xref: /openbmc/linux/fs/dax.c (revision 9cfc5c90)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31 
32 /*
33  * dax_clear_blocks() is called from within transaction context from XFS,
34  * and hence this means the stack from this point must follow GFP_NOFS
35  * semantics for all operations.
36  */
37 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
38 {
39 	struct block_device *bdev = inode->i_sb->s_bdev;
40 	sector_t sector = block << (inode->i_blkbits - 9);
41 
42 	might_sleep();
43 	do {
44 		void __pmem *addr;
45 		unsigned long pfn;
46 		long count;
47 
48 		count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
49 		if (count < 0)
50 			return count;
51 		BUG_ON(size < count);
52 		while (count > 0) {
53 			unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
54 			if (pgsz > count)
55 				pgsz = count;
56 			clear_pmem(addr, pgsz);
57 			addr += pgsz;
58 			size -= pgsz;
59 			count -= pgsz;
60 			BUG_ON(pgsz & 511);
61 			sector += pgsz / 512;
62 			cond_resched();
63 		}
64 	} while (size);
65 
66 	wmb_pmem();
67 	return 0;
68 }
69 EXPORT_SYMBOL_GPL(dax_clear_blocks);
70 
71 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
72 		unsigned blkbits)
73 {
74 	unsigned long pfn;
75 	sector_t sector = bh->b_blocknr << (blkbits - 9);
76 	return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
77 }
78 
79 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
80 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
81 		loff_t pos, loff_t end)
82 {
83 	loff_t final = end - pos + first; /* The final byte of the buffer */
84 
85 	if (first > 0)
86 		clear_pmem(addr, first);
87 	if (final < size)
88 		clear_pmem(addr + final, size - final);
89 }
90 
91 static bool buffer_written(struct buffer_head *bh)
92 {
93 	return buffer_mapped(bh) && !buffer_unwritten(bh);
94 }
95 
96 /*
97  * When ext4 encounters a hole, it returns without modifying the buffer_head
98  * which means that we can't trust b_size.  To cope with this, we set b_state
99  * to 0 before calling get_block and, if any bit is set, we know we can trust
100  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
101  * and would save us time calling get_block repeatedly.
102  */
103 static bool buffer_size_valid(struct buffer_head *bh)
104 {
105 	return bh->b_state != 0;
106 }
107 
108 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
109 		      loff_t start, loff_t end, get_block_t get_block,
110 		      struct buffer_head *bh)
111 {
112 	ssize_t retval = 0;
113 	loff_t pos = start;
114 	loff_t max = start;
115 	loff_t bh_max = start;
116 	void __pmem *addr;
117 	bool hole = false;
118 	bool need_wmb = false;
119 
120 	if (iov_iter_rw(iter) != WRITE)
121 		end = min(end, i_size_read(inode));
122 
123 	while (pos < end) {
124 		size_t len;
125 		if (pos == max) {
126 			unsigned blkbits = inode->i_blkbits;
127 			long page = pos >> PAGE_SHIFT;
128 			sector_t block = page << (PAGE_SHIFT - blkbits);
129 			unsigned first = pos - (block << blkbits);
130 			long size;
131 
132 			if (pos == bh_max) {
133 				bh->b_size = PAGE_ALIGN(end - pos);
134 				bh->b_state = 0;
135 				retval = get_block(inode, block, bh,
136 						   iov_iter_rw(iter) == WRITE);
137 				if (retval)
138 					break;
139 				if (!buffer_size_valid(bh))
140 					bh->b_size = 1 << blkbits;
141 				bh_max = pos - first + bh->b_size;
142 			} else {
143 				unsigned done = bh->b_size -
144 						(bh_max - (pos - first));
145 				bh->b_blocknr += done >> blkbits;
146 				bh->b_size -= done;
147 			}
148 
149 			hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
150 			if (hole) {
151 				addr = NULL;
152 				size = bh->b_size - first;
153 			} else {
154 				retval = dax_get_addr(bh, &addr, blkbits);
155 				if (retval < 0)
156 					break;
157 				if (buffer_unwritten(bh) || buffer_new(bh)) {
158 					dax_new_buf(addr, retval, first, pos,
159 									end);
160 					need_wmb = true;
161 				}
162 				addr += first;
163 				size = retval - first;
164 			}
165 			max = min(pos + size, end);
166 		}
167 
168 		if (iov_iter_rw(iter) == WRITE) {
169 			len = copy_from_iter_pmem(addr, max - pos, iter);
170 			need_wmb = true;
171 		} else if (!hole)
