xref: /openbmc/linux/fs/dax.c (revision c6fbbf1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <asm/pgalloc.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/fs_dax.h>
31 
32 static inline unsigned int pe_order(enum page_entry_size pe_size)
33 {
34 	if (pe_size == PE_SIZE_PTE)
35 		return PAGE_SHIFT - PAGE_SHIFT;
36 	if (pe_size == PE_SIZE_PMD)
37 		return PMD_SHIFT - PAGE_SHIFT;
38 	if (pe_size == PE_SIZE_PUD)
39 		return PUD_SHIFT - PAGE_SHIFT;
40 	return ~0;
41 }
42 
43 /* We choose 4096 entries - same as per-zone page wait tables */
44 #define DAX_WAIT_TABLE_BITS 12
45 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
46 
47 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
48 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
49 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
50 
51 /* The order of a PMD entry */
52 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
53 
54 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
55 
56 static int __init init_dax_wait_table(void)
57 {
58 	int i;
59 
60 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
61 		init_waitqueue_head(wait_table + i);
62 	return 0;
63 }
64 fs_initcall(init_dax_wait_table);
65 
66 /*
67  * DAX pagecache entries use XArray value entries so they can't be mistaken
68  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
69  * and two more to tell us if the entry is a zero page or an empty entry that
70  * is just used for locking.  In total four special bits.
71  *
72  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
73  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
74  * block allocation.
75  */
76 #define DAX_SHIFT	(4)
77 #define DAX_LOCKED	(1UL << 0)
78 #define DAX_PMD		(1UL << 1)
79 #define DAX_ZERO_PAGE	(1UL << 2)
80 #define DAX_EMPTY	(1UL << 3)
81 
82 static unsigned long dax_to_pfn(void *entry)
83 {
84 	return xa_to_value(entry) >> DAX_SHIFT;
85 }
86 
87 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
88 {
89 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
90 }
91 
92 static bool dax_is_locked(void *entry)
93 {
94 	return xa_to_value(entry) & DAX_LOCKED;
95 }
96 
97 static unsigned int dax_entry_order(void *entry)
98 {
99 	if (xa_to_value(entry) & DAX_PMD)
100 		return PMD_ORDER;
101 	return 0;
102 }
103 
104 static unsigned long dax_is_pmd_entry(void *entry)
105 {
106 	return xa_to_value(entry) & DAX_PMD;
107 }
108 
109 static bool dax_is_pte_entry(void *entry)
110 {
111 	return !(xa_to_value(entry) & DAX_PMD);
112 }
113 
114 static int dax_is_zero_entry(void *entry)
115 {
116 	return xa_to_value(entry) & DAX_ZERO_PAGE;
117 }
118 
119 static int dax_is_empty_entry(void *entry)
120 {
121 	return xa_to_value(entry) & DAX_EMPTY;
122 }
123 
124 /*
125  * true if the entry that was found is of a smaller order than the entry
126  * we were looking for
127  */
128 static bool dax_is_conflict(void *entry)
129 {
130 	return entry == XA_RETRY_ENTRY;
131 }
132 
133 /*
134  * DAX page cache entry locking
135  */
136 struct exceptional_entry_key {
137 	struct xarray *xa;
138 	pgoff_t entry_start;
139 };
140 
141 struct wait_exceptional_entry_queue {
142 	wait_queue_entry_t wait;
143 	struct exceptional_entry_key key;
144 };
145 
146 /**
147  * enum dax_wake_mode: waitqueue wakeup behaviour
148  * @WAKE_ALL: wake all waiters in the waitqueue
149  * @WAKE_NEXT: wake only the first waiter in the waitqueue
150  */
151 enum dax_wake_mode {
152 	WAKE_ALL,
153 	WAKE_NEXT,
154 };
155 
156 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
157 		void *entry, struct exceptional_entry_key *key)
158 {
159 	unsigned long hash;
160 	unsigned long index = xas->xa_index;
161 
162 	/*
163 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
164 	 * queue to the start of that PMD.  This ensures that all offsets in
165 	 * the range covered by the PMD map to the same bit lock.
166 	 */
167 	if (dax_is_pmd_entry(entry))
168 		index &= ~PG_PMD_COLOUR;
169 	key->xa = xas->xa;
170 	key->entry_start = index;
171 
172 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
173 	return wait_table + hash;
174 }
175 
176 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
177 		unsigned int mode, int sync, void *keyp)
178 {
179 	struct exceptional_entry_key *key = keyp;
180 	struct wait_exceptional_entry_queue *ewait =
181 		container_of(wait, struct wait_exceptional_entry_queue, wait);
182 
183 	if (key->xa != ewait->key.xa ||
184 	    key->entry_start != ewait->key.entry_start)
185 		return 0;
186 	return autoremove_wake_function(wait, mode, sync, NULL);
187 }
188 
189 /*
190  * @entry may no longer be the entry at the index in the mapping.
191  * The important information it's conveying is whether the entry at
192  * this index used to be a PMD entry.
193  */
194 static void dax_wake_entry(struct xa_state *xas, void *entry,
195 			   enum dax_wake_mode mode)
196 {
197 	struct exceptional_entry_key key;
198 	wait_queue_head_t *wq;
199 
200 	wq = dax_entry_waitqueue(xas, entry, &key);
201 
202 	/*
203 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
204 	 * under the i_pages lock, ditto for entry handling in our callers.
205 	 * So at this point all tasks that could have seen our entry locked
206 	 * must be in the waitqueue and the following check will see them.
207 	 */
208 	if (waitqueue_active(wq))
209 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
210 }
211 
212 /*
213  * Look up entry in page cache, wait for it to become unlocked if it
214  * is a DAX entry and return it.  The caller must subsequently call
215  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
216  * if it did.  The entry returned may have a larger order than @order.
217  * If @order is larger than the order of the entry found in i_pages, this
218  * function returns a dax_is_conflict entry.
219  *
220  * Must be called with the i_pages lock held.
221  */
222 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
223 {
224 	void *entry;
225 	struct wait_exceptional_entry_queue ewait;
226 	wait_queue_head_t *wq;
227 
228 	init_wait(&ewait.wait);
229 	ewait.wait.func = wake_exceptional_entry_func;
230 
231 	for (;;) {
232 		entry = xas_find_conflict(xas);
233 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
234 			return entry;
235 		if (dax_entry_order(entry) < order)
236 			return XA_RETRY_ENTRY;
237 		if (!dax_is_locked(entry))
238 			return entry;
239 
240 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
241 		prepare_to_wait_exclusive(wq, &ewait.wait,
242 					  TASK_UNINTERRUPTIBLE);
243 		xas_unlock_irq(xas);
244 		xas_reset(xas);
245 		schedule();
246 		finish_wait(wq, &ewait.wait);
247 		xas_lock_irq(xas);
248 	}
249 }
250 
251 /*
252  * The only thing keeping the address space around is the i_pages lock
253  * (it's cycled in clear_inode() after removing the entries from i_pages)
254  * After we call xas_unlock_irq(), we cannot touch xas->xa.
