1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/sched.h> 29 #include <linux/sched/signal.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/fs_dax.h> 40 41 /* We choose 4096 entries - same as per-zone page wait tables */ 42 #define DAX_WAIT_TABLE_BITS 12 43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 44 45 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 48 49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 50 51 static int __init init_dax_wait_table(void) 52 { 53 int i; 54 55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 56 init_waitqueue_head(wait_table + i); 57 return 0; 58 } 59 fs_initcall(init_dax_wait_table); 60 61 /* 62 * We use lowest available bit in exceptional entry for locking, one bit for 63 * the entry size (PMD) and two more to tell us if the entry is a zero page or 64 * an empty entry that is just used for locking. In total four special bits. 65 * 66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 68 * block allocation. 69 */ 70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4) 71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT) 72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) 73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) 74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)) 75 76 static unsigned long dax_radix_sector(void *entry) 77 { 78 return (unsigned long)entry >> RADIX_DAX_SHIFT; 79 } 80 81 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags) 82 { 83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags | 84 ((unsigned long)sector << RADIX_DAX_SHIFT) | 85 RADIX_DAX_ENTRY_LOCK); 86 } 87 88 static unsigned int dax_radix_order(void *entry) 89 { 90 if ((unsigned long)entry & RADIX_DAX_PMD) 91 return PMD_SHIFT - PAGE_SHIFT; 92 return 0; 93 } 94 95 static int dax_is_pmd_entry(void *entry) 96 { 97 return (unsigned long)entry & RADIX_DAX_PMD; 98 } 99 100 static int dax_is_pte_entry(void *entry) 101 { 102 return !((unsigned long)entry & RADIX_DAX_PMD); 103 } 104 105 static int dax_is_zero_entry(void *entry) 106 { 107 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE; 108 } 109 110 static int dax_is_empty_entry(void *entry) 111 { 112 return (unsigned long)entry & RADIX_DAX_EMPTY; 113 } 114 115 /* 116 * DAX radix tree locking 117 */ 118 struct exceptional_entry_key { 119 struct address_space *mapping; 120 pgoff_t entry_start; 121 }; 122 123 struct wait_exceptional_entry_queue { 124 wait_queue_entry_t wait; 125 struct exceptional_entry_key key; 126 }; 127 128 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 129 pgoff_t index, void *entry, struct exceptional_entry_key *key) 130 { 131 unsigned long hash; 132 133 /* 134 * If 'entry' is a PMD, align the 'index' that we use for the wait 135 * queue to the start of that PMD. This ensures that all offsets in 136 * the range covered by the PMD map to the same bit lock. 137 */ 138 if (dax_is_pmd_entry(entry)) 139 index &= ~PG_PMD_COLOUR; 140 141 key->mapping = mapping; 142 key->entry_start = index; 143 144 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 145 return wait_table + hash; 146 } 147 148 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode, 149 int sync, void *keyp) 150 { 151 struct exceptional_entry_key *key = keyp; 152 struct wait_exceptional_entry_queue *ewait = 153 container_of(wait, struct wait_exceptional_entry_queue, wait); 154 155 if (key->mapping != ewait->key.mapping || 156 key->entry_start != ewait->key.entry_start) 157 return 0; 158 return autoremove_wake_function(wait, mode, sync, NULL); 159 } 160 161 /* 162 * We do not necessarily hold the mapping->tree_lock when we call this 163 * function so it is possible that 'entry' is no longer a valid item in the 164 * radix tree. This is okay because all we really need to do is to find the 165 * correct waitqueue where tasks might be waiting for that old 'entry' and 166 * wake them. 167 */ 168 static void dax_wake_mapping_entry_waiter(struct address_space *mapping, 169 pgoff_t index, void *entry, bool wake_all) 170 { 171 struct exceptional_entry_key key; 172 wait_queue_head_t *wq; 173 174 wq = dax_entry_waitqueue(mapping, index, entry, &key); 175 176 /* 177 * Checking for locked entry and prepare_to_wait_exclusive() happens 178 * under mapping->tree_lock, ditto for entry handling in our callers. 