xref: /openbmc/linux/fs/dax.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43 	if (pe_size == PE_SIZE_PTE)
44 		return PAGE_SHIFT - PAGE_SHIFT;
45 	if (pe_size == PE_SIZE_PMD)
46 		return PMD_SHIFT - PAGE_SHIFT;
47 	if (pe_size == PE_SIZE_PUD)
48 		return PUD_SHIFT - PAGE_SHIFT;
49 	return ~0;
50 }
51 
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55 
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
59 
60 /* The order of a PMD entry */
61 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
62 
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64 
65 static int __init init_dax_wait_table(void)
66 {
67 	int i;
68 
69 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 		init_waitqueue_head(wait_table + i);
71 	return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74 
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT	(4)
86 #define DAX_LOCKED	(1UL << 0)
87 #define DAX_PMD		(1UL << 1)
88 #define DAX_ZERO_PAGE	(1UL << 2)
89 #define DAX_EMPTY	(1UL << 3)
90 
91 static unsigned long dax_to_pfn(void *entry)
92 {
93 	return xa_to_value(entry) >> DAX_SHIFT;
94 }
95 
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100 
101 static void *dax_make_page_entry(struct page *page)
102 {
103 	pfn_t pfn = page_to_pfn_t(page);
104 	return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
105 }
106 
107 static bool dax_is_locked(void *entry)
108 {
109 	return xa_to_value(entry) & DAX_LOCKED;
110 }
111 
112 static unsigned int dax_entry_order(void *entry)
113 {
114 	if (xa_to_value(entry) & DAX_PMD)
115 		return PMD_ORDER;
116 	return 0;
117 }
118 
119 static int dax_is_pmd_entry(void *entry)
120 {
121 	return xa_to_value(entry) & DAX_PMD;
122 }
123 
124 static int dax_is_pte_entry(void *entry)
125 {
126 	return !(xa_to_value(entry) & DAX_PMD);
127 }
128 
129 static int dax_is_zero_entry(void *entry)
130 {
131 	return xa_to_value(entry) & DAX_ZERO_PAGE;
132 }
133 
134 static int dax_is_empty_entry(void *entry)
135 {
136 	return xa_to_value(entry) & DAX_EMPTY;
137 }
138 
139 /*
140  * DAX page cache entry locking
141  */
142 struct exceptional_entry_key {
143 	struct xarray *xa;
144 	pgoff_t entry_start;
145 };
146 
147 struct wait_exceptional_entry_queue {
148 	wait_queue_entry_t wait;
149 	struct exceptional_entry_key key;
150 };
151 
152 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153 		void *entry, struct exceptional_entry_key *key)
154 {
155 	unsigned long hash;
156 	unsigned long index = xas->xa_index;
157 
158 	/*
159 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
160 	 * queue to the start of that PMD.  This ensures that all offsets in
161 	 * the range covered by the PMD map to the same bit lock.
162 	 */
163 	if (dax_is_pmd_entry(entry))
164 		index &= ~PG_PMD_COLOUR;
165 	key->xa = xas->xa;
166 	key->entry_start = index;
167 
168 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
169 	return wait_table + hash;
170 }
171 
172 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173 		unsigned int mode, int sync, void *keyp)
174 {
175 	struct exceptional_entry_key *key = keyp;
176 	struct wait_exceptional_entry_queue *ewait =
177 		container_of(wait, struct wait_exceptional_entry_queue, wait);
178 
179 	if (key->xa != ewait->key.xa ||
180 	    key->entry_start != ewait->key.entry_start)
181 		return 0;
182 	return autoremove_wake_function(wait, mode, sync, NULL);
183 }
184 
185 /*
186  * @entry may no longer be the entry at the index in the mapping.
187  * The important information it's conveying is whether the entry at
188  * this index used to be a PMD entry.
189  */
190 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
191 {
192 	struct exceptional_entry_key key;
193 	wait_queue_head_t *wq;
194 
195 	wq = dax_entry_waitqueue(xas, entry, &key);
196 
197 	/*
198 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
199 	 * under the i_pages lock, ditto for entry handling in our callers.
200 	 * So at this point all tasks that could have seen our entry locked
201 	 * must be in the waitqueue and the following check will see them.
202 	 */
203 	if (waitqueue_active(wq))
204 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
205 }
206 
207 /*
208  * Look up entry in page cache, wait for it to become unlocked if it
209  * is a DAX entry and return it.  The caller must subsequently call
210  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
211  * if it did.
212  *
213  * Must be called with the i_pages lock held.
214  */
215 static void *get_unlocked_entry(struct xa_state *xas)
216 {
217 	void *entry;
218 	struct wait_exceptional_entry_queue ewait;
219 	wait_queue_head_t *wq;
220 
221 	init_wait(&ewait.wait);
222 	ewait.wait.func = wake_exceptional_entry_func;
223 
224 	for (;;) {
225 		entry = xas_load(xas);
226 		if (!entry || xa_is_internal(entry) ||
227 				WARN_ON_ONCE(!xa_is_value(entry)) ||
228 				!dax_is_locked(entry))
229 			return entry;
230 
231 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
232 		prepare_to_wait_exclusive(wq, &ewait.wait,
233 					  TASK_UNINTERRUPTIBLE);
234 		xas_unlock_irq(xas);
235 		xas_reset(xas);
236 		schedule();
237 		finish_wait(wq, &ewait.wait);
238 		xas_lock_irq(xas);
239 	}
240 }
241 
242 static void put_unlocked_entry(struct xa_state *xas, void *entry)
243 {
244 	/* If we were the only waiter woken, wake the next one */
245 	if (entry)
246 		dax_wake_entry(xas, entry, false);
247 }
248 
249 /*
250  * We used the xa_state to get the entry, but then we locked the entry and
251  * dropped the xa_lock, so we know the xa_state is stale and must be reset
252  * before use.
253  */
254 static void dax_unlock_entry(struct xa_state *xas, void *entry)
255 {
256 	void *old;
257 
258 	xas_reset(xas);
259 	xas_lock_irq(xas);
260 	old = xas_store(xas, entry);
261 	xas_unlock_irq(xas);
262 	BUG_ON(!dax_is_locked(old));
263 	dax_wake_entry(xas, entry, false);
264 }
265 
266 /*
267  * Return: The entry stored at this location before it was locked.
