xref: /openbmc/linux/fs/dax.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 /*
338  * TODO: for reflink+dax we need a way to associate a single page with
339  * multiple address_space instances at different linear_page_index()
340  * offsets.
341  */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 		struct vm_area_struct *vma, unsigned long address)
344 {
345 	unsigned long size = dax_entry_size(entry), pfn, index;
346 	int i = 0;
347 
348 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 		return;
350 
351 	index = linear_page_index(vma, address & ~(size - 1));
352 	for_each_mapped_pfn(entry, pfn) {
353 		struct page *page = pfn_to_page(pfn);
354 
355 		WARN_ON_ONCE(page->mapping);
356 		page->mapping = mapping;
357 		page->index = index + i++;
358 	}
359 }
360 
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 		bool trunc)
363 {
364 	unsigned long pfn;
365 
366 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 		return;
368 
369 	for_each_mapped_pfn(entry, pfn) {
370 		struct page *page = pfn_to_page(pfn);
371 
372 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 		page->mapping = NULL;
375 		page->index = 0;
376 	}
377 }
378 
379 static struct page *dax_busy_page(void *entry)
380 {
381 	unsigned long pfn;
382 
383 	for_each_mapped_pfn(entry, pfn) {
384 		struct page *page = pfn_to_page(pfn);
385 
386 		if (page_ref_count(page) > 1)
387 			return page;
388 	}
389 	return NULL;
390 }
391 
392 /*
393  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
394  * @page: The page whose entry we want to lock
395  *
396  * Context: Process context.
397  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398  * not be locked.
399  */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 	XA_STATE(xas, NULL, 0);
403 	void *entry;
404 
405 	/* Ensure page->mapping isn't freed while we look at it */
406 	rcu_read_lock();
407 	for (;;) {
408 		struct address_space *mapping = READ_ONCE(page->mapping);
409 
410 		entry = NULL;
411 		if (!mapping || !dax_mapping(mapping))
412 			break;
413 
414 		/*
415 		 * In the device-dax case there's no need to lock, a
416 		 * struct dev_pagemap pin is sufficient to keep the
417 		 * inode alive, and we assume we have dev_pagemap pin
418 		 * otherwise we would not have a valid pfn_to_page()
419 		 * translation.
420 		 */
421 		entry = (void *)~0UL;
422 		if (S_ISCHR(mapping->host->i_mode))
423 			break;
424 
425 		xas.xa = &mapping->i_pages;
426 		xas_lock_irq(&xas);
427 		if (mapping != page->mapping) {
428 			xas_unlock_irq(&xas);
429 			continue;
430 		}
431 		xas_set(&xas, page->index);
432 		entry = xas_load(&xas);
433 		if (dax_is_locked(entry)) {
434 			rcu_read_unlock();
435 			wait_entry_unlocked(&xas, entry);
436 			rcu_read_lock();
437 			continue;
438 		}
439 		dax_lock_entry(&xas, entry);
440 		xas_unlock_irq(&xas);
441 		break;
442 	}
443 	rcu_read_unlock();
444 	return (dax_entry_t)entry;
445 }
446 
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 	struct address_space *mapping = page->mapping;
450 	XA_STATE(xas, &mapping->i_pages, page->index);
451 
452 	if (S_ISCHR(mapping->host->i_mode))
453 		return;
454 
455 	dax_unlock_entry(&xas, (void *)cookie);
456 }
457 
458 /*
459  * Find page cache entry at given index. If it is a DAX entry, return it
460  * with the entry locked. If the page cache doesn't contain an entry at
461  * that index, add a locked empty entry.
462  *
463  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464  * either return that locked entry or will return VM_FAULT_FALLBACK.
465  * This will happen if there are any PTE entries within the PMD range
466  * that we are requesting.
467  *
468  * We always favor PTE entries over PMD entries. There isn't a flow where we
469  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
470  * insertion will fail if it finds any PTE entries already in the tree, and a
471  * PTE insertion will cause an existing PMD entry to be unmapped and
472  * downgraded to PTE entries.  This happens for both PMD zero pages as
473  * well as PMD empty entries.
474  *
475  * The exception to this downgrade path is for PMD entries that have
476  * real storage backing them.  We will leave these real PMD entries in
477  * the tree, and PTE writes will simply dirty the entire PMD entry.
478  *
479  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480  * persistent memory the benefit is doubtful. We can add that later if we can
481  * show it helps.
482  *
483  * On error, this function does not return an ERR_PTR.  Instead it returns
484  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
485  * overlap with xarray value entries.
486  */
487 static void *grab_mapping_entry(struct xa_state *xas,
488 		struct address_space *mapping, unsigned int order)
489 {
490 	unsigned long index = xas->xa_index;
491 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
492 	void *entry;
493 
494 retry:
495 	pmd_downgrade = false;
496 	xas_lock_irq(xas);
497 	entry = get_unlocked_entry(xas, order);
498 
499 	if (entry) {
500 		if (dax_is_conflict(entry))
501 			goto fallback;
502 		if (!xa_is_value(entry)) {
503 			xas_set_err(xas, -EIO);
504 			goto out_unlock;
505 		}
506 
507 		if (order == 0) {
508 			if (dax_is_pmd_entry(entry) &&
509 			    (dax_is_zero_entry(entry) ||
510 			     dax_is_empty_entry(entry))) {
511 				pmd_downgrade = true;
512 			}
513 		}
514 	}
515 
516 	if (pmd_downgrade) {
517 		/*
518 		 * Make sure 'entry' remains valid while we drop
519 		 * the i_pages lock.