172 			len = copy_to_iter((void __force *)addr, max - pos,
173 					iter);
174 		else
175 			len = iov_iter_zero(max - pos, iter);
176 
177 		if (!len) {
178 			retval = -EFAULT;
179 			break;
180 		}
181 
182 		pos += len;
183 		addr += len;
184 	}
185 
186 	if (need_wmb)
187 		wmb_pmem();
188 
189 	return (pos == start) ? retval : pos - start;
190 }
191 
192 /**
193  * dax_do_io - Perform I/O to a DAX file
194  * @iocb: The control block for this I/O
195  * @inode: The file which the I/O is directed at
196  * @iter: The addresses to do I/O from or to
197  * @pos: The file offset where the I/O starts
198  * @get_block: The filesystem method used to translate file offsets to blocks
199  * @end_io: A filesystem callback for I/O completion
200  * @flags: See below
201  *
202  * This function uses the same locking scheme as do_blockdev_direct_IO:
203  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
204  * caller for writes.  For reads, we take and release the i_mutex ourselves.
205  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
206  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
207  * is in progress.
208  */
209 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
210 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
211 		  dio_iodone_t end_io, int flags)
212 {
213 	struct buffer_head bh;
214 	ssize_t retval = -EINVAL;
215 	loff_t end = pos + iov_iter_count(iter);
216 
217 	memset(&bh, 0, sizeof(bh));
218 
219 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
220 		struct address_space *mapping = inode->i_mapping;
221 		mutex_lock(&inode->i_mutex);
222 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
223 		if (retval) {
224 			mutex_unlock(&inode->i_mutex);
225 			goto out;
226 		}
227 	}
228 
229 	/* Protects against truncate */
230 	if (!(flags & DIO_SKIP_DIO_COUNT))
231 		inode_dio_begin(inode);
232 
233 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
234 
235 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
236 		mutex_unlock(&inode->i_mutex);
237 
238 	if ((retval > 0) && end_io)
239 		end_io(iocb, pos, retval, bh.b_private);
240 
241 	if (!(flags & DIO_SKIP_DIO_COUNT))
242 		inode_dio_end(inode);
243  out:
244 	return retval;
245 }
246 EXPORT_SYMBOL_GPL(dax_do_io);
247 
248 /*
249  * The user has performed a load from a hole in the file.  Allocating
250  * a new page in the file would cause excessive storage usage for
251  * workloads with sparse files.  We allocate a page cache page instead.
252  * We'll kick it out of the page cache if it's ever written to,
253  * otherwise it will simply fall out of the page cache under memory
254  * pressure without ever having been dirtied.
255  */
256 static int dax_load_hole(struct address_space *mapping, struct page *page,
257 							struct vm_fault *vmf)
258 {
259 	unsigned long size;
260 	struct inode *inode = mapping->host;
261 	if (!page)
262 		page = find_or_create_page(mapping, vmf->pgoff,
263 						GFP_KERNEL | __GFP_ZERO);
264 	if (!page)
265 		return VM_FAULT_OOM;
266 	/* Recheck i_size under page lock to avoid truncate race */
267 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
268 	if (vmf->pgoff >= size) {
269 		unlock_page(page);
270 		page_cache_release(page);
271 		return VM_FAULT_SIGBUS;
272 	}
273 
274 	vmf->page = page;
275 	return VM_FAULT_LOCKED;
276 }
277 
278 static int copy_user_bh(struct page *to, struct buffer_head *bh,
279 			unsigned blkbits, unsigned long vaddr)
280 {
281 	void __pmem *vfrom;
282 	void *vto;
283 
284 	if (dax_get_addr(bh, &vfrom, blkbits) < 0)
285 		return -EIO;
286 	vto = kmap_atomic(to);
287 	copy_user_page(vto, (void __force *)vfrom, vaddr, to);
288 	kunmap_atomic(vto);
289 	return 0;
290 }
291 
292 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
293 			struct vm_area_struct *vma, struct vm_fault *vmf)
294 {
295 	struct address_space *mapping = inode->i_mapping;
296 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
297 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
298 	void __pmem *addr;
299 	unsigned long pfn;
300 	pgoff_t size;
301 	int error;
302 
303 	i_mmap_lock_read(mapping);
304 
305 	/*
306 	 * Check truncate didn't happen while we were allocating a block.