268  */
269 static void *dax_lock_entry(struct xa_state *xas, void *entry)
270 {
271 	unsigned long v = xa_to_value(entry);
272 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
273 }
274 
275 static unsigned long dax_entry_size(void *entry)
276 {
277 	if (dax_is_zero_entry(entry))
278 		return 0;
279 	else if (dax_is_empty_entry(entry))
280 		return 0;
281 	else if (dax_is_pmd_entry(entry))
282 		return PMD_SIZE;
283 	else
284 		return PAGE_SIZE;
285 }
286 
287 static unsigned long dax_end_pfn(void *entry)
288 {
289 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
290 }
291 
292 /*
293  * Iterate through all mapped pfns represented by an entry, i.e. skip
294  * 'empty' and 'zero' entries.
295  */
296 #define for_each_mapped_pfn(entry, pfn) \
297 	for (pfn = dax_to_pfn(entry); \
298 			pfn < dax_end_pfn(entry); pfn++)
299 
300 /*
301  * TODO: for reflink+dax we need a way to associate a single page with
302  * multiple address_space instances at different linear_page_index()
303  * offsets.
304  */
305 static void dax_associate_entry(void *entry, struct address_space *mapping,
306 		struct vm_area_struct *vma, unsigned long address)
307 {
308 	unsigned long size = dax_entry_size(entry), pfn, index;
309 	int i = 0;
310 
311 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
312 		return;
313 
314 	index = linear_page_index(vma, address & ~(size - 1));
315 	for_each_mapped_pfn(entry, pfn) {
316 		struct page *page = pfn_to_page(pfn);
317 
318 		WARN_ON_ONCE(page->mapping);
319 		page->mapping = mapping;
320 		page->index = index + i++;
321 	}
322 }
323 
324 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
325 		bool trunc)
326 {
327 	unsigned long pfn;
328 
329 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
330 		return;
331 
332 	for_each_mapped_pfn(entry, pfn) {
333 		struct page *page = pfn_to_page(pfn);
334 
335 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
336 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
337 		page->mapping = NULL;
338 		page->index = 0;
339 	}
340 }
341 
342 static struct page *dax_busy_page(void *entry)
343 {
344 	unsigned long pfn;
345 
346 	for_each_mapped_pfn(entry, pfn) {
347 		struct page *page = pfn_to_page(pfn);
348 
349 		if (page_ref_count(page) > 1)
350 			return page;
351 	}
352 	return NULL;
353 }
354 
355 bool dax_lock_mapping_entry(struct page *page)
356 {
357 	XA_STATE(xas, NULL, 0);
358 	void *entry;
359 
360 	for (;;) {
361 		struct address_space *mapping = READ_ONCE(page->mapping);
362 
363 		if (!dax_mapping(mapping))
364 			return false;
365 
366 		/*
367 		 * In the device-dax case there's no need to lock, a
368 		 * struct dev_pagemap pin is sufficient to keep the
369 		 * inode alive, and we assume we have dev_pagemap pin
370 		 * otherwise we would not have a valid pfn_to_page()
371 		 * translation.
372 		 */
373 		if (S_ISCHR(mapping->host->i_mode))
374 			return true;
375 
376 		xas.xa = &mapping->i_pages;
377 		xas_lock_irq(&xas);
378 		if (mapping != page->mapping) {
379 			xas_unlock_irq(&xas);
380 			continue;
381 		}
382 		xas_set(&xas, page->index);
383 		entry = xas_load(&xas);
384 		if (dax_is_locked(entry)) {
385 			entry = get_unlocked_entry(&xas);
386 			/* Did the page move while we slept? */
387 			if (dax_to_pfn(entry) != page_to_pfn(page)) {
388 				xas_unlock_irq(&xas);
389 				continue;
390 			}
391 		}
392 		dax_lock_entry(&xas, entry);
393 		xas_unlock_irq(&xas);
394 		return true;
395 	}
396 }
397 
398 void dax_unlock_mapping_entry(struct page *page)
399 {
400 	struct address_space *mapping = page->mapping;
401 	XA_STATE(xas, &mapping->i_pages, page->index);
402 
403 	if (S_ISCHR(mapping->host->i_mode))
404 		return;
405 
406 	dax_unlock_entry(&xas, dax_make_page_entry(page));
407 }
408 
409 /*
410  * Find page cache entry at given index. If it is a DAX entry, return it
411  * with the entry locked. If the page cache doesn't contain an entry at
412  * that index, add a locked empty entry.
413  *
414  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
415  * either return that locked entry or will return VM_FAULT_FALLBACK.
416  * This will happen if there are any PTE entries within the PMD range
417  * that we are requesting.
418  *
419  * We always favor PTE entries over PMD entries. There isn't a flow where we
420  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
421  * insertion will fail if it finds any PTE entries already in the tree, and a
422  * PTE insertion will cause an existing PMD entry to be unmapped and
423  * downgraded to PTE entries.  This happens for both PMD zero pages as
424  * well as PMD empty entries.
425  *
426  * The exception to this downgrade path is for PMD entries that have
427  * real storage backing them.  We will leave these real PMD entries in
428  * the tree, and PTE writes will simply dirty the entire PMD entry.
429  *
430  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
431  * persistent memory the benefit is doubtful. We can add that later if we can
432  * show it helps.
433  *
434  * On error, this function does not return an ERR_PTR.  Instead it returns
435  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
436  * overlap with xarray value entries.
437  */
438 static void *grab_mapping_entry(struct xa_state *xas,
439 		struct address_space *mapping, unsigned long size_flag)
440 {
441 	unsigned long index = xas->xa_index;
442 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
443 	void *entry;
444 
445 retry:
446 	xas_lock_irq(xas);
447 	entry = get_unlocked_entry(xas);
448 	if (xa_is_internal(entry))
449 		goto fallback;
450 
451 	if (entry) {
452 		if (WARN_ON_ONCE(!xa_is_value(entry))) {
453 			xas_set_err(xas, EIO);
454 			goto out_unlock;
455 		}
456 
457 		if (size_flag & DAX_PMD) {
458 			if (dax_is_pte_entry(entry)) {
459 				put_unlocked_entry(xas, entry);
460 				goto fallback;
461 			}
462 		} else { /* trying to grab a PTE entry */
463 			if (dax_is_pmd_entry(entry) &&
464 			    (dax_is_zero_entry(entry) ||
465 			     dax_is_empty_entry(entry))) {
466 				pmd_downgrade = true;
467 			}
468 		}
469 	}
470 
471 	if (pmd_downgrade) {
472 		/*
473 		 * Make sure 'entry' remains valid while we drop
474 		 * the i_pages lock.
