1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/fs.h> 21 #include <linux/genhd.h> 22 #include <linux/highmem.h> 23 #include <linux/memcontrol.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/pmem.h> 27 #include <linux/sched.h> 28 #include <linux/uio.h> 29 #include <linux/vmstat.h> 30 31 int dax_clear_blocks(struct inode *inode, sector_t block, long size) 32 { 33 struct block_device *bdev = inode->i_sb->s_bdev; 34 sector_t sector = block << (inode->i_blkbits - 9); 35 36 might_sleep(); 37 do { 38 void __pmem *addr; 39 unsigned long pfn; 40 long count; 41 42 count = bdev_direct_access(bdev, sector, &addr, &pfn, size); 43 if (count < 0) 44 return count; 45 BUG_ON(size < count); 46 while (count > 0) { 47 unsigned pgsz = PAGE_SIZE - offset_in_page(addr); 48 if (pgsz > count) 49 pgsz = count; 50 clear_pmem(addr, pgsz); 51 addr += pgsz; 52 size -= pgsz; 53 count -= pgsz; 54 BUG_ON(pgsz & 511); 55 sector += pgsz / 512; 56 cond_resched(); 57 } 58 } while (size); 59 60 wmb_pmem(); 61 return 0; 62 } 63 EXPORT_SYMBOL_GPL(dax_clear_blocks); 64 65 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr, 66 unsigned blkbits) 67 { 68 unsigned long pfn; 69 sector_t sector = bh->b_blocknr << (blkbits - 9); 70 return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size); 71 } 72 73 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */ 74 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first, 75 loff_t pos, loff_t end) 76 { 77 loff_t final = end - pos + first; /* The final byte of the buffer */ 78 79 if (first > 0) 80 clear_pmem(addr, first); 81 if (final < size) 82 clear_pmem(addr + final, size - final); 83 } 84 85 static bool buffer_written(struct buffer_head *bh) 86 { 87 return buffer_mapped(bh) && !buffer_unwritten(bh); 88 } 89 90 /* 91 * When ext4 encounters a hole, it returns without modifying the buffer_head 92 * which means that we can't trust b_size. To cope with this, we set b_state 93 * to 0 before calling get_block and, if any bit is set, we know we can trust 94 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is 95 * and would save us time calling get_block repeatedly. 96 */ 97 static bool buffer_size_valid(struct buffer_head *bh) 98 { 99 return bh->b_state != 0; 100 } 101 102 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, 103 loff_t start, loff_t end, get_block_t get_block, 104 struct buffer_head *bh) 105 { 106 ssize_t retval = 0; 107 loff_t pos = start; 108 loff_t max = start; 109 loff_t bh_max = start; 110 void __pmem *addr; 111 bool hole = false; 112 bool need_wmb = false; 113 114 if (iov_iter_rw(iter) != WRITE) 115 end = min(end, i_size_read(inode)); 116 117 while (pos < end) { 118 size_t len; 119 if (pos == max) { 120 unsigned blkbits = inode->i_blkbits; 121 sector_t block = pos >> blkbits; 122 unsigned first = pos - (block << blkbits); 123 long size; 124 125 if (pos == bh_max) { 126 bh->b_size = PAGE_ALIGN(end - pos); 127 bh->b_state = 0; 128 retval = get_block(inode, block, bh, 129 iov_iter_rw(iter) == WRITE); 130 if (retval) 131 break; 132 if (!buffer_size_valid(bh)) 133 bh->b_size = 1 << blkbits; 134 bh_max = pos - first + bh->b_size; 135 } else { 136 unsigned done = bh->b_size - 137 (bh_max - (pos - first)); 138 bh->b_blocknr += done >> blkbits; 139 bh->b_size -= done; 140 } 141 142 hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh); 143 if (hole) { 144 addr = NULL; 145 size = bh->b_size - first; 146 } else { 147 retval = dax_get_addr(bh, &addr, blkbits); 148 if (retval < 0) 149 break; 150 if (buffer_unwritten(bh) || buffer_new(bh)) { 151 dax_new_buf(addr, retval, first, pos, 152 end); 153 need_wmb = true; 154 } 155 addr += first; 156 size = retval - first; 157 } 158 max = min(pos + size, end); 159 } 160 161 if (iov_iter_rw(iter) == WRITE) { 162 len = copy_from_iter_pmem(addr, max - pos, iter); 163 need_wmb = true; 164 } else if (!hole) 165 len = copy_to_iter((void __force *)addr, max - pos, 166 iter); 167 else 168 len = iov_iter_zero(max - pos, iter); 169 170 if (!len) 171 break; 172 173 pos += len; 174 addr += len; 175 } 176 177 if (need_wmb) 178 wmb_pmem(); 179 180 return (pos == start) ? retval : pos - start; 181 } 182 183 /** 184 * dax_do_io - Perform I/O to a DAX file 185 * @iocb: The control block for this I/O 186 * @inode: The file which the I/O is directed at 187 * @iter: The addresses to do I/O from or to 188 * @pos: The file offset where the I/O starts 189 * @get_block: The filesystem method used to translate file offsets to blocks 190 * @end_io: A filesystem callback for I/O completion 191 * @flags: See below 192 * 193 * This function uses the same locking scheme as do_blockdev_direct_IO: 194 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the 195 * caller for writes. For reads, we take and release the i_mutex ourselves. 196 * If DIO_LOCKING is not set, the filesystem takes care of its own locking. 197 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O 198 * is in progress. 199 */ 200 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, 201 struct iov_iter *iter, loff_t pos, get_block_t get_block, 202 dio_iodone_t end_io, int flags) 203 { 204 struct buffer_head bh; 205 ssize_t retval = -EINVAL; 206 loff_t end = pos + iov_iter_count(iter); 207 208 memset(&bh, 0, sizeof(bh)); 209 210 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) { 211 struct address_space *mapping = inode->i_mapping; 212 mutex_lock(&inode->i_mutex); 213 retval = filemap_write_and_wait_range(mapping, pos, end - 1); 214 if (retval) { 215 mutex_unlock(&inode->i_mutex); 216 goto out; 217 } 218 } 219 220 /* Protects against truncate */ 221 if (!(flags & DIO_SKIP_DIO_COUNT)) 222 inode_dio_begin(inode); 223 224 retval = dax_io(inode, iter, pos, end, get_block, &bh); 225 226 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) 227 mutex_unlock(&inode->i_mutex); 228 229 if ((retval > 0) && end_io) 230 end_io(iocb, pos, retval, bh.b_private); 231 232 if (!(flags & DIO_SKIP_DIO_COUNT)) 233 inode_dio_end(inode); 234 out: 235 return retval; 236 } 237 EXPORT_SYMBOL_GPL(dax_do_io); 238 239 /* 240 * The user has performed a load from a hole in the file. Allocating 241 * a new page in the file would cause excessive storage usage for 242 * workloads with sparse files. We allocate a page cache page instead. 243 * We'll kick it out of the page cache if it's ever written to, 244 * otherwise it will simply fall out of the page cache under memory 245 * pressure without ever having been dirtied. 246 */ 247 static int dax_load_hole(struct address_space *mapping, struct page *page, 248 struct vm_fault *vmf) 249 { 250 unsigned long size; 251 struct inode *inode = mapping->host; 252 if (!page) 253 page = find_or_create_page(mapping, vmf->pgoff, 254 GFP_KERNEL | __GFP_ZERO); 255 if (!page) 256 return VM_FAULT_OOM; 257 /* Recheck i_size under page lock to avoid truncate race */ 258 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 259 if (vmf->pgoff >= size) { 260 unlock_page(page); 261 page_cache_release(page); 262 return VM_FAULT_SIGBUS; 263 } 264 265 vmf->page = page; 266 return VM_FAULT_LOCKED; 267 } 268 269 static int copy_user_bh(struct page *to, struct buffer_head *bh, 270 unsigned blkbits, unsigned long vaddr) 271 { 272 void __pmem *vfrom; 273 void *vto; 274 275 if (dax_get_addr(bh, &vfrom, blkbits) < 0) 276 return -EIO; 277 vto = kmap_atomic(to); 278 copy_user_page(vto, (void __force *)vfrom, vaddr, to); 279 kunmap_atomic(vto); 280 return 0; 281 } 282 283 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh, 284 struct vm_area_struct *vma, struct vm_fault *vmf) 285 { 286 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); 287 unsigned long vaddr = (unsigned long)vmf->virtual_address; 288 void __pmem *addr; 289 unsigned long pfn; 290 pgoff_t size; 291 int error; 292 293 /* 294 * Check truncate didn't happen while we were allocating a block. 