xref: /openbmc/linux/fs/dax.c (revision df687341)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43 	if (pe_size == PE_SIZE_PTE)
44 		return PAGE_SHIFT - PAGE_SHIFT;
45 	if (pe_size == PE_SIZE_PMD)
46 		return PMD_SHIFT - PAGE_SHIFT;
47 	if (pe_size == PE_SIZE_PUD)
48 		return PUD_SHIFT - PAGE_SHIFT;
49 	return ~0;
50 }
51 
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55 
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
59 
60 /* The order of a PMD entry */
61 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
62 
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64 
65 static int __init init_dax_wait_table(void)
66 {
67 	int i;
68 
69 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 		init_waitqueue_head(wait_table + i);
71 	return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74 
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT	(4)
86 #define DAX_LOCKED	(1UL << 0)
87 #define DAX_PMD		(1UL << 1)
88 #define DAX_ZERO_PAGE	(1UL << 2)
89 #define DAX_EMPTY	(1UL << 3)
90 
91 static unsigned long dax_to_pfn(void *entry)
92 {
93 	return xa_to_value(entry) >> DAX_SHIFT;
94 }
95 
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100 
101 static bool dax_is_locked(void *entry)
102 {
103 	return xa_to_value(entry) & DAX_LOCKED;
104 }
105 
106 static unsigned int dax_entry_order(void *entry)
107 {
108 	if (xa_to_value(entry) & DAX_PMD)
109 		return PMD_ORDER;
110 	return 0;
111 }
112 
113 static unsigned long dax_is_pmd_entry(void *entry)
114 {
115 	return xa_to_value(entry) & DAX_PMD;
116 }
117 
118 static bool dax_is_pte_entry(void *entry)
119 {
120 	return !(xa_to_value(entry) & DAX_PMD);
121 }
122 
123 static int dax_is_zero_entry(void *entry)
124 {
125 	return xa_to_value(entry) & DAX_ZERO_PAGE;
126 }
127 
128 static int dax_is_empty_entry(void *entry)
129 {
130 	return xa_to_value(entry) & DAX_EMPTY;
131 }
132 
133 /*
134  * DAX page cache entry locking
135  */
136 struct exceptional_entry_key {
137 	struct xarray *xa;
138 	pgoff_t entry_start;
139 };
140 
141 struct wait_exceptional_entry_queue {
142 	wait_queue_entry_t wait;
143 	struct exceptional_entry_key key;
144 };
145 
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 		void *entry, struct exceptional_entry_key *key)
148 {
149 	unsigned long hash;
150 	unsigned long index = xas->xa_index;
151 
152 	/*
153 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 	 * queue to the start of that PMD.  This ensures that all offsets in
155 	 * the range covered by the PMD map to the same bit lock.
156 	 */
157 	if (dax_is_pmd_entry(entry))
158 		index &= ~PG_PMD_COLOUR;
159 	key->xa = xas->xa;
160 	key->entry_start = index;
161 
162 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163 	return wait_table + hash;
164 }
165 
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 		unsigned int mode, int sync, void *keyp)
168 {
169 	struct exceptional_entry_key *key = keyp;
170 	struct wait_exceptional_entry_queue *ewait =
171 		container_of(wait, struct wait_exceptional_entry_queue, wait);
172 
173 	if (key->xa != ewait->key.xa ||
174 	    key->entry_start != ewait->key.entry_start)
175 		return 0;
176 	return autoremove_wake_function(wait, mode, sync, NULL);
177 }
178 
179 /*
180  * @entry may no longer be the entry at the index in the mapping.
181  * The important information it's conveying is whether the entry at
182  * this index used to be a PMD entry.
183  */
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185 {
186 	struct exceptional_entry_key key;
187 	wait_queue_head_t *wq;
188 
189 	wq = dax_entry_waitqueue(xas, entry, &key);
190 
191 	/*
192 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
193 	 * under the i_pages lock, ditto for entry handling in our callers.
194 	 * So at this point all tasks that could have seen our entry locked
195 	 * must be in the waitqueue and the following check will see them.
196 	 */
197 	if (waitqueue_active(wq))
198 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199 }
200 
201 /*
202  * Look up entry in page cache, wait for it to become unlocked if it
203  * is a DAX entry and return it.  The caller must subsequently call
204  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205  * if it did.
206  *
207  * Must be called with the i_pages lock held.
208  */
209 static void *get_unlocked_entry(struct xa_state *xas)
210 {
211 	void *entry;
212 	struct wait_exceptional_entry_queue ewait;
213 	wait_queue_head_t *wq;
214 
215 	init_wait(&ewait.wait);
216 	ewait.wait.func = wake_exceptional_entry_func;
217 
218 	for (;;) {
219 		entry = xas_find_conflict(xas);
220 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221 				!dax_is_locked(entry))
222 			return entry;
223 
224 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225 		prepare_to_wait_exclusive(wq, &ewait.wait,
226 					  TASK_UNINTERRUPTIBLE);
227 		xas_unlock_irq(xas);
228 		xas_reset(xas);
229 		schedule();
230 		finish_wait(wq, &ewait.wait);
231 		xas_lock_irq(xas);
232 	}
233 }
234 
235 /*
236  * The only thing keeping the address space around is the i_pages lock
237  * (it's cycled in clear_inode() after removing the entries from i_pages)
238  * After we call xas_unlock_irq(), we cannot touch xas->xa.
239  */
240 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
241 {
242 	struct wait_exceptional_entry_queue ewait;
243 	wait_queue_head_t *wq;
244 
245 	init_wait(&ewait.wait);
246 	ewait.wait.func = wake_exceptional_entry_func;
247 
248 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
249 	/*
250 	 * Unlike get_unlocked_entry() there is no guarantee that this
251 	 * path ever successfully retrieves an unlocked entry before an
252 	 * inode dies. Perform a non-exclusive wait in case this path
253 	 * never successfully performs its own wake up.
254 	 */
255 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
256 	xas_unlock_irq(xas);
257 	schedule();
258 	finish_wait(wq, &ewait.wait);
259 }
260 
261 static void put_unlocked_entry(struct xa_state *xas, void *entry)
262 {
263 	/* If we were the only waiter woken, wake the next one */
264 	if (entry)
265 		dax_wake_entry(xas, entry, false);
266 }
267 
268 /*
269  * We used the xa_state to get the entry, but then we locked the entry and
270  * dropped the xa_lock, so we know the xa_state is stale and must be reset
271  * before use.