307 	 * If it did, this block may or may not be still allocated to the
308 	 * file.  We can't tell the filesystem to free it because we can't
309 	 * take i_mutex here.  In the worst case, the file still has blocks
310 	 * allocated past the end of the file.
311 	 */
312 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
313 	if (unlikely(vmf->pgoff >= size)) {
314 		error = -EIO;
315 		goto out;
316 	}
317 
318 	error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
319 	if (error < 0)
320 		goto out;
321 	if (error < PAGE_SIZE) {
322 		error = -EIO;
323 		goto out;
324 	}
325 
326 	if (buffer_unwritten(bh) || buffer_new(bh)) {
327 		clear_pmem(addr, PAGE_SIZE);
328 		wmb_pmem();
329 	}
330 
331 	error = vm_insert_mixed(vma, vaddr, pfn);
332 
333  out:
334 	i_mmap_unlock_read(mapping);
335 
336 	return error;
337 }
338 
339 /**
340  * __dax_fault - handle a page fault on a DAX file
341  * @vma: The virtual memory area where the fault occurred
342  * @vmf: The description of the fault
343  * @get_block: The filesystem method used to translate file offsets to blocks
344  * @complete_unwritten: The filesystem method used to convert unwritten blocks
345  *	to written so the data written to them is exposed. This is required for
346  *	required by write faults for filesystems that will return unwritten
347  *	extent mappings from @get_block, but it is optional for reads as
348  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
349  *	not support unwritten extents, the it should pass NULL.
350  *
351  * When a page fault occurs, filesystems may call this helper in their
352  * fault handler for DAX files. __dax_fault() assumes the caller has done all
353  * the necessary locking for the page fault to proceed successfully.
354  */
355 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
356 			get_block_t get_block, dax_iodone_t complete_unwritten)
357 {
358 	struct file *file = vma->vm_file;
359 	struct address_space *mapping = file->f_mapping;
360 	struct inode *inode = mapping->host;
361 	struct page *page;
362 	struct buffer_head bh;
363 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
364 	unsigned blkbits = inode->i_blkbits;
365 	sector_t block;
366 	pgoff_t size;
367 	int error;
368 	int major = 0;
369 
370 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 	if (vmf->pgoff >= size)
372 		return VM_FAULT_SIGBUS;
373 
374 	memset(&bh, 0, sizeof(bh));
375 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
376 	bh.b_size = PAGE_SIZE;
377 
378  repeat:
379 	page = find_get_page(mapping, vmf->pgoff);
380 	if (page) {
381 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
382 			page_cache_release(page);
383 			return VM_FAULT_RETRY;
384 		}
385 		if (unlikely(page->mapping != mapping)) {
386 			unlock_page(page);
387 			page_cache_release(page);
388 			goto repeat;
389 		}
390 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
391 		if (unlikely(vmf->pgoff >= size)) {
392 			/*
393 			 * We have a struct page covering a hole in the file
394 			 * from a read fault and we've raced with a truncate
395 			 */
396 			error = -EIO;
397 			goto unlock_page;
398 		}
399 	}
400 
401 	error = get_block(inode, block, &bh, 0);
402 	if (!error && (bh.b_size < PAGE_SIZE))
403 		error = -EIO;		/* fs corruption? */
404 	if (error)
405 		goto unlock_page;
406 
407 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
408 		if (vmf->flags & FAULT_FLAG_WRITE) {
409 			error = get_block(inode, block, &bh, 1);
410 			count_vm_event(PGMAJFAULT);
411 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