179 * So at this point all tasks that could have seen our entry locked 180 * must be in the waitqueue and the following check will see them. 181 */ 182 if (waitqueue_active(wq)) 183 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 184 } 185 186 /* 187 * Check whether the given slot is locked. The function must be called with 188 * mapping->tree_lock held 189 */ 190 static inline int slot_locked(struct address_space *mapping, void **slot) 191 { 192 unsigned long entry = (unsigned long) 193 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 194 return entry & RADIX_DAX_ENTRY_LOCK; 195 } 196 197 /* 198 * Mark the given slot is locked. The function must be called with 199 * mapping->tree_lock held 200 */ 201 static inline void *lock_slot(struct address_space *mapping, void **slot) 202 { 203 unsigned long entry = (unsigned long) 204 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 205 206 entry |= RADIX_DAX_ENTRY_LOCK; 207 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 208 return (void *)entry; 209 } 210 211 /* 212 * Mark the given slot is unlocked. The function must be called with 213 * mapping->tree_lock held 214 */ 215 static inline void *unlock_slot(struct address_space *mapping, void **slot) 216 { 217 unsigned long entry = (unsigned long) 218 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 219 220 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 221 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 222 return (void *)entry; 223 } 224 225 /* 226 * Lookup entry in radix tree, wait for it to become unlocked if it is 227 * exceptional entry and return it. The caller must call 228 * put_unlocked_mapping_entry() when he decided not to lock the entry or 229 * put_locked_mapping_entry() when he locked the entry and now wants to 230 * unlock it. 231 * 232 * The function must be called with mapping->tree_lock held. 233 */ 234 static void *get_unlocked_mapping_entry(struct address_space *mapping, 235 pgoff_t index, void ***slotp) 236 { 237 void *entry, **slot; 238 struct wait_exceptional_entry_queue ewait; 239 wait_queue_head_t *wq; 240 241 init_wait(&ewait.wait); 242 ewait.wait.func = wake_exceptional_entry_func; 243 244 for (;;) { 245 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, 246 &slot); 247 if (!entry || 248 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) || 249 !slot_locked(mapping, slot)) { 250 if (slotp) 251 *slotp = slot; 252 return entry; 253 } 254 255 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 256 prepare_to_wait_exclusive(wq, &ewait.wait, 257 TASK_UNINTERRUPTIBLE); 258 spin_unlock_irq(&mapping->tree_lock); 259 schedule(); 260 finish_wait(wq, &ewait.wait); 261 spin_lock_irq(&mapping->tree_lock); 262 } 263 } 264 265 static void dax_unlock_mapping_entry(struct address_space *mapping, 266 pgoff_t index) 267 { 268 void *entry, **slot; 269 270 spin_lock_irq(&mapping->tree_lock); 271 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 272 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 273 !slot_locked(mapping, slot))) { 274 spin_unlock_irq(&mapping->tree_lock); 275 return; 276 } 277 unlock_slot(mapping, slot); 278 spin_unlock_irq(&mapping->tree_lock); 279 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 280 } 281 282 static void put_locked_mapping_entry(struct address_space *mapping, 283 pgoff_t index) 284 { 285 dax_unlock_mapping_entry(mapping, index); 286 } 287 288 /* 289 * Called when we are done with radix tree entry we looked up via 290 * get_unlocked_mapping_entry() and which we didn't lock in the end. 291 */ 292 static void put_unlocked_mapping_entry(struct address_space *mapping, 293 pgoff_t index, void *entry) 294 { 295 if (!entry) 296 return; 297 298 /* We have to wake up next waiter for the radix tree entry lock */ 299 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 300 } 301 302 /* 303 * Find radix tree entry at given index. If it points to an exceptional entry, 304 * return it with the radix tree entry locked. If the radix tree doesn't 305 * contain given index, create an empty exceptional entry for the index and 306 * return with it locked. 