xref: /openbmc/linux/fs/dax.c (revision bc5aa3a0)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 /*
36  * We use lowest available bit in exceptional entry for locking, other two
37  * bits to determine entry type. In total 3 special bits.
38  */
39 #define RADIX_DAX_SHIFT	(RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
40 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
41 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
42 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
43 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
44 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
45 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
46 		RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
47 		RADIX_TREE_EXCEPTIONAL_ENTRY))
48 
49 /* We choose 4096 entries - same as per-zone page wait tables */
50 #define DAX_WAIT_TABLE_BITS 12
51 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
52 
53 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
54 
55 static int __init init_dax_wait_table(void)
56 {
57 	int i;
58 
59 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
60 		init_waitqueue_head(wait_table + i);
61 	return 0;
62 }
63 fs_initcall(init_dax_wait_table);
64 
65 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
66 					      pgoff_t index)
67 {
68 	unsigned long hash = hash_long((unsigned long)mapping ^ index,
69 				       DAX_WAIT_TABLE_BITS);
70 	return wait_table + hash;
71 }
72 
73 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
74 {
75 	struct request_queue *q = bdev->bd_queue;
76 	long rc = -EIO;
77 
78 	dax->addr = ERR_PTR(-EIO);
79 	if (blk_queue_enter(q, true) != 0)
80 		return rc;
81 
82 	rc = bdev_direct_access(bdev, dax);
83 	if (rc < 0) {
84 		dax->addr = ERR_PTR(rc);
85 		blk_queue_exit(q);
86 		return rc;
87 	}
88 	return rc;
89 }
90 
91 static void dax_unmap_atomic(struct block_device *bdev,
92 		const struct blk_dax_ctl *dax)
93 {
94 	if (IS_ERR(dax->addr))
95 		return;
96 	blk_queue_exit(bdev->bd_queue);
97 }
98 
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101 	struct page *page = alloc_pages(GFP_KERNEL, 0);
102 	struct blk_dax_ctl dax = {
103 		.size = PAGE_SIZE,
104 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 	};
106 	long rc;
107 
108 	if (!page)
109 		return ERR_PTR(-ENOMEM);
110 
111 	rc = dax_map_atomic(bdev, &dax);
112 	if (rc < 0)
113 		return ERR_PTR(rc);
114 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 	dax_unmap_atomic(bdev, &dax);
116 	return page;
117 }
118 
119 static bool buffer_written(struct buffer_head *bh)
120 {
121 	return buffer_mapped(bh) && !buffer_unwritten(bh);
122 }
123 
124 /*
125  * When ext4 encounters a hole, it returns without modifying the buffer_head
126  * which means that we can't trust b_size.  To cope with this, we set b_state
127  * to 0 before calling get_block and, if any bit is set, we know we can trust
128  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
129  * and would save us time calling get_block repeatedly.
130  */
131 static bool buffer_size_valid(struct buffer_head *bh)
132 {
133 	return bh->b_state != 0;
134 }
135 
136 
137 static sector_t to_sector(const struct buffer_head *bh,
138 		const struct inode *inode)
139 {
140 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
141 
142 	return sector;
143 }
144 
145 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
146 		      loff_t start, loff_t end, get_block_t get_block,
147 		      struct buffer_head *bh)
148 {
149 	loff_t pos = start, max = start, bh_max = start;
150 	bool hole = false;
151 	struct block_device *bdev = NULL;
152 	int rw = iov_iter_rw(iter), rc;
153 	long map_len = 0;
154 	struct blk_dax_ctl dax = {
155 		.addr = ERR_PTR(-EIO),
156 	};
157 	unsigned blkbits = inode->i_blkbits;
158 	sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
159 								>> blkbits;
160 
161 	if (rw == READ)
162 		end = min(end, i_size_read(inode));
163 
164 	while (pos < end) {
165 		size_t len;
166 		if (pos == max) {
167 			long page = pos >> PAGE_SHIFT;
168 			sector_t block = page << (PAGE_SHIFT - blkbits);
169 			unsigned first = pos - (block << blkbits);
170 			long size;
171 
172 			if (pos == bh_max) {
173 				bh->b_size = PAGE_ALIGN(end - pos);
174 				bh->b_state = 0;
175 				rc = get_block(inode, block, bh, rw == WRITE);
176 				if (rc)
177 					break;
178 				if (!buffer_size_valid(bh))
179 					bh->b_size = 1 << blkbits;
180 				bh_max = pos - first + bh->b_size;
181 				bdev = bh->b_bdev;
182 				/*
183 				 * We allow uninitialized buffers for writes
184 				 * beyond EOF as those cannot race with faults
185 				 */
186 				WARN_ON_ONCE(
187 					(buffer_new(bh) && block < file_blks) ||
188 					(rw == WRITE && buffer_unwritten(bh)));
189 			} else {
190 				unsigned done = bh->b_size -
191 						(bh_max - (pos - first));
192 				bh->b_blocknr += done >> blkbits;
193 				bh->b_size -= done;
194 			}
195 
196 			hole = rw == READ && !buffer_written(bh);
197 			if (hole) {
198 				size = bh->b_size - first;
199 			} else {
200 				dax_unmap_atomic(bdev, &dax);
201 				dax.sector = to_sector(bh, inode);
202 				dax.size = bh->b_size;
203 				map_len = dax_map_atomic(bdev, &dax);
204 				if (map_len < 0) {
205 					rc = map_len;
206 					break;
207 				}
208 				dax.addr += first;
209 				size = map_len - first;
210 			}
211 			/*
212 			 * pos + size is one past the last offset for IO,
213 			 * so pos + size can overflow loff_t at extreme offsets.