255  */
256 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
257 {
258 	struct wait_exceptional_entry_queue ewait;
259 	wait_queue_head_t *wq;
260 
261 	init_wait(&ewait.wait);
262 	ewait.wait.func = wake_exceptional_entry_func;
263 
264 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
265 	/*
266 	 * Unlike get_unlocked_entry() there is no guarantee that this
267 	 * path ever successfully retrieves an unlocked entry before an
268 	 * inode dies. Perform a non-exclusive wait in case this path
269 	 * never successfully performs its own wake up.
270 	 */
271 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
272 	xas_unlock_irq(xas);
273 	schedule();
274 	finish_wait(wq, &ewait.wait);
275 }
276 
277 static void put_unlocked_entry(struct xa_state *xas, void *entry,
278 			       enum dax_wake_mode mode)
279 {
280 	if (entry && !dax_is_conflict(entry))
281 		dax_wake_entry(xas, entry, mode);
282 }
283 
284 /*
285  * We used the xa_state to get the entry, but then we locked the entry and
286  * dropped the xa_lock, so we know the xa_state is stale and must be reset
287  * before use.
288  */
289 static void dax_unlock_entry(struct xa_state *xas, void *entry)
290 {
291 	void *old;
292 
293 	BUG_ON(dax_is_locked(entry));
294 	xas_reset(xas);
295 	xas_lock_irq(xas);
296 	old = xas_store(xas, entry);
297 	xas_unlock_irq(xas);
298 	BUG_ON(!dax_is_locked(old));
299 	dax_wake_entry(xas, entry, WAKE_NEXT);
300 }
301 
302 /*
303  * Return: The entry stored at this location before it was locked.
304  */
305 static void *dax_lock_entry(struct xa_state *xas, void *entry)
306 {
307 	unsigned long v = xa_to_value(entry);
308 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
309 }
310 
311 static unsigned long dax_entry_size(void *entry)
312 {
313 	if (dax_is_zero_entry(entry))
314 		return 0;
315 	else if (dax_is_empty_entry(entry))
316 		return 0;
317 	else if (dax_is_pmd_entry(entry))
318 		return PMD_SIZE;
319 	else
320 		return PAGE_SIZE;
321 }
322 
323 static unsigned long dax_end_pfn(void *entry)
324 {
325 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
326 }
327 
328 /*
329  * Iterate through all mapped pfns represented by an entry, i.e. skip
330  * 'empty' and 'zero' entries.
331  */
332 #define for_each_mapped_pfn(entry, pfn) \
333 	for (pfn = dax_to_pfn(entry); \
334 			pfn < dax_end_pfn(entry); pfn++)
335 
336 /*
337  * TODO: for reflink+dax we need a way to associate a single page with
338  * multiple address_space instances at different linear_page_index()
339  * offsets.
340  */
341 static void dax_associate_entry(void *entry, struct address_space *mapping,
342 		struct vm_area_struct *vma, unsigned long address)
343 {
344 	unsigned long size = dax_entry_size(entry), pfn, index;
345 	int i = 0;
346 
347 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
348 		return;
349 
350 	index = linear_page_index(vma, address & ~(size - 1));
351 	for_each_mapped_pfn(entry, pfn) {
352 		struct page *page = pfn_to_page(pfn);
353 
354 		WARN_ON_ONCE(page->mapping);
355 		page->mapping = mapping;
356 		page->index = index + i++;
357 	}
358 }
359 
360 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
361 		bool trunc)
362 {
363 	unsigned long pfn;
364 
365 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
366 		return;
367 
368 	for_each_mapped_pfn(entry, pfn) {
369 		struct page *page = pfn_to_page(pfn);
370 
371 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
372 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
373 		page->mapping = NULL;
374 		page->index = 0;
375 	}
376 }
377 
378 static struct page *dax_busy_page(void *entry)
379 {
380 	unsigned long pfn;
381 
382 	for_each_mapped_pfn(entry, pfn) {
383 		struct page *page = pfn_to_page(pfn);
384 
385 		if (page_ref_count(page) > 1)
386 			return page;
387 	}
388 	return NULL;
389 }
390 
391 /*
392  * dax_lock_page - Lock the DAX entry corresponding to a page
393  * @page: The page whose entry we want to lock
394  *
395  * Context: Process context.
396  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
397  * not be locked.
398  */
399 dax_entry_t dax_lock_page(struct page *page)
400 {
401 	XA_STATE(xas, NULL, 0);
402 	void *entry;
403 
404 	/* Ensure page->mapping isn't freed while we look at it */
405 	rcu_read_lock();
406 	for (;;) {
407 		struct address_space *mapping = READ_ONCE(page->mapping);
408 
409 		entry = NULL;
410 		if (!mapping || !dax_mapping(mapping))
411 			break;
412 
413 		/*
414 		 * In the device-dax case there's no need to lock, a
415 		 * struct dev_pagemap pin is sufficient to keep the
416 		 * inode alive, and we assume we have dev_pagemap pin
417 		 * otherwise we would not have a valid pfn_to_page()
418 		 * translation.
419 		 */
420 		entry = (void *)~0UL;
421 		if (S_ISCHR(mapping->host->i_mode))
422 			break;
423 
424 		xas.xa = &mapping->i_pages;
425 		xas_lock_irq(&xas);
426 		if (mapping != page->mapping) {
427 			xas_unlock_irq(&xas);
428 			continue;
429 		}
430 		xas_set(&xas, page->index);
431 		entry = xas_load(&xas);
432 		if (dax_is_locked(entry)) {
433 			rcu_read_unlock();
434 			wait_entry_unlocked(&xas, entry);
435 			rcu_read_lock();
436 			continue;
437 		}
438 		dax_lock_entry(&xas, entry);
439 		xas_unlock_irq(&xas);
440 		break;
441 	}
442 	rcu_read_unlock();
443 	return (dax_entry_t)entry;
444 }
445 
446 void dax_unlock_page(struct page *page, dax_entry_t cookie)
447 {
448 	struct address_space *mapping = page->mapping;
449 	XA_STATE(xas, &mapping->i_pages, page->index);
450 
451 	if (S_ISCHR(mapping->host->i_mode))
452 		return;
453 
454 	dax_unlock_entry(&xas, (void *)cookie);
455 }
456 
457 /*
458  * Find page cache entry at given index. If it is a DAX entry, return it
459  * with the entry locked. If the page cache doesn't contain an entry at
460  * that index, add a locked empty entry.