272  */
273 static void dax_unlock_entry(struct xa_state *xas, void *entry)
274 {
275 	void *old;
276 
277 	BUG_ON(dax_is_locked(entry));
278 	xas_reset(xas);
279 	xas_lock_irq(xas);
280 	old = xas_store(xas, entry);
281 	xas_unlock_irq(xas);
282 	BUG_ON(!dax_is_locked(old));
283 	dax_wake_entry(xas, entry, false);
284 }
285 
286 /*
287  * Return: The entry stored at this location before it was locked.
288  */
289 static void *dax_lock_entry(struct xa_state *xas, void *entry)
290 {
291 	unsigned long v = xa_to_value(entry);
292 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
293 }
294 
295 static unsigned long dax_entry_size(void *entry)
296 {
297 	if (dax_is_zero_entry(entry))
298 		return 0;
299 	else if (dax_is_empty_entry(entry))
300 		return 0;
301 	else if (dax_is_pmd_entry(entry))
302 		return PMD_SIZE;
303 	else
304 		return PAGE_SIZE;
305 }
306 
307 static unsigned long dax_end_pfn(void *entry)
308 {
309 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
310 }
311 
312 /*
313  * Iterate through all mapped pfns represented by an entry, i.e. skip
314  * 'empty' and 'zero' entries.
315  */
316 #define for_each_mapped_pfn(entry, pfn) \
317 	for (pfn = dax_to_pfn(entry); \
318 			pfn < dax_end_pfn(entry); pfn++)
319 
320 /*
321  * TODO: for reflink+dax we need a way to associate a single page with
322  * multiple address_space instances at different linear_page_index()
323  * offsets.
324  */
325 static void dax_associate_entry(void *entry, struct address_space *mapping,
326 		struct vm_area_struct *vma, unsigned long address)
327 {
328 	unsigned long size = dax_entry_size(entry), pfn, index;
329 	int i = 0;
330 
331 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
332 		return;
333 
334 	index = linear_page_index(vma, address & ~(size - 1));
335 	for_each_mapped_pfn(entry, pfn) {
336 		struct page *page = pfn_to_page(pfn);
337 
338 		WARN_ON_ONCE(page->mapping);
339 		page->mapping = mapping;
340 		page->index = index + i++;
341 	}
342 }
343 
344 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
345 		bool trunc)
346 {
347 	unsigned long pfn;
348 
349 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
350 		return;
351 
352 	for_each_mapped_pfn(entry, pfn) {
353 		struct page *page = pfn_to_page(pfn);
354 
355 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
356 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
357 		page->mapping = NULL;
358 		page->index = 0;
359 	}
360 }
361 
362 static struct page *dax_busy_page(void *entry)
363 {
364 	unsigned long pfn;
365 
366 	for_each_mapped_pfn(entry, pfn) {
367 		struct page *page = pfn_to_page(pfn);
368 
369 		if (page_ref_count(page) > 1)
370 			return page;
371 	}
372 	return NULL;
373 }
374 
375 /*
376  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
377  * @page: The page whose entry we want to lock
378  *
379  * Context: Process context.
380  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
381  * not be locked.
382  */
383 dax_entry_t dax_lock_page(struct page *page)
384 {
385 	XA_STATE(xas, NULL, 0);
386 	void *entry;
387 
388 	/* Ensure page->mapping isn't freed while we look at it */
389 	rcu_read_lock();
390 	for (;;) {
391 		struct address_space *mapping = READ_ONCE(page->mapping);
392 
393 		entry = NULL;
394 		if (!mapping || !dax_mapping(mapping))
395 			break;
396 
397 		/*
398 		 * In the device-dax case there's no need to lock, a
399 		 * struct dev_pagemap pin is sufficient to keep the
400 		 * inode alive, and we assume we have dev_pagemap pin
401 		 * otherwise we would not have a valid pfn_to_page()
402 		 * translation.
403 		 */
404 		entry = (void *)~0UL;
405 		if (S_ISCHR(mapping->host->i_mode))
406 			break;
407 
408 		xas.xa = &mapping->i_pages;
409 		xas_lock_irq(&xas);
410 		if (mapping != page->mapping) {
411 			xas_unlock_irq(&xas);
412 			continue;
413 		}
414 		xas_set(&xas, page->index);
415 		entry = xas_load(&xas);
416 		if (dax_is_locked(entry)) {
417 			rcu_read_unlock();
418 			wait_entry_unlocked(&xas, entry);
419 			rcu_read_lock();
420 			continue;
421 		}
422 		dax_lock_entry(&xas, entry);
423 		xas_unlock_irq(&xas);
424 		break;
425 	}
426 	rcu_read_unlock();
427 	return (dax_entry_t)entry;
428 }
429 
430 void dax_unlock_page(struct page *page, dax_entry_t cookie)
431 {
432 	struct address_space *mapping = page->mapping;
433 	XA_STATE(xas, &mapping->i_pages, page->index);
434 
435 	if (S_ISCHR(mapping->host->i_mode))
436 		return;
437 
438 	dax_unlock_entry(&xas, (void *)cookie);
439 }
440 
441 /*
442  * Find page cache entry at given index. If it is a DAX entry, return it
443  * with the entry locked. If the page cache doesn't contain an entry at
444  * that index, add a locked empty entry.
445  *
446  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
447  * either return that locked entry or will return VM_FAULT_FALLBACK.
448  * This will happen if there are any PTE entries within the PMD range
449  * that we are requesting.
450  *
451  * We always favor PTE entries over PMD entries. There isn't a flow where we
452  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
453  * insertion will fail if it finds any PTE entries already in the tree, and a
454  * PTE insertion will cause an existing PMD entry to be unmapped and
455  * downgraded to PTE entries.  This happens for both PMD zero pages as
456  * well as PMD empty entries.
457  *
458  * The exception to this downgrade path is for PMD entries that have
459  * real storage backing them.  We will leave these real PMD entries in
460  * the tree, and PTE writes will simply dirty the entire PMD entry.
461  *
462  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
463  * persistent memory the benefit is doubtful. We can add that later if we can
464  * show it helps.
465  *
466  * On error, this function does not return an ERR_PTR.  Instead it returns
467  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
468  * overlap with xarray value entries.