475 		 */
476 		dax_lock_entry(xas, entry);
477 
478 		/*
479 		 * Besides huge zero pages the only other thing that gets
480 		 * downgraded are empty entries which don't need to be
481 		 * unmapped.
482 		 */
483 		if (dax_is_zero_entry(entry)) {
484 			xas_unlock_irq(xas);
485 			unmap_mapping_pages(mapping,
486 					xas->xa_index & ~PG_PMD_COLOUR,
487 					PG_PMD_NR, false);
488 			xas_reset(xas);
489 			xas_lock_irq(xas);
490 		}
491 
492 		dax_disassociate_entry(entry, mapping, false);
493 		xas_store(xas, NULL);	/* undo the PMD join */
494 		dax_wake_entry(xas, entry, true);
495 		mapping->nrexceptional--;
496 		entry = NULL;
497 		xas_set(xas, index);
498 	}
499 
500 	if (entry) {
501 		dax_lock_entry(xas, entry);
502 	} else {
503 		entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
504 		dax_lock_entry(xas, entry);
505 		if (xas_error(xas))
506 			goto out_unlock;
507 		mapping->nrexceptional++;
508 	}
509 
510 out_unlock:
511 	xas_unlock_irq(xas);
512 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
513 		goto retry;
514 	if (xas->xa_node == XA_ERROR(-ENOMEM))
515 		return xa_mk_internal(VM_FAULT_OOM);
516 	if (xas_error(xas))
517 		return xa_mk_internal(VM_FAULT_SIGBUS);
518 	return entry;
519 fallback:
520 	xas_unlock_irq(xas);
521 	return xa_mk_internal(VM_FAULT_FALLBACK);
522 }
523 
524 /**
525  * dax_layout_busy_page - find first pinned page in @mapping
526  * @mapping: address space to scan for a page with ref count > 1
527  *
528  * DAX requires ZONE_DEVICE mapped pages. These pages are never
529  * 'onlined' to the page allocator so they are considered idle when
530  * page->count == 1. A filesystem uses this interface to determine if
531  * any page in the mapping is busy, i.e. for DMA, or other
532  * get_user_pages() usages.
533  *
534  * It is expected that the filesystem is holding locks to block the
535  * establishment of new mappings in this address_space. I.e. it expects
536  * to be able to run unmap_mapping_range() and subsequently not race
537  * mapping_mapped() becoming true.
538  */
539 struct page *dax_layout_busy_page(struct address_space *mapping)
540 {
541 	XA_STATE(xas, &mapping->i_pages, 0);
542 	void *entry;
543 	unsigned int scanned = 0;
544 	struct page *page = NULL;
545 
546 	/*
547 	 * In the 'limited' case get_user_pages() for dax is disabled.
548 	 */
549 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
550 		return NULL;
551 
552 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
553 		return NULL;
554 
555 	/*
556 	 * If we race get_user_pages_fast() here either we'll see the
557 	 * elevated page count in the iteration and wait, or
558 	 * get_user_pages_fast() will see that the page it took a reference
559 	 * against is no longer mapped in the page tables and bail to the
560 	 * get_user_pages() slow path.  The slow path is protected by
561 	 * pte_lock() and pmd_lock(). New references are not taken without
562 	 * holding those locks, and unmap_mapping_range() will not zero the
563 	 * pte or pmd without holding the respective lock, so we are
564 	 * guaranteed to either see new references or prevent new
565 	 * references from being established.
566 	 */
567 	unmap_mapping_range(mapping, 0, 0, 1);
568 
569 	xas_lock_irq(&xas);
570 	xas_for_each(&xas, entry, ULONG_MAX) {
571 		if (WARN_ON_ONCE(!xa_is_value(entry)))
572 			continue;
573 		if (unlikely(dax_is_locked(entry)))
574 			entry = get_unlocked_entry(&xas);
575 		if (entry)
576 			page = dax_busy_page(entry);
577 		put_unlocked_entry(&xas, entry);
578 		if (page)
579 			break;
580 		if (++scanned % XA_CHECK_SCHED)
581 			continue;
582 
583 		xas_pause(&xas);
584 		xas_unlock_irq(&xas);
585 		cond_resched();
586 		xas_lock_irq(&xas);
587 	}
588 	xas_unlock_irq(&xas);
589 	return page;
590 }
591 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
592 
593 static int __dax_invalidate_entry(struct address_space *mapping,
594 					  pgoff_t index, bool trunc)
595 {
596 	XA_STATE(xas, &mapping->i_pages, index);
597 	int ret = 0;
598 	void *entry;
599 
600 	xas_lock_irq(&xas);
601 	entry = get_unlocked_entry(&xas);
602 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
603 		goto out;
604 	if (!trunc &&
605 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
606 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
607 		goto out;
608 	dax_disassociate_entry(entry, mapping, trunc);
609 	xas_store(&xas, NULL);
610 	mapping->nrexceptional--;
611 	ret = 1;
612 out:
613 	put_unlocked_entry(&xas, entry);
614 	xas_unlock_irq(&xas);
615 	return ret;
616 }
617 
618 /*
619  * Delete DAX entry at @index from @mapping.  Wait for it
620  * to be unlocked before deleting it.
621  */
622 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
623 {
624 	int ret = __dax_invalidate_entry(mapping, index, true);
625 
626 	/*
627 	 * This gets called from truncate / punch_hole path. As such, the caller
628 	 * must hold locks protecting against concurrent modifications of the
629 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
630 	 * caller has seen a DAX entry for this index, we better find it
631 	 * at that index as well...
632 	 */
633 	WARN_ON_ONCE(!ret);
634 	return ret;
635 }
636 
637 /*
638  * Invalidate DAX entry if it is clean.