461  *
462  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
463  * either return that locked entry or will return VM_FAULT_FALLBACK.
464  * This will happen if there are any PTE entries within the PMD range
465  * that we are requesting.
466  *
467  * We always favor PTE entries over PMD entries. There isn't a flow where we
468  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
469  * insertion will fail if it finds any PTE entries already in the tree, and a
470  * PTE insertion will cause an existing PMD entry to be unmapped and
471  * downgraded to PTE entries.  This happens for both PMD zero pages as
472  * well as PMD empty entries.
473  *
474  * The exception to this downgrade path is for PMD entries that have
475  * real storage backing them.  We will leave these real PMD entries in
476  * the tree, and PTE writes will simply dirty the entire PMD entry.
477  *
478  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
479  * persistent memory the benefit is doubtful. We can add that later if we can
480  * show it helps.
481  *
482  * On error, this function does not return an ERR_PTR.  Instead it returns
483  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
484  * overlap with xarray value entries.
485  */
486 static void *grab_mapping_entry(struct xa_state *xas,
487 		struct address_space *mapping, unsigned int order)
488 {
489 	unsigned long index = xas->xa_index;
490 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
491 	void *entry;
492 
493 retry:
494 	pmd_downgrade = false;
495 	xas_lock_irq(xas);
496 	entry = get_unlocked_entry(xas, order);
497 
498 	if (entry) {
499 		if (dax_is_conflict(entry))
500 			goto fallback;
501 		if (!xa_is_value(entry)) {
502 			xas_set_err(xas, -EIO);
503 			goto out_unlock;
504 		}
505 
506 		if (order == 0) {
507 			if (dax_is_pmd_entry(entry) &&
508 			    (dax_is_zero_entry(entry) ||
509 			     dax_is_empty_entry(entry))) {
510 				pmd_downgrade = true;
511 			}
512 		}
513 	}
514 
515 	if (pmd_downgrade) {
516 		/*
517 		 * Make sure 'entry' remains valid while we drop
518 		 * the i_pages lock.
519 		 */
520 		dax_lock_entry(xas, entry);
521 
522 		/*
523 		 * Besides huge zero pages the only other thing that gets
524 		 * downgraded are empty entries which don't need to be
525 		 * unmapped.
526 		 */
527 		if (dax_is_zero_entry(entry)) {
528 			xas_unlock_irq(xas);
529 			unmap_mapping_pages(mapping,
530 					xas->xa_index & ~PG_PMD_COLOUR,
531 					PG_PMD_NR, false);
532 			xas_reset(xas);
533 			xas_lock_irq(xas);
534 		}
535 
536 		dax_disassociate_entry(entry, mapping, false);
537 		xas_store(xas, NULL);	/* undo the PMD join */
538 		dax_wake_entry(xas, entry, WAKE_ALL);
539 		mapping->nrpages -= PG_PMD_NR;
540 		entry = NULL;
541 		xas_set(xas, index);
542 	}
543 
544 	if (entry) {
545 		dax_lock_entry(xas, entry);
546 	} else {
547 		unsigned long flags = DAX_EMPTY;
548 
549 		if (order > 0)
550 			flags |= DAX_PMD;
551 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
552 		dax_lock_entry(xas, entry);
553 		if (xas_error(xas))
554 			goto out_unlock;
555 		mapping->nrpages += 1UL << order;
556 	}
557 
558 out_unlock:
559 	xas_unlock_irq(xas);
560 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
561 		goto retry;
562 	if (xas->xa_node == XA_ERROR(-ENOMEM))
563 		return xa_mk_internal(VM_FAULT_OOM);
564 	if (xas_error(xas))
565 		return xa_mk_internal(VM_FAULT_SIGBUS);
566 	return entry;
567 fallback:
568 	xas_unlock_irq(xas);
569 	return xa_mk_internal(VM_FAULT_FALLBACK);
570 }
571 
572 /**
573  * dax_layout_busy_page_range - find first pinned page in @mapping
574  * @mapping: address space to scan for a page with ref count > 1
575  * @start: Starting offset. Page containing 'start' is included.
576  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
577  *       pages from 'start' till the end of file are included.
578  *
579  * DAX requires ZONE_DEVICE mapped pages. These pages are never
580  * 'onlined' to the page allocator so they are considered idle when
581  * page->count == 1. A filesystem uses this interface to determine if
582  * any page in the mapping is busy, i.e. for DMA, or other
583  * get_user_pages() usages.
584  *
585  * It is expected that the filesystem is holding locks to block the
586  * establishment of new mappings in this address_space. I.e. it expects
587  * to be able to run unmap_mapping_range() and subsequently not race
588  * mapping_mapped() becoming true.
589  */
590 struct page *dax_layout_busy_page_range(struct address_space *mapping,
591 					loff_t start, loff_t end)
592 {
593 	void *entry;
594 	unsigned int scanned = 0;
595 	struct page *page = NULL;
596 	pgoff_t start_idx = start >> PAGE_SHIFT;
597 	pgoff_t end_idx;
598 	XA_STATE(xas, &mapping->i_pages, start_idx);
599 
600 	/*
601 	 * In the 'limited' case get_user_pages() for dax is disabled.
602 	 */
603 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
604 		return NULL;
605 
606 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
607 		return NULL;
608 
609 	/* If end == LLONG_MAX, all pages from start to till end of file */
610 	if (end == LLONG_MAX)
611 		end_idx = ULONG_MAX;
612 	else
613 		end_idx = end >> PAGE_SHIFT;
614 	/*
615 	 * If we race get_user_pages_fast() here either we'll see the
616 	 * elevated page count in the iteration and wait, or
617 	 * get_user_pages_fast() will see that the page it took a reference
618 	 * against is no longer mapped in the page tables and bail to the
619 	 * get_user_pages() slow path.  The slow path is protected by
620 	 * pte_lock() and pmd_lock(). New references are not taken without
621 	 * holding those locks, and unmap_mapping_pages() will not zero the
622 	 * pte or pmd without holding the respective lock, so we are
623 	 * guaranteed to either see new references or prevent new
624 	 * references from being established.