469  */
470 static void *grab_mapping_entry(struct xa_state *xas,
471 		struct address_space *mapping, unsigned long size_flag)
472 {
473 	unsigned long index = xas->xa_index;
474 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
475 	void *entry;
476 
477 retry:
478 	xas_lock_irq(xas);
479 	entry = get_unlocked_entry(xas);
480 
481 	if (entry) {
482 		if (!xa_is_value(entry)) {
483 			xas_set_err(xas, EIO);
484 			goto out_unlock;
485 		}
486 
487 		if (size_flag & DAX_PMD) {
488 			if (dax_is_pte_entry(entry)) {
489 				put_unlocked_entry(xas, entry);
490 				goto fallback;
491 			}
492 		} else { /* trying to grab a PTE entry */
493 			if (dax_is_pmd_entry(entry) &&
494 			    (dax_is_zero_entry(entry) ||
495 			     dax_is_empty_entry(entry))) {
496 				pmd_downgrade = true;
497 			}
498 		}
499 	}
500 
501 	if (pmd_downgrade) {
502 		/*
503 		 * Make sure 'entry' remains valid while we drop
504 		 * the i_pages lock.
505 		 */
506 		dax_lock_entry(xas, entry);
507 
508 		/*
509 		 * Besides huge zero pages the only other thing that gets
510 		 * downgraded are empty entries which don't need to be
511 		 * unmapped.
512 		 */
513 		if (dax_is_zero_entry(entry)) {
514 			xas_unlock_irq(xas);
515 			unmap_mapping_pages(mapping,
516 					xas->xa_index & ~PG_PMD_COLOUR,
517 					PG_PMD_NR, false);
518 			xas_reset(xas);
519 			xas_lock_irq(xas);
520 		}
521 
522 		dax_disassociate_entry(entry, mapping, false);
523 		xas_store(xas, NULL);	/* undo the PMD join */
524 		dax_wake_entry(xas, entry, true);
525 		mapping->nrexceptional--;
526 		entry = NULL;
527 		xas_set(xas, index);
528 	}
529 
530 	if (entry) {
531 		dax_lock_entry(xas, entry);
532 	} else {
533 		entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
534 		dax_lock_entry(xas, entry);
535 		if (xas_error(xas))
536 			goto out_unlock;
537 		mapping->nrexceptional++;
538 	}
539 
540 out_unlock:
541 	xas_unlock_irq(xas);
542 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
543 		goto retry;
544 	if (xas->xa_node == XA_ERROR(-ENOMEM))
545 		return xa_mk_internal(VM_FAULT_OOM);
546 	if (xas_error(xas))
547 		return xa_mk_internal(VM_FAULT_SIGBUS);
548 	return entry;
549 fallback:
550 	xas_unlock_irq(xas);
551 	return xa_mk_internal(VM_FAULT_FALLBACK);
552 }
553 
554 /**
555  * dax_layout_busy_page - find first pinned page in @mapping
556  * @mapping: address space to scan for a page with ref count > 1
557  *
558  * DAX requires ZONE_DEVICE mapped pages. These pages are never
559  * 'onlined' to the page allocator so they are considered idle when
560  * page->count == 1. A filesystem uses this interface to determine if
561  * any page in the mapping is busy, i.e. for DMA, or other
562  * get_user_pages() usages.
563  *
564  * It is expected that the filesystem is holding locks to block the
565  * establishment of new mappings in this address_space. I.e. it expects
566  * to be able to run unmap_mapping_range() and subsequently not race
567  * mapping_mapped() becoming true.
568  */
569 struct page *dax_layout_busy_page(struct address_space *mapping)
570 {
571 	XA_STATE(xas, &mapping->i_pages, 0);
572 	void *entry;
573 	unsigned int scanned = 0;
574 	struct page *page = NULL;
575 
576 	/*
577 	 * In the 'limited' case get_user_pages() for dax is disabled.
578 	 */
579 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
580 		return NULL;
581 
582 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
583 		return NULL;
584 
585 	/*
586 	 * If we race get_user_pages_fast() here either we'll see the
587 	 * elevated page count in the iteration and wait, or
588 	 * get_user_pages_fast() will see that the page it took a reference
589 	 * against is no longer mapped in the page tables and bail to the
590 	 * get_user_pages() slow path.  The slow path is protected by
591 	 * pte_lock() and pmd_lock(). New references are not taken without
592 	 * holding those locks, and unmap_mapping_range() will not zero the
593 	 * pte or pmd without holding the respective lock, so we are
594 	 * guaranteed to either see new references or prevent new
595 	 * references from being established.
596 	 */
597 	unmap_mapping_range(mapping, 0, 0, 1);
598 
599 	xas_lock_irq(&xas);
600 	xas_for_each(&xas, entry, ULONG_MAX) {
601 		if (WARN_ON_ONCE(!xa_is_value(entry)))
602 			continue;
603 		if (unlikely(dax_is_locked(entry)))
604 			entry = get_unlocked_entry(&xas);
605 		if (entry)
606 			page = dax_busy_page(entry);
607 		put_unlocked_entry(&xas, entry);
608 		if (page)
609 			break;
610 		if (++scanned % XA_CHECK_SCHED)
611 			continue;
612 
613 		xas_pause(&xas);
614 		xas_unlock_irq(&xas);
615 		cond_resched();
616 		xas_lock_irq(&xas);
617 	}
618 	xas_unlock_irq(&xas);
619 	return page;
620 }
621 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
622 
623 static int __dax_invalidate_entry(struct address_space *mapping,
624 					  pgoff_t index, bool trunc)
625 {
626 	XA_STATE(xas, &mapping->i_pages, index);
627 	int ret = 0;
628 	void *entry;
629 
630 	xas_lock_irq(&xas);
631 	entry = get_unlocked_entry(&xas);
632 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
633 		goto out;
634 	if (!trunc &&
635 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
636 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
637 		goto out;
638 	dax_disassociate_entry(entry, mapping, trunc);
639 	xas_store(&xas, NULL);
640 	mapping->nrexceptional--;
641 	ret = 1;
642 out:
643 	put_unlocked_entry(&xas, entry);
644 	xas_unlock_irq(&xas);
645 	return ret;
646 }
647 
648 /*
649  * Delete DAX entry at @index from @mapping.  Wait for it
650  * to be unlocked before deleting it.
651  */
652 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
653 {
654 	int ret = __dax_invalidate_entry(mapping, index, true);
655 
656 	/*
657 	 * This gets called from truncate / punch_hole path. As such, the caller
658 	 * must hold locks protecting against concurrent modifications of the
659 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
660 	 * caller has seen a DAX entry for this index, we better find it
661 	 * at that index as well...