639  */
640 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
641 				      pgoff_t index)
642 {
643 	return __dax_invalidate_entry(mapping, index, false);
644 }
645 
646 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
647 		sector_t sector, size_t size, struct page *to,
648 		unsigned long vaddr)
649 {
650 	void *vto, *kaddr;
651 	pgoff_t pgoff;
652 	long rc;
653 	int id;
654 
655 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
656 	if (rc)
657 		return rc;
658 
659 	id = dax_read_lock();
660 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
661 	if (rc < 0) {
662 		dax_read_unlock(id);
663 		return rc;
664 	}
665 	vto = kmap_atomic(to);
666 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
667 	kunmap_atomic(vto);
668 	dax_read_unlock(id);
669 	return 0;
670 }
671 
672 /*
673  * By this point grab_mapping_entry() has ensured that we have a locked entry
674  * of the appropriate size so we don't have to worry about downgrading PMDs to
675  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
676  * already in the tree, we will skip the insertion and just dirty the PMD as
677  * appropriate.
678  */
679 static void *dax_insert_entry(struct xa_state *xas,
680 		struct address_space *mapping, struct vm_fault *vmf,
681 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
682 {
683 	void *new_entry = dax_make_entry(pfn, flags);
684 
685 	if (dirty)
686 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
687 
688 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
689 		unsigned long index = xas->xa_index;
690 		/* we are replacing a zero page with block mapping */
691 		if (dax_is_pmd_entry(entry))
692 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
693 					PG_PMD_NR, false);
694 		else /* pte entry */
695 			unmap_mapping_pages(mapping, index, 1, false);
696 	}
697 
698 	xas_reset(xas);
699 	xas_lock_irq(xas);
700 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
701 		dax_disassociate_entry(entry, mapping, false);
702 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
703 	}
704 
705 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
706 		/*
707 		 * Only swap our new entry into the page cache if the current
708 		 * entry is a zero page or an empty entry.  If a normal PTE or
709 		 * PMD entry is already in the cache, we leave it alone.  This
710 		 * means that if we are trying to insert a PTE and the
711 		 * existing entry is a PMD, we will just leave the PMD in the
712 		 * tree and dirty it if necessary.
713 		 */
714 		void *old = dax_lock_entry(xas, new_entry);
715 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
716 					DAX_LOCKED));
717 		entry = new_entry;
718 	} else {
719 		xas_load(xas);	/* Walk the xa_state */
720 	}
721 
722 	if (dirty)
723 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
724 
725 	xas_unlock_irq(xas);
726 	return entry;
727 }
728 
729 static inline
730 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
731 {
732 	unsigned long address;
733 
734 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
735 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
736 	return address;
737 }
738 
739 /* Walk all mappings of a given index of a file and writeprotect them */
740 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
741 		unsigned long pfn)
742 {
743 	struct vm_area_struct *vma;
744 	pte_t pte, *ptep = NULL;
745 	pmd_t *pmdp = NULL;
746 	spinlock_t *ptl;
747 
748 	i_mmap_lock_read(mapping);
749 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
750 		unsigned long address, start, end;
751 
752 		cond_resched();
753 
754 		if (!(vma->vm_flags & VM_SHARED))
755 			continue;
756 
757 		address = pgoff_address(index, vma);
758 
759 		/*
760 		 * Note because we provide start/end to follow_pte_pmd it will
761 		 * call mmu_notifier_invalidate_range_start() on our behalf
762 		 * before taking any lock.
763 		 */
764 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
765 			continue;
766 
767 		/*
768 		 * No need to call mmu_notifier_invalidate_range() as we are
769 		 * downgrading page table protection not changing it to point
770 		 * to a new page.
771 		 *
772 		 * See Documentation/vm/mmu_notifier.rst
773 		 */
774 		if (pmdp) {
775 #ifdef CONFIG_FS_DAX_PMD
776 			pmd_t pmd;
777 
778 			if (pfn != pmd_pfn(*pmdp))
779 				goto unlock_pmd;
780 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
781 				goto unlock_pmd;
782 
783 			flush_cache_page(vma, address, pfn);
784 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
785 			pmd = pmd_wrprotect(pmd);
786 			pmd = pmd_mkclean(pmd);
787 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
788 unlock_pmd:
789 #endif
790 			spin_unlock(ptl);
791 		} else {
792 			if (pfn != pte_pfn(*ptep))
793 				goto unlock_pte;
794 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
795 				goto unlock_pte;
796 
797 			flush_cache_page(vma, address, pfn);
798 			pte = ptep_clear_flush(vma, address, ptep);
799 			pte = pte_wrprotect(pte);
800 			pte = pte_mkclean(pte);
801 			set_pte_at(vma->vm_mm, address, ptep, pte);
802 unlock_pte:
803 			pte_unmap_unlock(ptep, ptl);
804 		}
805 
806 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
807 	}
808 	i_mmap_unlock_read(mapping);
809 }
810 
811 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
812 		struct address_space *mapping, void *entry)
813 {
814 	unsigned long pfn;
815 	long ret = 0;
816 	size_t size;
817 
818 	/*
819 	 * A page got tagged dirty in DAX mapping? Something is seriously
820 	 * wrong.
821 	 */
822 	if (WARN_ON(!xa_is_value(entry)))
823 		return -EIO;
824 
825 	if (unlikely(dax_is_locked(entry))) {
826 		void *old_entry = entry;
827 
828 		entry = get_unlocked_entry(xas);
829 
830 		/* Entry got punched out / reallocated? */
831 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
832 			goto put_unlocked;
833 		/*
834 		 * Entry got reallocated elsewhere? No need to writeback.
835 		 * We have to compare pfns as we must not bail out due to
836 		 * difference in lockbit or entry type.
837 		 */
838 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
839 			goto put_unlocked;
840 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
841 					dax_is_zero_entry(entry))) {
842 			ret = -EIO;
843 			goto put_unlocked;
844 		}
845 
846 		/* Another fsync thread may have already done this entry */
847 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
848 			goto put_unlocked;
849 	}
850 
851 	/* Lock the entry to serialize with page faults */
852 	dax_lock_entry(xas, entry);
853 
854 	/*
855 	 * We can clear the tag now but we have to be careful so that concurrent
856 	 * dax_writeback_one() calls for the same index cannot finish before we
857 	 * actually flush the caches. This is achieved as the calls will look
858 	 * at the entry only under the i_pages lock and once they do that
859 	 * they will see the entry locked and wait for it to unlock.
