1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 148 void *entry, struct exceptional_entry_key *key) 149 { 150 unsigned long hash; 151 unsigned long index = xas->xa_index; 152 153 /* 154 * If 'entry' is a PMD, align the 'index' that we use for the wait 155 * queue to the start of that PMD. This ensures that all offsets in 156 * the range covered by the PMD map to the same bit lock. 157 */ 158 if (dax_is_pmd_entry(entry)) 159 index &= ~PG_PMD_COLOUR; 160 key->xa = xas->xa; 161 key->entry_start = index; 162 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 164 return wait_table + hash; 165 } 166 167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 168 unsigned int mode, int sync, void *keyp) 169 { 170 struct exceptional_entry_key *key = keyp; 171 struct wait_exceptional_entry_queue *ewait = 172 container_of(wait, struct wait_exceptional_entry_queue, wait); 173 174 if (key->xa != ewait->key.xa || 175 key->entry_start != ewait->key.entry_start) 176 return 0; 177 return autoremove_wake_function(wait, mode, sync, NULL); 178 } 179 180 /* 181 * @entry may no longer be the entry at the index in the mapping. 182 * The important information it's conveying is whether the entry at 183 * this index used to be a PMD entry. 184 */ 185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 186 { 187 struct exceptional_entry_key key; 188 wait_queue_head_t *wq; 189 190 wq = dax_entry_waitqueue(xas, entry, &key); 191 192 /* 193 * Checking for locked entry and prepare_to_wait_exclusive() happens 194 * under the i_pages lock, ditto for entry handling in our callers. 195 * So at this point all tasks that could have seen our entry locked 196 * must be in the waitqueue and the following check will see them. 197 */ 198 if (waitqueue_active(wq)) 199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 200 } 201 202 /* 203 * Look up entry in page cache, wait for it to become unlocked if it 204 * is a DAX entry and return it. The caller must subsequently call 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 206 * if it did. The entry returned may have a larger order than @order. 207 * If @order is larger than the order of the entry found in i_pages, this 208 * function returns a dax_is_conflict entry. 209 * 210 * Must be called with the i_pages lock held. 211 */ 212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 213 { 214 void *entry; 215 struct wait_exceptional_entry_queue ewait; 216 wait_queue_head_t *wq; 217 218 init_wait(&ewait.wait); 219 ewait.wait.func = wake_exceptional_entry_func; 220 221 for (;;) { 222 entry = xas_find_conflict(xas); 223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 224 return entry; 225 if (dax_entry_order(entry) < order) 226 return XA_RETRY_ENTRY; 227 if (!dax_is_locked(entry)) 228 return entry; 229 230 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 231 prepare_to_wait_exclusive(wq, &ewait.wait, 232 TASK_UNINTERRUPTIBLE); 233 xas_unlock_irq(xas); 234 xas_reset(xas); 235 schedule(); 236 finish_wait(wq, &ewait.wait); 237 xas_lock_irq(xas); 238 } 239 } 240 241 /* 242 * The only thing keeping the address space around is the i_pages lock 243 * (it's cycled in clear_inode() after removing the entries from i_pages) 244 * After we call xas_unlock_irq(), we cannot touch xas->xa. 245 */ 246 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 247 { 248 struct wait_exceptional_entry_queue ewait; 249 wait_queue_head_t *wq; 250 251 init_wait(&ewait.wait); 252 ewait.wait.func = wake_exceptional_entry_func; 253 254 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 255 /* 256 * Unlike get_unlocked_entry() there is no guarantee that this 257 * path ever successfully retrieves an unlocked entry before an 258 * inode dies. Perform a non-exclusive wait in case this path 259 * never successfully performs its own wake up. 260 */ 261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 262 xas_unlock_irq(xas); 263 schedule(); 264 finish_wait(wq, &ewait.wait); 265 } 266 267 static void put_unlocked_entry(struct xa_state *xas, void *entry) 268 { 269 /* If we were the only waiter woken, wake the next one */ 270 if (entry && !dax_is_conflict(entry)) 271 dax_wake_entry(xas, entry, false); 272 } 273 274 /* 275 * We used the xa_state to get the entry, but then we locked the entry and 276 * dropped the xa_lock, so we know the xa_state is stale and must be reset 277 * before use. 278 */ 279 static void dax_unlock_entry(struct xa_state *xas, void *entry) 280 { 281 void *old; 282 283 BUG_ON(dax_is_locked(entry)); 284 xas_reset(xas); 285 xas_lock_irq(xas); 286 old = xas_store(xas, entry); 287 xas_unlock_irq(xas); 288 BUG_ON(!dax_is_locked(old)); 289 dax_wake_entry(xas, entry, false); 290 } 291 292 /* 293 * Return: The entry stored at this location before it was locked. 294 */ 295 static void *dax_lock_entry(struct xa_state *xas, void *entry) 296 { 297 unsigned long v = xa_to_value(entry); 298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 299 } 300 301 static unsigned long dax_entry_size(void *entry) 302 { 303 if (dax_is_zero_entry(entry)) 304 return 0; 305 else if (dax_is_empty_entry(entry)) 306 return 0; 307 else if (dax_is_pmd_entry(entry)) 308 return PMD_SIZE; 309 else 310 return PAGE_SIZE; 311 } 312 313 static unsigned long dax_end_pfn(void *entry) 314 { 315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 316 } 317 318 /* 319 * Iterate through all mapped pfns represented by an entry, i.e. skip 320 * 'empty' and 'zero' entries. 321 */ 322 #define for_each_mapped_pfn(entry, pfn) \ 323 for (pfn = dax_to_pfn(entry); \ 324 pfn < dax_end_pfn(entry); pfn++) 325 326 /* 327 * TODO: for reflink+dax we need a way to associate a single page with 328 * multiple address_space instances at different linear_page_index() 329 * offsets. 