520 		 */
521 		dax_lock_entry(xas, entry);
522 
523 		/*
524 		 * Besides huge zero pages the only other thing that gets
525 		 * downgraded are empty entries which don't need to be
526 		 * unmapped.
527 		 */
528 		if (dax_is_zero_entry(entry)) {
529 			xas_unlock_irq(xas);
530 			unmap_mapping_pages(mapping,
531 					xas->xa_index & ~PG_PMD_COLOUR,
532 					PG_PMD_NR, false);
533 			xas_reset(xas);
534 			xas_lock_irq(xas);
535 		}
536 
537 		dax_disassociate_entry(entry, mapping, false);
538 		xas_store(xas, NULL);	/* undo the PMD join */
539 		dax_wake_entry(xas, entry, WAKE_ALL);
540 		mapping->nrpages -= PG_PMD_NR;
541 		entry = NULL;
542 		xas_set(xas, index);
543 	}
544 
545 	if (entry) {
546 		dax_lock_entry(xas, entry);
547 	} else {
548 		unsigned long flags = DAX_EMPTY;
549 
550 		if (order > 0)
551 			flags |= DAX_PMD;
552 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 		dax_lock_entry(xas, entry);
554 		if (xas_error(xas))
555 			goto out_unlock;
556 		mapping->nrpages += 1UL << order;
557 	}
558 
559 out_unlock:
560 	xas_unlock_irq(xas);
561 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 		goto retry;
563 	if (xas->xa_node == XA_ERROR(-ENOMEM))
564 		return xa_mk_internal(VM_FAULT_OOM);
565 	if (xas_error(xas))
566 		return xa_mk_internal(VM_FAULT_SIGBUS);
567 	return entry;
568 fallback:
569 	xas_unlock_irq(xas);
570 	return xa_mk_internal(VM_FAULT_FALLBACK);
571 }
572 
573 /**
574  * dax_layout_busy_page_range - find first pinned page in @mapping
575  * @mapping: address space to scan for a page with ref count > 1
576  * @start: Starting offset. Page containing 'start' is included.
577  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578  *       pages from 'start' till the end of file are included.
579  *
580  * DAX requires ZONE_DEVICE mapped pages. These pages are never
581  * 'onlined' to the page allocator so they are considered idle when
582  * page->count == 1. A filesystem uses this interface to determine if
583  * any page in the mapping is busy, i.e. for DMA, or other
584  * get_user_pages() usages.
585  *
586  * It is expected that the filesystem is holding locks to block the
587  * establishment of new mappings in this address_space. I.e. it expects
588  * to be able to run unmap_mapping_range() and subsequently not race
589  * mapping_mapped() becoming true.
590  */
591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 					loff_t start, loff_t end)
593 {
594 	void *entry;
595 	unsigned int scanned = 0;
596 	struct page *page = NULL;
597 	pgoff_t start_idx = start >> PAGE_SHIFT;
598 	pgoff_t end_idx;
599 	XA_STATE(xas, &mapping->i_pages, start_idx);
600 
601 	/*
602 	 * In the 'limited' case get_user_pages() for dax is disabled.
603 	 */
604 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605 		return NULL;
606 
607 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608 		return NULL;
609 
610 	/* If end == LLONG_MAX, all pages from start to till end of file */
611 	if (end == LLONG_MAX)
612 		end_idx = ULONG_MAX;
613 	else
614 		end_idx = end >> PAGE_SHIFT;
615 	/*
616 	 * If we race get_user_pages_fast() here either we'll see the
617 	 * elevated page count in the iteration and wait, or
618 	 * get_user_pages_fast() will see that the page it took a reference
619 	 * against is no longer mapped in the page tables and bail to the
620 	 * get_user_pages() slow path.  The slow path is protected by
621 	 * pte_lock() and pmd_lock(). New references are not taken without
622 	 * holding those locks, and unmap_mapping_pages() will not zero the
623 	 * pte or pmd without holding the respective lock, so we are
624 	 * guaranteed to either see new references or prevent new
625 	 * references from being established.
626 	 */
627 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628 
629 	xas_lock_irq(&xas);
630 	xas_for_each(&xas, entry, end_idx) {
631 		if (WARN_ON_ONCE(!xa_is_value(entry)))
632 			continue;
633 		if (unlikely(dax_is_locked(entry)))
634 			entry = get_unlocked_entry(&xas, 0);
635 		if (entry)
636 			page = dax_busy_page(entry);
637 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
638 		if (page)
639 			break;
640 		if (++scanned % XA_CHECK_SCHED)
641 			continue;
642 
643 		xas_pause(&xas);
644 		xas_unlock_irq(&xas);
645 		cond_resched();
646 		xas_lock_irq(&xas);
647 	}
648 	xas_unlock_irq(&xas);
649 	return page;
650 }
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652 
653 struct page *dax_layout_busy_page(struct address_space *mapping)
654 {
655 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 }
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658 
659 static int __dax_invalidate_entry(struct address_space *mapping,
660 					  pgoff_t index, bool trunc)
661 {
662 	XA_STATE(xas, &mapping->i_pages, index);
663 	int ret = 0;
664 	void *entry;
665 
666 	xas_lock_irq(&xas);
667 	entry = get_unlocked_entry(&xas, 0);
668 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669 		goto out;
670 	if (!trunc &&
671 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 		goto out;
674 	dax_disassociate_entry(entry, mapping, trunc);
675 	xas_store(&xas, NULL);
676 	mapping->nrpages -= 1UL << dax_entry_order(entry);
677 	ret = 1;
678 out:
679 	put_unlocked_entry(&xas, entry, WAKE_ALL);
680 	xas_unlock_irq(&xas);
681 	return ret;
682 }
683 
684 /*
685  * Delete DAX entry at @index from @mapping.  Wait for it
686  * to be unlocked before deleting it.