307 * 308 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 309 * either return that locked entry or will return an error. This error will 310 * happen if there are any 4k entries within the 2MiB range that we are 311 * requesting. 312 * 313 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 314 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 315 * insertion will fail if it finds any 4k entries already in the tree, and a 316 * 4k insertion will cause an existing 2MiB entry to be unmapped and 317 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 318 * well as 2MiB empty entries. 319 * 320 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 321 * real storage backing them. We will leave these real 2MiB DAX entries in 322 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 323 * 324 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 325 * persistent memory the benefit is doubtful. We can add that later if we can 326 * show it helps. 327 */ 328 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 329 unsigned long size_flag) 330 { 331 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 332 void *entry, **slot; 333 334 restart: 335 spin_lock_irq(&mapping->tree_lock); 336 entry = get_unlocked_mapping_entry(mapping, index, &slot); 337 338 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) { 339 entry = ERR_PTR(-EIO); 340 goto out_unlock; 341 } 342 343 if (entry) { 344 if (size_flag & RADIX_DAX_PMD) { 345 if (dax_is_pte_entry(entry)) { 346 put_unlocked_mapping_entry(mapping, index, 347 entry); 348 entry = ERR_PTR(-EEXIST); 349 goto out_unlock; 350 } 351 } else { /* trying to grab a PTE entry */ 352 if (dax_is_pmd_entry(entry) && 353 (dax_is_zero_entry(entry) || 354 dax_is_empty_entry(entry))) { 355 pmd_downgrade = true; 356 } 357 } 358 } 359 360 /* No entry for given index? Make sure radix tree is big enough. */ 361 if (!entry || pmd_downgrade) { 362 int err; 363 364 if (pmd_downgrade) { 365 /* 366 * Make sure 'entry' remains valid while we drop 367 * mapping->tree_lock. 368 */ 369 entry = lock_slot(mapping, slot); 370 } 371 372 spin_unlock_irq(&mapping->tree_lock); 373 /* 374 * Besides huge zero pages the only other thing that gets 375 * downgraded are empty entries which don't need to be 376 * unmapped. 377 */ 378 if (pmd_downgrade && dax_is_zero_entry(entry)) 379 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 380 PG_PMD_NR, false); 381 382 err = radix_tree_preload( 383 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 384 if (err) { 385 if (pmd_downgrade) 386 put_locked_mapping_entry(mapping, index); 387 return ERR_PTR(err); 388 } 389 spin_lock_irq(&mapping->tree_lock); 390 391 if (!entry) { 392 /* 393 * We needed to drop the page_tree lock while calling 394 * radix_tree_preload() and we didn't have an entry to 395 * lock. See if another thread inserted an entry at 396 * our index during this time. 397 */ 398 entry = __radix_tree_lookup(&mapping->page_tree, index, 399 NULL, &slot); 400 if (entry) { 401 radix_tree_preload_end(); 402 spin_unlock_irq(&mapping->tree_lock); 403 goto restart; 404 } 405 } 406 407 if (pmd_downgrade) { 408 radix_tree_delete(&mapping->page_tree, index); 409 mapping->nrexceptional--; 410 dax_wake_mapping_entry_waiter(mapping, index, entry, 411 true); 412 } 413 414 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 415 416 err = __radix_tree_insert(&mapping->page_tree, index, 417 dax_radix_order(entry), entry); 418 radix_tree_preload_end(); 419 if (err) { 420 spin_unlock_irq(&mapping->tree_lock); 421 /* 422 * Our insertion of a DAX entry failed, most likely 423 * because we were inserting a PMD entry and it 424 * collided with a PTE sized entry at a different 425 * index in the PMD range. We haven't inserted 426 * anything into the radix tree and have no waiters to 427 * wake. 428 */ 429 return ERR_PTR(err); 430 } 431 /* Good, we have inserted empty locked entry into the tree. */ 432 mapping->nrexceptional++; 433 spin_unlock_irq(&mapping->tree_lock); 434 return entry; 435 } 436 entry = lock_slot(mapping, slot); 437 out_unlock: 438 spin_unlock_irq(&mapping->tree_lock); 439 return entry; 440 } 441 442 static int __dax_invalidate_mapping_entry(struct address_space *mapping, 443 pgoff_t index, bool trunc) 444 { 445 int ret = 0; 446 