625 	 */
626 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
627 
628 	xas_lock_irq(&xas);
629 	xas_for_each(&xas, entry, end_idx) {
630 		if (WARN_ON_ONCE(!xa_is_value(entry)))
631 			continue;
632 		if (unlikely(dax_is_locked(entry)))
633 			entry = get_unlocked_entry(&xas, 0);
634 		if (entry)
635 			page = dax_busy_page(entry);
636 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
637 		if (page)
638 			break;
639 		if (++scanned % XA_CHECK_SCHED)
640 			continue;
641 
642 		xas_pause(&xas);
643 		xas_unlock_irq(&xas);
644 		cond_resched();
645 		xas_lock_irq(&xas);
646 	}
647 	xas_unlock_irq(&xas);
648 	return page;
649 }
650 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
651 
652 struct page *dax_layout_busy_page(struct address_space *mapping)
653 {
654 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
655 }
656 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
657 
658 static int __dax_invalidate_entry(struct address_space *mapping,
659 					  pgoff_t index, bool trunc)
660 {
661 	XA_STATE(xas, &mapping->i_pages, index);
662 	int ret = 0;
663 	void *entry;
664 
665 	xas_lock_irq(&xas);
666 	entry = get_unlocked_entry(&xas, 0);
667 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
668 		goto out;
669 	if (!trunc &&
670 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
671 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
672 		goto out;
673 	dax_disassociate_entry(entry, mapping, trunc);
674 	xas_store(&xas, NULL);
675 	mapping->nrpages -= 1UL << dax_entry_order(entry);
676 	ret = 1;
677 out:
678 	put_unlocked_entry(&xas, entry, WAKE_ALL);
679 	xas_unlock_irq(&xas);
680 	return ret;
681 }
682 
683 /*
684  * Delete DAX entry at @index from @mapping.  Wait for it
685  * to be unlocked before deleting it.
686  */
687 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
688 {
689 	int ret = __dax_invalidate_entry(mapping, index, true);
690 
691 	/*
692 	 * This gets called from truncate / punch_hole path. As such, the caller
693 	 * must hold locks protecting against concurrent modifications of the
694 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
695 	 * caller has seen a DAX entry for this index, we better find it
696 	 * at that index as well...
697 	 */
698 	WARN_ON_ONCE(!ret);
699 	return ret;
700 }
701 
702 /*
703  * Invalidate DAX entry if it is clean.
704  */
705 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
706 				      pgoff_t index)
707 {
708 	return __dax_invalidate_entry(mapping, index, false);
709 }
710 
711 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
712 {
713 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
714 }
715 
716 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
717 {
718 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
719 	void *vto, *kaddr;
720 	long rc;
721 	int id;
722 
723 	id = dax_read_lock();
724 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL);
725 	if (rc < 0) {
726 		dax_read_unlock(id);
727 		return rc;
728 	}
729 	vto = kmap_atomic(vmf->cow_page);
730 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
731 	kunmap_atomic(vto);
732 	dax_read_unlock(id);
733 	return 0;
734 }
735 
736 /*
737  * By this point grab_mapping_entry() has ensured that we have a locked entry
738  * of the appropriate size so we don't have to worry about downgrading PMDs to
739  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
740  * already in the tree, we will skip the insertion and just dirty the PMD as
741  * appropriate.
742  */
743 static void *dax_insert_entry(struct xa_state *xas,
744 		struct address_space *mapping, struct vm_fault *vmf,
745 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
746 {
747 	void *new_entry = dax_make_entry(pfn, flags);
748 
749 	if (dirty)
750 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
751 
752 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
753 		unsigned long index = xas->xa_index;
754 		/* we are replacing a zero page with block mapping */
755 		if (dax_is_pmd_entry(entry))
756 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
757 					PG_PMD_NR, false);
758 		else /* pte entry */
759 			unmap_mapping_pages(mapping, index, 1, false);
760 	}
761 
762 	xas_reset(xas);
763 	xas_lock_irq(xas);
764 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
765 		void *old;
766 
767 		dax_disassociate_entry(entry, mapping, false);
768 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
769 		/*
770 		 * Only swap our new entry into the page cache if the current
771 		 * entry is a zero page or an empty entry.  If a normal PTE or
772 		 * PMD entry is already in the cache, we leave it alone.  This
773 		 * means that if we are trying to insert a PTE and the
774 		 * existing entry is a PMD, we will just leave the PMD in the
775 		 * tree and dirty it if necessary.
776 		 */
777 		old = dax_lock_entry(xas, new_entry);
778 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
779 					DAX_LOCKED));
780 		entry = new_entry;
781 	} else {
782 		xas_load(xas);	/* Walk the xa_state */
783 	}
784 
785 	if (dirty)
786 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
787 
788 	xas_unlock_irq(xas);
789 	return entry;
790 }
791 
792 static inline
793 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
794 {
795 	unsigned long address;
796 
797 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
798 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
799 	return address;
800 }
801 
802 /* Walk all mappings of a given index of a file and writeprotect them */
803 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
804 		unsigned long pfn)
805 {
806 	struct vm_area_struct *vma;
807 	pte_t pte, *ptep = NULL;
808 	pmd_t *pmdp = NULL;
809 	spinlock_t *ptl;
810 
811 	i_mmap_lock_read(mapping);
812 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
813 		struct mmu_notifier_range range;
814 		unsigned long address;
815 
816 		cond_resched();
817 
818 		if (!(vma->vm_flags & VM_SHARED))
819 			continue;
820 
821 		address = pgoff_address(index, vma);
822 
823 		/*
824 		 * follow_invalidate_pte() will use the range to call
825 		 * mmu_notifier_invalidate_range_start() on our behalf before
826 		 * taking any lock.
827 		 */
828 		if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
829 					  &pmdp, &ptl))
830 			continue;
831 
832 		/*
833 		 * No need to call mmu_notifier_invalidate_range() as we are
834 		 * downgrading page table protection not changing it to point
835 		 * to a new page.
836 		 *
837 		 * See Documentation/vm/mmu_notifier.rst
838 		 */
839 		if (pmdp) {
840 #ifdef CONFIG_FS_DAX_PMD
841 			pmd_t pmd;
842 
843 			if (pfn != pmd_pfn(*pmdp))
844 				goto unlock_pmd;
845 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
846 				goto unlock_pmd;
847 
848 			flush_cache_page(vma, address, pfn);
849 			pmd = pmdp_invalidate(vma, address, pmdp);
850 			pmd = pmd_wrprotect(pmd);
851 			pmd = pmd_mkclean(pmd);
852 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
853 unlock_pmd:
854 #endif
855 			spin_unlock(ptl);
856 		} else {
857 			if (pfn != pte_pfn(*ptep))
858 				goto unlock_pte;
859 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
860 				goto unlock_pte;
861 
862 			flush_cache_page(vma, address, pfn);
863 			pte = ptep_clear_flush(vma, address, ptep);
864 			pte = pte_wrprotect(pte);
865 			pte = pte_mkclean(pte);
866 			set_pte_at(vma->vm_mm, address, ptep, pte);
867 unlock_pte:
868 			pte_unmap_unlock(ptep, ptl);
869 		}
870 
871 		mmu_notifier_invalidate_range_end(&range);
872 	}
873 	i_mmap_unlock_read(mapping);
874 }
875 
876 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
877 		struct address_space *mapping, void *entry)
878 {
879 	unsigned long pfn, index, count;
880 	long ret = 0;
881 
882 	/*
883 	 * A page got tagged dirty in DAX mapping? Something is seriously
884 	 * wrong.