412 			major = VM_FAULT_MAJOR;
413 			if (!error && (bh.b_size < PAGE_SIZE))
414 				error = -EIO;
415 			if (error)
416 				goto unlock_page;
417 		} else {
418 			return dax_load_hole(mapping, page, vmf);
419 		}
420 	}
421 
422 	if (vmf->cow_page) {
423 		struct page *new_page = vmf->cow_page;
424 		if (buffer_written(&bh))
425 			error = copy_user_bh(new_page, &bh, blkbits, vaddr);
426 		else
427 			clear_user_highpage(new_page, vaddr);
428 		if (error)
429 			goto unlock_page;
430 		vmf->page = page;
431 		if (!page) {
432 			i_mmap_lock_read(mapping);
433 			/* Check we didn't race with truncate */
434 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
435 								PAGE_SHIFT;
436 			if (vmf->pgoff >= size) {
437 				i_mmap_unlock_read(mapping);
438 				error = -EIO;
439 				goto out;
440 			}
441 		}
442 		return VM_FAULT_LOCKED;
443 	}
444 
445 	/* Check we didn't race with a read fault installing a new page */
446 	if (!page && major)
447 		page = find_lock_page(mapping, vmf->pgoff);
448 
449 	if (page) {
450 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
451 							PAGE_CACHE_SIZE, 0);
452 		delete_from_page_cache(page);
453 		unlock_page(page);
454 		page_cache_release(page);
455 	}
456 
457 	/*
458 	 * If we successfully insert the new mapping over an unwritten extent,
459 	 * we need to ensure we convert the unwritten extent. If there is an
460 	 * error inserting the mapping, the filesystem needs to leave it as
461 	 * unwritten to prevent exposure of the stale underlying data to
462 	 * userspace, but we still need to call the completion function so
463 	 * the private resources on the mapping buffer can be released. We
464 	 * indicate what the callback should do via the uptodate variable, same
465 	 * as for normal BH based IO completions.
466 	 */
467 	error = dax_insert_mapping(inode, &bh, vma, vmf);
468 	if (buffer_unwritten(&bh)) {
469 		if (complete_unwritten)
470 			complete_unwritten(&bh, !error);
471 		else
472 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
473 	}
474 
475  out:
476 	if (error == -ENOMEM)
477 		return VM_FAULT_OOM | major;
478 	/* -EBUSY is fine, somebody else faulted on the same PTE */
479 	if ((error < 0) && (error != -EBUSY))
480 		return VM_FAULT_SIGBUS | major;
481 	return VM_FAULT_NOPAGE | major;
482 
483  unlock_page:
484 	if (page) {
485 		unlock_page(page);
486 		page_cache_release(page);
487 	}
488 	goto out;
489 }
490 EXPORT_SYMBOL(__dax_fault);
491 
492 /**
493  * dax_fault - handle a page fault on a DAX file
494  * @vma: The virtual memory area where the fault occurred
495  * @vmf: The description of the fault
496  * @get_block: The filesystem method used to translate file offsets to blocks
497  *
498  * When a page fault occurs, filesystems may call this helper in their
499  * fault handler for DAX files.
500  */
501 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
502 	      get_block_t get_block, dax_iodone_t complete_unwritten)
503 {
504 	int result;
505 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
506 
507 	if (vmf->flags & FAULT_FLAG_WRITE) {
508 		sb_start_pagefault(sb);
509 		file_update_time(vma->vm_file);
510 	}
511 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
512 	if (vmf->flags & FAULT_FLAG_WRITE)
513 		sb_end_pagefault(sb);
514 
515 	return result;
516 }
517 EXPORT_SYMBOL_GPL(dax_fault);
518 
519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
520 /*
521  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
522  * more often than one might expect in the below function.