330 */ 331 static void dax_associate_entry(void *entry, struct address_space *mapping, 332 struct vm_area_struct *vma, unsigned long address) 333 { 334 unsigned long size = dax_entry_size(entry), pfn, index; 335 int i = 0; 336 337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 338 return; 339 340 index = linear_page_index(vma, address & ~(size - 1)); 341 for_each_mapped_pfn(entry, pfn) { 342 struct page *page = pfn_to_page(pfn); 343 344 WARN_ON_ONCE(page->mapping); 345 page->mapping = mapping; 346 page->index = index + i++; 347 } 348 } 349 350 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 351 bool trunc) 352 { 353 unsigned long pfn; 354 355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 356 return; 357 358 for_each_mapped_pfn(entry, pfn) { 359 struct page *page = pfn_to_page(pfn); 360 361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 362 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 363 page->mapping = NULL; 364 page->index = 0; 365 } 366 } 367 368 static struct page *dax_busy_page(void *entry) 369 { 370 unsigned long pfn; 371 372 for_each_mapped_pfn(entry, pfn) { 373 struct page *page = pfn_to_page(pfn); 374 375 if (page_ref_count(page) > 1) 376 return page; 377 } 378 return NULL; 379 } 380 381 /* 382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 383 * @page: The page whose entry we want to lock 384 * 385 * Context: Process context. 386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 387 * not be locked. 388 */ 389 dax_entry_t dax_lock_page(struct page *page) 390 { 391 XA_STATE(xas, NULL, 0); 392 void *entry; 393 394 /* Ensure page->mapping isn't freed while we look at it */ 395 rcu_read_lock(); 396 for (;;) { 397 struct address_space *mapping = READ_ONCE(page->mapping); 398 399 entry = NULL; 400 if (!mapping || !dax_mapping(mapping)) 401 break; 402 403 /* 404 * In the device-dax case there's no need to lock, a 405 * struct dev_pagemap pin is sufficient to keep the 406 * inode alive, and we assume we have dev_pagemap pin 407 * otherwise we would not have a valid pfn_to_page() 408 * translation. 409 */ 410 entry = (void *)~0UL; 411 if (S_ISCHR(mapping->host->i_mode)) 412 break; 413 414 xas.xa = &mapping->i_pages; 415 xas_lock_irq(&xas); 416 if (mapping != page->mapping) { 417 xas_unlock_irq(&xas); 418 continue; 419 } 420 xas_set(&xas, page->index); 421 entry = xas_load(&xas); 422 if (dax_is_locked(entry)) { 423 rcu_read_unlock(); 424 wait_entry_unlocked(&xas, entry); 425 rcu_read_lock(); 426 continue; 427 } 428 dax_lock_entry(&xas, entry); 429 xas_unlock_irq(&xas); 430 break; 431 } 432 rcu_read_unlock(); 433 return (dax_entry_t)entry; 434 } 435 436 void dax_unlock_page(struct page *page, dax_entry_t cookie) 437 { 438 struct address_space *mapping = page->mapping; 439 XA_STATE(xas, &mapping->i_pages, page->index); 440 441 if (S_ISCHR(mapping->host->i_mode)) 442 return; 443 444 dax_unlock_entry(&xas, (void *)cookie); 445 } 446 447 /* 448 * Find page cache entry at given index. If it is a DAX entry, return it 449 * with the entry locked. If the page cache doesn't contain an entry at 450 * that index, add a locked empty entry. 451 * 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 453 * either return that locked entry or will return VM_FAULT_FALLBACK. 454 * This will happen if there are any PTE entries within the PMD range 455 * that we are requesting. 456 * 457 * We always favor PTE entries over PMD entries. There isn't a flow where we 458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 459 * insertion will fail if it finds any PTE entries already in the tree, and a 460 * PTE insertion will cause an existing PMD entry to be unmapped and 461 * downgraded to PTE entries. This happens for both PMD zero pages as 462 * well as PMD empty entries. 463 * 464 * The exception to this downgrade path is for PMD entries that have 465 * real storage backing them. We will leave these real PMD entries in 466 * the tree, and PTE writes will simply dirty the entire PMD entry. 467 * 468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 469 * persistent memory the benefit is doubtful. We can add that later if we can 470 * show it helps. 471 * 472 * On error, this function does not return an ERR_PTR. Instead it returns 473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 474 * overlap with xarray value entries. 475 */ 476 static void *grab_mapping_entry(struct xa_state *xas, 477 struct address_space *mapping, unsigned int order) 478 { 479 unsigned long index = xas->xa_index; 480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 481 void *entry; 482 483 retry: 484 xas_lock_irq(xas); 485 entry = get_unlocked_entry(xas, order); 486 487 if (entry) { 488 if (dax_is_conflict(entry)) 489 goto fallback; 490 if (!xa_is_value(entry)) { 491 xas_set_err(xas, -EIO); 492 goto out_unlock; 493 } 494 495 if (order == 0) { 496 if (dax_is_pmd_entry(entry) && 497 (dax_is_zero_entry(entry) || 498 dax_is_empty_entry(entry))) { 499 pmd_downgrade = true; 500 } 501 } 502 } 503 504 if (pmd_downgrade) { 505 /* 506 * Make sure 'entry' remains valid while we drop 507 * the i_pages lock. 508 */ 509 dax_lock_entry(xas, entry); 510 511 /* 512 * Besides huge zero pages the only other thing that gets 513 * downgraded are empty entries which don't need to be 514 * unmapped. 