662 	 */
663 	WARN_ON_ONCE(!ret);
664 	return ret;
665 }
666 
667 /*
668  * Invalidate DAX entry if it is clean.
669  */
670 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
671 				      pgoff_t index)
672 {
673 	return __dax_invalidate_entry(mapping, index, false);
674 }
675 
676 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
677 		sector_t sector, size_t size, struct page *to,
678 		unsigned long vaddr)
679 {
680 	void *vto, *kaddr;
681 	pgoff_t pgoff;
682 	long rc;
683 	int id;
684 
685 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
686 	if (rc)
687 		return rc;
688 
689 	id = dax_read_lock();
690 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
691 	if (rc < 0) {
692 		dax_read_unlock(id);
693 		return rc;
694 	}
695 	vto = kmap_atomic(to);
696 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
697 	kunmap_atomic(vto);
698 	dax_read_unlock(id);
699 	return 0;
700 }
701 
702 /*
703  * By this point grab_mapping_entry() has ensured that we have a locked entry
704  * of the appropriate size so we don't have to worry about downgrading PMDs to
705  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
706  * already in the tree, we will skip the insertion and just dirty the PMD as
707  * appropriate.
708  */
709 static void *dax_insert_entry(struct xa_state *xas,
710 		struct address_space *mapping, struct vm_fault *vmf,
711 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
712 {
713 	void *new_entry = dax_make_entry(pfn, flags);
714 
715 	if (dirty)
716 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
717 
718 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
719 		unsigned long index = xas->xa_index;
720 		/* we are replacing a zero page with block mapping */
721 		if (dax_is_pmd_entry(entry))
722 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
723 					PG_PMD_NR, false);
724 		else /* pte entry */
725 			unmap_mapping_pages(mapping, index, 1, false);
726 	}
727 
728 	xas_reset(xas);
729 	xas_lock_irq(xas);
730 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
731 		dax_disassociate_entry(entry, mapping, false);
732 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
733 	}
734 
735 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
736 		/*
737 		 * Only swap our new entry into the page cache if the current
738 		 * entry is a zero page or an empty entry.  If a normal PTE or
739 		 * PMD entry is already in the cache, we leave it alone.  This
740 		 * means that if we are trying to insert a PTE and the
741 		 * existing entry is a PMD, we will just leave the PMD in the
742 		 * tree and dirty it if necessary.
743 		 */
744 		void *old = dax_lock_entry(xas, new_entry);
745 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
746 					DAX_LOCKED));
747 		entry = new_entry;
748 	} else {
749 		xas_load(xas);	/* Walk the xa_state */
750 	}
751 
752 	if (dirty)
753 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
754 
755 	xas_unlock_irq(xas);
756 	return entry;
757 }
758 
759 static inline
760 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
761 {
762 	unsigned long address;
763 
764 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
765 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
766 	return address;
767 }
768 
769 /* Walk all mappings of a given index of a file and writeprotect them */
770 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
771 		unsigned long pfn)
772 {
773 	struct vm_area_struct *vma;
774 	pte_t pte, *ptep = NULL;
775 	pmd_t *pmdp = NULL;
776 	spinlock_t *ptl;
777 
778 	i_mmap_lock_read(mapping);
779 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
780 		struct mmu_notifier_range range;
781 		unsigned long address;
782 
783 		cond_resched();
784 
785 		if (!(vma->vm_flags & VM_SHARED))
786 			continue;
787 
788 		address = pgoff_address(index, vma);
789 
790 		/*
791 		 * Note because we provide start/end to follow_pte_pmd it will
792 		 * call mmu_notifier_invalidate_range_start() on our behalf
793 		 * before taking any lock.
794 		 */
795 		if (follow_pte_pmd(vma->vm_mm, address, &range,
796 				   &ptep, &pmdp, &ptl))
797 			continue;
798 
799 		/*
800 		 * No need to call mmu_notifier_invalidate_range() as we are
801 		 * downgrading page table protection not changing it to point
802 		 * to a new page.
803 		 *
804 		 * See Documentation/vm/mmu_notifier.rst
805 		 */
806 		if (pmdp) {
807 #ifdef CONFIG_FS_DAX_PMD
808 			pmd_t pmd;
809 
810 			if (pfn != pmd_pfn(*pmdp))
811 				goto unlock_pmd;
812 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
813 				goto unlock_pmd;
814 
815 			flush_cache_page(vma, address, pfn);
816 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
817 			pmd = pmd_wrprotect(pmd);
818 			pmd = pmd_mkclean(pmd);
819 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
820 unlock_pmd:
821 #endif
822 			spin_unlock(ptl);
823 		} else {
824 			if (pfn != pte_pfn(*ptep))
825 				goto unlock_pte;
826 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
827 				goto unlock_pte;
828 
829 			flush_cache_page(vma, address, pfn);
830 			pte = ptep_clear_flush(vma, address, ptep);
831 			pte = pte_wrprotect(pte);
832 			pte = pte_mkclean(pte);
833 			set_pte_at(vma->vm_mm, address, ptep, pte);
834 unlock_pte:
835 			pte_unmap_unlock(ptep, ptl);
836 		}
837 
838 		mmu_notifier_invalidate_range_end(&range);
839 	}
840 	i_mmap_unlock_read(mapping);
841 }
842 
843 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
844 		struct address_space *mapping, void *entry)
845 {
846 	unsigned long pfn;
847 	long ret = 0;
848 	size_t size;
849 
850 	/*
851 	 * A page got tagged dirty in DAX mapping? Something is seriously
852 	 * wrong.
853 	 */
854 	if (WARN_ON(!xa_is_value(entry)))
855 		return -EIO;
856 
857 	if (unlikely(dax_is_locked(entry))) {
858 		void *old_entry = entry;
859 
860 		entry = get_unlocked_entry(xas);
861 
862 		/* Entry got punched out / reallocated? */
863 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
864 			goto put_unlocked;
865 		/*
866 		 * Entry got reallocated elsewhere? No need to writeback.
867 		 * We have to compare pfns as we must not bail out due to
868 		 * difference in lockbit or entry type.