214 			 * Cast to u64 to catch this and get the true minimum.
215 			 */
216 			max = min_t(u64, pos + size, end);
217 		}
218 
219 		if (iov_iter_rw(iter) == WRITE) {
220 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
221 		} else if (!hole)
222 			len = copy_to_iter((void __force *) dax.addr, max - pos,
223 					iter);
224 		else
225 			len = iov_iter_zero(max - pos, iter);
226 
227 		if (!len) {
228 			rc = -EFAULT;
229 			break;
230 		}
231 
232 		pos += len;
233 		if (!IS_ERR(dax.addr))
234 			dax.addr += len;
235 	}
236 
237 	dax_unmap_atomic(bdev, &dax);
238 
239 	return (pos == start) ? rc : pos - start;
240 }
241 
242 /**
243  * dax_do_io - Perform I/O to a DAX file
244  * @iocb: The control block for this I/O
245  * @inode: The file which the I/O is directed at
246  * @iter: The addresses to do I/O from or to
247  * @get_block: The filesystem method used to translate file offsets to blocks
248  * @end_io: A filesystem callback for I/O completion
249  * @flags: See below
250  *
251  * This function uses the same locking scheme as do_blockdev_direct_IO:
252  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
253  * caller for writes.  For reads, we take and release the i_mutex ourselves.
254  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
255  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
256  * is in progress.
257  */
258 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
259 		  struct iov_iter *iter, get_block_t get_block,
260 		  dio_iodone_t end_io, int flags)
261 {
262 	struct buffer_head bh;
263 	ssize_t retval = -EINVAL;
264 	loff_t pos = iocb->ki_pos;
265 	loff_t end = pos + iov_iter_count(iter);
266 
267 	memset(&bh, 0, sizeof(bh));
268 	bh.b_bdev = inode->i_sb->s_bdev;
269 
270 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
271 		inode_lock(inode);
272 
273 	/* Protects against truncate */
274 	if (!(flags & DIO_SKIP_DIO_COUNT))
275 		inode_dio_begin(inode);
276 
277 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
278 
279 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
280 		inode_unlock(inode);
281 
282 	if (end_io) {
283 		int err;
284 
285 		err = end_io(iocb, pos, retval, bh.b_private);
286 		if (err)
287 			retval = err;
288 	}
289 
290 	if (!(flags & DIO_SKIP_DIO_COUNT))
291 		inode_dio_end(inode);
292 	return retval;
293 }
294 EXPORT_SYMBOL_GPL(dax_do_io);
295 
296 /*
297  * DAX radix tree locking
298  */
299 struct exceptional_entry_key {
300 	struct address_space *mapping;
301 	unsigned long index;
302 };
303 
304 struct wait_exceptional_entry_queue {
305 	wait_queue_t wait;
306 	struct exceptional_entry_key key;
307 };
308 
309 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
310 				       int sync, void *keyp)
311 {
312 	struct exceptional_entry_key *key = keyp;
313 	struct wait_exceptional_entry_queue *ewait =
314 		container_of(wait, struct wait_exceptional_entry_queue, wait);
315 
316 	if (key->mapping != ewait->key.mapping ||
317 	    key->index != ewait->key.index)
318 		return 0;
319 	return autoremove_wake_function(wait, mode, sync, NULL);
320 }
321 
322 /*
323  * Check whether the given slot is locked. The function must be called with
324  * mapping->tree_lock held
325  */
326 static inline int slot_locked(struct address_space *mapping, void **slot)
327 {
328 	unsigned long entry = (unsigned long)
329 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
330 	return entry & RADIX_DAX_ENTRY_LOCK;
331 }
332 
333 /*
334  * Mark the given slot is locked. The function must be called with
335  * mapping->tree_lock held
336  */
337 static inline void *lock_slot(struct address_space *mapping, void **slot)
338 {
339 	unsigned long entry = (unsigned long)
340 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
341 
342 	entry |= RADIX_DAX_ENTRY_LOCK;
343 	radix_tree_replace_slot(slot, (void *)entry);
344 	return (void *)entry;
345 }
346 
347 /*
348  * Mark the given slot is unlocked. The function must be called with
349  * mapping->tree_lock held
350  */
351 static inline void *unlock_slot(struct address_space *mapping, void **slot)
352 {
353 	unsigned long entry = (unsigned long)
354 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
355 
356 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
357 	radix_tree_replace_slot(slot, (void *)entry);
358 	return (void *)entry;
359 }
360 
361 /*
362  * Lookup entry in radix tree, wait for it to become unlocked if it is
363  * exceptional entry and return it. The caller must call
364  * put_unlocked_mapping_entry() when he decided not to lock the entry or
365  * put_locked_mapping_entry() when he locked the entry and now wants to
366  * unlock it.