515 */ 516 if (dax_is_zero_entry(entry)) { 517 xas_unlock_irq(xas); 518 unmap_mapping_pages(mapping, 519 xas->xa_index & ~PG_PMD_COLOUR, 520 PG_PMD_NR, false); 521 xas_reset(xas); 522 xas_lock_irq(xas); 523 } 524 525 dax_disassociate_entry(entry, mapping, false); 526 xas_store(xas, NULL); /* undo the PMD join */ 527 dax_wake_entry(xas, entry, true); 528 mapping->nrexceptional--; 529 entry = NULL; 530 xas_set(xas, index); 531 } 532 533 if (entry) { 534 dax_lock_entry(xas, entry); 535 } else { 536 unsigned long flags = DAX_EMPTY; 537 538 if (order > 0) 539 flags |= DAX_PMD; 540 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 541 dax_lock_entry(xas, entry); 542 if (xas_error(xas)) 543 goto out_unlock; 544 mapping->nrexceptional++; 545 } 546 547 out_unlock: 548 xas_unlock_irq(xas); 549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 550 goto retry; 551 if (xas->xa_node == XA_ERROR(-ENOMEM)) 552 return xa_mk_internal(VM_FAULT_OOM); 553 if (xas_error(xas)) 554 return xa_mk_internal(VM_FAULT_SIGBUS); 555 return entry; 556 fallback: 557 xas_unlock_irq(xas); 558 return xa_mk_internal(VM_FAULT_FALLBACK); 559 } 560 561 /** 562 * dax_layout_busy_page - find first pinned page in @mapping 563 * @mapping: address space to scan for a page with ref count > 1 564 * 565 * DAX requires ZONE_DEVICE mapped pages. These pages are never 566 * 'onlined' to the page allocator so they are considered idle when 567 * page->count == 1. A filesystem uses this interface to determine if 568 * any page in the mapping is busy, i.e. for DMA, or other 569 * get_user_pages() usages. 570 * 571 * It is expected that the filesystem is holding locks to block the 572 * establishment of new mappings in this address_space. I.e. it expects 573 * to be able to run unmap_mapping_range() and subsequently not race 574 * mapping_mapped() becoming true. 575 */ 576 struct page *dax_layout_busy_page(struct address_space *mapping) 577 { 578 XA_STATE(xas, &mapping->i_pages, 0); 579 void *entry; 580 unsigned int scanned = 0; 581 struct page *page = NULL; 582 583 /* 584 * In the 'limited' case get_user_pages() for dax is disabled. 585 */ 586 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 587 return NULL; 588 589 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 590 return NULL; 591 592 /* 593 * If we race get_user_pages_fast() here either we'll see the 594 * elevated page count in the iteration and wait, or 595 * get_user_pages_fast() will see that the page it took a reference 596 * against is no longer mapped in the page tables and bail to the 597 * get_user_pages() slow path. The slow path is protected by 598 * pte_lock() and pmd_lock(). New references are not taken without 599 * holding those locks, and unmap_mapping_range() will not zero the 600 * pte or pmd without holding the respective lock, so we are 601 * guaranteed to either see new references or prevent new 602 * references from being established. 603 */ 604 unmap_mapping_range(mapping, 0, 0, 0); 605 606 xas_lock_irq(&xas); 607 xas_for_each(&xas, entry, ULONG_MAX) { 608 if (WARN_ON_ONCE(!xa_is_value(entry))) 609 continue; 610 if (unlikely(dax_is_locked(entry))) 611 entry = get_unlocked_entry(&xas, 0); 612 if (entry) 613 page = dax_busy_page(entry); 614 put_unlocked_entry(&xas, entry); 615 if (page) 616 break; 617 if (++scanned % XA_CHECK_SCHED) 618 continue; 619 620 xas_pause(&xas); 621 xas_unlock_irq(&xas); 622 cond_resched(); 623 xas_lock_irq(&xas); 624 } 625 xas_unlock_irq(&xas); 626 return page; 627 } 628 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 629 630 static int __dax_invalidate_entry(struct address_space *mapping, 631 pgoff_t index, bool trunc) 632 { 633 XA_STATE(xas, &mapping->i_pages, index); 634 int ret = 0; 635 void *entry; 636 637 xas_lock_irq(&xas); 638 entry = get_unlocked_entry(&xas, 0); 639 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 640 goto out; 641 if (!trunc && 642 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 643 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 644 goto out; 645 dax_disassociate_entry(entry, mapping, trunc); 646 xas_store(&xas, NULL); 647 mapping->nrexceptional--; 648 ret = 1; 649 out: 650 put_unlocked_entry(&xas, entry); 651 xas_unlock_irq(&xas); 652 return ret; 653 } 654 655 /* 656 * Delete DAX entry at @index from @mapping. Wait for it 657 * to be unlocked before deleting it. 658 */ 659 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 660 { 661 int ret = __dax_invalidate_entry(mapping, index, true); 662 663 /* 664 * This gets called from truncate / punch_hole path. As such, the caller 665 * must hold locks protecting against concurrent modifications of the 666 * page cache (usually fs-private i_mmap_sem for writing). Since the 667 * caller has seen a DAX entry for this index, we better find it 668 * at that index as well... 669 */ 670 WARN_ON_ONCE(!ret); 671 return ret; 672 } 673 674 /* 675 * Invalidate DAX entry if it is clean. 676 */ 677 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 678 pgoff_t index) 679 { 680 return __dax_invalidate_entry(mapping, index, false); 681 } 682 683 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev, 684 sector_t sector, struct page *to, unsigned long vaddr) 685 { 686 void *vto, *kaddr; 687 pgoff_t pgoff; 688 long rc; 689 int id; 690 691 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 692 if (rc) 693 return rc; 694 695 id = dax_read_lock(); 696 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL); 697 if (rc < 0) { 698 dax_read_unlock(id); 699 return rc; 700 } 701 vto = kmap_atomic(to); 702 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 703 kunmap_atomic(vto); 704 dax_read_unlock(id); 705 return 0; 706 } 707 708 /* 709 * By this point grab_mapping_entry() has ensured that we have a locked entry 710 * of the appropriate size so we don't have to worry about downgrading PMDs to 711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 712 * already in the tree, we will skip the insertion and just dirty the PMD as 713 * appropriate. 714 */ 715 static void *dax_insert_entry(struct xa_state *xas, 716 struct address_space *mapping, struct vm_fault *vmf, 717 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 718 { 719 void *new_entry = dax_make_entry(pfn, flags); 720 721 if (dirty) 722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 723 724 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 725 unsigned long index = xas->xa_index; 726 /* we are replacing a zero page with block mapping */ 727 if (dax_is_pmd_entry(entry)) 728 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 729 PG_PMD_NR, false); 730 else /* pte entry */ 731 unmap_mapping_pages(mapping, index, 1, false); 732 } 733 734 xas_reset(xas); 735 xas_lock_irq(xas); 736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 737 void *old; 738 739 dax_disassociate_entry(entry, mapping, false); 740 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 741 /* 742 * Only swap our new entry into the page cache if the current 743 * entry is a zero page or an empty entry. If a normal PTE or 744 * PMD entry is already in the cache, we leave it alone. This 745 * means that if we are trying to insert a PTE and the 746 * existing entry is a PMD, we will just leave the PMD in the 747 * tree and dirty it if necessary. 