869 		 */
870 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
871 			goto put_unlocked;
872 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
873 					dax_is_zero_entry(entry))) {
874 			ret = -EIO;
875 			goto put_unlocked;
876 		}
877 
878 		/* Another fsync thread may have already done this entry */
879 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
880 			goto put_unlocked;
881 	}
882 
883 	/* Lock the entry to serialize with page faults */
884 	dax_lock_entry(xas, entry);
885 
886 	/*
887 	 * We can clear the tag now but we have to be careful so that concurrent
888 	 * dax_writeback_one() calls for the same index cannot finish before we
889 	 * actually flush the caches. This is achieved as the calls will look
890 	 * at the entry only under the i_pages lock and once they do that
891 	 * they will see the entry locked and wait for it to unlock.
892 	 */
893 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
894 	xas_unlock_irq(xas);
895 
896 	/*
897 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
898 	 * in the middle of a PMD, the 'index' we are given will be aligned to
899 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
900 	 * This allows us to flush for PMD_SIZE and not have to worry about
901 	 * partial PMD writebacks.
902 	 */
903 	pfn = dax_to_pfn(entry);
904 	size = PAGE_SIZE << dax_entry_order(entry);
905 
906 	dax_entry_mkclean(mapping, xas->xa_index, pfn);
907 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
908 	/*
909 	 * After we have flushed the cache, we can clear the dirty tag. There
910 	 * cannot be new dirty data in the pfn after the flush has completed as
911 	 * the pfn mappings are writeprotected and fault waits for mapping
912 	 * entry lock.
913 	 */
914 	xas_reset(xas);
915 	xas_lock_irq(xas);
916 	xas_store(xas, entry);
917 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
918 	dax_wake_entry(xas, entry, false);
919 
920 	trace_dax_writeback_one(mapping->host, xas->xa_index,
921 			size >> PAGE_SHIFT);
922 	return ret;
923 
924  put_unlocked:
925 	put_unlocked_entry(xas, entry);
926 	return ret;
927 }
928 
929 /*
930  * Flush the mapping to the persistent domain within the byte range of [start,
931  * end]. This is required by data integrity operations to ensure file data is
932  * on persistent storage prior to completion of the operation.
933  */
934 int dax_writeback_mapping_range(struct address_space *mapping,
935 		struct block_device *bdev, struct writeback_control *wbc)
936 {
937 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
938 	struct inode *inode = mapping->host;
939 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
940 	struct dax_device *dax_dev;
941 	void *entry;
942 	int ret = 0;
943 	unsigned int scanned = 0;
944 
945 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
946 		return -EIO;
947 
948 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
949 		return 0;
950 
951 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
952 	if (!dax_dev)
953 		return -EIO;
954 
955 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
956 
957 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
958 
959 	xas_lock_irq(&xas);
960 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
962 		if (ret < 0) {
963 			mapping_set_error(mapping, ret);
964 			break;
965 		}
966 		if (++scanned % XA_CHECK_SCHED)
967 			continue;
968 
969 		xas_pause(&xas);
970 		xas_unlock_irq(&xas);
971 		cond_resched();
972 		xas_lock_irq(&xas);
973 	}
974 	xas_unlock_irq(&xas);
975 	put_dax(dax_dev);
976 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
980 
981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
982 {
983 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
984 }
985 
986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
987 			 pfn_t *pfnp)
988 {
989 	const sector_t sector = dax_iomap_sector(iomap, pos);
990 	pgoff_t pgoff;
991 	int id, rc;
992 	long length;
993 
994 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
995 	if (rc)
996 		return rc;
997 	id = dax_read_lock();
998 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
999 				   NULL, pfnp);
1000 	if (length < 0) {
1001 		rc = length;
1002 		goto out;
1003 	}
1004 	rc = -EINVAL;
1005 	if (PFN_PHYS(length) < size)
1006 		goto out;
1007 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1008 		goto out;
1009 	/* For larger pages we need devmap */
1010 	if (length > 1 && !pfn_t_devmap(*pfnp))
1011 		goto out;
1012 	rc = 0;
1013 out:
1014 	dax_read_unlock(id);
1015 	return rc;
1016 }
1017 
1018 /*
1019  * The user has performed a load from a hole in the file.  Allocating a new
1020  * page in the file would cause excessive storage usage for workloads with
1021  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1022  * If this page is ever written to we will re-fault and change the mapping to
1023  * point to real DAX storage instead.
1024  */
1025 static vm_fault_t dax_load_hole(struct xa_state *xas,
1026 		struct address_space *mapping, void **entry,
1027 		struct vm_fault *vmf)
1028 {
1029 	struct inode *inode = mapping->host;
1030 	unsigned long vaddr = vmf->address;
1031 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1032 	vm_fault_t ret;
1033 
1034 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1035 			DAX_ZERO_PAGE, false);
1036 
1037 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1038 	trace_dax_load_hole(inode, vmf, ret);
1039 	return ret;
1040 }
1041 
1042 static bool dax_range_is_aligned(struct block_device *bdev,
1043 				 unsigned int offset, unsigned int length)
1044 {
1045 	unsigned short sector_size = bdev_logical_block_size(bdev);
1046 
1047 	if (!IS_ALIGNED(offset, sector_size))
1048 		return false;
1049 	if (!IS_ALIGNED(length, sector_size))
1050 		return false;
1051 
1052 	return true;
1053 }
1054 
1055 int __dax_zero_page_range(struct block_device *bdev,
1056 		struct dax_device *dax_dev, sector_t sector,
1057 		unsigned int offset, unsigned int size)
1058 {
1059 	if (dax_range_is_aligned(bdev, offset, size)) {
1060 		sector_t start_sector = sector + (offset >> 9);
1061 
1062 		return blkdev_issue_zeroout(bdev, start_sector,
1063 				size >> 9, GFP_NOFS, 0);
1064 	} else {
1065 		pgoff_t pgoff;
1066 		long rc, id;
1067 		void *kaddr;
1068 
1069 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1070 		if (rc)
1071 			return rc;
1072 
1073 		id = dax_read_lock();
1074 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1075 		if (rc < 0) {
1076 			dax_read_unlock(id);
1077 			return rc;
1078 		}
1079 		memset(kaddr + offset, 0, size);
1080 		dax_flush(dax_dev, kaddr + offset, size);
1081 		dax_read_unlock(id);
1082 	}
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1086 
1087 static loff_t
1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1089 		struct iomap *iomap)
1090 {
1091 	struct block_device *bdev = iomap->bdev;
1092 	struct dax_device *dax_dev = iomap->dax_dev;
1093 	struct iov_iter *iter = data;
1094 	loff_t end = pos + length, done = 0;
1095 	ssize_t ret = 0;
1096 	size_t xfer;
1097 	int id;
1098 
1099 	if (iov_iter_rw(iter) == READ) {
1100 		end = min(end, i_size_read(inode));
1101 		if (pos >= end)
1102 			return 0;
1103 
1104 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1105 			return iov_iter_zero(min(length, end - pos), iter);
1106 	}
1107 
1108 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1109 		return -EIO;
1110 
1111 	/*
1112 	 * Write can allocate block for an area which has a hole page mapped
1113 	 * into page tables. We have to tear down these mappings so that data
1114 	 * written by write(2) is visible in mmap.