void *entry; 447 struct radix_tree_root *page_tree = &mapping->page_tree; 448 449 spin_lock_irq(&mapping->tree_lock); 450 entry = get_unlocked_mapping_entry(mapping, index, NULL); 451 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry))) 452 goto out; 453 if (!trunc && 454 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || 455 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))) 456 goto out; 457 radix_tree_delete(page_tree, index); 458 mapping->nrexceptional--; 459 ret = 1; 460 out: 461 put_unlocked_mapping_entry(mapping, index, entry); 462 spin_unlock_irq(&mapping->tree_lock); 463 return ret; 464 } 465 /* 466 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 467 * entry to get unlocked before deleting it. 468 */ 469 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 470 { 471 int ret = __dax_invalidate_mapping_entry(mapping, index, true); 472 473 /* 474 * This gets called from truncate / punch_hole path. As such, the caller 475 * must hold locks protecting against concurrent modifications of the 476 * radix tree (usually fs-private i_mmap_sem for writing). Since the 477 * caller has seen exceptional entry for this index, we better find it 478 * at that index as well... 479 */ 480 WARN_ON_ONCE(!ret); 481 return ret; 482 } 483 484 /* 485 * Invalidate exceptional DAX entry if it is clean. 486 */ 487 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 488 pgoff_t index) 489 { 490 return __dax_invalidate_mapping_entry(mapping, index, false); 491 } 492 493 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 494 sector_t sector, size_t size, struct page *to, 495 unsigned long vaddr) 496 { 497 void *vto, *kaddr; 498 pgoff_t pgoff; 499 pfn_t pfn; 500 long rc; 501 int id; 502 503 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 504 if (rc) 505 return rc; 506 507 id = dax_read_lock(); 508 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn); 509 if (rc < 0) { 510 dax_read_unlock(id); 511 return rc; 512 } 513 vto = kmap_atomic(to); 514 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 515 kunmap_atomic(vto); 516 dax_read_unlock(id); 517 return 0; 518 } 519 520 /* 521 * By this point grab_mapping_entry() has ensured that we have a locked entry 522 * of the appropriate size so we don't have to worry about downgrading PMDs to 523 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 524 * already in the tree, we will skip the insertion and just dirty the PMD as 525 * appropriate. 526 */ 527 static void *dax_insert_mapping_entry(struct address_space *mapping, 528 struct vm_fault *vmf, 529 void *entry, sector_t sector, 530 unsigned long flags, bool dirty) 531 { 532 struct radix_tree_root *page_tree = &mapping->page_tree; 533 void *new_entry; 534 pgoff_t index = vmf->pgoff; 535 536 if (dirty) 537 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 538 539 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) { 540 /* we are replacing a zero page with block mapping */ 541 if (dax_is_pmd_entry(entry)) 542 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 543 PG_PMD_NR, false); 544 else /* pte entry */ 545 unmap_mapping_pages(mapping, vmf->pgoff, 1, false); 546 } 547 548 spin_lock_irq(&mapping->tree_lock); 549 new_entry = dax_radix_locked_entry(sector, flags); 550 551 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 552 /* 553 * Only swap our new entry into the radix tree if the current 554 * entry is a zero page or an empty entry. If a normal PTE or 555 * PMD entry is already in the tree, we leave it alone. This 556 * means that if we are trying to insert a PTE and the 557 * existing entry is a PMD, we will just leave the PMD in the 558 * tree and dirty it if necessary. 