295 * If it did, this block may or may not be still allocated to the 296 * file. We can't tell the filesystem to free it because we can't 297 * take i_mutex here. In the worst case, the file still has blocks 298 * allocated past the end of the file. 299 */ 300 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 301 if (unlikely(vmf->pgoff >= size)) { 302 error = -EIO; 303 goto out; 304 } 305 306 error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size); 307 if (error < 0) 308 goto out; 309 if (error < PAGE_SIZE) { 310 error = -EIO; 311 goto out; 312 } 313 314 if (buffer_unwritten(bh) || buffer_new(bh)) { 315 clear_pmem(addr, PAGE_SIZE); 316 wmb_pmem(); 317 } 318 319 error = vm_insert_mixed(vma, vaddr, pfn); 320 321 out: 322 return error; 323 } 324 325 /** 326 * __dax_fault - handle a page fault on a DAX file 327 * @vma: The virtual memory area where the fault occurred 328 * @vmf: The description of the fault 329 * @get_block: The filesystem method used to translate file offsets to blocks 330 * @complete_unwritten: The filesystem method used to convert unwritten blocks 331 * to written so the data written to them is exposed. This is required for 332 * required by write faults for filesystems that will return unwritten 333 * extent mappings from @get_block, but it is optional for reads as 334 * dax_insert_mapping() will always zero unwritten blocks. If the fs does 335 * not support unwritten extents, the it should pass NULL. 336 * 337 * When a page fault occurs, filesystems may call this helper in their 338 * fault handler for DAX files. __dax_fault() assumes the caller has done all 339 * the necessary locking for the page fault to proceed successfully. 340 */ 341 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 342 get_block_t get_block, dax_iodone_t complete_unwritten) 343 { 344 struct file *file = vma->vm_file; 345 struct address_space *mapping = file->f_mapping; 346 struct inode *inode = mapping->host; 347 struct page *page; 348 struct buffer_head bh; 349 unsigned long vaddr = (unsigned long)vmf->virtual_address; 350 unsigned blkbits = inode->i_blkbits; 351 sector_t block; 352 pgoff_t size; 353 int error; 354 int major = 0; 355 356 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 357 if (vmf->pgoff >= size) 358 return VM_FAULT_SIGBUS; 359 360 memset(&bh, 0, sizeof(bh)); 361 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); 362 bh.b_size = PAGE_SIZE; 363 364 repeat: 365 page = find_get_page(mapping, vmf->pgoff); 366 if (page) { 367 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 368 page_cache_release(page); 369 return VM_FAULT_RETRY; 370 } 371 if (unlikely(page->mapping != mapping)) { 372 unlock_page(page); 373 page_cache_release(page); 374 goto repeat; 375 } 376 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 377 if (unlikely(vmf->pgoff >= size)) { 378 /* 379 * We have a struct page covering a hole in the file 380 * from a read fault and we've raced with a truncate 381 */ 382 error = -EIO; 383 goto unlock; 384 } 385 } else { 386 i_mmap_lock_write(mapping); 387 } 388 389 error = get_block(inode, block, &bh, 0); 390 if (!error && (bh.b_size < PAGE_SIZE)) 391 error = -EIO; /* fs corruption? */ 392 if (error) 393 goto unlock; 394 395 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) { 396 if (vmf->flags & FAULT_FLAG_WRITE) { 397 error = get_block(inode, block, &bh, 1); 398 count_vm_event(PGMAJFAULT); 399 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 400 major = VM_FAULT_MAJOR; 401 if (!error && (bh.b_size < PAGE_SIZE)) 402 error = -EIO; 403 if (error) 404 