367  *
368  * The function must be called with mapping->tree_lock held.
369  */
370 static void *get_unlocked_mapping_entry(struct address_space *mapping,
371 					pgoff_t index, void ***slotp)
372 {
373 	void *ret, **slot;
374 	struct wait_exceptional_entry_queue ewait;
375 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
376 
377 	init_wait(&ewait.wait);
378 	ewait.wait.func = wake_exceptional_entry_func;
379 	ewait.key.mapping = mapping;
380 	ewait.key.index = index;
381 
382 	for (;;) {
383 		ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
384 					  &slot);
385 		if (!ret || !radix_tree_exceptional_entry(ret) ||
386 		    !slot_locked(mapping, slot)) {
387 			if (slotp)
388 				*slotp = slot;
389 			return ret;
390 		}
391 		prepare_to_wait_exclusive(wq, &ewait.wait,
392 					  TASK_UNINTERRUPTIBLE);
393 		spin_unlock_irq(&mapping->tree_lock);
394 		schedule();
395 		finish_wait(wq, &ewait.wait);
396 		spin_lock_irq(&mapping->tree_lock);
397 	}
398 }
399 
400 /*
401  * Find radix tree entry at given index. If it points to a page, return with
402  * the page locked. If it points to the exceptional entry, return with the
403  * radix tree entry locked. If the radix tree doesn't contain given index,
404  * create empty exceptional entry for the index and return with it locked.
405  *
406  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
407  * persistent memory the benefit is doubtful. We can add that later if we can
408  * show it helps.
409  */
410 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
411 {
412 	void *ret, **slot;
413 
414 restart:
415 	spin_lock_irq(&mapping->tree_lock);
416 	ret = get_unlocked_mapping_entry(mapping, index, &slot);
417 	/* No entry for given index? Make sure radix tree is big enough. */
418 	if (!ret) {
419 		int err;
420 
421 		spin_unlock_irq(&mapping->tree_lock);
422 		err = radix_tree_preload(
423 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
424 		if (err)
425 			return ERR_PTR(err);
426 		ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
427 			       RADIX_DAX_ENTRY_LOCK);
428 		spin_lock_irq(&mapping->tree_lock);
429 		err = radix_tree_insert(&mapping->page_tree, index, ret);
430 		radix_tree_preload_end();
431 		if (err) {
432 			spin_unlock_irq(&mapping->tree_lock);
433 			/* Someone already created the entry? */
434 			if (err == -EEXIST)
435 				goto restart;
436 			return ERR_PTR(err);
437 		}
438 		/* Good, we have inserted empty locked entry into the tree. */
439 		mapping->nrexceptional++;
440 		spin_unlock_irq(&mapping->tree_lock);
441 		return ret;
442 	}
443 	/* Normal page in radix tree? */
444 	if (!radix_tree_exceptional_entry(ret)) {
445 		struct page *page = ret;
446 
447 		get_page(page);
448 		spin_unlock_irq(&mapping->tree_lock);
449 		lock_page(page);
450 		/* Page got truncated? Retry... */
451 		if (unlikely(page->mapping != mapping)) {
452 			unlock_page(page);
453 			put_page(page);
454 			goto restart;
455 		}
456 		return page;
457 	}
458 	ret = lock_slot(mapping, slot);
459 	spin_unlock_irq(&mapping->tree_lock);
460 	return ret;
461 }
462 
463 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
464 				   pgoff_t index, bool wake_all)
465 {
466 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
467 
468 	/*
469 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
470 	 * under mapping->tree_lock, ditto for entry handling in our callers.
471 	 * So at this point all tasks that could have seen our entry locked
472 	 * must be in the waitqueue and the following check will see them.
473 	 */
474 	if (waitqueue_active(wq)) {
475 		struct exceptional_entry_key key;
476 
477 		key.mapping = mapping;
478 		key.index = index;
479 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
480 	}
481 }
482 
483 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
484 {
485 	void *ret, **slot;
486 
487 	spin_lock_irq(&mapping->tree_lock);
488 	ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
489 	if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
490 			 !slot_locked(mapping, slot))) {
491 		spin_unlock_irq(&mapping->tree_lock);
492 		return;
493 	}
494 	unlock_slot(mapping, slot);
495 	spin_unlock_irq(&mapping->tree_lock);
496 	dax_wake_mapping_entry_waiter(mapping, index, false);
497 }
498 
499 static void put_locked_mapping_entry(struct address_space *mapping,
500 				     pgoff_t index, void *entry)
501 {
502 	if (!radix_tree_exceptional_entry(entry)) {
503 		unlock_page(entry);
504 		put_page(entry);
505 	} else {
506 		dax_unlock_mapping_entry(mapping, index);
507 	}
508 }
509 
510 /*
511  * Called when we are done with radix tree entry we looked up via
512  * get_unlocked_mapping_entry() and which we didn't lock in the end.