885 	 */
886 	if (WARN_ON(!xa_is_value(entry)))
887 		return -EIO;
888 
889 	if (unlikely(dax_is_locked(entry))) {
890 		void *old_entry = entry;
891 
892 		entry = get_unlocked_entry(xas, 0);
893 
894 		/* Entry got punched out / reallocated? */
895 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
896 			goto put_unlocked;
897 		/*
898 		 * Entry got reallocated elsewhere? No need to writeback.
899 		 * We have to compare pfns as we must not bail out due to
900 		 * difference in lockbit or entry type.
901 		 */
902 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
903 			goto put_unlocked;
904 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
905 					dax_is_zero_entry(entry))) {
906 			ret = -EIO;
907 			goto put_unlocked;
908 		}
909 
910 		/* Another fsync thread may have already done this entry */
911 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
912 			goto put_unlocked;
913 	}
914 
915 	/* Lock the entry to serialize with page faults */
916 	dax_lock_entry(xas, entry);
917 
918 	/*
919 	 * We can clear the tag now but we have to be careful so that concurrent
920 	 * dax_writeback_one() calls for the same index cannot finish before we
921 	 * actually flush the caches. This is achieved as the calls will look
922 	 * at the entry only under the i_pages lock and once they do that
923 	 * they will see the entry locked and wait for it to unlock.
924 	 */
925 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
926 	xas_unlock_irq(xas);
927 
928 	/*
929 	 * If dax_writeback_mapping_range() was given a wbc->range_start
930 	 * in the middle of a PMD, the 'index' we use needs to be
931 	 * aligned to the start of the PMD.
932 	 * This allows us to flush for PMD_SIZE and not have to worry about
933 	 * partial PMD writebacks.
934 	 */
935 	pfn = dax_to_pfn(entry);
936 	count = 1UL << dax_entry_order(entry);
937 	index = xas->xa_index & ~(count - 1);
938 
939 	dax_entry_mkclean(mapping, index, pfn);
940 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
941 	/*
942 	 * After we have flushed the cache, we can clear the dirty tag. There
943 	 * cannot be new dirty data in the pfn after the flush has completed as
944 	 * the pfn mappings are writeprotected and fault waits for mapping
945 	 * entry lock.
946 	 */
947 	xas_reset(xas);
948 	xas_lock_irq(xas);
949 	xas_store(xas, entry);
950 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
951 	dax_wake_entry(xas, entry, WAKE_NEXT);
952 
953 	trace_dax_writeback_one(mapping->host, index, count);
954 	return ret;
955 
956  put_unlocked:
957 	put_unlocked_entry(xas, entry, WAKE_NEXT);
958 	return ret;
959 }
960 
961 /*
962  * Flush the mapping to the persistent domain within the byte range of [start,
963  * end]. This is required by data integrity operations to ensure file data is
964  * on persistent storage prior to completion of the operation.
965  */
966 int dax_writeback_mapping_range(struct address_space *mapping,
967 		struct dax_device *dax_dev, struct writeback_control *wbc)
968 {
969 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
970 	struct inode *inode = mapping->host;
971 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
972 	void *entry;
973 	int ret = 0;
974 	unsigned int scanned = 0;
975 
976 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
977 		return -EIO;
978 
979 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
980 		return 0;
981 
982 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
983 
984 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
985 
986 	xas_lock_irq(&xas);
987 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
988 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
989 		if (ret < 0) {
990 			mapping_set_error(mapping, ret);
991 			break;
992 		}
993 		if (++scanned % XA_CHECK_SCHED)
994 			continue;
995 
996 		xas_pause(&xas);
997 		xas_unlock_irq(&xas);
998 		cond_resched();
999 		xas_lock_irq(&xas);
1000 	}
1001 	xas_unlock_irq(&xas);
1002 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1006 
1007 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1008 			 pfn_t *pfnp)
1009 {
1010 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1011 	int id, rc;
1012 	long length;
1013 
1014 	id = dax_read_lock();
1015 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1016 				   NULL, pfnp);
1017 	if (length < 0) {
1018 		rc = length;
1019 		goto out;
1020 	}
1021 	rc = -EINVAL;
1022 	if (PFN_PHYS(length) < size)
1023 		goto out;
1024 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1025 		goto out;
1026 	/* For larger pages we need devmap */
1027 	if (length > 1 && !pfn_t_devmap(*pfnp))
1028 		goto out;
1029 	rc = 0;
1030 out:
1031 	dax_read_unlock(id);
1032 	return rc;
1033 }
1034 
1035 /*
1036  * The user has performed a load from a hole in the file.  Allocating a new
1037  * page in the file would cause excessive storage usage for workloads with
1038  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1039  * If this page is ever written to we will re-fault and change the mapping to
1040  * point to real DAX storage instead.