goto unlock; 405 } else { 406 i_mmap_unlock_write(mapping); 407 return dax_load_hole(mapping, page, vmf); 408 } 409 } 410 411 if (vmf->cow_page) { 412 struct page *new_page = vmf->cow_page; 413 if (buffer_written(&bh)) 414 error = copy_user_bh(new_page, &bh, blkbits, vaddr); 415 else 416 clear_user_highpage(new_page, vaddr); 417 if (error) 418 goto unlock; 419 vmf->page = page; 420 if (!page) { 421 /* Check we didn't race with truncate */ 422 size = (i_size_read(inode) + PAGE_SIZE - 1) >> 423 PAGE_SHIFT; 424 if (vmf->pgoff >= size) { 425 error = -EIO; 426 goto unlock; 427 } 428 } 429 return VM_FAULT_LOCKED; 430 } 431 432 /* Check we didn't race with a read fault installing a new page */ 433 if (!page && major) 434 page = find_lock_page(mapping, vmf->pgoff); 435 436 if (page) { 437 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 438 PAGE_CACHE_SIZE, 0); 439 delete_from_page_cache(page); 440 unlock_page(page); 441 page_cache_release(page); 442 } 443 444 /* 445 * If we successfully insert the new mapping over an unwritten extent, 446 * we need to ensure we convert the unwritten extent. If there is an 447 * error inserting the mapping, the filesystem needs to leave it as 448 * unwritten to prevent exposure of the stale underlying data to 449 * userspace, but we still need to call the completion function so 450 * the private resources on the mapping buffer can be released. We 451 * indicate what the callback should do via the uptodate variable, same 452 * as for normal BH based IO completions. 453 */ 454 error = dax_insert_mapping(inode, &bh, vma, vmf); 455 if (buffer_unwritten(&bh)) { 456 if (complete_unwritten) 457 complete_unwritten(&bh, !error); 458 else 459 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE)); 460 } 461 462 if (!page) 463 i_mmap_unlock_write(mapping); 464 out: 465 if (error == -ENOMEM) 466 return VM_FAULT_OOM | major; 467 /* -EBUSY is fine, somebody else faulted on the same PTE */ 468 if ((error < 0) && (error != -EBUSY)) 469 return VM_FAULT_SIGBUS | major; 470 return VM_FAULT_NOPAGE | major; 471 472 unlock: 473 if (page) { 474 unlock_page(page); 475 page_cache_release(page); 476 } else { 477 i_mmap_unlock_write(mapping); 478 } 479 480 goto out; 481 } 482 EXPORT_SYMBOL(__dax_fault); 483 484 /** 485 * dax_fault - handle a page fault on a DAX file 486 * @vma: The virtual memory area where the fault occurred 487 * @vmf: The description of the fault 488 * @get_block: The filesystem method used to translate file offsets to blocks 489 * 490 * When a page fault occurs, filesystems may call this helper in their 491 * fault handler for DAX files. 492 */ 493 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 494 get_block_t get_block, dax_iodone_t complete_unwritten) 495 { 496 int result; 497 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 498 499 if (vmf->flags & FAULT_FLAG_WRITE) { 500 sb_start_pagefault(sb); 501 file_update_time(vma->vm_file); 502 } 503 result = __dax_fault(vma, vmf, get_block, complete_unwritten); 504 if (vmf->flags & FAULT_FLAG_WRITE) 505 sb_end_pagefault(sb); 506 507 return result; 508 } 509 EXPORT_SYMBOL_GPL(dax_fault); 510 511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 512 /* 513 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 514 * more often than one might expect in the below function. 515 */ 516 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 517 518 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, 519 pmd_t *pmd, unsigned int flags, get_block_t get_block, 520 dax_iodone_t complete_unwritten) 521 { 522 struct file *file = vma->vm_file; 523 struct address_space *mapping = file->f_mapping; 524 struct inode *inode = mapping->host; 525 struct buffer_head bh; 526 unsigned blkbits = inode->i_blkbits; 527 unsigned long pmd_addr = address & PMD_MASK; 528 bool write = flags & FAULT_FLAG_WRITE; 529 long length; 530 void *kaddr; 531 pgoff_t size, pgoff; 532 sector_t block, sector; 533 unsigned long pfn; 534 int result = 0; 535 536 /* Fall back to PTEs if we're going to COW */ 537 if (write && !