513  */
514 static void put_unlocked_mapping_entry(struct address_space *mapping,
515 				       pgoff_t index, void *entry)
516 {
517 	if (!radix_tree_exceptional_entry(entry))
518 		return;
519 
520 	/* We have to wake up next waiter for the radix tree entry lock */
521 	dax_wake_mapping_entry_waiter(mapping, index, false);
522 }
523 
524 /*
525  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
526  * entry to get unlocked before deleting it.
527  */
528 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
529 {
530 	void *entry;
531 
532 	spin_lock_irq(&mapping->tree_lock);
533 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
534 	/*
535 	 * This gets called from truncate / punch_hole path. As such, the caller
536 	 * must hold locks protecting against concurrent modifications of the
537 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
538 	 * caller has seen exceptional entry for this index, we better find it
539 	 * at that index as well...
540 	 */
541 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
542 		spin_unlock_irq(&mapping->tree_lock);
543 		return 0;
544 	}
545 	radix_tree_delete(&mapping->page_tree, index);
546 	mapping->nrexceptional--;
547 	spin_unlock_irq(&mapping->tree_lock);
548 	dax_wake_mapping_entry_waiter(mapping, index, true);
549 
550 	return 1;
551 }
552 
553 /*
554  * The user has performed a load from a hole in the file.  Allocating
555  * a new page in the file would cause excessive storage usage for
556  * workloads with sparse files.  We allocate a page cache page instead.
557  * We'll kick it out of the page cache if it's ever written to,
558  * otherwise it will simply fall out of the page cache under memory
559  * pressure without ever having been dirtied.
560  */
561 static int dax_load_hole(struct address_space *mapping, void *entry,
562 			 struct vm_fault *vmf)
563 {
564 	struct page *page;
565 
566 	/* Hole page already exists? Return it...  */
567 	if (!radix_tree_exceptional_entry(entry)) {
568 		vmf->page = entry;
569 		return VM_FAULT_LOCKED;
570 	}
571 
572 	/* This will replace locked radix tree entry with a hole page */
573 	page = find_or_create_page(mapping, vmf->pgoff,
574 				   vmf->gfp_mask | __GFP_ZERO);
575 	if (!page) {
576 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
577 		return VM_FAULT_OOM;
578 	}
579 	vmf->page = page;
580 	return VM_FAULT_LOCKED;
581 }
582 
583 static int copy_user_bh(struct page *to, struct inode *inode,
584 		struct buffer_head *bh, unsigned long vaddr)
585 {
586 	struct blk_dax_ctl dax = {
587 		.sector = to_sector(bh, inode),
588 		.size = bh->b_size,
589 	};
590 	struct block_device *bdev = bh->b_bdev;
591 	void *vto;
592 
593 	if (dax_map_atomic(bdev, &dax) < 0)
594 		return PTR_ERR(dax.addr);
595 	vto = kmap_atomic(to);
596 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
597 	kunmap_atomic(vto);
598 	dax_unmap_atomic(bdev, &dax);
599 	return 0;
600 }
601 
602 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
603 
604 static void *dax_insert_mapping_entry(struct address_space *mapping,
605 				      struct vm_fault *vmf,
606 				      void *entry, sector_t sector)
607 {
608 	struct radix_tree_root *page_tree = &mapping->page_tree;
609 	int error = 0;
610 	bool hole_fill = false;
611 	void *new_entry;
612 	pgoff_t index = vmf->pgoff;
613 
614 	if (vmf->flags & FAULT_FLAG_WRITE)
615 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
616 
617 	/* Replacing hole page with block mapping? */
618 	if (!radix_tree_exceptional_entry(entry)) {
619 		hole_fill = true;
620 		/*
621 		 * Unmap the page now before we remove it from page cache below.
622 		 * The page is locked so it cannot be faulted in again.
623 		 */
624 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
625 				    PAGE_SIZE, 0);
626 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
627 		if (error)
628 			return ERR_PTR(error);
629 	}
630 
631 	spin_lock_irq(&mapping->tree_lock);
632 	new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
633 		       RADIX_DAX_ENTRY_LOCK);
634 	if (hole_fill) {
635 		__delete_from_page_cache(entry, NULL);
636 		/* Drop pagecache reference */
637 		put_page(entry);
638 		error = radix_tree_insert(page_tree, index, new_entry);
639 		if (error) {
640 			new_entry = ERR_PTR(error);
641 			goto unlock;
642 		}
643 		mapping->nrexceptional++;
644 	} else {
645 		void **slot;
646 		void *ret;
647 
648 		ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
649 		WARN_ON_ONCE(ret != entry);
650 		radix_tree_replace_slot(slot, new_entry);
651 	}
652 	if (vmf->flags & FAULT_FLAG_WRITE)
653 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
654  unlock:
655 	spin_unlock_irq(&mapping->tree_lock);
656 	if (hole_fill) {
657 		radix_tree_preload_end();
658 		/*
659 		 * We don't need hole page anymore, it has been replaced with
660 		 * locked radix tree entry now.