687  */
688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 {
690 	int ret = __dax_invalidate_entry(mapping, index, true);
691 
692 	/*
693 	 * This gets called from truncate / punch_hole path. As such, the caller
694 	 * must hold locks protecting against concurrent modifications of the
695 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 	 * caller has seen a DAX entry for this index, we better find it
697 	 * at that index as well...
698 	 */
699 	WARN_ON_ONCE(!ret);
700 	return ret;
701 }
702 
703 /*
704  * Invalidate DAX entry if it is clean.
705  */
706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707 				      pgoff_t index)
708 {
709 	return __dax_invalidate_entry(mapping, index, false);
710 }
711 
712 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
713 			     sector_t sector, struct page *to, unsigned long vaddr)
714 {
715 	void *vto, *kaddr;
716 	pgoff_t pgoff;
717 	long rc;
718 	int id;
719 
720 	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
721 	if (rc)
722 		return rc;
723 
724 	id = dax_read_lock();
725 	rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
726 	if (rc < 0) {
727 		dax_read_unlock(id);
728 		return rc;
729 	}
730 	vto = kmap_atomic(to);
731 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
732 	kunmap_atomic(vto);
733 	dax_read_unlock(id);
734 	return 0;
735 }
736 
737 /*
738  * By this point grab_mapping_entry() has ensured that we have a locked entry
739  * of the appropriate size so we don't have to worry about downgrading PMDs to
740  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
741  * already in the tree, we will skip the insertion and just dirty the PMD as
742  * appropriate.
743  */
744 static void *dax_insert_entry(struct xa_state *xas,
745 		struct address_space *mapping, struct vm_fault *vmf,
746 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
747 {
748 	void *new_entry = dax_make_entry(pfn, flags);
749 
750 	if (dirty)
751 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752 
753 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
754 		unsigned long index = xas->xa_index;
755 		/* we are replacing a zero page with block mapping */
756 		if (dax_is_pmd_entry(entry))
757 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
758 					PG_PMD_NR, false);
759 		else /* pte entry */
760 			unmap_mapping_pages(mapping, index, 1, false);
761 	}
762 
763 	xas_reset(xas);
764 	xas_lock_irq(xas);
765 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
766 		void *old;
767 
768 		dax_disassociate_entry(entry, mapping, false);
769 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
770 		/*
771 		 * Only swap our new entry into the page cache if the current
772 		 * entry is a zero page or an empty entry.  If a normal PTE or
773 		 * PMD entry is already in the cache, we leave it alone.  This
774 		 * means that if we are trying to insert a PTE and the
775 		 * existing entry is a PMD, we will just leave the PMD in the
776 		 * tree and dirty it if necessary.
777 		 */
778 		old = dax_lock_entry(xas, new_entry);
779 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
780 					DAX_LOCKED));
781 		entry = new_entry;
782 	} else {
783 		xas_load(xas);	/* Walk the xa_state */
784 	}
785 
786 	if (dirty)
787 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
788 
789 	xas_unlock_irq(xas);
790 	return entry;
791 }
792 
793 static inline
794 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
795 {
796 	unsigned long address;
797 
798 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
799 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
800 	return address;
801 }
802 
803 /* Walk all mappings of a given index of a file and writeprotect them */
804 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
805 		unsigned long pfn)
806 {
807 	struct vm_area_struct *vma;
808 	pte_t pte, *ptep = NULL;
809 	pmd_t *pmdp = NULL;
810 	spinlock_t *ptl;
811 
812 	i_mmap_lock_read(mapping);
813 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
814 		struct mmu_notifier_range range;
815 		unsigned long address;
816 
817 		cond_resched();
818 
819 		if (!(vma->vm_flags & VM_SHARED))
820 			continue;
821 
822 		address = pgoff_address(index, vma);
823 
824 		/*
825 		 * follow_invalidate_pte() will use the range to call
826 		 * mmu_notifier_invalidate_range_start() on our behalf before
827 		 * taking any lock.
828 		 */
829 		if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
830 					  &pmdp, &ptl))
831 			continue;
832 
833 		/*
834 		 * No need to call mmu_notifier_invalidate_range() as we are
835 		 * downgrading page table protection not changing it to point
836 		 * to a new page.