1115 	 */
1116 	if (iomap->flags & IOMAP_F_NEW) {
1117 		invalidate_inode_pages2_range(inode->i_mapping,
1118 					      pos >> PAGE_SHIFT,
1119 					      (end - 1) >> PAGE_SHIFT);
1120 	}
1121 
1122 	id = dax_read_lock();
1123 	while (pos < end) {
1124 		unsigned offset = pos & (PAGE_SIZE - 1);
1125 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1126 		const sector_t sector = dax_iomap_sector(iomap, pos);
1127 		ssize_t map_len;
1128 		pgoff_t pgoff;
1129 		void *kaddr;
1130 
1131 		if (fatal_signal_pending(current)) {
1132 			ret = -EINTR;
1133 			break;
1134 		}
1135 
1136 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137 		if (ret)
1138 			break;
1139 
1140 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141 				&kaddr, NULL);
1142 		if (map_len < 0) {
1143 			ret = map_len;
1144 			break;
1145 		}
1146 
1147 		map_len = PFN_PHYS(map_len);
1148 		kaddr += offset;
1149 		map_len -= offset;
1150 		if (map_len > end - pos)
1151 			map_len = end - pos;
1152 
1153 		/*
1154 		 * The userspace address for the memory copy has already been
1155 		 * validated via access_ok() in either vfs_read() or
1156 		 * vfs_write(), depending on which operation we are doing.
1157 		 */
1158 		if (iov_iter_rw(iter) == WRITE)
1159 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160 					map_len, iter);
1161 		else
1162 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1163 					map_len, iter);
1164 
1165 		pos += xfer;
1166 		length -= xfer;
1167 		done += xfer;
1168 
1169 		if (xfer == 0)
1170 			ret = -EFAULT;
1171 		if (xfer < map_len)
1172 			break;
1173 	}
1174 	dax_read_unlock(id);
1175 
1176 	return done ? done : ret;
1177 }
1178 
1179 /**
1180  * dax_iomap_rw - Perform I/O to a DAX file
1181  * @iocb:	The control block for this I/O
1182  * @iter:	The addresses to do I/O from or to
1183  * @ops:	iomap ops passed from the file system
1184  *
1185  * This function performs read and write operations to directly mapped
1186  * persistent memory.  The callers needs to take care of read/write exclusion
1187  * and evicting any page cache pages in the region under I/O.
1188  */
1189 ssize_t
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191 		const struct iomap_ops *ops)
1192 {
1193 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1194 	struct inode *inode = mapping->host;
1195 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196 	unsigned flags = 0;
1197 
1198 	if (iov_iter_rw(iter) == WRITE) {
1199 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1200 		flags |= IOMAP_WRITE;
1201 	} else {
1202 		lockdep_assert_held(&inode->i_rwsem);
1203 	}
1204 
1205 	while (iov_iter_count(iter)) {
1206 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207 				iter, dax_iomap_actor);
1208 		if (ret <= 0)
1209 			break;
1210 		pos += ret;
1211 		done += ret;
1212 	}
1213 
1214 	iocb->ki_pos += done;
1215 	return done ? done : ret;
1216 }
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1218 
1219 static vm_fault_t dax_fault_return(int error)
1220 {
1221 	if (error == 0)
1222 		return VM_FAULT_NOPAGE;
1223 	if (error == -ENOMEM)
1224 		return VM_FAULT_OOM;
1225 	return VM_FAULT_SIGBUS;
1226 }
1227 
1228 /*
1229  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1230  * flushed on write-faults (non-cow), but not read-faults.
1231  */
1232 static bool dax_fault_is_synchronous(unsigned long flags,
1233 		struct vm_area_struct *vma, struct iomap *iomap)
1234 {
1235 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1236 		&& (iomap->flags & IOMAP_F_DIRTY);
1237 }
1238 
1239 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1240 			       int *iomap_errp, const struct iomap_ops *ops)
1241 {
1242 	struct vm_area_struct *vma = vmf->vma;
1243 	struct address_space *mapping = vma->vm_file->f_mapping;
1244 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1245 	struct inode *inode = mapping->host;
1246 	unsigned long vaddr = vmf->address;
1247 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1248 	struct iomap iomap = { 0 };
1249 	unsigned flags = IOMAP_FAULT;
1250 	int error, major = 0;
1251 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1252 	bool sync;
1253 	vm_fault_t ret = 0;
1254 	void *entry;
1255 	pfn_t pfn;
1256 
1257 	trace_dax_pte_fault(inode, vmf, ret);
1258 	/*
1259 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1260 	 * to hold locks serializing us with truncate / punch hole so this is
1261 	 * a reliable test.
1262 	 */
1263 	if (pos >= i_size_read(inode)) {
1264 		ret = VM_FAULT_SIGBUS;
1265 		goto out;
1266 	}
1267 
1268 	if (write && !vmf->cow_page)
1269 		flags |= IOMAP_WRITE;
1270 
1271 	entry = grab_mapping_entry(&xas, mapping, 0);
1272 	if (xa_is_internal(entry)) {
1273 		ret = xa_to_internal(entry);
1274 		goto out;
1275 	}
1276 
1277 	/*
1278 	 * It is possible, particularly with mixed reads & writes to private
1279 	 * mappings, that we have raced with a PMD fault that overlaps with
1280 	 * the PTE we need to set up.  If so just return and the fault will be
1281 	 * retried.
1282 	 */
1283 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1284 		ret = VM_FAULT_NOPAGE;
1285 		goto unlock_entry;
1286 	}
1287 
1288 	/*
1289 	 * Note that we don't bother to use iomap_apply here: DAX required
1290 	 * the file system block size to be equal the page size, which means
1291 	 * that we never have to deal with more than a single extent here.