748 */ 749 old = dax_lock_entry(xas, new_entry); 750 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 751 DAX_LOCKED)); 752 entry = new_entry; 753 } else { 754 xas_load(xas); /* Walk the xa_state */ 755 } 756 757 if (dirty) 758 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 759 760 xas_unlock_irq(xas); 761 return entry; 762 } 763 764 static inline 765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 766 { 767 unsigned long address; 768 769 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 770 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 771 return address; 772 } 773 774 /* Walk all mappings of a given index of a file and writeprotect them */ 775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 776 unsigned long pfn) 777 { 778 struct vm_area_struct *vma; 779 pte_t pte, *ptep = NULL; 780 pmd_t *pmdp = NULL; 781 spinlock_t *ptl; 782 783 i_mmap_lock_read(mapping); 784 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 785 struct mmu_notifier_range range; 786 unsigned long address; 787 788 cond_resched(); 789 790 if (!(vma->vm_flags & VM_SHARED)) 791 continue; 792 793 address = pgoff_address(index, vma); 794 795 /* 796 * Note because we provide range to follow_pte_pmd it will 797 * call mmu_notifier_invalidate_range_start() on our behalf 798 * before taking any lock. 799 */ 800 if (follow_pte_pmd(vma->vm_mm, address, &range, 801 &ptep, &pmdp, &ptl)) 802 continue; 803 804 /* 805 * No need to call mmu_notifier_invalidate_range() as we are 806 * downgrading page table protection not changing it to point 807 * to a new page. 808 * 809 * See Documentation/vm/mmu_notifier.rst 810 */ 811 if (pmdp) { 812 #ifdef CONFIG_FS_DAX_PMD 813 pmd_t pmd; 814 815 if (pfn != pmd_pfn(*pmdp)) 816 goto unlock_pmd; 817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 818 goto unlock_pmd; 819 820 flush_cache_page(vma, address, pfn); 821 pmd = pmdp_invalidate(vma, address, pmdp); 822 pmd = pmd_wrprotect(pmd); 823 pmd = pmd_mkclean(pmd); 824 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 825 unlock_pmd: 826 #endif 827 spin_unlock(ptl); 828 } else { 829 if (pfn != pte_pfn(*ptep)) 830 goto unlock_pte; 831 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 832 goto unlock_pte; 833 834 flush_cache_page(vma, address, pfn); 835 pte = ptep_clear_flush(vma, address, ptep); 836 pte = pte_wrprotect(pte); 837 pte = pte_mkclean(pte); 838 set_pte_at(vma->vm_mm, address, ptep, pte); 839 unlock_pte: 840 pte_unmap_unlock(ptep, ptl); 841 } 842 843 mmu_notifier_invalidate_range_end(&range); 844 } 845 i_mmap_unlock_read(mapping); 846 } 847 848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 849 struct address_space *mapping, void *entry) 850 { 851 unsigned long pfn, index, count; 852 long ret = 0; 853 854 /* 855 * A page got tagged dirty in DAX mapping? Something is seriously 856 * wrong. 857 */ 858 if (WARN_ON(!xa_is_value(entry))) 859 return -EIO; 860 861 if (unlikely(dax_is_locked(entry))) { 862 void *old_entry = entry; 863 864 entry = get_unlocked_entry(xas, 0); 865 866 /* Entry got punched out / reallocated? */ 867 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 868 goto put_unlocked; 869 /* 870 * Entry got reallocated elsewhere? No need to writeback. 871 * We have to compare pfns as we must not bail out due to 872 * difference in lockbit or entry type. 873 */ 874 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 875 goto put_unlocked; 876 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 877 dax_is_zero_entry(entry))) { 878 ret = -EIO; 879 goto put_unlocked; 880 } 881 882 /* Another fsync thread may have already done this entry */ 883 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 884 goto put_unlocked; 885 } 886 887 /* Lock the entry to serialize with page faults */ 888 dax_lock_entry(xas, entry); 889 890 /* 891 * We can clear the tag now but we have to be careful so that concurrent 892 * dax_writeback_one() calls for the same index cannot finish before we 893 * actually flush the caches. This is achieved as the calls will look 894 * at the entry only under the i_pages lock and once they do that 895 * they will see the entry locked and wait for it to unlock. 896 */ 897 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 898 xas_unlock_irq(xas); 899 900 /* 901 * If dax_writeback_mapping_range() was given a wbc->range_start 902 * in the middle of a PMD, the 'index' we use needs to be 903 * aligned to the start of the PMD. 904 * This allows us to flush for PMD_SIZE and not have to worry about 905 * partial PMD writebacks. 906 */ 907 pfn = dax_to_pfn(entry); 908 count = 1UL << dax_entry_order(entry); 909 index = xas->xa_index & ~(count - 1); 910 911 dax_entry_mkclean(mapping, index, pfn); 912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 913 /* 914 * After we have flushed the cache, we can clear the dirty tag. There 915 * cannot be new dirty data in the pfn after the flush has completed as 916 * the pfn mappings are writeprotected and fault waits for mapping 917 * entry lock. 918 */ 919 xas_reset(xas); 920 xas_lock_irq(xas); 921 xas_store(xas, entry); 922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 923 dax_wake_entry(xas, entry, false); 924 925 trace_dax_writeback_one(mapping->host, index, count); 926 return ret; 927 928 put_unlocked: 929 put_unlocked_entry(xas, entry); 930 return ret; 931 } 932 933 /* 934 * Flush the mapping to the persistent domain within the byte range of [start, 935 * end]. This is required by data integrity operations to ensure file data is 936 * on persistent storage prior to completion of the operation. 