1041  */
1042 static vm_fault_t dax_load_hole(struct xa_state *xas,
1043 		struct address_space *mapping, void **entry,
1044 		struct vm_fault *vmf)
1045 {
1046 	struct inode *inode = mapping->host;
1047 	unsigned long vaddr = vmf->address;
1048 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1049 	vm_fault_t ret;
1050 
1051 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1052 			DAX_ZERO_PAGE, false);
1053 
1054 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1055 	trace_dax_load_hole(inode, vmf, ret);
1056 	return ret;
1057 }
1058 
1059 #ifdef CONFIG_FS_DAX_PMD
1060 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1061 		const struct iomap *iomap, void **entry)
1062 {
1063 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1064 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1065 	struct vm_area_struct *vma = vmf->vma;
1066 	struct inode *inode = mapping->host;
1067 	pgtable_t pgtable = NULL;
1068 	struct page *zero_page;
1069 	spinlock_t *ptl;
1070 	pmd_t pmd_entry;
1071 	pfn_t pfn;
1072 
1073 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1074 
1075 	if (unlikely(!zero_page))
1076 		goto fallback;
1077 
1078 	pfn = page_to_pfn_t(zero_page);
1079 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1080 			DAX_PMD | DAX_ZERO_PAGE, false);
1081 
1082 	if (arch_needs_pgtable_deposit()) {
1083 		pgtable = pte_alloc_one(vma->vm_mm);
1084 		if (!pgtable)
1085 			return VM_FAULT_OOM;
1086 	}
1087 
1088 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1089 	if (!pmd_none(*(vmf->pmd))) {
1090 		spin_unlock(ptl);
1091 		goto fallback;
1092 	}
1093 
1094 	if (pgtable) {
1095 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1096 		mm_inc_nr_ptes(vma->vm_mm);
1097 	}
1098 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1099 	pmd_entry = pmd_mkhuge(pmd_entry);
1100 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1101 	spin_unlock(ptl);
1102 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1103 	return VM_FAULT_NOPAGE;
1104 
1105 fallback:
1106 	if (pgtable)
1107 		pte_free(vma->vm_mm, pgtable);
1108 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1109 	return VM_FAULT_FALLBACK;
1110 }
1111 #else
1112 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1113 		const struct iomap *iomap, void **entry)
1114 {
1115 	return VM_FAULT_FALLBACK;
1116 }
1117 #endif /* CONFIG_FS_DAX_PMD */
1118 
1119 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1120 		unsigned int offset, size_t size)
1121 {
1122 	void *kaddr;
1123 	long ret;
1124 
1125 	ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1126 	if (ret > 0) {
1127 		memset(kaddr + offset, 0, size);
1128 		dax_flush(dax_dev, kaddr + offset, size);
1129 	}
1130 	return ret;
1131 }
1132 
1133 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1134 {
1135 	const struct iomap *iomap = &iter->iomap;
1136 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1137 	loff_t pos = iter->pos;
1138 	u64 length = iomap_length(iter);
1139 	s64 written = 0;
1140 
1141 	/* already zeroed?  we're done. */
1142 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1143 		return length;
1144 
1145 	do {
1146 		unsigned offset = offset_in_page(pos);
1147 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1148 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1149 		long rc;
1150 		int id;
1151 
1152 		id = dax_read_lock();
1153 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1154 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1155 		else
1156 			rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1157 		dax_read_unlock(id);
1158 
1159 		if (rc < 0)
1160 			return rc;
1161 		pos += size;
1162 		length -= size;
1163 		written += size;
1164 		if (did_zero)
1165 			*did_zero = true;
1166 	} while (length > 0);
1167 
1168 	return written;
1169 }
1170 
1171 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1172 		const struct iomap_ops *ops)
1173 {
1174 	struct iomap_iter iter = {
1175 		.inode		= inode,
1176 		.pos		= pos,
1177 		.len		= len,
1178 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1179 	};
1180 	int ret;
1181 
1182 	while ((ret = iomap_iter(&iter, ops)) > 0)
1183 		iter.processed = dax_zero_iter(&iter, did_zero);
1184 	return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(dax_zero_range);
1187 
1188 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1189 		const struct iomap_ops *ops)
1190 {
1191 	unsigned int blocksize = i_blocksize(inode);
1192 	unsigned int off = pos & (blocksize - 1);
1193 
1194 	/* Block boundary? Nothing to do */
1195 	if (!off)
1196 		return 0;
1197 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1198 }
1199 EXPORT_SYMBOL_GPL(dax_truncate_page);
1200 
1201 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1202 		struct iov_iter *iter)
1203 {
1204 	const struct iomap *iomap = &iomi->iomap;
1205 	loff_t length = iomap_length(iomi);
1206 	loff_t pos = iomi->pos;
1207 	struct dax_device *dax_dev = iomap->dax_dev;
1208 	loff_t end = pos + length, done = 0;
1209 	ssize_t ret = 0;
1210 	size_t xfer;
1211 	int id;
1212 
1213 	if (iov_iter_rw(iter) == READ) {
1214 		end = min(end, i_size_read(iomi->inode));
1215 		if (pos >= end)
1216 			return 0;
1217 
1218 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1219 			return iov_iter_zero(min(length, end - pos), iter);
1220 	}
1221 
1222 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1223 		return -EIO;
1224 
1225 	/*
1226 	 * Write can allocate block for an area which has a hole page mapped
1227 	 * into page tables. We have to tear down these mappings so that data
1228 	 * written by write(2) is visible in mmap.
1229 	 */
1230 	if (iomap->flags & IOMAP_F_NEW) {
1231 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1232 					      pos >> PAGE_SHIFT,
1233 					      (end - 1) >> PAGE_SHIFT);
1234 	}
1235 
1236 	id = dax_read_lock();
1237 	while (pos < end) {
1238 		unsigned offset = pos & (PAGE_SIZE - 1);
1239 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1240 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1241 		ssize_t map_len;
1242 		void *kaddr;
1243 
1244 		if (fatal_signal_pending(current)) {
1245 			ret = -EINTR;
1246 			break;
1247 		}
1248 
1249 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1250 				&kaddr, NULL);
1251 		if (map_len < 0) {
1252 			ret = map_len;
1253 			break;
1254 		}
1255 
1256 		map_len = PFN_PHYS(map_len);
1257 		kaddr += offset;
1258 		map_len -= offset;
1259 		if (map_len > end - pos)
1260 			map_len = end - pos;
1261 
1262 		if (iov_iter_rw(iter) == WRITE)
1263 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1264 					map_len, iter);
1265 		else
1266 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1267 					map_len, iter);
1268 
1269 		pos += xfer;
1270 		length -= xfer;
1271 		done += xfer;
1272 
1273 		if (xfer == 0)
1274 			ret = -EFAULT;
1275 		if (xfer < map_len)
1276 			break;
1277 	}
1278 	dax_read_unlock(id);
1279 
1280 	return done ? done : ret;
1281 }
1282 
1283 /**
1284  * dax_iomap_rw - Perform I/O to a DAX file
1285  * @iocb:	The control block for this I/O
1286  * @iter:	The addresses to do I/O from or to
1287  * @ops:	iomap ops passed from the file system
1288  *
1289  * This function performs read and write operations to directly mapped
1290  * persistent memory.  The callers needs to take care of read/write exclusion
1291  * and evicting any page cache pages in the region under I/O.