837 		 *
838 		 * See Documentation/vm/mmu_notifier.rst
839 		 */
840 		if (pmdp) {
841 #ifdef CONFIG_FS_DAX_PMD
842 			pmd_t pmd;
843 
844 			if (pfn != pmd_pfn(*pmdp))
845 				goto unlock_pmd;
846 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
847 				goto unlock_pmd;
848 
849 			flush_cache_page(vma, address, pfn);
850 			pmd = pmdp_invalidate(vma, address, pmdp);
851 			pmd = pmd_wrprotect(pmd);
852 			pmd = pmd_mkclean(pmd);
853 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
854 unlock_pmd:
855 #endif
856 			spin_unlock(ptl);
857 		} else {
858 			if (pfn != pte_pfn(*ptep))
859 				goto unlock_pte;
860 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
861 				goto unlock_pte;
862 
863 			flush_cache_page(vma, address, pfn);
864 			pte = ptep_clear_flush(vma, address, ptep);
865 			pte = pte_wrprotect(pte);
866 			pte = pte_mkclean(pte);
867 			set_pte_at(vma->vm_mm, address, ptep, pte);
868 unlock_pte:
869 			pte_unmap_unlock(ptep, ptl);
870 		}
871 
872 		mmu_notifier_invalidate_range_end(&range);
873 	}
874 	i_mmap_unlock_read(mapping);
875 }
876 
877 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
878 		struct address_space *mapping, void *entry)
879 {
880 	unsigned long pfn, index, count;
881 	long ret = 0;
882 
883 	/*
884 	 * A page got tagged dirty in DAX mapping? Something is seriously
885 	 * wrong.
886 	 */
887 	if (WARN_ON(!xa_is_value(entry)))
888 		return -EIO;
889 
890 	if (unlikely(dax_is_locked(entry))) {
891 		void *old_entry = entry;
892 
893 		entry = get_unlocked_entry(xas, 0);
894 
895 		/* Entry got punched out / reallocated? */
896 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
897 			goto put_unlocked;
898 		/*
899 		 * Entry got reallocated elsewhere? No need to writeback.
900 		 * We have to compare pfns as we must not bail out due to
901 		 * difference in lockbit or entry type.
902 		 */
903 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
904 			goto put_unlocked;
905 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
906 					dax_is_zero_entry(entry))) {
907 			ret = -EIO;
908 			goto put_unlocked;
909 		}
910 
911 		/* Another fsync thread may have already done this entry */
912 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
913 			goto put_unlocked;
914 	}
915 
916 	/* Lock the entry to serialize with page faults */
917 	dax_lock_entry(xas, entry);
918 
919 	/*
920 	 * We can clear the tag now but we have to be careful so that concurrent
921 	 * dax_writeback_one() calls for the same index cannot finish before we
922 	 * actually flush the caches. This is achieved as the calls will look
923 	 * at the entry only under the i_pages lock and once they do that
924 	 * they will see the entry locked and wait for it to unlock.
925 	 */
926 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
927 	xas_unlock_irq(xas);
928 
929 	/*
930 	 * If dax_writeback_mapping_range() was given a wbc->range_start
931 	 * in the middle of a PMD, the 'index' we use needs to be
932 	 * aligned to the start of the PMD.
933 	 * This allows us to flush for PMD_SIZE and not have to worry about
934 	 * partial PMD writebacks.
935 	 */
936 	pfn = dax_to_pfn(entry);
937 	count = 1UL << dax_entry_order(entry);
938 	index = xas->xa_index & ~(count - 1);
939 
940 	dax_entry_mkclean(mapping, index, pfn);
941 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
942 	/*
943 	 * After we have flushed the cache, we can clear the dirty tag. There
944 	 * cannot be new dirty data in the pfn after the flush has completed as
945 	 * the pfn mappings are writeprotected and fault waits for mapping
946 	 * entry lock.
947 	 */
948 	xas_reset(xas);
949 	xas_lock_irq(xas);
950 	xas_store(xas, entry);
951 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
952 	dax_wake_entry(xas, entry, WAKE_NEXT);
953 
954 	trace_dax_writeback_one(mapping->host, index, count);
955 	return ret;
956 
957  put_unlocked:
958 	put_unlocked_entry(xas, entry, WAKE_NEXT);
959 	return ret;
960 }
961 
962 /*
963  * Flush the mapping to the persistent domain within the byte range of [start,
964  * end]. This is required by data integrity operations to ensure file data is
965  * on persistent storage prior to completion of the operation.
966  */
967 int dax_writeback_mapping_range(struct address_space *mapping,
968 		struct dax_device *dax_dev, struct writeback_control *wbc)
969 {
970 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
971 	struct inode *inode = mapping->host;
972 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
973 	void *entry;
974 	int ret = 0;
975 	unsigned int scanned = 0;
976 
977 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
978 		return -EIO;
979 
980 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
981 		return 0;
982 
983 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
984 
985 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
986 
987 	xas_lock_irq(&xas);
988 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
989 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
990 		if (ret < 0) {
991 			mapping_set_error(mapping, ret);
992 			break;
993 		}
994 		if (++scanned % XA_CHECK_SCHED)
995 			continue;
996 
997 		xas_pause(&xas);
998 		xas_unlock_irq(&xas);
999 		cond_resched();
1000 		xas_lock_irq(&xas);
1001 	}
1002 	xas_unlock_irq(&xas);
1003 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1007 
1008 static sector_t dax_iomap_sector(const struct iomap *iomap, loff_t pos)
1009 {
1010 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1011 }
1012 
1013 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1014 			 pfn_t *pfnp)
1015 {
1016 	const sector_t sector = dax_iomap_sector(iomap, pos);
1017 	pgoff_t pgoff;
1018 	int id, rc;
1019 	long length;
1020 
1021 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1022 	if (rc)
1023 		return rc;
1024 	id = dax_read_lock();
1025 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1026 				   NULL, pfnp);
1027 	if (length < 0) {
1028 		rc = length;
1029 		goto out;
1030 	}
1031 	rc = -EINVAL;
1032 	if (PFN_PHYS(length) < size)
1033 		goto out;
1034 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1035 		goto out;
1036 	/* For larger pages we need devmap */
1037 	if (length > 1 && !pfn_t_devmap(*pfnp))
1038 		goto out;
1039 	rc = 0;
1040 out:
1041 	dax_read_unlock(id);
1042 	return rc;
1043 }
1044 
1045 /*
1046  * The user has performed a load from a hole in the file.  Allocating a new
1047  * page in the file would cause excessive storage usage for workloads with
1048  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1049  * If this page is ever written to we will re-fault and change the mapping to
1050  * point to real DAX storage instead.