860 	 */
861 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
862 	xas_unlock_irq(xas);
863 
864 	/*
865 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
866 	 * in the middle of a PMD, the 'index' we are given will be aligned to
867 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
868 	 * This allows us to flush for PMD_SIZE and not have to worry about
869 	 * partial PMD writebacks.
870 	 */
871 	pfn = dax_to_pfn(entry);
872 	size = PAGE_SIZE << dax_entry_order(entry);
873 
874 	dax_entry_mkclean(mapping, xas->xa_index, pfn);
875 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
876 	/*
877 	 * After we have flushed the cache, we can clear the dirty tag. There
878 	 * cannot be new dirty data in the pfn after the flush has completed as
879 	 * the pfn mappings are writeprotected and fault waits for mapping
880 	 * entry lock.
881 	 */
882 	xas_reset(xas);
883 	xas_lock_irq(xas);
884 	xas_store(xas, entry);
885 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
886 	dax_wake_entry(xas, entry, false);
887 
888 	trace_dax_writeback_one(mapping->host, xas->xa_index,
889 			size >> PAGE_SHIFT);
890 	return ret;
891 
892  put_unlocked:
893 	put_unlocked_entry(xas, entry);
894 	return ret;
895 }
896 
897 /*
898  * Flush the mapping to the persistent domain within the byte range of [start,
899  * end]. This is required by data integrity operations to ensure file data is
900  * on persistent storage prior to completion of the operation.
901  */
902 int dax_writeback_mapping_range(struct address_space *mapping,
903 		struct block_device *bdev, struct writeback_control *wbc)
904 {
905 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
906 	struct inode *inode = mapping->host;
907 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
908 	struct dax_device *dax_dev;
909 	void *entry;
910 	int ret = 0;
911 	unsigned int scanned = 0;
912 
913 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
914 		return -EIO;
915 
916 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
917 		return 0;
918 
919 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
920 	if (!dax_dev)
921 		return -EIO;
922 
923 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
924 
925 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
926 
927 	xas_lock_irq(&xas);
928 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
929 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
930 		if (ret < 0) {
931 			mapping_set_error(mapping, ret);
932 			break;
933 		}
934 		if (++scanned % XA_CHECK_SCHED)
935 			continue;
936 
937 		xas_pause(&xas);
938 		xas_unlock_irq(&xas);
939 		cond_resched();
940 		xas_lock_irq(&xas);
941 	}
942 	xas_unlock_irq(&xas);
943 	put_dax(dax_dev);
944 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
945 	return ret;
946 }
947 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
948 
949 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
950 {
951 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
952 }
953 
954 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
955 			 pfn_t *pfnp)
956 {
957 	const sector_t sector = dax_iomap_sector(iomap, pos);
958 	pgoff_t pgoff;
959 	int id, rc;
960 	long length;
961 
962 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
963 	if (rc)
964 		return rc;
965 	id = dax_read_lock();
966 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
967 				   NULL, pfnp);
968 	if (length < 0) {
969 		rc = length;
970 		goto out;
971 	}
972 	rc = -EINVAL;
973 	if (PFN_PHYS(length) < size)
974 		goto out;
975 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
976 		goto out;
977 	/* For larger pages we need devmap */
978 	if (length > 1 && !pfn_t_devmap(*pfnp))
979 		goto out;
980 	rc = 0;
981 out:
982 	dax_read_unlock(id);
983 	return rc;
984 }
985 
986 /*
987  * The user has performed a load from a hole in the file.  Allocating a new
988  * page in the file would cause excessive storage usage for workloads with
989  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
990  * If this page is ever written to we will re-fault and change the mapping to
991  * point to real DAX storage instead.
992  */
993 static vm_fault_t dax_load_hole(struct xa_state *xas,
994 		struct address_space *mapping, void **entry,
995 		struct vm_fault *vmf)
996 {
997 	struct inode *inode = mapping->host;
998 	unsigned long vaddr = vmf->address;
999 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1000 	vm_fault_t ret;
1001 
1002 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1003 			DAX_ZERO_PAGE, false);
1004 
1005 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1006 	trace_dax_load_hole(inode, vmf, ret);
1007 	return ret;
1008 }
1009 
1010 static bool dax_range_is_aligned(struct block_device *bdev,
1011 				 unsigned int offset, unsigned int length)
1012 {
1013 	unsigned short sector_size = bdev_logical_block_size(bdev);
1014 
1015 	if (!IS_ALIGNED(offset, sector_size))
1016 		return false;
1017 	if (!IS_ALIGNED(length, sector_size))
1018 		return false;
1019 
1020 	return true;
1021 }
1022 
1023 int __dax_zero_page_range(struct block_device *bdev,
1024 		struct dax_device *dax_dev, sector_t sector,
1025 		unsigned int offset, unsigned int size)
1026 {
1027 	if (dax_range_is_aligned(bdev, offset, size)) {
1028 		sector_t start_sector = sector + (offset >> 9);
1029 
1030 		return blkdev_issue_zeroout(bdev, start_sector,
1031 				size >> 9, GFP_NOFS, 0);
1032 	} else {
1033 		pgoff_t pgoff;
1034 		long rc, id;
1035 		void *kaddr;
1036 
1037 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1038 		if (rc)
1039 			return rc;
1040 
1041 		id = dax_read_lock();
1042 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1043 		if (rc < 0) {
1044 			dax_read_unlock(id);
1045 			return rc;
1046 		}
1047 		memset(kaddr + offset, 0, size);
1048 		dax_flush(dax_dev, kaddr + offset, size);
1049 		dax_read_unlock(id);
1050 	}
1051 	return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1054 
1055 static loff_t
1056 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1057 		struct iomap *iomap)
1058 {
1059 	struct block_device *bdev = iomap->bdev;
1060 	struct dax_device *dax_dev = iomap->dax_dev;
1061 	struct iov_iter *iter = data;
1062 	loff_t end = pos + length, done = 0;
1063 	ssize_t ret = 0;
1064 	size_t xfer;
1065 	int id;
1066 
1067 	if (iov_iter_rw(iter) == READ) {
1068 		end = min(end, i_size_read(inode));
1069 		if (pos >= end)
1070 			return 0;
1071 
1072 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1073 			return iov_iter_zero(min(length, end - pos), iter);
1074 	}
1075 
1076 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1077 		return -EIO;
1078 
1079 	/*
1080 	 * Write can allocate block for an area which has a hole page mapped
1081 	 * into page tables. We have to tear down these mappings so that data
1082 	 * written by write(2) is visible in mmap.