661 		 */
662 		if (mapping->a_ops->freepage)
663 			mapping->a_ops->freepage(entry);
664 		unlock_page(entry);
665 		put_page(entry);
666 	}
667 	return new_entry;
668 }
669 
670 static int dax_writeback_one(struct block_device *bdev,
671 		struct address_space *mapping, pgoff_t index, void *entry)
672 {
673 	struct radix_tree_root *page_tree = &mapping->page_tree;
674 	int type = RADIX_DAX_TYPE(entry);
675 	struct radix_tree_node *node;
676 	struct blk_dax_ctl dax;
677 	void **slot;
678 	int ret = 0;
679 
680 	spin_lock_irq(&mapping->tree_lock);
681 	/*
682 	 * Regular page slots are stabilized by the page lock even
683 	 * without the tree itself locked.  These unlocked entries
684 	 * need verification under the tree lock.
685 	 */
686 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
687 		goto unlock;
688 	if (*slot != entry)
689 		goto unlock;
690 
691 	/* another fsync thread may have already written back this entry */
692 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
693 		goto unlock;
694 
695 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
696 		ret = -EIO;
697 		goto unlock;
698 	}
699 
700 	dax.sector = RADIX_DAX_SECTOR(entry);
701 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
702 	spin_unlock_irq(&mapping->tree_lock);
703 
704 	/*
705 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
706 	 * eventually calls cond_resched().
707 	 */
708 	ret = dax_map_atomic(bdev, &dax);
709 	if (ret < 0)
710 		return ret;
711 
712 	if (WARN_ON_ONCE(ret < dax.size)) {
713 		ret = -EIO;
714 		goto unmap;
715 	}
716 
717 	wb_cache_pmem(dax.addr, dax.size);
718 
719 	spin_lock_irq(&mapping->tree_lock);
720 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
721 	spin_unlock_irq(&mapping->tree_lock);
722  unmap:
723 	dax_unmap_atomic(bdev, &dax);
724 	return ret;
725 
726  unlock:
727 	spin_unlock_irq(&mapping->tree_lock);
728 	return ret;
729 }
730 
731 /*
732  * Flush the mapping to the persistent domain within the byte range of [start,
733  * end]. This is required by data integrity operations to ensure file data is
734  * on persistent storage prior to completion of the operation.
735  */
736 int dax_writeback_mapping_range(struct address_space *mapping,
737 		struct block_device *bdev, struct writeback_control *wbc)
738 {
739 	struct inode *inode = mapping->host;
740 	pgoff_t start_index, end_index, pmd_index;
741 	pgoff_t indices[PAGEVEC_SIZE];
742 	struct pagevec pvec;
743 	bool done = false;
744 	int i, ret = 0;
745 	void *entry;
746 
747 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
748 		return -EIO;
749 
750 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
751 		return 0;
752 
753 	start_index = wbc->range_start >> PAGE_SHIFT;
754 	end_index = wbc->range_end >> PAGE_SHIFT;
755 	pmd_index = DAX_PMD_INDEX(start_index);
756 
757 	rcu_read_lock();
758 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
759 	rcu_read_unlock();
760 
761 	/* see if the start of our range is covered by a PMD entry */
762 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
763 		start_index = pmd_index;
764 
765 	tag_pages_for_writeback(mapping, start_index, end_index);
766 
767 	pagevec_init(&pvec, 0);
768 	while (!done) {
769 		pvec.nr = find_get_entries_tag(mapping, start_index,
770 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
771 				pvec.pages, indices);
772 
773 		if (pvec.nr == 0)
774 			break;
775 
776 		for (i = 0; i < pvec.nr; i++) {
777 			if (indices[i] > end_index) {
778 				done = true;
779 				break;
780 			}
781 
782 			ret = dax_writeback_one(bdev, mapping, indices[i],
783 					pvec.pages[i]);
784 			if (ret < 0)
785 				return ret;
786 		}
787 	}
788 	return 0;
789 }
790 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
791 
792 static int dax_insert_mapping(struct address_space *mapping,
793 			struct buffer_head *bh, void **entryp,
794 			struct vm_area_struct *vma, struct vm_fault *vmf)
795 {
796 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
797 	struct block_device *bdev = bh->b_bdev;
798 	struct blk_dax_ctl dax = {
799 		.sector = to_sector(bh, mapping->host),
800 		.size = bh->b_size,
801 	};
802 	void *ret;
803 	void *entry = *entryp;
804 
805 	if (dax_map_atomic(bdev, &dax) < 0)
806 		return PTR_ERR(dax.addr);
807 	dax_unmap_atomic(bdev, &dax);
808 
809 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
810 	if (IS_ERR(ret))
811 		return PTR_ERR(ret);
812 	*entryp = ret;
813 
814 	return vm_insert_mixed(vma, vaddr, dax.pfn);
815 }
816 
817 /**
818  * dax_fault - handle a page fault on a DAX file
819  * @vma: The virtual memory area where the fault occurred
820  * @vmf: The description of the fault
821  * @get_block: The filesystem method used to translate file offsets to blocks
822  *
823  * When a page fault occurs, filesystems may call this helper in their
824  * fault handler for DAX files. dax_fault() assumes the caller has done all
825  * the necessary locking for the page fault to proceed successfully.