937 */ 938 int dax_writeback_mapping_range(struct address_space *mapping, 939 struct dax_device *dax_dev, struct writeback_control *wbc) 940 { 941 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 942 struct inode *inode = mapping->host; 943 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 944 void *entry; 945 int ret = 0; 946 unsigned int scanned = 0; 947 948 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 949 return -EIO; 950 951 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 952 return 0; 953 954 trace_dax_writeback_range(inode, xas.xa_index, end_index); 955 956 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 957 958 xas_lock_irq(&xas); 959 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 960 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 961 if (ret < 0) { 962 mapping_set_error(mapping, ret); 963 break; 964 } 965 if (++scanned % XA_CHECK_SCHED) 966 continue; 967 968 xas_pause(&xas); 969 xas_unlock_irq(&xas); 970 cond_resched(); 971 xas_lock_irq(&xas); 972 } 973 xas_unlock_irq(&xas); 974 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 975 return ret; 976 } 977 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 978 979 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 980 { 981 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 982 } 983 984 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 985 pfn_t *pfnp) 986 { 987 const sector_t sector = dax_iomap_sector(iomap, pos); 988 pgoff_t pgoff; 989 int id, rc; 990 long length; 991 992 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 993 if (rc) 994 return rc; 995 id = dax_read_lock(); 996 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 997 NULL, pfnp); 998 if (length < 0) { 999 rc = length; 1000 goto out; 1001 } 1002 rc = -EINVAL; 1003 if (PFN_PHYS(length) < size) 1004 goto out; 1005 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1006 goto out; 1007 /* For larger pages we need devmap */ 1008 if (length > 1 && !pfn_t_devmap(*pfnp)) 1009 goto out; 1010 rc = 0; 1011 out: 1012 dax_read_unlock(id); 1013 return rc; 1014 } 1015 1016 /* 1017 * The user has performed a load from a hole in the file. Allocating a new 1018 * page in the file would cause excessive storage usage for workloads with 1019 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1020 * If this page is ever written to we will re-fault and change the mapping to 1021 * point to real DAX storage instead. 1022 */ 1023 static vm_fault_t dax_load_hole(struct xa_state *xas, 1024 struct address_space *mapping, void **entry, 1025 struct vm_fault *vmf) 1026 { 1027 struct inode *inode = mapping->host; 1028 unsigned long vaddr = vmf->address; 1029 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1030 vm_fault_t ret; 1031 1032 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1033 DAX_ZERO_PAGE, false); 1034 1035 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1036 trace_dax_load_hole(inode, vmf, ret); 1037 return ret; 1038 } 1039 1040 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap) 1041 { 1042 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK); 1043 pgoff_t pgoff; 1044 long rc, id; 1045 void *kaddr; 1046 bool page_aligned = false; 1047 unsigned offset = offset_in_page(pos); 1048 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1049 1050 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) && 1051 (size == PAGE_SIZE)) 1052 page_aligned = true; 1053 1054 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff); 1055 if (rc) 1056 return rc; 1057 1058 id = dax_read_lock(); 1059 1060 if (page_aligned) 1061 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1062 else 1063 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL); 1064 if (rc < 0) { 1065 dax_read_unlock(id); 1066 return rc; 1067 } 1068 1069 if (!page_aligned) { 1070 memset(kaddr + offset, 0, size); 1071 dax_flush(iomap->dax_dev, kaddr + offset, size); 1072 } 1073 dax_read_unlock(id); 1074 return size; 1075 } 1076 1077 static loff_t 1078 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1079 struct iomap *iomap, struct iomap *srcmap) 1080 { 1081 struct block_device *bdev = iomap->bdev; 1082 struct dax_device *dax_dev = iomap->dax_dev; 1083 struct iov_iter *iter = data; 1084 loff_t end = pos + length, done = 0; 1085 ssize_t ret = 0; 1086 size_t xfer; 1087 int id; 1088 1089 if (iov_iter_rw(iter) == READ) { 1090 end = min(end, i_size_read(inode)); 1091 if (pos >= end) 1092 return 0; 1093 1094 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1095 return iov_iter_zero(min(length, end - pos), iter); 1096 } 1097 1098 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1099 return -EIO; 1100 1101 /* 1102 * Write can allocate block for an area which has a hole page mapped 1103 * into page tables. We have to tear down these mappings so that data 1104 * written by write(2) is visible in mmap. 1105 */ 1106 if (iomap->flags & IOMAP_F_NEW) { 1107 invalidate_inode_pages2_range(inode->i_mapping, 1108 pos >> PAGE_SHIFT, 1109 (end - 1) >> PAGE_SHIFT); 1110 } 1111 1112 id = dax_read_lock(); 1113 while (pos < end) { 1114 unsigned offset = pos & (PAGE_SIZE - 1); 1115 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1116 const sector_t sector = dax_iomap_sector(iomap, pos); 1117 ssize_t map_len; 1118 pgoff_t pgoff; 1119 void *kaddr; 1120 1121 if (fatal_signal_pending(current)) { 1122 ret = -EINTR; 1123 break; 1124 } 1125 1126 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1127 if (ret) 1128 break; 1129 1130 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1131 &kaddr, NULL); 1132 if (map_len < 0) { 1133 ret = map_len; 1134 break; 1135 } 1136 1137 map_len = PFN_PHYS(map_len); 1138 kaddr += offset; 1139 map_len -= offset; 1140 if (map_len > end - pos) 1141 map_len = end - pos; 1142 1143 /* 1144 * The userspace address for the memory copy has already been 1145 * validated via access_ok() in either vfs_read() or 1146 * vfs_write(), depending on which operation we are doing. 