559 */ 560 struct radix_tree_node *node; 561 void **slot; 562 void *ret; 563 564 ret = __radix_tree_lookup(page_tree, index, &node, &slot); 565 WARN_ON_ONCE(ret != entry); 566 __radix_tree_replace(page_tree, node, slot, 567 new_entry, NULL); 568 entry = new_entry; 569 } 570 571 if (dirty) 572 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 573 574 spin_unlock_irq(&mapping->tree_lock); 575 return entry; 576 } 577 578 static inline unsigned long 579 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 580 { 581 unsigned long address; 582 583 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 584 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 585 return address; 586 } 587 588 /* Walk all mappings of a given index of a file and writeprotect them */ 589 static void dax_mapping_entry_mkclean(struct address_space *mapping, 590 pgoff_t index, unsigned long pfn) 591 { 592 struct vm_area_struct *vma; 593 pte_t pte, *ptep = NULL; 594 pmd_t *pmdp = NULL; 595 spinlock_t *ptl; 596 597 i_mmap_lock_read(mapping); 598 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 599 unsigned long address, start, end; 600 601 cond_resched(); 602 603 if (!(vma->vm_flags & VM_SHARED)) 604 continue; 605 606 address = pgoff_address(index, vma); 607 608 /* 609 * Note because we provide start/end to follow_pte_pmd it will 610 * call mmu_notifier_invalidate_range_start() on our behalf 611 * before taking any lock. 612 */ 613 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) 614 continue; 615 616 /* 617 * No need to call mmu_notifier_invalidate_range() as we are 618 * downgrading page table protection not changing it to point 619 * to a new page. 620 * 621 * See Documentation/vm/mmu_notifier.txt 622 */ 623 if (pmdp) { 624 #ifdef CONFIG_FS_DAX_PMD 625 pmd_t pmd; 626 627 if (pfn != pmd_pfn(*pmdp)) 628 goto unlock_pmd; 629 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 630 goto unlock_pmd; 631 632 flush_cache_page(vma, address, pfn); 633 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 634 pmd = pmd_wrprotect(pmd); 635 pmd = pmd_mkclean(pmd); 636 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 637 unlock_pmd: 638 #endif 639 spin_unlock(ptl); 640 } else { 641 if (pfn != pte_pfn(*ptep)) 642 goto unlock_pte; 643 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 644 goto unlock_pte; 645 646 flush_cache_page(vma, address, pfn); 647 pte = ptep_clear_flush(vma, address, ptep); 648 pte = pte_wrprotect(pte); 649 pte = pte_mkclean(pte); 650 set_pte_at(vma->vm_mm, address, ptep, pte); 651 unlock_pte: 652 pte_unmap_unlock(ptep, ptl); 653 } 654 655 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 656 } 657 i_mmap_unlock_read(mapping); 658 } 659 660 static int dax_writeback_one(struct block_device *bdev, 661 struct dax_device *dax_dev, struct address_space *mapping, 662 pgoff_t index, void *entry) 663 { 664 struct radix_tree_root *page_tree = &mapping->page_tree; 665 void *entry2, **slot, *kaddr; 666 long ret = 0, id; 667 sector_t sector; 668 pgoff_t pgoff; 669 size_t size; 670 pfn_t pfn; 671 672 /* 673 * A page got tagged dirty in DAX mapping? Something is seriously 674 * wrong. 675 */ 676 if (WARN_ON(!radix_tree_exceptional_entry(entry))) 677 return -EIO; 678 679 spin_lock_irq(&mapping->tree_lock); 680 entry2 = get_unlocked_mapping_entry(mapping, index, &slot); 681 /* Entry got punched out / reallocated? */ 682 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2))) 683 goto put_unlocked; 684 /* 685 * Entry got reallocated elsewhere? No need to writeback. We have to 686 * compare sectors as we must not bail out due to difference in lockbit 687 * or entry type. 688 */ 689 if (dax_radix_sector(entry2) != dax_radix_sector(entry)) 690 goto put_unlocked; 691 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 692 dax_is_zero_entry(entry))) { 693 ret = -EIO; 694 goto put_unlocked; 695 } 696 697 /* Another fsync thread may have already written back this entry */ 698 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 699 goto put_unlocked; 700 /* Lock the entry to serialize with page faults */ 701 entry = lock_slot(mapping, slot); 702 /* 703 * We can clear the tag now but we have to be careful so that concurrent 704 * dax_writeback_one() calls for the same index cannot finish before we 705 * actually flush the caches. This is achieved as the calls will look 706 * at the entry only under tree_lock and once they do that they will 707 * see the entry locked and wait for it to unlock. 708 */ 709 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 710 spin_unlock_irq(&mapping->tree_lock); 711 712 /* 713 * Even if dax_writeback_mapping_range() was given a wbc->range_start 714 * in the middle of a PMD, the 'index' we are given will be aligned to 715 * the start index of the PMD, as will the sector we pull from 716 * 'entry'. This allows us to flush for PMD_SIZE and not have to 717 * worry about partial PMD writebacks. 