826  */
827 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
828 			get_block_t get_block)
829 {
830 	struct file *file = vma->vm_file;
831 	struct address_space *mapping = file->f_mapping;
832 	struct inode *inode = mapping->host;
833 	void *entry;
834 	struct buffer_head bh;
835 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
836 	unsigned blkbits = inode->i_blkbits;
837 	sector_t block;
838 	pgoff_t size;
839 	int error;
840 	int major = 0;
841 
842 	/*
843 	 * Check whether offset isn't beyond end of file now. Caller is supposed
844 	 * to hold locks serializing us with truncate / punch hole so this is
845 	 * a reliable test.
846 	 */
847 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 	if (vmf->pgoff >= size)
849 		return VM_FAULT_SIGBUS;
850 
851 	memset(&bh, 0, sizeof(bh));
852 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
853 	bh.b_bdev = inode->i_sb->s_bdev;
854 	bh.b_size = PAGE_SIZE;
855 
856 	entry = grab_mapping_entry(mapping, vmf->pgoff);
857 	if (IS_ERR(entry)) {
858 		error = PTR_ERR(entry);
859 		goto out;
860 	}
861 
862 	error = get_block(inode, block, &bh, 0);
863 	if (!error && (bh.b_size < PAGE_SIZE))
864 		error = -EIO;		/* fs corruption? */
865 	if (error)
866 		goto unlock_entry;
867 
868 	if (vmf->cow_page) {
869 		struct page *new_page = vmf->cow_page;
870 		if (buffer_written(&bh))
871 			error = copy_user_bh(new_page, inode, &bh, vaddr);
872 		else
873 			clear_user_highpage(new_page, vaddr);
874 		if (error)
875 			goto unlock_entry;
876 		if (!radix_tree_exceptional_entry(entry)) {
877 			vmf->page = entry;
878 			return VM_FAULT_LOCKED;
879 		}
880 		vmf->entry = entry;
881 		return VM_FAULT_DAX_LOCKED;
882 	}
883 
884 	if (!buffer_mapped(&bh)) {
885 		if (vmf->flags & FAULT_FLAG_WRITE) {
886 			error = get_block(inode, block, &bh, 1);
887 			count_vm_event(PGMAJFAULT);
888 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
889 			major = VM_FAULT_MAJOR;
890 			if (!error && (bh.b_size < PAGE_SIZE))
891 				error = -EIO;
892 			if (error)
893 				goto unlock_entry;
894 		} else {
895 			return dax_load_hole(mapping, entry, vmf);
896 		}
897 	}
898 
899 	/* Filesystem should not return unwritten buffers to us! */
900 	WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
901 	error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf);
902  unlock_entry:
903 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
904  out:
905 	if (error == -ENOMEM)
906 		return VM_FAULT_OOM | major;
907 	/* -EBUSY is fine, somebody else faulted on the same PTE */
908 	if ((error < 0) && (error != -EBUSY))
909 		return VM_FAULT_SIGBUS | major;
910 	return VM_FAULT_NOPAGE | major;
911 }
912 EXPORT_SYMBOL_GPL(dax_fault);
913 
914 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
915 /*
916  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
917  * more often than one might expect in the below function.
918  */
919 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
920 
921 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
922 		const char *reason, const char *fn)
923 {
924 	if (bh) {
925 		char bname[BDEVNAME_SIZE];
926 		bdevname(bh->b_bdev, bname);
927 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
928 			"length %zd fallback: %s\n", fn, current->comm,
929 			address, bname, bh->b_state, (u64)bh->b_blocknr,
930 			bh->b_size, reason);
931 	} else {
932 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
933 			current->comm, address, reason);
934 	}
935 }
936 
937 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
938 
939 /**
940  * dax_pmd_fault - handle a PMD fault on a DAX file
941  * @vma: The virtual memory area where the fault occurred
942  * @vmf: The description of the fault
943  * @get_block: The filesystem method used to translate file offsets to blocks
944  *
945  * When a page fault occurs, filesystems may call this helper in their
946  * pmd_fault handler for DAX files.