1147 */ 1148 if (iov_iter_rw(iter) == WRITE) 1149 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1150 map_len, iter); 1151 else 1152 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1153 map_len, iter); 1154 1155 pos += xfer; 1156 length -= xfer; 1157 done += xfer; 1158 1159 if (xfer == 0) 1160 ret = -EFAULT; 1161 if (xfer < map_len) 1162 break; 1163 } 1164 dax_read_unlock(id); 1165 1166 return done ? done : ret; 1167 } 1168 1169 /** 1170 * dax_iomap_rw - Perform I/O to a DAX file 1171 * @iocb: The control block for this I/O 1172 * @iter: The addresses to do I/O from or to 1173 * @ops: iomap ops passed from the file system 1174 * 1175 * This function performs read and write operations to directly mapped 1176 * persistent memory. The callers needs to take care of read/write exclusion 1177 * and evicting any page cache pages in the region under I/O. 1178 */ 1179 ssize_t 1180 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1181 const struct iomap_ops *ops) 1182 { 1183 struct address_space *mapping = iocb->ki_filp->f_mapping; 1184 struct inode *inode = mapping->host; 1185 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1186 unsigned flags = 0; 1187 1188 if (iov_iter_rw(iter) == WRITE) { 1189 lockdep_assert_held_write(&inode->i_rwsem); 1190 flags |= IOMAP_WRITE; 1191 } else { 1192 lockdep_assert_held(&inode->i_rwsem); 1193 } 1194 1195 if (iocb->ki_flags & IOCB_NOWAIT) 1196 flags |= IOMAP_NOWAIT; 1197 1198 while (iov_iter_count(iter)) { 1199 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1200 iter, dax_iomap_actor); 1201 if (ret <= 0) 1202 break; 1203 pos += ret; 1204 done += ret; 1205 } 1206 1207 iocb->ki_pos += done; 1208 return done ? done : ret; 1209 } 1210 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1211 1212 static vm_fault_t dax_fault_return(int error) 1213 { 1214 if (error == 0) 1215 return VM_FAULT_NOPAGE; 1216 return vmf_error(error); 1217 } 1218 1219 /* 1220 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1221 * flushed on write-faults (non-cow), but not read-faults. 1222 */ 1223 static bool dax_fault_is_synchronous(unsigned long flags, 1224 struct vm_area_struct *vma, struct iomap *iomap) 1225 { 1226 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1227 && (iomap->flags & IOMAP_F_DIRTY); 1228 } 1229 1230 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1231 int *iomap_errp, const struct iomap_ops *ops) 1232 { 1233 struct vm_area_struct *vma = vmf->vma; 1234 struct address_space *mapping = vma->vm_file->f_mapping; 1235 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1236 struct inode *inode = mapping->host; 1237 unsigned long vaddr = vmf->address; 1238 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1239 struct iomap iomap = { .type = IOMAP_HOLE }; 1240 struct iomap srcmap = { .type = IOMAP_HOLE }; 1241 unsigned flags = IOMAP_FAULT; 1242 int error, major = 0; 1243 bool write = vmf->flags & FAULT_FLAG_WRITE; 1244 bool sync; 1245 vm_fault_t ret = 0; 1246 void *entry; 1247 pfn_t pfn; 1248 1249 trace_dax_pte_fault(inode, vmf, ret); 1250 /* 1251 * Check whether offset isn't beyond end of file now. Caller is supposed 1252 * to hold locks serializing us with truncate / punch hole so this is 1253 * a reliable test. 1254 */ 1255 if (pos >= i_size_read(inode)) { 1256 ret = VM_FAULT_SIGBUS; 1257 goto out; 1258 } 1259 1260 if (write && !vmf->cow_page) 1261 flags |= IOMAP_WRITE; 1262 1263 entry = grab_mapping_entry(&xas, mapping, 0); 1264 if (xa_is_internal(entry)) { 1265 ret = xa_to_internal(entry); 1266 goto out; 1267 } 1268 1269 /* 1270 * It is possible, particularly with mixed reads & writes to private 1271 * mappings, that we have raced with a PMD fault that overlaps with 1272 * the PTE we need to set up. If so just return and the fault will be 1273 * retried. 1274 */ 1275 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1276 ret = VM_FAULT_NOPAGE; 1277 goto unlock_entry; 1278 } 1279 1280 /* 1281 * Note that we don't bother to use iomap_apply here: DAX required 1282 * the file system block size to be equal the page size, which means 1283 * that we never have to deal with more than a single extent here. 1284 */ 1285 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap); 1286 if (iomap_errp) 1287 *iomap_errp = error; 1288 if (error) { 1289 ret = dax_fault_return(error); 1290 goto unlock_entry; 1291 } 1292 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1293 error = -EIO; /* fs corruption? */ 1294 goto error_finish_iomap; 1295 } 1296 1297 if (vmf->cow_page) { 1298 sector_t sector = dax_iomap_sector(&iomap, pos); 1299 1300 switch (iomap.type) { 1301 case IOMAP_HOLE: 1302 case IOMAP_UNWRITTEN: 1303 clear_user_highpage(vmf->cow_page, vaddr); 1304 break; 1305 case IOMAP_MAPPED: 1306 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev, 1307 sector, vmf->cow_page, vaddr); 1308 break; 1309 default: 1310 WARN_ON_ONCE(1); 1311 error = -EIO; 1312 break; 1313 } 1314 1315 if (error) 1316 goto error_finish_iomap; 1317 1318 __SetPageUptodate(vmf->cow_page); 1319 ret = finish_fault(vmf); 1320 if (!ret) 1321 ret = VM_FAULT_DONE_COW; 1322 goto finish_iomap; 1323 } 1324 1325 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1326 1327 switch (iomap.type) { 1328 case IOMAP_MAPPED: 1329 if (iomap.flags & IOMAP_F_NEW) { 1330 count_vm_event(PGMAJFAULT); 1331 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1332 major = VM_FAULT_MAJOR; 1333 } 1334 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1335 if (error < 0) 1336 goto error_finish_iomap; 1337 1338 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1339 0, write && !sync); 1340 1341 /* 1342 * If we are doing synchronous page fault and inode needs fsync, 1343 * we can insert PTE into page tables only after that happens. 