1292  */
1293 ssize_t
1294 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1295 		const struct iomap_ops *ops)
1296 {
1297 	struct iomap_iter iomi = {
1298 		.inode		= iocb->ki_filp->f_mapping->host,
1299 		.pos		= iocb->ki_pos,
1300 		.len		= iov_iter_count(iter),
1301 		.flags		= IOMAP_DAX,
1302 	};
1303 	loff_t done = 0;
1304 	int ret;
1305 
1306 	if (iov_iter_rw(iter) == WRITE) {
1307 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1308 		iomi.flags |= IOMAP_WRITE;
1309 	} else {
1310 		lockdep_assert_held(&iomi.inode->i_rwsem);
1311 	}
1312 
1313 	if (iocb->ki_flags & IOCB_NOWAIT)
1314 		iomi.flags |= IOMAP_NOWAIT;
1315 
1316 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1317 		iomi.processed = dax_iomap_iter(&iomi, iter);
1318 
1319 	done = iomi.pos - iocb->ki_pos;
1320 	iocb->ki_pos = iomi.pos;
1321 	return done ? done : ret;
1322 }
1323 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1324 
1325 static vm_fault_t dax_fault_return(int error)
1326 {
1327 	if (error == 0)
1328 		return VM_FAULT_NOPAGE;
1329 	return vmf_error(error);
1330 }
1331 
1332 /*
1333  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1334  * flushed on write-faults (non-cow), but not read-faults.
1335  */
1336 static bool dax_fault_is_synchronous(unsigned long flags,
1337 		struct vm_area_struct *vma, const struct iomap *iomap)
1338 {
1339 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1340 		&& (iomap->flags & IOMAP_F_DIRTY);
1341 }
1342 
1343 /*
1344  * When handling a synchronous page fault and the inode need a fsync, we can
1345  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1346  * insertion for now and return the pfn so that caller can insert it after the
1347  * fsync is done.
1348  */
1349 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1350 {
1351 	if (WARN_ON_ONCE(!pfnp))
1352 		return VM_FAULT_SIGBUS;
1353 	*pfnp = pfn;
1354 	return VM_FAULT_NEEDDSYNC;
1355 }
1356 
1357 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1358 		const struct iomap_iter *iter)
1359 {
1360 	vm_fault_t ret;
1361 	int error = 0;
1362 
1363 	switch (iter->iomap.type) {
1364 	case IOMAP_HOLE:
1365 	case IOMAP_UNWRITTEN:
1366 		clear_user_highpage(vmf->cow_page, vmf->address);
1367 		break;
1368 	case IOMAP_MAPPED:
1369 		error = copy_cow_page_dax(vmf, iter);
1370 		break;
1371 	default:
1372 		WARN_ON_ONCE(1);
1373 		error = -EIO;
1374 		break;
1375 	}
1376 
1377 	if (error)
1378 		return dax_fault_return(error);
1379 
1380 	__SetPageUptodate(vmf->cow_page);
1381 	ret = finish_fault(vmf);
1382 	if (!ret)
1383 		return VM_FAULT_DONE_COW;
1384 	return ret;
1385 }
1386 
1387 /**
1388  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1389  * @vmf:	vm fault instance
1390  * @iter:	iomap iter
1391  * @pfnp:	pfn to be returned
1392  * @xas:	the dax mapping tree of a file
1393  * @entry:	an unlocked dax entry to be inserted
1394  * @pmd:	distinguish whether it is a pmd fault
1395  */
1396 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1397 		const struct iomap_iter *iter, pfn_t *pfnp,
1398 		struct xa_state *xas, void **entry, bool pmd)
1399 {
1400 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 	const struct iomap *iomap = &iter->iomap;
1402 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1403 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1404 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1405 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1406 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1407 	int err = 0;
1408 	pfn_t pfn;
1409 
1410 	if (!pmd && vmf->cow_page)
1411 		return dax_fault_cow_page(vmf, iter);
1412 
1413 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1414 	if (!write &&
1415 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1416 		if (!pmd)
1417 			return dax_load_hole(xas, mapping, entry, vmf);
1418 		return dax_pmd_load_hole(xas, vmf, iomap, entry);
1419 	}
1420 
1421 	if (iomap->type != IOMAP_MAPPED) {
1422 		WARN_ON_ONCE(1);
1423 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1424 	}
1425 
1426 	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1427 	if (err)
1428 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1429 
1430 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1431 				  write && !sync);
1432 
1433 	if (sync)
1434 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1435 
1436 	/* insert PMD pfn */
1437 	if (pmd)
1438 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1439 
1440 	/* insert PTE pfn */
1441 	if (write)
1442 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1443 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1444 }
1445 
1446 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447 			       int *iomap_errp, const struct iomap_ops *ops)
1448 {
1449 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1450 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1451 	struct iomap_iter iter = {
1452 		.inode		= mapping->host,
1453 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1454 		.len		= PAGE_SIZE,
1455 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1456 	};
1457 	vm_fault_t ret = 0;
1458 	void *entry;
1459 	int error;
1460 
1461 	trace_dax_pte_fault(iter.inode, vmf, ret);
1462 	/*
1463 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1464 	 * to hold locks serializing us with truncate / punch hole so this is
1465 	 * a reliable test.
1466 	 */
1467 	if (iter.pos >= i_size_read(iter.inode)) {
1468 		ret = VM_FAULT_SIGBUS;
1469 		goto out;
1470 	}
1471 
1472 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1473 		iter.flags |= IOMAP_WRITE;
1474 
1475 	entry = grab_mapping_entry(&xas, mapping, 0);
1476 	if (xa_is_internal(entry)) {
1477 		ret = xa_to_internal(entry);
1478 		goto out;
1479 	}
1480 
1481 	/*
1482 	 * It is possible, particularly with mixed reads & writes to private
1483 	 * mappings, that we have raced with a PMD fault that overlaps with
1484 	 * the PTE we need to set up.  If so just return and the fault will be
1485 	 * retried.
1486 	 */
1487 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1488 		ret = VM_FAULT_NOPAGE;
1489 		goto unlock_entry;
1490 	}
1491 
1492 	while ((error = iomap_iter(&iter, ops)) > 0) {
1493 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1494 			iter.processed = -EIO;	/* fs corruption? */
1495 			continue;
1496 		}
1497 
1498 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1499 		if (ret != VM_FAULT_SIGBUS &&
1500 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1501 			count_vm_event(PGMAJFAULT);
1502 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1503 			ret |= VM_FAULT_MAJOR;
1504 		}
1505 
1506 		if (!(ret & VM_FAULT_ERROR))
1507 			iter.processed = PAGE_SIZE;
1508 	}
1509 
1510 	if (iomap_errp)
1511 		*iomap_errp = error;
1512 	if (!ret && error)
1513 		ret = dax_fault_return(error);
1514 
1515 unlock_entry:
1516 	dax_unlock_entry(&xas, entry);
1517 out:
1518 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1519 	return ret;
1520 }
1521 
1522 #ifdef CONFIG_FS_DAX_PMD
1523 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1524 		pgoff_t max_pgoff)
1525 {
1526 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1527 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1528 
1529 	/*
1530 	 * Make sure that the faulting address's PMD offset (color) matches
1531 	 * the PMD offset from the start of the file.  This is necessary so
1532 	 * that a PMD range in the page table overlaps exactly with a PMD
1533 	 * range in the page cache.