947  */
948 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
949 		pmd_t *pmd, unsigned int flags, get_block_t get_block)
950 {
951 	struct file *file = vma->vm_file;
952 	struct address_space *mapping = file->f_mapping;
953 	struct inode *inode = mapping->host;
954 	struct buffer_head bh;
955 	unsigned blkbits = inode->i_blkbits;
956 	unsigned long pmd_addr = address & PMD_MASK;
957 	bool write = flags & FAULT_FLAG_WRITE;
958 	struct block_device *bdev;
959 	pgoff_t size, pgoff;
960 	sector_t block;
961 	int result = 0;
962 	bool alloc = false;
963 
964 	/* dax pmd mappings require pfn_t_devmap() */
965 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
966 		return VM_FAULT_FALLBACK;
967 
968 	/* Fall back to PTEs if we're going to COW */
969 	if (write && !(vma->vm_flags & VM_SHARED)) {
970 		split_huge_pmd(vma, pmd, address);
971 		dax_pmd_dbg(NULL, address, "cow write");
972 		return VM_FAULT_FALLBACK;
973 	}
974 	/* If the PMD would extend outside the VMA */
975 	if (pmd_addr < vma->vm_start) {
976 		dax_pmd_dbg(NULL, address, "vma start unaligned");
977 		return VM_FAULT_FALLBACK;
978 	}
979 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
980 		dax_pmd_dbg(NULL, address, "vma end unaligned");
981 		return VM_FAULT_FALLBACK;
982 	}
983 
984 	pgoff = linear_page_index(vma, pmd_addr);
985 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
986 	if (pgoff >= size)
987 		return VM_FAULT_SIGBUS;
988 	/* If the PMD would cover blocks out of the file */
989 	if ((pgoff | PG_PMD_COLOUR) >= size) {
990 		dax_pmd_dbg(NULL, address,
991 				"offset + huge page size > file size");
992 		return VM_FAULT_FALLBACK;
993 	}
994 
995 	memset(&bh, 0, sizeof(bh));
996 	bh.b_bdev = inode->i_sb->s_bdev;
997 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
998 
999 	bh.b_size = PMD_SIZE;
1000 
1001 	if (get_block(inode, block, &bh, 0) != 0)
1002 		return VM_FAULT_SIGBUS;
1003 
1004 	if (!buffer_mapped(&bh) && write) {
1005 		if (get_block(inode, block, &bh, 1) != 0)
1006 			return VM_FAULT_SIGBUS;
1007 		alloc = true;
1008 		WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1009 	}
1010 
1011 	bdev = bh.b_bdev;
1012 
1013 	/*
1014 	 * If the filesystem isn't willing to tell us the length of a hole,
1015 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
1016 	 * would be silly.
1017 	 */
1018 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
1019 		dax_pmd_dbg(&bh, address, "allocated block too small");
1020 		return VM_FAULT_FALLBACK;
1021 	}
1022 
1023 	/*
1024 	 * If we allocated new storage, make sure no process has any
1025 	 * zero pages covering this hole
1026 	 */
1027 	if (alloc) {
1028 		loff_t lstart = pgoff << PAGE_SHIFT;
1029 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1030 
1031 		truncate_pagecache_range(inode, lstart, lend);
1032 	}
1033 
1034 	if (!write && !buffer_mapped(&bh)) {
1035 		spinlock_t *ptl;
1036 		pmd_t entry;
1037 		struct page *zero_page = get_huge_zero_page();
1038 
1039 		if (unlikely(!zero_page)) {
1040 			dax_pmd_dbg(&bh, address, "no zero page");
1041 			goto fallback;
1042 		}
1043 
1044 		ptl = pmd_lock(vma->vm_mm, pmd);
1045 		if (!pmd_none(*pmd)) {
1046 			spin_unlock(ptl);
1047 			dax_pmd_dbg(&bh, address, "pmd already present");
1048 			goto fallback;
1049 		}
1050 
1051 		dev_dbg(part_to_dev(bdev->bd_part),
1052 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1053 				__func__, current->comm, address,
1054 				(unsigned long long) to_sector(&bh, inode));
1055 
1056 		entry = mk_pmd(zero_page, vma->vm_page_prot);
1057 		entry = pmd_mkhuge(entry);
1058 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
1059 		result = VM_FAULT_NOPAGE;
1060 		spin_unlock(ptl);
1061 	} else {
1062 		struct blk_dax_ctl dax = {
1063 			.sector = to_sector(&bh, inode),
1064 			.size = PMD_SIZE,
1065 		};
1066 		long length = dax_map_atomic(bdev, &dax);
1067 
1068 		if (length < 0) {
1069 			dax_pmd_dbg(&bh, address, "dax-error fallback");
1070 			goto fallback;
1071 		}
1072 		if (length < PMD_SIZE) {
1073 			dax_pmd_dbg(&bh, address, "dax-length too small");
1074 			dax_unmap_atomic(bdev, &dax);
1075 			goto fallback;
1076 		}
1077 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1078 			dax_pmd_dbg(&bh, address, "pfn unaligned");
1079 			dax_unmap_atomic(bdev, &dax);
1080 			goto fallback;
1081 		}
1082 
1083 		if (!pfn_t_devmap(dax.pfn)) {
1084 			dax_unmap_atomic(bdev, &dax);
1085 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
1086 			goto fallback;
1087 		}
1088 		dax_unmap_atomic(bdev, &dax);
1089 
1090 		/*
1091 		 * For PTE faults we insert a radix tree entry for reads, and
1092 		 * leave it clean.  Then on the first write we dirty the radix
1093 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
1094 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1095 		 * call into get_block() to translate the pgoff to a sector in
1096 		 * order to be able to create a new radix tree entry.