1344 * Skip insertion for now and return the pfn so that caller can 1345 * insert it after fsync is done. 1346 */ 1347 if (sync) { 1348 if (WARN_ON_ONCE(!pfnp)) { 1349 error = -EIO; 1350 goto error_finish_iomap; 1351 } 1352 *pfnp = pfn; 1353 ret = VM_FAULT_NEEDDSYNC | major; 1354 goto finish_iomap; 1355 } 1356 trace_dax_insert_mapping(inode, vmf, entry); 1357 if (write) 1358 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1359 else 1360 ret = vmf_insert_mixed(vma, vaddr, pfn); 1361 1362 goto finish_iomap; 1363 case IOMAP_UNWRITTEN: 1364 case IOMAP_HOLE: 1365 if (!write) { 1366 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1367 goto finish_iomap; 1368 } 1369 fallthrough; 1370 default: 1371 WARN_ON_ONCE(1); 1372 error = -EIO; 1373 break; 1374 } 1375 1376 error_finish_iomap: 1377 ret = dax_fault_return(error); 1378 finish_iomap: 1379 if (ops->iomap_end) { 1380 int copied = PAGE_SIZE; 1381 1382 if (ret & VM_FAULT_ERROR) 1383 copied = 0; 1384 /* 1385 * The fault is done by now and there's no way back (other 1386 * thread may be already happily using PTE we have installed). 1387 * Just ignore error from ->iomap_end since we cannot do much 1388 * with it. 1389 */ 1390 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1391 } 1392 unlock_entry: 1393 dax_unlock_entry(&xas, entry); 1394 out: 1395 trace_dax_pte_fault_done(inode, vmf, ret); 1396 return ret | major; 1397 } 1398 1399 #ifdef CONFIG_FS_DAX_PMD 1400 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1401 struct iomap *iomap, void **entry) 1402 { 1403 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1404 unsigned long pmd_addr = vmf->address & PMD_MASK; 1405 struct vm_area_struct *vma = vmf->vma; 1406 struct inode *inode = mapping->host; 1407 pgtable_t pgtable = NULL; 1408 struct page *zero_page; 1409 spinlock_t *ptl; 1410 pmd_t pmd_entry; 1411 pfn_t pfn; 1412 1413 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1414 1415 if (unlikely(!zero_page)) 1416 goto fallback; 1417 1418 pfn = page_to_pfn_t(zero_page); 1419 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1420 DAX_PMD | DAX_ZERO_PAGE, false); 1421 1422 if (arch_needs_pgtable_deposit()) { 1423 pgtable = pte_alloc_one(vma->vm_mm); 1424 if (!pgtable) 1425 return VM_FAULT_OOM; 1426 } 1427 1428 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1429 if (!pmd_none(*(vmf->pmd))) { 1430 spin_unlock(ptl); 1431 goto fallback; 1432 } 1433 1434 if (pgtable) { 1435 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1436 mm_inc_nr_ptes(vma->vm_mm); 1437 } 1438 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1439 pmd_entry = pmd_mkhuge(pmd_entry); 1440 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1441 spin_unlock(ptl); 1442 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1443 return VM_FAULT_NOPAGE; 1444 1445 fallback: 1446 if (pgtable) 1447 pte_free(vma->vm_mm, pgtable); 1448 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1449 return VM_FAULT_FALLBACK; 1450 } 1451 1452 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1453 const struct iomap_ops *ops) 1454 { 1455 struct vm_area_struct *vma = vmf->vma; 1456 struct address_space *mapping = vma->vm_file->f_mapping; 1457 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1458 unsigned long pmd_addr = vmf->address & PMD_MASK; 1459 bool write = vmf->flags & FAULT_FLAG_WRITE; 1460 bool sync; 1461 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1462 struct inode *inode = mapping->host; 1463 vm_fault_t result = VM_FAULT_FALLBACK; 1464 struct iomap iomap = { .type = IOMAP_HOLE }; 1465 struct iomap srcmap = { .type = IOMAP_HOLE }; 1466 pgoff_t max_pgoff; 1467 void *entry; 1468 loff_t pos; 1469 int error; 1470 pfn_t pfn; 1471 1472 /* 1473 * Check whether offset isn't beyond end of file now. Caller is 1474 * supposed to hold locks serializing us with truncate / punch hole so 1475 * this is a reliable test. 1476 */ 1477 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1478 1479 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1480 1481 /* 1482 * Make sure that the faulting address's PMD offset (color) matches 1483 * the PMD offset from the start of the file. This is necessary so 1484 * that a PMD range in the page table overlaps exactly with a PMD 1485 * range in the page cache. 1486 */ 1487 if ((vmf->pgoff & PG_PMD_COLOUR) != 1488 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1489 goto fallback; 1490 1491 /* Fall back to PTEs if we're going to COW */ 1492 if (write && !(vma->vm_flags & VM_SHARED)) 1493 goto fallback; 1494 1495 /* If the PMD would extend outside the VMA */ 1496 if (pmd_addr < vma->vm_start) 1497 goto fallback; 1498 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1499 goto fallback; 1500 1501 if (xas.xa_index >= max_pgoff) { 1502 result = VM_FAULT_SIGBUS; 1503 goto out; 1504 } 1505 1506 /* If the PMD would extend beyond the file size */ 1507 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1508 goto fallback; 1509 1510 /* 1511 * grab_mapping_entry() will make sure we get an empty PMD entry, 1512 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1513 * entry is already in the array, for instance), it will return 1514 * VM_FAULT_FALLBACK. 1515 */ 1516 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1517 if (xa_is_internal(entry)) { 1518 result = xa_to_internal(entry); 1519 goto fallback; 1520 } 1521 1522 /* 1523 * It is possible, particularly with mixed reads & writes to private 1524 * mappings, that we have raced with a PTE fault that overlaps with 1525 * the PMD we need to set up. If so just return and the fault will be 1526 * retried. 