1083 	 */
1084 	if (iomap->flags & IOMAP_F_NEW) {
1085 		invalidate_inode_pages2_range(inode->i_mapping,
1086 					      pos >> PAGE_SHIFT,
1087 					      (end - 1) >> PAGE_SHIFT);
1088 	}
1089 
1090 	id = dax_read_lock();
1091 	while (pos < end) {
1092 		unsigned offset = pos & (PAGE_SIZE - 1);
1093 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1094 		const sector_t sector = dax_iomap_sector(iomap, pos);
1095 		ssize_t map_len;
1096 		pgoff_t pgoff;
1097 		void *kaddr;
1098 
1099 		if (fatal_signal_pending(current)) {
1100 			ret = -EINTR;
1101 			break;
1102 		}
1103 
1104 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1105 		if (ret)
1106 			break;
1107 
1108 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1109 				&kaddr, NULL);
1110 		if (map_len < 0) {
1111 			ret = map_len;
1112 			break;
1113 		}
1114 
1115 		map_len = PFN_PHYS(map_len);
1116 		kaddr += offset;
1117 		map_len -= offset;
1118 		if (map_len > end - pos)
1119 			map_len = end - pos;
1120 
1121 		/*
1122 		 * The userspace address for the memory copy has already been
1123 		 * validated via access_ok() in either vfs_read() or
1124 		 * vfs_write(), depending on which operation we are doing.
1125 		 */
1126 		if (iov_iter_rw(iter) == WRITE)
1127 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1128 					map_len, iter);
1129 		else
1130 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1131 					map_len, iter);
1132 
1133 		pos += xfer;
1134 		length -= xfer;
1135 		done += xfer;
1136 
1137 		if (xfer == 0)
1138 			ret = -EFAULT;
1139 		if (xfer < map_len)
1140 			break;
1141 	}
1142 	dax_read_unlock(id);
1143 
1144 	return done ? done : ret;
1145 }
1146 
1147 /**
1148  * dax_iomap_rw - Perform I/O to a DAX file
1149  * @iocb:	The control block for this I/O
1150  * @iter:	The addresses to do I/O from or to
1151  * @ops:	iomap ops passed from the file system
1152  *
1153  * This function performs read and write operations to directly mapped
1154  * persistent memory.  The callers needs to take care of read/write exclusion
1155  * and evicting any page cache pages in the region under I/O.
1156  */
1157 ssize_t
1158 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1159 		const struct iomap_ops *ops)
1160 {
1161 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1162 	struct inode *inode = mapping->host;
1163 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1164 	unsigned flags = 0;
1165 
1166 	if (iov_iter_rw(iter) == WRITE) {
1167 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1168 		flags |= IOMAP_WRITE;
1169 	} else {
1170 		lockdep_assert_held(&inode->i_rwsem);
1171 	}
1172 
1173 	while (iov_iter_count(iter)) {
1174 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1175 				iter, dax_iomap_actor);
1176 		if (ret <= 0)
1177 			break;
1178 		pos += ret;
1179 		done += ret;
1180 	}
1181 
1182 	iocb->ki_pos += done;
1183 	return done ? done : ret;
1184 }
1185 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1186 
1187 static vm_fault_t dax_fault_return(int error)
1188 {
1189 	if (error == 0)
1190 		return VM_FAULT_NOPAGE;
1191 	if (error == -ENOMEM)
1192 		return VM_FAULT_OOM;
1193 	return VM_FAULT_SIGBUS;
1194 }
1195 
1196 /*
1197  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1198  * flushed on write-faults (non-cow), but not read-faults.
1199  */
1200 static bool dax_fault_is_synchronous(unsigned long flags,
1201 		struct vm_area_struct *vma, struct iomap *iomap)
1202 {
1203 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1204 		&& (iomap->flags & IOMAP_F_DIRTY);
1205 }
1206 
1207 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1208 			       int *iomap_errp, const struct iomap_ops *ops)
1209 {
1210 	struct vm_area_struct *vma = vmf->vma;
1211 	struct address_space *mapping = vma->vm_file->f_mapping;
1212 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1213 	struct inode *inode = mapping->host;
1214 	unsigned long vaddr = vmf->address;
1215 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1216 	struct iomap iomap = { 0 };
1217 	unsigned flags = IOMAP_FAULT;
1218 	int error, major = 0;
1219 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1220 	bool sync;
1221 	vm_fault_t ret = 0;
1222 	void *entry;
1223 	pfn_t pfn;
1224 
1225 	trace_dax_pte_fault(inode, vmf, ret);
1226 	/*
1227 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1228 	 * to hold locks serializing us with truncate / punch hole so this is
1229 	 * a reliable test.
1230 	 */
1231 	if (pos >= i_size_read(inode)) {
1232 		ret = VM_FAULT_SIGBUS;
1233 		goto out;
1234 	}
1235 
1236 	if (write && !vmf->cow_page)
1237 		flags |= IOMAP_WRITE;
1238 
1239 	entry = grab_mapping_entry(&xas, mapping, 0);
1240 	if (xa_is_internal(entry)) {
1241 		ret = xa_to_internal(entry);
1242 		goto out;
1243 	}
1244 
1245 	/*
1246 	 * It is possible, particularly with mixed reads & writes to private
1247 	 * mappings, that we have raced with a PMD fault that overlaps with
1248 	 * the PTE we need to set up.  If so just return and the fault will be
1249 	 * retried.
1250 	 */
1251 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1252 		ret = VM_FAULT_NOPAGE;
1253 		goto unlock_entry;
1254 	}
1255 
1256 	/*
1257 	 * Note that we don't bother to use iomap_apply here: DAX required
1258 	 * the file system block size to be equal the page size, which means
1259 	 * that we never have to deal with more than a single extent here.