(vma->vm_flags & VM_SHARED)) 538 return VM_FAULT_FALLBACK; 539 /* If the PMD would extend outside the VMA */ 540 if (pmd_addr < vma->vm_start) 541 return VM_FAULT_FALLBACK; 542 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 543 return VM_FAULT_FALLBACK; 544 545 pgoff = linear_page_index(vma, pmd_addr); 546 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 547 if (pgoff >= size) 548 return VM_FAULT_SIGBUS; 549 /* If the PMD would cover blocks out of the file */ 550 if ((pgoff | PG_PMD_COLOUR) >= size) 551 return VM_FAULT_FALLBACK; 552 553 memset(&bh, 0, sizeof(bh)); 554 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); 555 556 bh.b_size = PMD_SIZE; 557 i_mmap_lock_write(mapping); 558 length = get_block(inode, block, &bh, write); 559 if (length) 560 return VM_FAULT_SIGBUS; 561 562 /* 563 * If the filesystem isn't willing to tell us the length of a hole, 564 * just fall back to PTEs. Calling get_block 512 times in a loop 565 * would be silly. 566 */ 567 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) 568 goto fallback; 569 570 if (buffer_unwritten(&bh) || buffer_new(&bh)) { 571 int i; 572 for (i = 0; i < PTRS_PER_PMD; i++) 573 clear_page(kaddr + i * PAGE_SIZE); 574 count_vm_event(PGMAJFAULT); 575 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 576 result |= VM_FAULT_MAJOR; 577 } 578 579 /* 580 * If we allocated new storage, make sure no process has any 581 * zero pages covering this hole 582 */ 583 if (buffer_new(&bh)) { 584 i_mmap_unlock_write(mapping); 585 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0); 586 i_mmap_lock_write(mapping); 587 } 588 589 /* 590 * If a truncate happened while we were allocating blocks, we may 591 * leave blocks allocated to the file that are beyond EOF. We can't 592 * take i_mutex here, so just leave them hanging; they'll be freed 593 * when the file is deleted. 594 */ 595 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 596 if (pgoff >= size) { 597 result = VM_FAULT_SIGBUS; 598 goto out; 599 } 600 if ((pgoff | PG_PMD_COLOUR) >= size) 601 goto fallback; 602 603 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) { 604 spinlock_t *ptl; 605 pmd_t entry; 606 struct page *zero_page = get_huge_zero_page(); 607 608 if (unlikely(!zero_page)) 609 goto fallback; 610 611 ptl = pmd_lock(vma->vm_mm, pmd); 612 if (!pmd_none(*pmd)) { 613 spin_unlock(ptl); 614 goto fallback; 615 } 616 617 entry = mk_pmd(zero_page, vma->vm_page_prot); 618 entry = pmd_mkhuge(entry); 619 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); 620 result = VM_FAULT_NOPAGE; 621 spin_unlock(ptl); 622 } else { 623 sector = bh.b_blocknr << (blkbits - 9); 624 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn, 625 bh.b_size); 626 if (length < 0) { 627 result = VM_FAULT_SIGBUS; 628 goto out; 629 } 630 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR)) 631 goto fallback; 632 633 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write); 634 } 635 636 out: 637 if (buffer_unwritten(&bh)) 638 complete_unwritten(&bh, !(result & VM_FAULT_ERROR)); 639 640 i_mmap_unlock_write(mapping); 641 642 return result; 643 644 fallback: 645 count_vm_event(THP_FAULT_FALLBACK); 646 result = VM_FAULT_FALLBACK; 647 goto out; 648 } 649 EXPORT_SYMBOL_GPL(__dax_pmd_fault); 650 651 /** 652 * dax_pmd_fault - handle a PMD fault on a DAX file 653 * @vma: The virtual memory area where the fault occurred 654 * @vmf: The description of the fault 655 * @get_block: The filesystem method used to translate file offsets to blocks 656 * 657 * When a page fault occurs, filesystems may call this helper in their 658 * pmd_fault handler for DAX files. 