1527 */ 1528 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1529 !pmd_devmap(*vmf->pmd)) { 1530 result = 0; 1531 goto unlock_entry; 1532 } 1533 1534 /* 1535 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1536 * setting up a mapping, so really we're using iomap_begin() as a way 1537 * to look up our filesystem block. 1538 */ 1539 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1540 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap, 1541 &srcmap); 1542 if (error) 1543 goto unlock_entry; 1544 1545 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1546 goto finish_iomap; 1547 1548 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1549 1550 switch (iomap.type) { 1551 case IOMAP_MAPPED: 1552 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1553 if (error < 0) 1554 goto finish_iomap; 1555 1556 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1557 DAX_PMD, write && !sync); 1558 1559 /* 1560 * If we are doing synchronous page fault and inode needs fsync, 1561 * we can insert PMD into page tables only after that happens. 1562 * Skip insertion for now and return the pfn so that caller can 1563 * insert it after fsync is done. 1564 */ 1565 if (sync) { 1566 if (WARN_ON_ONCE(!pfnp)) 1567 goto finish_iomap; 1568 *pfnp = pfn; 1569 result = VM_FAULT_NEEDDSYNC; 1570 goto finish_iomap; 1571 } 1572 1573 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1574 result = vmf_insert_pfn_pmd(vmf, pfn, write); 1575 break; 1576 case IOMAP_UNWRITTEN: 1577 case IOMAP_HOLE: 1578 if (WARN_ON_ONCE(write)) 1579 break; 1580 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1581 break; 1582 default: 1583 WARN_ON_ONCE(1); 1584 break; 1585 } 1586 1587 finish_iomap: 1588 if (ops->iomap_end) { 1589 int copied = PMD_SIZE; 1590 1591 if (result == VM_FAULT_FALLBACK) 1592 copied = 0; 1593 /* 1594 * The fault is done by now and there's no way back (other 1595 * thread may be already happily using PMD we have installed). 1596 * Just ignore error from ->iomap_end since we cannot do much 1597 * with it. 1598 */ 1599 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1600 &iomap); 1601 } 1602 unlock_entry: 1603 dax_unlock_entry(&xas, entry); 1604 fallback: 1605 if (result == VM_FAULT_FALLBACK) { 1606 split_huge_pmd(vma, vmf->pmd, vmf->address); 1607 count_vm_event(THP_FAULT_FALLBACK); 1608 } 1609 out: 1610 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1611 return result; 1612 } 1613 #else 1614 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1615 const struct iomap_ops *ops) 1616 { 1617 return VM_FAULT_FALLBACK; 1618 } 1619 #endif /* CONFIG_FS_DAX_PMD */ 1620 1621 /** 1622 * dax_iomap_fault - handle a page fault on a DAX file 1623 * @vmf: The description of the fault 1624 * @pe_size: Size of the page to fault in 1625 * @pfnp: PFN to insert for synchronous faults if fsync is required 1626 * @iomap_errp: Storage for detailed error code in case of error 1627 * @ops: Iomap ops passed from the file system 1628 * 1629 * When a page fault occurs, filesystems may call this helper in 1630 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1631 * has done all the necessary locking for page fault to proceed 1632 * successfully. 1633 */ 1634 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1635 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1636 { 1637 switch (pe_size) { 1638 case PE_SIZE_PTE: 1639 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1640 case PE_SIZE_PMD: 1641 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1642 default: 1643 return VM_FAULT_FALLBACK; 1644 } 1645 } 1646 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1647 1648 /* 1649 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1650 * @vmf: The description of the fault 1651 * @pfn: PFN to insert 1652 * @order: Order of entry to insert. 1653 * 1654 * This function inserts a writeable PTE or PMD entry into the page tables 1655 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1656 */ 1657 static vm_fault_t 1658 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1659 { 1660 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1661 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1662 void *entry; 1663 vm_fault_t ret; 1664 1665 xas_lock_irq(&xas); 1666 entry = get_unlocked_entry(&xas, order); 1667 /* Did we race with someone splitting entry or so? */ 1668 if (!entry || dax_is_conflict(entry) || 1669 (order == 0 && !dax_is_pte_entry(entry))) { 1670 put_unlocked_entry(&xas, entry); 1671 xas_unlock_irq(&xas); 1672 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1673 VM_FAULT_NOPAGE); 1674 return VM_FAULT_NOPAGE; 1675 } 1676 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1677 dax_lock_entry(&xas, entry); 1678 xas_unlock_irq(&xas); 1679 if (order == 0) 1680 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1681 #ifdef CONFIG_FS_DAX_PMD 1682 else if (order == PMD_ORDER) 1683 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1684 #endif 1685 else 1686 ret = VM_FAULT_FALLBACK; 1687 dax_unlock_entry(&xas, entry); 1688 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1689 return ret; 1690 } 1691 1692 /** 1693 * dax_finish_sync_fault - finish synchronous page fault 1694 * @vmf: The description of the fault 1695 * @pe_size: Size of entry to be inserted 1696 * @pfn: PFN to insert 1697 * 1698 * This function ensures that the file range touched by the page fault is 1699 * stored persistently on the media and handles inserting of appropriate page 1700 * table entry. 1701 */ 1702 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1703 enum page_entry_size pe_size, pfn_t pfn) 1704 { 1705 int err; 1706 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1707 unsigned int order = pe_order(pe_size); 1708 size_t len = PAGE_SIZE << order; 1709 1710 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1711 if (err) 1712 return VM_FAULT_SIGBUS; 1713 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1714 } 1715 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1716