523  */
524 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
525 
526 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
527 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
528 		dax_iodone_t complete_unwritten)
529 {
530 	struct file *file = vma->vm_file;
531 	struct address_space *mapping = file->f_mapping;
532 	struct inode *inode = mapping->host;
533 	struct buffer_head bh;
534 	unsigned blkbits = inode->i_blkbits;
535 	unsigned long pmd_addr = address & PMD_MASK;
536 	bool write = flags & FAULT_FLAG_WRITE;
537 	long length;
538 	void __pmem *kaddr;
539 	pgoff_t size, pgoff;
540 	sector_t block, sector;
541 	unsigned long pfn;
542 	int result = 0;
543 
544 	/* Fall back to PTEs if we're going to COW */
545 	if (write && !(vma->vm_flags & VM_SHARED))
546 		return VM_FAULT_FALLBACK;
547 	/* If the PMD would extend outside the VMA */
548 	if (pmd_addr < vma->vm_start)
549 		return VM_FAULT_FALLBACK;
550 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
551 		return VM_FAULT_FALLBACK;
552 
553 	pgoff = linear_page_index(vma, pmd_addr);
554 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
555 	if (pgoff >= size)
556 		return VM_FAULT_SIGBUS;
557 	/* If the PMD would cover blocks out of the file */
558 	if ((pgoff | PG_PMD_COLOUR) >= size)
559 		return VM_FAULT_FALLBACK;
560 
561 	memset(&bh, 0, sizeof(bh));
562 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
563 
564 	bh.b_size = PMD_SIZE;
565 	length = get_block(inode, block, &bh, write);
566 	if (length)
567 		return VM_FAULT_SIGBUS;
568 	i_mmap_lock_read(mapping);
569 
570 	/*
571 	 * If the filesystem isn't willing to tell us the length of a hole,
572 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
573 	 * would be silly.
574 	 */
575 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
576 		goto fallback;
577 
578 	/*
579 	 * If we allocated new storage, make sure no process has any
580 	 * zero pages covering this hole
581 	 */
582 	if (buffer_new(&bh)) {
583 		i_mmap_unlock_read(mapping);
584 		unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
585 		i_mmap_lock_read(mapping);
586 	}
587 
588 	/*
589 	 * If a truncate happened while we were allocating blocks, we may
590 	 * leave blocks allocated to the file that are beyond EOF.  We can't
591 	 * take i_mutex here, so just leave them hanging; they'll be freed
592 	 * when the file is deleted.
593 	 */
594 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
595 	if (pgoff >= size) {
596 		result = VM_FAULT_SIGBUS;
597 		goto out;
598 	}
599 	if ((pgoff | PG_PMD_COLOUR) >= size)
600 		goto fallback;
601 
602 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
603 		spinlock_t *ptl;
604 		pmd_t entry;
605 		struct page *zero_page = get_huge_zero_page();
606 
607 		if (unlikely(!zero_page))
608 			goto fallback;
609 
610 		ptl = pmd_lock(vma->vm_mm, pmd);
611 		if (!pmd_none(*pmd)) {
612 			spin_unlock(ptl);
613 			goto fallback;
614 		}
615 
616 		entry = mk_pmd(zero_page, vma->vm_page_prot);
617 		entry = pmd_mkhuge(entry);
618 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
619 		result = VM_FAULT_NOPAGE;
620 		spin_unlock(ptl);
621 	} else {
622 		sector = bh.b_blocknr << (blkbits - 9);
623 		length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
624 						bh.b_size);
625 		if (length < 0) {
626 			result = VM_FAULT_SIGBUS;
627 			goto out;
628 		}
629 		if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
630 			goto fallback;
631 
632 		/*
633 		 * TODO: teach vmf_insert_pfn_pmd() to support
634 		 * 'pte_special' for pmds
635 		 */
636 		if (pfn_valid(pfn))
637 			goto fallback;
638 
639 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
640 			int i;
641 			for (i = 0; i < PTRS_PER_PMD; i++)
642 				clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
643 			wmb_pmem();
644 			count_vm_event(PGMAJFAULT);
645 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
646 			result |= VM_FAULT_MAJOR;
647 		}
648 
649 		result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
650 	}
651 
652  out:
653 	i_mmap_unlock_read(mapping);
654 
655 	if (buffer_unwritten(&bh))
656 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
657 
658 	return result;
659 
660  fallback:
661 	count_vm_event(THP_FAULT_FALLBACK);
662 	result = VM_FAULT_FALLBACK;
663 	goto out;
664 }
665 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
666 
667 /**
668  * dax_pmd_fault - handle a PMD fault on a DAX file
669  * @vma: The virtual memory area where the fault occurred
670  * @vmf: The description of the fault
671  * @get_block: The filesystem method used to translate file offsets to blocks
672  *
673  * When a page fault occurs, filesystems may call this helper in their
674  * pmd_fault handler for DAX files.