1097 		 *
1098 		 * The PMD path doesn't have an equivalent to
1099 		 * dax_pfn_mkwrite(), though, so for a read followed by a
1100 		 * write we traverse all the way through dax_pmd_fault()
1101 		 * twice.  This means we can just skip inserting a radix tree
1102 		 * entry completely on the initial read and just wait until
1103 		 * the write to insert a dirty entry.
1104 		 */
1105 		if (write) {
1106 			/*
1107 			 * We should insert radix-tree entry and dirty it here.
1108 			 * For now this is broken...
1109 			 */
1110 		}
1111 
1112 		dev_dbg(part_to_dev(bdev->bd_part),
1113 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
1114 				__func__, current->comm, address,
1115 				pfn_t_to_pfn(dax.pfn),
1116 				(unsigned long long) dax.sector);
1117 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1118 				dax.pfn, write);
1119 	}
1120 
1121  out:
1122 	return result;
1123 
1124  fallback:
1125 	count_vm_event(THP_FAULT_FALLBACK);
1126 	result = VM_FAULT_FALLBACK;
1127 	goto out;
1128 }
1129 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1131 
1132 /**
1133  * dax_pfn_mkwrite - handle first write to DAX page
1134  * @vma: The virtual memory area where the fault occurred
1135  * @vmf: The description of the fault
1136  */
1137 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1138 {
1139 	struct file *file = vma->vm_file;
1140 	struct address_space *mapping = file->f_mapping;
1141 	void *entry;
1142 	pgoff_t index = vmf->pgoff;
1143 
1144 	spin_lock_irq(&mapping->tree_lock);
1145 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
1146 	if (!entry || !radix_tree_exceptional_entry(entry))
1147 		goto out;
1148 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1149 	put_unlocked_mapping_entry(mapping, index, entry);
1150 out:
1151 	spin_unlock_irq(&mapping->tree_lock);
1152 	return VM_FAULT_NOPAGE;
1153 }
1154 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1155 
1156 static bool dax_range_is_aligned(struct block_device *bdev,
1157 				 unsigned int offset, unsigned int length)
1158 {
1159 	unsigned short sector_size = bdev_logical_block_size(bdev);
1160 
1161 	if (!IS_ALIGNED(offset, sector_size))
1162 		return false;
1163 	if (!IS_ALIGNED(length, sector_size))
1164 		return false;
1165 
1166 	return true;
1167 }
1168 
1169 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1170 		unsigned int offset, unsigned int length)
1171 {
1172 	struct blk_dax_ctl dax = {
1173 		.sector		= sector,
1174 		.size		= PAGE_SIZE,
1175 	};
1176 
1177 	if (dax_range_is_aligned(bdev, offset, length)) {
1178 		sector_t start_sector = dax.sector + (offset >> 9);
1179 
1180 		return blkdev_issue_zeroout(bdev, start_sector,
1181 				length >> 9, GFP_NOFS, true);
1182 	} else {
1183 		if (dax_map_atomic(bdev, &dax) < 0)
1184 			return PTR_ERR(dax.addr);
1185 		clear_pmem(dax.addr + offset, length);
1186 		dax_unmap_atomic(bdev, &dax);
1187 	}
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1191 
1192 /**
1193  * dax_zero_page_range - zero a range within a page of a DAX file
1194  * @inode: The file being truncated
1195  * @from: The file offset that is being truncated to
1196  * @length: The number of bytes to zero
1197  * @get_block: The filesystem method used to translate file offsets to blocks
1198  *
1199  * This function can be called by a filesystem when it is zeroing part of a
1200  * page in a DAX file.  This is intended for hole-punch operations.  If
1201  * you are truncating a file, the helper function dax_truncate_page() may be
1202  * more convenient.
1203  */
1204 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1205 							get_block_t get_block)
1206 {
1207 	struct buffer_head bh;
1208 	pgoff_t index = from >> PAGE_SHIFT;
1209 	unsigned offset = from & (PAGE_SIZE-1);
1210 	int err;
1211 
1212 	/* Block boundary? Nothing to do */
1213 	if (!length)
1214 		return 0;
1215 	BUG_ON((offset + length) > PAGE_SIZE);
1216 
1217 	memset(&bh, 0, sizeof(bh));
1218 	bh.b_bdev = inode->i_sb->s_bdev;
1219 	bh.b_size = PAGE_SIZE;
1220 	err = get_block(inode, index, &bh, 0);
1221 	if (err < 0 || !buffer_written(&bh))
1222 		return err;
1223 
1224 	return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1225 			offset, length);
1226 }
1227 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1228 
1229 /**
1230  * dax_truncate_page - handle a partial page being truncated in a DAX file
1231  * @inode: The file being truncated
1232  * @from: The file offset that is being truncated to
1233  * @get_block: The filesystem method used to translate file offsets to blocks
1234  *
1235  * Similar to block_truncate_page(), this function can be called by a
1236  * filesystem when it is truncating a DAX file to handle the partial page.
1237  */
1238 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1239 {
1240 	unsigned length = PAGE_ALIGN(from) - from;
1241 	return dax_zero_page_range(inode, from, length, get_block);
1242 }
1243 EXPORT_SYMBOL_GPL(dax_truncate_page);
1244