1260 	 */
1261 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1262 	if (iomap_errp)
1263 		*iomap_errp = error;
1264 	if (error) {
1265 		ret = dax_fault_return(error);
1266 		goto unlock_entry;
1267 	}
1268 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1269 		error = -EIO;	/* fs corruption? */
1270 		goto error_finish_iomap;
1271 	}
1272 
1273 	if (vmf->cow_page) {
1274 		sector_t sector = dax_iomap_sector(&iomap, pos);
1275 
1276 		switch (iomap.type) {
1277 		case IOMAP_HOLE:
1278 		case IOMAP_UNWRITTEN:
1279 			clear_user_highpage(vmf->cow_page, vaddr);
1280 			break;
1281 		case IOMAP_MAPPED:
1282 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1283 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1284 			break;
1285 		default:
1286 			WARN_ON_ONCE(1);
1287 			error = -EIO;
1288 			break;
1289 		}
1290 
1291 		if (error)
1292 			goto error_finish_iomap;
1293 
1294 		__SetPageUptodate(vmf->cow_page);
1295 		ret = finish_fault(vmf);
1296 		if (!ret)
1297 			ret = VM_FAULT_DONE_COW;
1298 		goto finish_iomap;
1299 	}
1300 
1301 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1302 
1303 	switch (iomap.type) {
1304 	case IOMAP_MAPPED:
1305 		if (iomap.flags & IOMAP_F_NEW) {
1306 			count_vm_event(PGMAJFAULT);
1307 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1308 			major = VM_FAULT_MAJOR;
1309 		}
1310 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1311 		if (error < 0)
1312 			goto error_finish_iomap;
1313 
1314 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1315 						 0, write && !sync);
1316 
1317 		/*
1318 		 * If we are doing synchronous page fault and inode needs fsync,
1319 		 * we can insert PTE into page tables only after that happens.
1320 		 * Skip insertion for now and return the pfn so that caller can
1321 		 * insert it after fsync is done.
1322 		 */
1323 		if (sync) {
1324 			if (WARN_ON_ONCE(!pfnp)) {
1325 				error = -EIO;
1326 				goto error_finish_iomap;
1327 			}
1328 			*pfnp = pfn;
1329 			ret = VM_FAULT_NEEDDSYNC | major;
1330 			goto finish_iomap;
1331 		}
1332 		trace_dax_insert_mapping(inode, vmf, entry);
1333 		if (write)
1334 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1335 		else
1336 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1337 
1338 		goto finish_iomap;
1339 	case IOMAP_UNWRITTEN:
1340 	case IOMAP_HOLE:
1341 		if (!write) {
1342 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1343 			goto finish_iomap;
1344 		}
1345 		/*FALLTHRU*/
1346 	default:
1347 		WARN_ON_ONCE(1);
1348 		error = -EIO;
1349 		break;
1350 	}
1351 
1352  error_finish_iomap:
1353 	ret = dax_fault_return(error);
1354  finish_iomap:
1355 	if (ops->iomap_end) {
1356 		int copied = PAGE_SIZE;
1357 
1358 		if (ret & VM_FAULT_ERROR)
1359 			copied = 0;
1360 		/*
1361 		 * The fault is done by now and there's no way back (other
1362 		 * thread may be already happily using PTE we have installed).
1363 		 * Just ignore error from ->iomap_end since we cannot do much
1364 		 * with it.
1365 		 */
1366 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1367 	}
1368  unlock_entry:
1369 	dax_unlock_entry(&xas, entry);
1370  out:
1371 	trace_dax_pte_fault_done(inode, vmf, ret);
1372 	return ret | major;
1373 }
1374 
1375 #ifdef CONFIG_FS_DAX_PMD
1376 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1377 		struct iomap *iomap, void **entry)
1378 {
1379 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1380 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1381 	struct inode *inode = mapping->host;
1382 	struct page *zero_page;
1383 	spinlock_t *ptl;
1384 	pmd_t pmd_entry;
1385 	pfn_t pfn;
1386 
1387 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1388 
1389 	if (unlikely(!zero_page))
1390 		goto fallback;
1391 
1392 	pfn = page_to_pfn_t(zero_page);
1393 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1394 			DAX_PMD | DAX_ZERO_PAGE, false);
1395 
1396 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1397 	if (!pmd_none(*(vmf->pmd))) {
1398 		spin_unlock(ptl);
1399 		goto fallback;
1400 	}
1401 
1402 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1403 	pmd_entry = pmd_mkhuge(pmd_entry);
1404 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1405 	spin_unlock(ptl);
1406 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1407 	return VM_FAULT_NOPAGE;
1408 
1409 fallback:
1410 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1411 	return VM_FAULT_FALLBACK;
1412 }
1413 
1414 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1415 			       const struct iomap_ops *ops)
1416 {
1417 	struct vm_area_struct *vma = vmf->vma;
1418 	struct address_space *mapping = vma->vm_file->f_mapping;
1419 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1420 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1421 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1422 	bool sync;
1423 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1424 	struct inode *inode = mapping->host;
1425 	vm_fault_t result = VM_FAULT_FALLBACK;
1426 	struct iomap iomap = { 0 };
1427 	pgoff_t max_pgoff;
1428 	void *entry;
1429 	loff_t pos;
1430 	int error;
1431 	pfn_t pfn;
1432 
1433 	/*
1434 	 * Check whether offset isn't beyond end of file now. Caller is
1435 	 * supposed to hold locks serializing us with truncate / punch hole so
1436 	 * this is a reliable test.
1437 	 */
1438 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1439 
1440 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1441 
1442 	/*
1443 	 * Make sure that the faulting address's PMD offset (color) matches
1444 	 * the PMD offset from the start of the file.  This is necessary so
1445 	 * that a PMD range in the page table overlaps exactly with a PMD
1446 	 * range in the page cache.
1447 	 */
1448 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1449 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1450 		goto fallback;
1451 
1452 	/* Fall back to PTEs if we're going to COW */
1453 	if (write && !(vma->vm_flags & VM_SHARED))
1454 		goto fallback;
1455 
1456 	/* If the PMD would extend outside the VMA */
1457 	if (pmd_addr < vma->vm_start)
1458 		goto fallback;
1459 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1460 		goto fallback;
1461 
1462 	if (xas.xa_index >= max_pgoff) {
1463 		result = VM_FAULT_SIGBUS;
1464 		goto out;
1465 	}
1466 
1467 	/* If the PMD would extend beyond the file size */
1468 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1469 		goto fallback;
1470 
1471 	/*
1472 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1473 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1474 	 * entry is already in the array, for instance), it will return
1475 	 * VM_FAULT_FALLBACK.