1051  */
1052 static vm_fault_t dax_load_hole(struct xa_state *xas,
1053 		struct address_space *mapping, void **entry,
1054 		struct vm_fault *vmf)
1055 {
1056 	struct inode *inode = mapping->host;
1057 	unsigned long vaddr = vmf->address;
1058 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1059 	vm_fault_t ret;
1060 
1061 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1062 			DAX_ZERO_PAGE, false);
1063 
1064 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1065 	trace_dax_load_hole(inode, vmf, ret);
1066 	return ret;
1067 }
1068 
1069 #ifdef CONFIG_FS_DAX_PMD
1070 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1071 		const struct iomap *iomap, void **entry)
1072 {
1073 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1074 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1075 	struct vm_area_struct *vma = vmf->vma;
1076 	struct inode *inode = mapping->host;
1077 	pgtable_t pgtable = NULL;
1078 	struct page *zero_page;
1079 	spinlock_t *ptl;
1080 	pmd_t pmd_entry;
1081 	pfn_t pfn;
1082 
1083 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1084 
1085 	if (unlikely(!zero_page))
1086 		goto fallback;
1087 
1088 	pfn = page_to_pfn_t(zero_page);
1089 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1090 			DAX_PMD | DAX_ZERO_PAGE, false);
1091 
1092 	if (arch_needs_pgtable_deposit()) {
1093 		pgtable = pte_alloc_one(vma->vm_mm);
1094 		if (!pgtable)
1095 			return VM_FAULT_OOM;
1096 	}
1097 
1098 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1099 	if (!pmd_none(*(vmf->pmd))) {
1100 		spin_unlock(ptl);
1101 		goto fallback;
1102 	}
1103 
1104 	if (pgtable) {
1105 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1106 		mm_inc_nr_ptes(vma->vm_mm);
1107 	}
1108 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1109 	pmd_entry = pmd_mkhuge(pmd_entry);
1110 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1111 	spin_unlock(ptl);
1112 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1113 	return VM_FAULT_NOPAGE;
1114 
1115 fallback:
1116 	if (pgtable)
1117 		pte_free(vma->vm_mm, pgtable);
1118 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1119 	return VM_FAULT_FALLBACK;
1120 }
1121 #else
1122 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1123 		const struct iomap *iomap, void **entry)
1124 {
1125 	return VM_FAULT_FALLBACK;
1126 }
1127 #endif /* CONFIG_FS_DAX_PMD */
1128 
1129 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1130 {
1131 	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1132 	pgoff_t pgoff;
1133 	long rc, id;
1134 	void *kaddr;
1135 	bool page_aligned = false;
1136 	unsigned offset = offset_in_page(pos);
1137 	unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1138 
1139 	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1140 	    (size == PAGE_SIZE))
1141 		page_aligned = true;
1142 
1143 	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1144 	if (rc)
1145 		return rc;
1146 
1147 	id = dax_read_lock();
1148 
1149 	if (page_aligned)
1150 		rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1151 	else
1152 		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1153 	if (rc < 0) {
1154 		dax_read_unlock(id);
1155 		return rc;
1156 	}
1157 
1158 	if (!page_aligned) {
1159 		memset(kaddr + offset, 0, size);
1160 		dax_flush(iomap->dax_dev, kaddr + offset, size);
1161 	}
1162 	dax_read_unlock(id);
1163 	return size;
1164 }
1165 
1166 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1167 		struct iov_iter *iter)
1168 {
1169 	const struct iomap *iomap = &iomi->iomap;
1170 	loff_t length = iomap_length(iomi);
1171 	loff_t pos = iomi->pos;
1172 	struct block_device *bdev = iomap->bdev;
1173 	struct dax_device *dax_dev = iomap->dax_dev;
1174 	loff_t end = pos + length, done = 0;
1175 	ssize_t ret = 0;
1176 	size_t xfer;
1177 	int id;
1178 
1179 	if (iov_iter_rw(iter) == READ) {
1180 		end = min(end, i_size_read(iomi->inode));
1181 		if (pos >= end)
1182 			return 0;
1183 
1184 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1185 			return iov_iter_zero(min(length, end - pos), iter);
1186 	}
1187 
1188 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1189 		return -EIO;
1190 
1191 	/*
1192 	 * Write can allocate block for an area which has a hole page mapped
1193 	 * into page tables. We have to tear down these mappings so that data
1194 	 * written by write(2) is visible in mmap.