1292 	 */
1293 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1294 	if (iomap_errp)
1295 		*iomap_errp = error;
1296 	if (error) {
1297 		ret = dax_fault_return(error);
1298 		goto unlock_entry;
1299 	}
1300 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1301 		error = -EIO;	/* fs corruption? */
1302 		goto error_finish_iomap;
1303 	}
1304 
1305 	if (vmf->cow_page) {
1306 		sector_t sector = dax_iomap_sector(&iomap, pos);
1307 
1308 		switch (iomap.type) {
1309 		case IOMAP_HOLE:
1310 		case IOMAP_UNWRITTEN:
1311 			clear_user_highpage(vmf->cow_page, vaddr);
1312 			break;
1313 		case IOMAP_MAPPED:
1314 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1315 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1316 			break;
1317 		default:
1318 			WARN_ON_ONCE(1);
1319 			error = -EIO;
1320 			break;
1321 		}
1322 
1323 		if (error)
1324 			goto error_finish_iomap;
1325 
1326 		__SetPageUptodate(vmf->cow_page);
1327 		ret = finish_fault(vmf);
1328 		if (!ret)
1329 			ret = VM_FAULT_DONE_COW;
1330 		goto finish_iomap;
1331 	}
1332 
1333 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1334 
1335 	switch (iomap.type) {
1336 	case IOMAP_MAPPED:
1337 		if (iomap.flags & IOMAP_F_NEW) {
1338 			count_vm_event(PGMAJFAULT);
1339 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1340 			major = VM_FAULT_MAJOR;
1341 		}
1342 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1343 		if (error < 0)
1344 			goto error_finish_iomap;
1345 
1346 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1347 						 0, write && !sync);
1348 
1349 		/*
1350 		 * If we are doing synchronous page fault and inode needs fsync,
1351 		 * we can insert PTE into page tables only after that happens.
1352 		 * Skip insertion for now and return the pfn so that caller can
1353 		 * insert it after fsync is done.
1354 		 */
1355 		if (sync) {
1356 			if (WARN_ON_ONCE(!pfnp)) {
1357 				error = -EIO;
1358 				goto error_finish_iomap;
1359 			}
1360 			*pfnp = pfn;
1361 			ret = VM_FAULT_NEEDDSYNC | major;
1362 			goto finish_iomap;
1363 		}
1364 		trace_dax_insert_mapping(inode, vmf, entry);
1365 		if (write)
1366 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1367 		else
1368 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1369 
1370 		goto finish_iomap;
1371 	case IOMAP_UNWRITTEN:
1372 	case IOMAP_HOLE:
1373 		if (!write) {
1374 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1375 			goto finish_iomap;
1376 		}
1377 		/*FALLTHRU*/
1378 	default:
1379 		WARN_ON_ONCE(1);
1380 		error = -EIO;
1381 		break;
1382 	}
1383 
1384  error_finish_iomap:
1385 	ret = dax_fault_return(error);
1386  finish_iomap:
1387 	if (ops->iomap_end) {
1388 		int copied = PAGE_SIZE;
1389 
1390 		if (ret & VM_FAULT_ERROR)
1391 			copied = 0;
1392 		/*
1393 		 * The fault is done by now and there's no way back (other
1394 		 * thread may be already happily using PTE we have installed).
1395 		 * Just ignore error from ->iomap_end since we cannot do much
1396 		 * with it.
1397 		 */
1398 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1399 	}
1400  unlock_entry:
1401 	dax_unlock_entry(&xas, entry);
1402  out:
1403 	trace_dax_pte_fault_done(inode, vmf, ret);
1404 	return ret | major;
1405 }
1406 
1407 #ifdef CONFIG_FS_DAX_PMD
1408 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1409 		struct iomap *iomap, void **entry)
1410 {
1411 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1412 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1413 	struct inode *inode = mapping->host;
1414 	struct page *zero_page;
1415 	spinlock_t *ptl;
1416 	pmd_t pmd_entry;
1417 	pfn_t pfn;
1418 
1419 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1420 
1421 	if (unlikely(!zero_page))
1422 		goto fallback;
1423 
1424 	pfn = page_to_pfn_t(zero_page);
1425 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1426 			DAX_PMD | DAX_ZERO_PAGE, false);
1427 
1428 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1429 	if (!pmd_none(*(vmf->pmd))) {
1430 		spin_unlock(ptl);
1431 		goto fallback;
1432 	}
1433 
1434 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1435 	pmd_entry = pmd_mkhuge(pmd_entry);
1436 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1437 	spin_unlock(ptl);
1438 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1439 	return VM_FAULT_NOPAGE;
1440 
1441 fallback:
1442 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1443 	return VM_FAULT_FALLBACK;
1444 }
1445 
1446 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447 			       const struct iomap_ops *ops)
1448 {
1449 	struct vm_area_struct *vma = vmf->vma;
1450 	struct address_space *mapping = vma->vm_file->f_mapping;
1451 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1452 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1453 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1454 	bool sync;
1455 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1456 	struct inode *inode = mapping->host;
1457 	vm_fault_t result = VM_FAULT_FALLBACK;
1458 	struct iomap iomap = { 0 };
1459 	pgoff_t max_pgoff;
1460 	void *entry;
1461 	loff_t pos;
1462 	int error;
1463 	pfn_t pfn;
1464 
1465 	/*
1466 	 * Check whether offset isn't beyond end of file now. Caller is
1467 	 * supposed to hold locks serializing us with truncate / punch hole so
1468 	 * this is a reliable test.
1469 	 */
1470 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1471 
1472 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1473 
1474 	/*
1475 	 * Make sure that the faulting address's PMD offset (color) matches
1476 	 * the PMD offset from the start of the file.  This is necessary so
1477 	 * that a PMD range in the page table overlaps exactly with a PMD
1478 	 * range in the page cache.
1479 	 */
1480 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1481 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1482 		goto fallback;
1483 
1484 	/* Fall back to PTEs if we're going to COW */
1485 	if (write && !(vma->vm_flags & VM_SHARED))
1486 		goto fallback;
1487 
1488 	/* If the PMD would extend outside the VMA */
1489 	if (pmd_addr < vma->vm_start)
1490 		goto fallback;
1491 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1492 		goto fallback;
1493 
1494 	if (xas.xa_index >= max_pgoff) {
1495 		result = VM_FAULT_SIGBUS;
1496 		goto out;
1497 	}
1498 
1499 	/* If the PMD would extend beyond the file size */
1500 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1501 		goto fallback;
1502 
1503 	/*
1504 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1505 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1506 	 * entry is already in the array, for instance), it will return
1507 	 * VM_FAULT_FALLBACK.