1476 	 */
1477 	entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1478 	if (xa_is_internal(entry)) {
1479 		result = xa_to_internal(entry);
1480 		goto fallback;
1481 	}
1482 
1483 	/*
1484 	 * It is possible, particularly with mixed reads & writes to private
1485 	 * mappings, that we have raced with a PTE fault that overlaps with
1486 	 * the PMD we need to set up.  If so just return and the fault will be
1487 	 * retried.
1488 	 */
1489 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1490 			!pmd_devmap(*vmf->pmd)) {
1491 		result = 0;
1492 		goto unlock_entry;
1493 	}
1494 
1495 	/*
1496 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1497 	 * setting up a mapping, so really we're using iomap_begin() as a way
1498 	 * to look up our filesystem block.
1499 	 */
1500 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1501 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1502 	if (error)
1503 		goto unlock_entry;
1504 
1505 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1506 		goto finish_iomap;
1507 
1508 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1509 
1510 	switch (iomap.type) {
1511 	case IOMAP_MAPPED:
1512 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1513 		if (error < 0)
1514 			goto finish_iomap;
1515 
1516 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1517 						DAX_PMD, write && !sync);
1518 
1519 		/*
1520 		 * If we are doing synchronous page fault and inode needs fsync,
1521 		 * we can insert PMD into page tables only after that happens.
1522 		 * Skip insertion for now and return the pfn so that caller can
1523 		 * insert it after fsync is done.
1524 		 */
1525 		if (sync) {
1526 			if (WARN_ON_ONCE(!pfnp))
1527 				goto finish_iomap;
1528 			*pfnp = pfn;
1529 			result = VM_FAULT_NEEDDSYNC;
1530 			goto finish_iomap;
1531 		}
1532 
1533 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1534 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1535 					    write);
1536 		break;
1537 	case IOMAP_UNWRITTEN:
1538 	case IOMAP_HOLE:
1539 		if (WARN_ON_ONCE(write))
1540 			break;
1541 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1542 		break;
1543 	default:
1544 		WARN_ON_ONCE(1);
1545 		break;
1546 	}
1547 
1548  finish_iomap:
1549 	if (ops->iomap_end) {
1550 		int copied = PMD_SIZE;
1551 
1552 		if (result == VM_FAULT_FALLBACK)
1553 			copied = 0;
1554 		/*
1555 		 * The fault is done by now and there's no way back (other
1556 		 * thread may be already happily using PMD we have installed).
1557 		 * Just ignore error from ->iomap_end since we cannot do much
1558 		 * with it.
1559 		 */
1560 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1561 				&iomap);
1562 	}
1563  unlock_entry:
1564 	dax_unlock_entry(&xas, entry);
1565  fallback:
1566 	if (result == VM_FAULT_FALLBACK) {
1567 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1568 		count_vm_event(THP_FAULT_FALLBACK);
1569 	}
1570 out:
1571 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1572 	return result;
1573 }
1574 #else
1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1576 			       const struct iomap_ops *ops)
1577 {
1578 	return VM_FAULT_FALLBACK;
1579 }
1580 #endif /* CONFIG_FS_DAX_PMD */
1581 
1582 /**
1583  * dax_iomap_fault - handle a page fault on a DAX file
1584  * @vmf: The description of the fault
1585  * @pe_size: Size of the page to fault in
1586  * @pfnp: PFN to insert for synchronous faults if fsync is required
1587  * @iomap_errp: Storage for detailed error code in case of error
1588  * @ops: Iomap ops passed from the file system
1589  *
1590  * When a page fault occurs, filesystems may call this helper in
1591  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592  * has done all the necessary locking for page fault to proceed
1593  * successfully.
1594  */
1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1596 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1597 {
1598 	switch (pe_size) {
1599 	case PE_SIZE_PTE:
1600 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1601 	case PE_SIZE_PMD:
1602 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1603 	default:
1604 		return VM_FAULT_FALLBACK;
1605 	}
1606 }
1607 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1608 
1609 /*
1610  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611  * @vmf: The description of the fault
1612  * @pfn: PFN to insert
1613  * @order: Order of entry to insert.
1614  *
1615  * This function inserts a writeable PTE or PMD entry into the page tables
1616  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1617  */
1618 static vm_fault_t
1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1620 {
1621 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1622 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1623 	void *entry;
1624 	vm_fault_t ret;
1625 
1626 	xas_lock_irq(&xas);
1627 	entry = get_unlocked_entry(&xas);
1628 	/* Did we race with someone splitting entry or so? */
1629 	if (!entry ||
1630 	    (order == 0 && !dax_is_pte_entry(entry)) ||
1631 	    (order == PMD_ORDER && (xa_is_internal(entry) ||
1632 				    !dax_is_pmd_entry(entry)))) {
1633 		put_unlocked_entry(&xas, entry);
1634 		xas_unlock_irq(&xas);
1635 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1636 						      VM_FAULT_NOPAGE);
1637 		return VM_FAULT_NOPAGE;
1638 	}
1639 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1640 	dax_lock_entry(&xas, entry);
1641 	xas_unlock_irq(&xas);
1642 	if (order == 0)
1643 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1644 #ifdef CONFIG_FS_DAX_PMD
1645 	else if (order == PMD_ORDER)
1646 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1647 			pfn, true);
1648 #endif
1649 	else
1650 		ret = VM_FAULT_FALLBACK;
1651 	dax_unlock_entry(&xas, entry);
1652 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1653 	return ret;
1654 }
1655 
1656 /**
1657  * dax_finish_sync_fault - finish synchronous page fault
1658  * @vmf: The description of the fault
1659  * @pe_size: Size of entry to be inserted
1660  * @pfn: PFN to insert
1661  *
1662  * This function ensures that the file range touched by the page fault is
1663  * stored persistently on the media and handles inserting of appropriate page
1664  * table entry.
1665  */
1666 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1667 		enum page_entry_size pe_size, pfn_t pfn)
1668 {
1669 	int err;
1670 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1671 	unsigned int order = pe_order(pe_size);
1672 	size_t len = PAGE_SIZE << order;
1673 
1674 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1675 	if (err)
1676 		return VM_FAULT_SIGBUS;
1677 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1678 }
1679 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1680