659 */ 660 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, 661 pmd_t *pmd, unsigned int flags, get_block_t get_block, 662 dax_iodone_t complete_unwritten) 663 { 664 int result; 665 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 666 667 if (flags & FAULT_FLAG_WRITE) { 668 sb_start_pagefault(sb); 669 file_update_time(vma->vm_file); 670 } 671 result = __dax_pmd_fault(vma, address, pmd, flags, get_block, 672 complete_unwritten); 673 if (flags & FAULT_FLAG_WRITE) 674 sb_end_pagefault(sb); 675 676 return result; 677 } 678 EXPORT_SYMBOL_GPL(dax_pmd_fault); 679 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 680 681 /** 682 * dax_pfn_mkwrite - handle first write to DAX page 683 * @vma: The virtual memory area where the fault occurred 684 * @vmf: The description of the fault 685 * 686 */ 687 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 688 { 689 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 690 691 sb_start_pagefault(sb); 692 file_update_time(vma->vm_file); 693 sb_end_pagefault(sb); 694 return VM_FAULT_NOPAGE; 695 } 696 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 697 698 /** 699 * dax_zero_page_range - zero a range within a page of a DAX file 700 * @inode: The file being truncated 701 * @from: The file offset that is being truncated to 702 * @length: The number of bytes to zero 703 * @get_block: The filesystem method used to translate file offsets to blocks 704 * 705 * This function can be called by a filesystem when it is zeroing part of a 706 * page in a DAX file. This is intended for hole-punch operations. If 707 * you are truncating a file, the helper function dax_truncate_page() may be 708 * more convenient. 709 * 710 * We work in terms of PAGE_CACHE_SIZE here for commonality with 711 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 712 * took care of disposing of the unnecessary blocks. Even if the filesystem 713 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 714 * since the file might be mmapped. 715 */ 716 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, 717 get_block_t get_block) 718 { 719 struct buffer_head bh; 720 pgoff_t index = from >> PAGE_CACHE_SHIFT; 721 unsigned offset = from & (PAGE_CACHE_SIZE-1); 722 int err; 723 724 /* Block boundary? Nothing to do */ 725 if (!length) 726 return 0; 727 BUG_ON((offset + length) > PAGE_CACHE_SIZE); 728 729 memset(&bh, 0, sizeof(bh)); 730 bh.b_size = PAGE_CACHE_SIZE; 731 err = get_block(inode, index, &bh, 0); 732 if (err < 0) 733 return err; 734 if (buffer_written(&bh)) { 735 void __pmem *addr; 736 err = dax_get_addr(&bh, &addr, inode->i_blkbits); 737 if (err < 0) 738 return err; 739 clear_pmem(addr + offset, length); 740 wmb_pmem(); 741 } 742 743 return 0; 744 } 745 EXPORT_SYMBOL_GPL(dax_zero_page_range); 746 747 /** 748 * dax_truncate_page - handle a partial page being truncated in a DAX file 749 * @inode: The file being truncated 750 * @from: The file offset that is being truncated to 751 * @get_block: The filesystem method used to translate file offsets to blocks 752 * 753 * Similar to block_truncate_page(), this function can be called by a 754 * filesystem when it is truncating a DAX file to handle the partial page. 755 * 756 * We work in terms of PAGE_CACHE_SIZE here for commonality with 757 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 758 * took care of disposing of the unnecessary blocks. Even if the filesystem 759 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 760 * since the file might be mmapped. 761 */ 762 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) 763 { 764 unsigned length = PAGE_CACHE_ALIGN(from) - from; 765 return dax_zero_page_range(inode, from, length, get_block); 766 } 767 EXPORT_SYMBOL_GPL(dax_truncate_page); 768