1195 	 */
1196 	if (iomap->flags & IOMAP_F_NEW) {
1197 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1198 					      pos >> PAGE_SHIFT,
1199 					      (end - 1) >> PAGE_SHIFT);
1200 	}
1201 
1202 	id = dax_read_lock();
1203 	while (pos < end) {
1204 		unsigned offset = pos & (PAGE_SIZE - 1);
1205 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1206 		const sector_t sector = dax_iomap_sector(iomap, pos);
1207 		ssize_t map_len;
1208 		pgoff_t pgoff;
1209 		void *kaddr;
1210 
1211 		if (fatal_signal_pending(current)) {
1212 			ret = -EINTR;
1213 			break;
1214 		}
1215 
1216 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1217 		if (ret)
1218 			break;
1219 
1220 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1221 				&kaddr, NULL);
1222 		if (map_len < 0) {
1223 			ret = map_len;
1224 			break;
1225 		}
1226 
1227 		map_len = PFN_PHYS(map_len);
1228 		kaddr += offset;
1229 		map_len -= offset;
1230 		if (map_len > end - pos)
1231 			map_len = end - pos;
1232 
1233 		/*
1234 		 * The userspace address for the memory copy has already been
1235 		 * validated via access_ok() in either vfs_read() or
1236 		 * vfs_write(), depending on which operation we are doing.
1237 		 */
1238 		if (iov_iter_rw(iter) == WRITE)
1239 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1240 					map_len, iter);
1241 		else
1242 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1243 					map_len, iter);
1244 
1245 		pos += xfer;
1246 		length -= xfer;
1247 		done += xfer;
1248 
1249 		if (xfer == 0)
1250 			ret = -EFAULT;
1251 		if (xfer < map_len)
1252 			break;
1253 	}
1254 	dax_read_unlock(id);
1255 
1256 	return done ? done : ret;
1257 }
1258 
1259 /**
1260  * dax_iomap_rw - Perform I/O to a DAX file
1261  * @iocb:	The control block for this I/O
1262  * @iter:	The addresses to do I/O from or to
1263  * @ops:	iomap ops passed from the file system
1264  *
1265  * This function performs read and write operations to directly mapped
1266  * persistent memory.  The callers needs to take care of read/write exclusion
1267  * and evicting any page cache pages in the region under I/O.
1268  */
1269 ssize_t
1270 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1271 		const struct iomap_ops *ops)
1272 {
1273 	struct iomap_iter iomi = {
1274 		.inode		= iocb->ki_filp->f_mapping->host,
1275 		.pos		= iocb->ki_pos,
1276 		.len		= iov_iter_count(iter),
1277 	};
1278 	loff_t done = 0;
1279 	int ret;
1280 
1281 	if (iov_iter_rw(iter) == WRITE) {
1282 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1283 		iomi.flags |= IOMAP_WRITE;
1284 	} else {
1285 		lockdep_assert_held(&iomi.inode->i_rwsem);
1286 	}
1287 
1288 	if (iocb->ki_flags & IOCB_NOWAIT)
1289 		iomi.flags |= IOMAP_NOWAIT;
1290 
1291 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1292 		iomi.processed = dax_iomap_iter(&iomi, iter);
1293 
1294 	done = iomi.pos - iocb->ki_pos;
1295 	iocb->ki_pos = iomi.pos;
1296 	return done ? done : ret;
1297 }
1298 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1299 
1300 static vm_fault_t dax_fault_return(int error)
1301 {
1302 	if (error == 0)
1303 		return VM_FAULT_NOPAGE;
1304 	return vmf_error(error);
1305 }
1306 
1307 /*
1308  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1309  * flushed on write-faults (non-cow), but not read-faults.
1310  */
1311 static bool dax_fault_is_synchronous(unsigned long flags,
1312 		struct vm_area_struct *vma, const struct iomap *iomap)
1313 {
1314 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1315 		&& (iomap->flags & IOMAP_F_DIRTY);
1316 }
1317 
1318 /*
1319  * When handling a synchronous page fault and the inode need a fsync, we can
1320  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1321  * insertion for now and return the pfn so that caller can insert it after the
1322  * fsync is done.
