650 		 * If we are doing synchronous page fault and inode needs fsync,
1651 		 * we can insert PMD into page tables only after that happens.
1652 		 * Skip insertion for now and return the pfn so that caller can
1653 		 * insert it after fsync is done.
1654 		 */
1655 		if (sync) {
1656 			if (WARN_ON_ONCE(!pfnp))
1657 				goto finish_iomap;
1658 			*pfnp = pfn;
1659 			result = VM_FAULT_NEEDDSYNC;
1660 			goto finish_iomap;
1661 		}
1662 
1663 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1664 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1665 					    write);
1666 		break;
1667 	case IOMAP_UNWRITTEN:
1668 	case IOMAP_HOLE:
1669 		if (WARN_ON_ONCE(write))
1670 			break;
1671 		result = dax_pmd_load_hole(vmf, &iomap, entry);
1672 		break;
1673 	default:
1674 		WARN_ON_ONCE(1);
1675 		break;
1676 	}
1677 
1678  finish_iomap:
1679 	if (ops->iomap_end) {
1680 		int copied = PMD_SIZE;
1681 
1682 		if (result == VM_FAULT_FALLBACK)
1683 			copied = 0;
1684 		/*
1685 		 * The fault is done by now and there's no way back (other
1686 		 * thread may be already happily using PMD we have installed).
1687 		 * Just ignore error from ->iomap_end since we cannot do much
1688 		 * with it.
1689 		 */
1690 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1691 				&iomap);
1692 	}
1693  unlock_entry:
1694 	put_locked_mapping_entry(mapping, pgoff);
1695  fallback:
1696 	if (result == VM_FAULT_FALLBACK) {
1697 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1698 		count_vm_event(THP_FAULT_FALLBACK);
1699 	}
1700 out:
1701 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1702 	return result;
1703 }
1704 #else
1705 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1706 			       const struct iomap_ops *ops)
1707 {
1708 	return VM_FAULT_FALLBACK;
1709 }
1710 #endif /* CONFIG_FS_DAX_PMD */
1711 
1712 /**
1713  * dax_iomap_fault - handle a page fault on a DAX file
1714  * @vmf: The description of the fault
1715  * @pe_size: Size of the page to fault in
1716  * @pfnp: PFN to insert for synchronous faults if fsync is required
1717  * @iomap_errp: Storage for detailed error code in case of error
1718  * @ops: Iomap ops passed from the file system
1719  *
1720  * When a page fault occurs, filesystems may call this helper in
1721  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1722  * has done all the necessary locking for page fault to proceed
1723  * successfully.
1724  */
1725 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1726 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1727 {
1728 	switch (pe_size) {
1729 	case PE_SIZE_PTE:
1730 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1731 	case PE_SIZE_PMD:
1732 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1733 	default:
1734 		return VM_FAULT_FALLBACK;
1735 	}
1736 }
1737 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1738 
1739 /**
1740  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1741  * @vmf: The description of the fault
1742  * @pe_size: Size of entry to be inserted
1743  * @pfn: PFN to insert
1744  *
1745  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1746  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1747  * as well.
1748  */
1749 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1750 				  enum page_entry_size pe_size,
1751 				  pfn_t pfn)
1752 {
1753 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1754 	void *entry, **slot;
1755 	pgoff_t index = vmf->pgoff;
1756 	vm_fault_t ret;
1757 
1758 	xa_lock_irq(&mapping->i_pages);
1759 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
1760 	/* Did we race with someone splitting entry or so? */
1761 	if (!entry ||
1762 	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1763 	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1764 		put_unlocked_mapping_entry(mapping, index, entry);
1765 		xa_unlock_irq(&mapping->i_pages);
1766 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1767 						      VM_FAULT_NOPAGE);
1768 		return VM_FAULT_NOPAGE;
1769 	}
1770 	radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1771 	entry = lock_slot(mapping, slot);
1772 	xa_unlock_irq(&mapping->i_pages);
1773 	switch (pe_size) {
1774 	case PE_SIZE_PTE:
1775 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1776 		break;
1777 #ifdef CONFIG_FS_DAX_PMD
1778 	case PE_SIZE_PMD:
1779 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1780 			pfn, true);
1781 		break;
1782 #endif
1783 	default:
1784 		ret = VM_FAULT_FALLBACK;
1785 	}
1786 	put_locked_mapping_entry(mapping, index);
1787 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1788 	return ret;
1789 }
1790 
1791 /**
1792  * dax_finish_sync_fault - finish synchronous page fault
1793  * @vmf: The description of the fault
1794  * @pe_size: Size of entry to be inserted
1795  * @pfn: PFN to insert
1796  *
1797  * This function ensures that the file range touched by the page fault is
1798  * stored persistently on the media and handles inserting of appropriate page
1799  * table entry.
1800  */
1801 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1802 		enum page_entry_size pe_size, pfn_t pfn)
1803 {
1804 	int err;
1805 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1806 	size_t len = 0;
1807 
1808 	if (pe_size == PE_SIZE_PTE)
1809 		len = PAGE_SIZE;
1810 	else if (pe_size == PE_SIZE_PMD)
1811 		len = PMD_SIZE;
1812 	else
1813 		WARN_ON_ONCE(1);
1814 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1815 	if (err)
1816 		return VM_FAULT_SIGBUS;
1817 	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1818 }
1819 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1820