1508 	 */
1509 	entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1510 	if (xa_is_internal(entry)) {
1511 		result = xa_to_internal(entry);
1512 		goto fallback;
1513 	}
1514 
1515 	/*
1516 	 * It is possible, particularly with mixed reads & writes to private
1517 	 * mappings, that we have raced with a PTE fault that overlaps with
1518 	 * the PMD we need to set up.  If so just return and the fault will be
1519 	 * retried.
1520 	 */
1521 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1522 			!pmd_devmap(*vmf->pmd)) {
1523 		result = 0;
1524 		goto unlock_entry;
1525 	}
1526 
1527 	/*
1528 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1529 	 * setting up a mapping, so really we're using iomap_begin() as a way
1530 	 * to look up our filesystem block.
1531 	 */
1532 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1533 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1534 	if (error)
1535 		goto unlock_entry;
1536 
1537 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1538 		goto finish_iomap;
1539 
1540 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1541 
1542 	switch (iomap.type) {
1543 	case IOMAP_MAPPED:
1544 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1545 		if (error < 0)
1546 			goto finish_iomap;
1547 
1548 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1549 						DAX_PMD, write && !sync);
1550 
1551 		/*
1552 		 * If we are doing synchronous page fault and inode needs fsync,
1553 		 * we can insert PMD into page tables only after that happens.
1554 		 * Skip insertion for now and return the pfn so that caller can
1555 		 * insert it after fsync is done.
1556 		 */
1557 		if (sync) {
1558 			if (WARN_ON_ONCE(!pfnp))
1559 				goto finish_iomap;
1560 			*pfnp = pfn;
1561 			result = VM_FAULT_NEEDDSYNC;
1562 			goto finish_iomap;
1563 		}
1564 
1565 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1566 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1567 					    write);
1568 		break;
1569 	case IOMAP_UNWRITTEN:
1570 	case IOMAP_HOLE:
1571 		if (WARN_ON_ONCE(write))
1572 			break;
1573 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1574 		break;
1575 	default:
1576 		WARN_ON_ONCE(1);
1577 		break;
1578 	}
1579 
1580  finish_iomap:
1581 	if (ops->iomap_end) {
1582 		int copied = PMD_SIZE;
1583 
1584 		if (result == VM_FAULT_FALLBACK)
1585 			copied = 0;
1586 		/*
1587 		 * The fault is done by now and there's no way back (other
1588 		 * thread may be already happily using PMD we have installed).
1589 		 * Just ignore error from ->iomap_end since we cannot do much
1590 		 * with it.
1591 		 */
1592 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1593 				&iomap);
1594 	}
1595  unlock_entry:
1596 	dax_unlock_entry(&xas, entry);
1597  fallback:
1598 	if (result == VM_FAULT_FALLBACK) {
1599 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1600 		count_vm_event(THP_FAULT_FALLBACK);
1601 	}
1602 out:
1603 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1604 	return result;
1605 }
1606 #else
1607 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1608 			       const struct iomap_ops *ops)
1609 {
1610 	return VM_FAULT_FALLBACK;
1611 }
1612 #endif /* CONFIG_FS_DAX_PMD */
1613 
1614 /**
1615  * dax_iomap_fault - handle a page fault on a DAX file
1616  * @vmf: The description of the fault
1617  * @pe_size: Size of the page to fault in
1618  * @pfnp: PFN to insert for synchronous faults if fsync is required
1619  * @iomap_errp: Storage for detailed error code in case of error
1620  * @ops: Iomap ops passed from the file system
1621  *
1622  * When a page fault occurs, filesystems may call this helper in
1623  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1624  * has done all the necessary locking for page fault to proceed
1625  * successfully.
1626  */
1627 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1628 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1629 {
1630 	switch (pe_size) {
1631 	case PE_SIZE_PTE:
1632 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1633 	case PE_SIZE_PMD:
1634 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1635 	default:
1636 		return VM_FAULT_FALLBACK;
1637 	}
1638 }
1639 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1640 
1641 /*
1642  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1643  * @vmf: The description of the fault
1644  * @pfn: PFN to insert
1645  * @order: Order of entry to insert.
1646  *
1647  * This function inserts a writeable PTE or PMD entry into the page tables
1648  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1649  */
1650 static vm_fault_t
1651 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1652 {
1653 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1654 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1655 	void *entry;
1656 	vm_fault_t ret;
1657 
1658 	xas_lock_irq(&xas);
1659 	entry = get_unlocked_entry(&xas);
1660 	/* Did we race with someone splitting entry or so? */
1661 	if (!entry ||
1662 	    (order == 0 && !dax_is_pte_entry(entry)) ||
1663 	    (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1664 		put_unlocked_entry(&xas, entry);
1665 		xas_unlock_irq(&xas);
1666 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1667 						      VM_FAULT_NOPAGE);
1668 		return VM_FAULT_NOPAGE;
1669 	}
1670 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1671 	dax_lock_entry(&xas, entry);
1672 	xas_unlock_irq(&xas);
1673 	if (order == 0)
1674 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1675 #ifdef CONFIG_FS_DAX_PMD
1676 	else if (order == PMD_ORDER)
1677 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1678 			pfn, true);
1679 #endif
1680 	else
1681 		ret = VM_FAULT_FALLBACK;
1682 	dax_unlock_entry(&xas, entry);
1683 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1684 	return ret;
1685 }
1686 
1687 /**
1688  * dax_finish_sync_fault - finish synchronous page fault
1689  * @vmf: The description of the fault
1690  * @pe_size: Size of entry to be inserted
1691  * @pfn: PFN to insert
1692  *
1693  * This function ensures that the file range touched by the page fault is
1694  * stored persistently on the media and handles inserting of appropriate page
1695  * table entry.
1696  */
1697 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1698 		enum page_entry_size pe_size, pfn_t pfn)
1699 {
1700 	int err;
1701 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1702 	unsigned int order = pe_order(pe_size);
1703 	size_t len = PAGE_SIZE << order;
1704 
1705 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1706 	if (err)
1707 		return VM_FAULT_SIGBUS;
1708 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1709 }
1710 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1711