1323  */
1324 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1325 {
1326 	if (WARN_ON_ONCE(!pfnp))
1327 		return VM_FAULT_SIGBUS;
1328 	*pfnp = pfn;
1329 	return VM_FAULT_NEEDDSYNC;
1330 }
1331 
1332 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1333 		const struct iomap_iter *iter)
1334 {
1335 	sector_t sector = dax_iomap_sector(&iter->iomap, iter->pos);
1336 	unsigned long vaddr = vmf->address;
1337 	vm_fault_t ret;
1338 	int error = 0;
1339 
1340 	switch (iter->iomap.type) {
1341 	case IOMAP_HOLE:
1342 	case IOMAP_UNWRITTEN:
1343 		clear_user_highpage(vmf->cow_page, vaddr);
1344 		break;
1345 	case IOMAP_MAPPED:
1346 		error = copy_cow_page_dax(iter->iomap.bdev, iter->iomap.dax_dev,
1347 					  sector, vmf->cow_page, vaddr);
1348 		break;
1349 	default:
1350 		WARN_ON_ONCE(1);
1351 		error = -EIO;
1352 		break;
1353 	}
1354 
1355 	if (error)
1356 		return dax_fault_return(error);
1357 
1358 	__SetPageUptodate(vmf->cow_page);
1359 	ret = finish_fault(vmf);
1360 	if (!ret)
1361 		return VM_FAULT_DONE_COW;
1362 	return ret;
1363 }
1364 
1365 /**
1366  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1367  * @vmf:	vm fault instance
1368  * @iter:	iomap iter
1369  * @pfnp:	pfn to be returned
1370  * @xas:	the dax mapping tree of a file
1371  * @entry:	an unlocked dax entry to be inserted
1372  * @pmd:	distinguish whether it is a pmd fault
1373  */
1374 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1375 		const struct iomap_iter *iter, pfn_t *pfnp,
1376 		struct xa_state *xas, void **entry, bool pmd)
1377 {
1378 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1379 	const struct iomap *iomap = &iter->iomap;
1380 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1381 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1382 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1383 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1384 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1385 	int err = 0;
1386 	pfn_t pfn;
1387 
1388 	if (!pmd && vmf->cow_page)
1389 		return dax_fault_cow_page(vmf, iter);
1390 
1391 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1392 	if (!write &&
1393 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1394 		if (!pmd)
1395 			return dax_load_hole(xas, mapping, entry, vmf);
1396 		return dax_pmd_load_hole(xas, vmf, iomap, entry);
1397 	}
1398 
1399 	if (iomap->type != IOMAP_MAPPED) {
1400 		WARN_ON_ONCE(1);
1401 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1402 	}
1403 
1404 	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1405 	if (err)
1406 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1407 
1408 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1409 				  write && !sync);
1410 
1411 	if (sync)
1412 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1413 
1414 	/* insert PMD pfn */
1415 	if (pmd)
1416 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1417 
1418 	/* insert PTE pfn */
1419 	if (write)
1420 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1421 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1422 }
1423 
1424 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1425 			       int *iomap_errp, const struct iomap_ops *ops)
1426 {
1427 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1428 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1429 	struct iomap_iter iter = {
1430 		.inode		= mapping->host,
1431 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1432 		.len		= PAGE_SIZE,
1433 		.flags		= IOMAP_FAULT,
1434 	};
1435 	vm_fault_t ret = 0;
1436 	void *entry;
1437 	int error;
1438 
1439 	trace_dax_pte_fault(iter.inode, vmf, ret);
1440 	/*
1441 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1442 	 * to hold locks serializing us with truncate / punch hole so this is
1443 	 * a reliable test.
1444 	 */
1445 	if (iter.pos >= i_size_read(iter.inode)) {
1446 		ret = VM_FAULT_SIGBUS;
1447 		goto out;
1448 	}
1449 
1450 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1451 		iter.flags |= IOMAP_WRITE;
1452 
1453 	entry = grab_mapping_entry(&xas, mapping, 0);
1454 	if (xa_is_internal(entry)) {
1455 		ret = xa_to_internal(entry);
1456 		goto out;
1457 	}
1458 
1459 	/*
1460 	 * It is possible, particularly with mixed reads & writes to private
1461 	 * mappings, that we have raced with a PMD fault that overlaps with
1462 	 * the PTE we need to set up.  If so just return and the fault will be
1463 	 * retried.
1464 	 */
1465 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1466 		ret = VM_FAULT_NOPAGE;
1467 		goto unlock_entry;
1468 	}
1469 
1470 	while ((error = iomap_iter(&iter, ops)) > 0) {
1471 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1472 			iter.processed = -EIO;	/* fs corruption? */
1473 			continue;
1474 		}
1475 
1476 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1477 		if (ret != VM_FAULT_SIGBUS &&
1478 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1479 			count_vm_event(PGMAJFAULT);
1480 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1481 			ret |= VM_FAULT_MAJOR;
1482 		}
1483 
1484 		if (!(ret & VM_FAULT_ERROR))
1485 			iter.processed = PAGE_SIZE;
1486 	}
1487 
1488 	if (iomap_errp)
1489 		*iomap_errp = error;
1490 	if (!ret && error)
1491 		ret = dax_fault_return(error);
1492 
1493 unlock_entry:
1494 	dax_unlock_entry(&xas, entry);
1495 out:
1496 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1497 	return ret;
1498 }
1499 
1500 #ifdef CONFIG_FS_DAX_PMD
1501 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1502 		pgoff_t max_pgoff)
1503 {
1504 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1505 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1506 
1507 	/*
1508 	 * Make sure that the faulting address's PMD offset (color) matches
1509 	 * the PMD offset from the start of the file.  This is necessary so
1510 	 * that a PMD range in the page table overlaps exactly with a PMD
1511 	 * range in the page cache.
1512 	 */
1513 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1514 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1515 		return true;
1516 
1517 	/* Fall back to PTEs if we're going to COW */
1518 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1519 		return true;
1520 
1521 	/* If the PMD would extend outside the VMA */
1522 	if (pmd_addr < vmf->vma->vm_start)
1523 		return true;
1524 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1525 		return true;
1526 
1527 	/* If the PMD would extend beyond the file size */
1528 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1529 		return true;
1530 
1531 	return false;
1532 }
1533 
1534 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1535 			       const struct iomap_ops *ops)
1536 {
1537 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1538 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1539 	struct iomap_iter iter = {
1540 		.inode		= mapping->host,
1541 		.len		= PMD_SIZE,
1542 		.flags		= IOMAP_FAULT,
1543 	};
1544 	vm_fault_t ret = VM_FAULT_FALLBACK;
1545 	pgoff_t max_pgoff;
1546 	void *entry;
1547 	int error;
1548 
1549 	if (vmf->flags & FAULT_FLAG_WRITE)
1550 		iter.flags |= IOMAP_WRITE;
1551 
1552 	/*
1553 	 * Check whether offset isn't beyond end of file now. Caller is
1554 	 * supposed to hold locks serializing us with truncate / punch hole so
1555 	 * this is a reliable test.