675  */
676 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
677 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
678 			dax_iodone_t complete_unwritten)
679 {
680 	int result;
681 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
682 
683 	if (flags & FAULT_FLAG_WRITE) {
684 		sb_start_pagefault(sb);
685 		file_update_time(vma->vm_file);
686 	}
687 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
688 				complete_unwritten);
689 	if (flags & FAULT_FLAG_WRITE)
690 		sb_end_pagefault(sb);
691 
692 	return result;
693 }
694 EXPORT_SYMBOL_GPL(dax_pmd_fault);
695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
696 
697 /**
698  * dax_pfn_mkwrite - handle first write to DAX page
699  * @vma: The virtual memory area where the fault occurred
700  * @vmf: The description of the fault
701  *
702  */
703 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
704 {
705 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
706 
707 	sb_start_pagefault(sb);
708 	file_update_time(vma->vm_file);
709 	sb_end_pagefault(sb);
710 	return VM_FAULT_NOPAGE;
711 }
712 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
713 
714 /**
715  * dax_zero_page_range - zero a range within a page of a DAX file
716  * @inode: The file being truncated
717  * @from: The file offset that is being truncated to
718  * @length: The number of bytes to zero
719  * @get_block: The filesystem method used to translate file offsets to blocks
720  *
721  * This function can be called by a filesystem when it is zeroing part of a
722  * page in a DAX file.  This is intended for hole-punch operations.  If
723  * you are truncating a file, the helper function dax_truncate_page() may be
724  * more convenient.
725  *
726  * We work in terms of PAGE_CACHE_SIZE here for commonality with
727  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
728  * took care of disposing of the unnecessary blocks.  Even if the filesystem
729  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
730  * since the file might be mmapped.
731  */
732 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
733 							get_block_t get_block)
734 {
735 	struct buffer_head bh;
736 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
737 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
738 	int err;
739 
740 	/* Block boundary? Nothing to do */
741 	if (!length)
742 		return 0;
743 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
744 
745 	memset(&bh, 0, sizeof(bh));
746 	bh.b_size = PAGE_CACHE_SIZE;
747 	err = get_block(inode, index, &bh, 0);
748 	if (err < 0)
749 		return err;
750 	if (buffer_written(&bh)) {
751 		void __pmem *addr;
752 		err = dax_get_addr(&bh, &addr, inode->i_blkbits);
753 		if (err < 0)
754 			return err;
755 		clear_pmem(addr + offset, length);
756 		wmb_pmem();
757 	}
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(dax_zero_page_range);
762 
763 /**
764  * dax_truncate_page - handle a partial page being truncated in a DAX file
765  * @inode: The file being truncated
766  * @from: The file offset that is being truncated to
767  * @get_block: The filesystem method used to translate file offsets to blocks
768  *
769  * Similar to block_truncate_page(), this function can be called by a
770  * filesystem when it is truncating a DAX file to handle the partial page.
771  *
772  * We work in terms of PAGE_CACHE_SIZE here for commonality with
773  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
774  * took care of disposing of the unnecessary blocks.  Even if the filesystem
775  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
776  * since the file might be mmapped.
777  */
778 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
779 {
780 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
781 	return dax_zero_page_range(inode, from, length, get_block);
782 }
783 EXPORT_SYMBOL_GPL(dax_truncate_page);
784