1534 	 */
1535 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1536 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1537 		return true;
1538 
1539 	/* Fall back to PTEs if we're going to COW */
1540 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1541 		return true;
1542 
1543 	/* If the PMD would extend outside the VMA */
1544 	if (pmd_addr < vmf->vma->vm_start)
1545 		return true;
1546 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1547 		return true;
1548 
1549 	/* If the PMD would extend beyond the file size */
1550 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1551 		return true;
1552 
1553 	return false;
1554 }
1555 
1556 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1557 			       const struct iomap_ops *ops)
1558 {
1559 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1560 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1561 	struct iomap_iter iter = {
1562 		.inode		= mapping->host,
1563 		.len		= PMD_SIZE,
1564 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1565 	};
1566 	vm_fault_t ret = VM_FAULT_FALLBACK;
1567 	pgoff_t max_pgoff;
1568 	void *entry;
1569 	int error;
1570 
1571 	if (vmf->flags & FAULT_FLAG_WRITE)
1572 		iter.flags |= IOMAP_WRITE;
1573 
1574 	/*
1575 	 * Check whether offset isn't beyond end of file now. Caller is
1576 	 * supposed to hold locks serializing us with truncate / punch hole so
1577 	 * this is a reliable test.
1578 	 */
1579 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1580 
1581 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1582 
1583 	if (xas.xa_index >= max_pgoff) {
1584 		ret = VM_FAULT_SIGBUS;
1585 		goto out;
1586 	}
1587 
1588 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1589 		goto fallback;
1590 
1591 	/*
1592 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1593 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1594 	 * entry is already in the array, for instance), it will return
1595 	 * VM_FAULT_FALLBACK.
1596 	 */
1597 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1598 	if (xa_is_internal(entry)) {
1599 		ret = xa_to_internal(entry);
1600 		goto fallback;
1601 	}
1602 
1603 	/*
1604 	 * It is possible, particularly with mixed reads & writes to private
1605 	 * mappings, that we have raced with a PTE fault that overlaps with
1606 	 * the PMD we need to set up.  If so just return and the fault will be
1607 	 * retried.
1608 	 */
1609 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1610 			!pmd_devmap(*vmf->pmd)) {
1611 		ret = 0;
1612 		goto unlock_entry;
1613 	}
1614 
1615 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1616 	while ((error = iomap_iter(&iter, ops)) > 0) {
1617 		if (iomap_length(&iter) < PMD_SIZE)
1618 			continue; /* actually breaks out of the loop */
1619 
1620 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1621 		if (ret != VM_FAULT_FALLBACK)
1622 			iter.processed = PMD_SIZE;
1623 	}
1624 
1625 unlock_entry:
1626 	dax_unlock_entry(&xas, entry);
1627 fallback:
1628 	if (ret == VM_FAULT_FALLBACK) {
1629 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1630 		count_vm_event(THP_FAULT_FALLBACK);
1631 	}
1632 out:
1633 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1634 	return ret;
1635 }
1636 #else
1637 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1638 			       const struct iomap_ops *ops)
1639 {
1640 	return VM_FAULT_FALLBACK;
1641 }
1642 #endif /* CONFIG_FS_DAX_PMD */
1643 
1644 /**
1645  * dax_iomap_fault - handle a page fault on a DAX file
1646  * @vmf: The description of the fault
1647  * @pe_size: Size of the page to fault in
1648  * @pfnp: PFN to insert for synchronous faults if fsync is required
1649  * @iomap_errp: Storage for detailed error code in case of error
1650  * @ops: Iomap ops passed from the file system
1651  *
1652  * When a page fault occurs, filesystems may call this helper in
1653  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1654  * has done all the necessary locking for page fault to proceed
1655  * successfully.
1656  */
1657 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1658 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1659 {
1660 	switch (pe_size) {
1661 	case PE_SIZE_PTE:
1662 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1663 	case PE_SIZE_PMD:
1664 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1665 	default:
1666 		return VM_FAULT_FALLBACK;
1667 	}
1668 }
1669 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1670 
1671 /*
1672  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1673  * @vmf: The description of the fault
1674  * @pfn: PFN to insert
1675  * @order: Order of entry to insert.
1676  *
1677  * This function inserts a writeable PTE or PMD entry into the page tables
1678  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1679  */
1680 static vm_fault_t
1681 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1682 {
1683 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1684 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1685 	void *entry;
1686 	vm_fault_t ret;
1687 
1688 	xas_lock_irq(&xas);
1689 	entry = get_unlocked_entry(&xas, order);
1690 	/* Did we race with someone splitting entry or so? */
1691 	if (!entry || dax_is_conflict(entry) ||
1692 	    (order == 0 && !dax_is_pte_entry(entry))) {
1693 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1694 		xas_unlock_irq(&xas);
1695 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1696 						      VM_FAULT_NOPAGE);
1697 		return VM_FAULT_NOPAGE;
1698 	}
1699 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1700 	dax_lock_entry(&xas, entry);
1701 	xas_unlock_irq(&xas);
1702 	if (order == 0)
1703 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1704 #ifdef CONFIG_FS_DAX_PMD
1705 	else if (order == PMD_ORDER)
1706 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1707 #endif
1708 	else
1709 		ret = VM_FAULT_FALLBACK;
1710 	dax_unlock_entry(&xas, entry);
1711 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1712 	return ret;
1713 }
1714 
1715 /**
1716  * dax_finish_sync_fault - finish synchronous page fault
1717  * @vmf: The description of the fault
1718  * @pe_size: Size of entry to be inserted
1719  * @pfn: PFN to insert
1720  *
1721  * This function ensures that the file range touched by the page fault is
1722  * stored persistently on the media and handles inserting of appropriate page
1723  * table entry.
1724  */
1725 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1726 		enum page_entry_size pe_size, pfn_t pfn)
1727 {
1728 	int err;
1729 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1730 	unsigned int order = pe_order(pe_size);
1731 	size_t len = PAGE_SIZE << order;
1732 
1733 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1734 	if (err)
1735 		return VM_FAULT_SIGBUS;
1736 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1737 }
1738 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1739