1556 	 */
1557 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1558 
1559 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1560 
1561 	if (xas.xa_index >= max_pgoff) {
1562 		ret = VM_FAULT_SIGBUS;
1563 		goto out;
1564 	}
1565 
1566 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1567 		goto fallback;
1568 
1569 	/*
1570 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1571 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1572 	 * entry is already in the array, for instance), it will return
1573 	 * VM_FAULT_FALLBACK.
1574 	 */
1575 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1576 	if (xa_is_internal(entry)) {
1577 		ret = xa_to_internal(entry);
1578 		goto fallback;
1579 	}
1580 
1581 	/*
1582 	 * It is possible, particularly with mixed reads & writes to private
1583 	 * mappings, that we have raced with a PTE fault that overlaps with
1584 	 * the PMD we need to set up.  If so just return and the fault will be
1585 	 * retried.
1586 	 */
1587 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1588 			!pmd_devmap(*vmf->pmd)) {
1589 		ret = 0;
1590 		goto unlock_entry;
1591 	}
1592 
1593 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1594 	while ((error = iomap_iter(&iter, ops)) > 0) {
1595 		if (iomap_length(&iter) < PMD_SIZE)
1596 			continue; /* actually breaks out of the loop */
1597 
1598 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1599 		if (ret != VM_FAULT_FALLBACK)
1600 			iter.processed = PMD_SIZE;
1601 	}
1602 
1603 unlock_entry:
1604 	dax_unlock_entry(&xas, entry);
1605 fallback:
1606 	if (ret == VM_FAULT_FALLBACK) {
1607 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1608 		count_vm_event(THP_FAULT_FALLBACK);
1609 	}
1610 out:
1611 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1612 	return ret;
1613 }
1614 #else
1615 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1616 			       const struct iomap_ops *ops)
1617 {
1618 	return VM_FAULT_FALLBACK;
1619 }
1620 #endif /* CONFIG_FS_DAX_PMD */
1621 
1622 /**
1623  * dax_iomap_fault - handle a page fault on a DAX file
1624  * @vmf: The description of the fault
1625  * @pe_size: Size of the page to fault in
1626  * @pfnp: PFN to insert for synchronous faults if fsync is required
1627  * @iomap_errp: Storage for detailed error code in case of error
1628  * @ops: Iomap ops passed from the file system
1629  *
1630  * When a page fault occurs, filesystems may call this helper in
1631  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1632  * has done all the necessary locking for page fault to proceed
1633  * successfully.
1634  */
1635 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1636 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1637 {
1638 	switch (pe_size) {
1639 	case PE_SIZE_PTE:
1640 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1641 	case PE_SIZE_PMD:
1642 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1643 	default:
1644 		return VM_FAULT_FALLBACK;
1645 	}
1646 }
1647 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1648 
1649 /*
1650  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1651  * @vmf: The description of the fault
1652  * @pfn: PFN to insert
1653  * @order: Order of entry to insert.
1654  *
1655  * This function inserts a writeable PTE or PMD entry into the page tables
1656  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1657  */
1658 static vm_fault_t
1659 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1660 {
1661 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1662 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1663 	void *entry;
1664 	vm_fault_t ret;
1665 
1666 	xas_lock_irq(&xas);
1667 	entry = get_unlocked_entry(&xas, order);
1668 	/* Did we race with someone splitting entry or so? */
1669 	if (!entry || dax_is_conflict(entry) ||
1670 	    (order == 0 && !dax_is_pte_entry(entry))) {
1671 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1672 		xas_unlock_irq(&xas);
1673 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1674 						      VM_FAULT_NOPAGE);
1675 		return VM_FAULT_NOPAGE;
1676 	}
1677 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1678 	dax_lock_entry(&xas, entry);
1679 	xas_unlock_irq(&xas);
1680 	if (order == 0)
1681 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1682 #ifdef CONFIG_FS_DAX_PMD
1683 	else if (order == PMD_ORDER)
1684 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1685 #endif
1686 	else
1687 		ret = VM_FAULT_FALLBACK;
1688 	dax_unlock_entry(&xas, entry);
1689 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690 	return ret;
1691 }
1692 
1693 /**
1694  * dax_finish_sync_fault - finish synchronous page fault
1695  * @vmf: The description of the fault
1696  * @pe_size: Size of entry to be inserted
1697  * @pfn: PFN to insert
1698  *
1699  * This function ensures that the file range touched by the page fault is
1700  * stored persistently on the media and handles inserting of appropriate page
1701  * table entry.
1702  */
1703 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1704 		enum page_entry_size pe_size, pfn_t pfn)
1705 {
1706 	int err;
1707 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1708 	unsigned int order = pe_order(pe_size);
1709 	size_t len = PAGE_SIZE << order;
1710 
1711 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1712 	if (err)
1713 		return VM_FAULT_SIGBUS;
1714 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1715 }
1716 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1717