718 */ 719 sector = dax_radix_sector(entry); 720 size = PAGE_SIZE << dax_radix_order(entry); 721 722 id = dax_read_lock(); 723 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 724 if (ret) 725 goto dax_unlock; 726 727 /* 728 * dax_direct_access() may sleep, so cannot hold tree_lock over 729 * its invocation. 730 */ 731 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn); 732 if (ret < 0) 733 goto dax_unlock; 734 735 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) { 736 ret = -EIO; 737 goto dax_unlock; 738 } 739 740 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn)); 741 dax_flush(dax_dev, kaddr, size); 742 /* 743 * After we have flushed the cache, we can clear the dirty tag. There 744 * cannot be new dirty data in the pfn after the flush has completed as 745 * the pfn mappings are writeprotected and fault waits for mapping 746 * entry lock. 747 */ 748 spin_lock_irq(&mapping->tree_lock); 749 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); 750 spin_unlock_irq(&mapping->tree_lock); 751 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT); 752 dax_unlock: 753 dax_read_unlock(id); 754 put_locked_mapping_entry(mapping, index); 755 return ret; 756 757 put_unlocked: 758 put_unlocked_mapping_entry(mapping, index, entry2); 759 spin_unlock_irq(&mapping->tree_lock); 760 return ret; 761 } 762 763 /* 764 * Flush the mapping to the persistent domain within the byte range of [start, 765 * end]. This is required by data integrity operations to ensure file data is 766 * on persistent storage prior to completion of the operation. 767 */ 768 int dax_writeback_mapping_range(struct address_space *mapping, 769 struct block_device *bdev, struct writeback_control *wbc) 770 { 771 struct inode *inode = mapping->host; 772 pgoff_t start_index, end_index; 773 pgoff_t indices[PAGEVEC_SIZE]; 774 struct dax_device *dax_dev; 775 struct pagevec pvec; 776 bool done = false; 777 int i, ret = 0; 778 779 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 780 return -EIO; 781 782 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 783 return 0; 784 785 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 786 if (!dax_dev) 787 return -EIO; 788 789 start_index = wbc->range_start >> PAGE_SHIFT; 790 end_index = wbc->range_end >> PAGE_SHIFT; 791 792 trace_dax_writeback_range(inode, start_index, end_index); 793 794 tag_pages_for_writeback(mapping, start_index, end_index); 795 796 pagevec_init(&pvec); 797 while (!done) { 798 pvec.nr = find_get_entries_tag(mapping, start_index, 799 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 800 pvec.pages, indices); 801 802 if (pvec.nr == 0) 803 break; 804 805 for (i = 0; i < pvec.nr; i++) { 806 if (indices[i] > end_index) { 807 done = true; 808 break; 809 } 810 811 ret = dax_writeback_one(bdev, dax_dev, mapping, 812 indices[i], pvec.pages[i]); 813 if (ret < 0) { 814 mapping_set_error(mapping, ret); 815 goto out; 816 } 817 } 818 start_index = indices[pvec.nr - 1] + 1; 819 } 820 out: 821 put_dax(dax_dev); 822 trace_dax_writeback_range_done(inode, start_index, end_index); 823 return (ret < 0 ? ret : 0); 824 } 825 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 826 827 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 828 { 829 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 830 } 831 832 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 833 pfn_t *pfnp) 834 { 835 const sector_t sector = dax_iomap_sector(iomap, pos); 836 pgoff_t pgoff; 837 void *kaddr; 838 int id, rc; 839 long length; 840 841 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 842 if (rc) 843 return rc; 844 id = dax_read_lock(); 845 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 846 &kaddr, pfnp); 847 if (length < 0) { 848 rc = length; 849 goto out; 850 } 851 rc = -EINVAL; 852 if (PFN_PHYS(length) < size) 853 goto out; 854 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 855 goto out; 856 /* For larger pages we need devmap */ 857 if (length > 1 && !pfn_t_devmap(*pfnp)) 858 goto out; 859 rc = 0; 860 out: 861 dax_read_unlock(id); 862 return rc; 863 } 864 865 /* 866 * The user has performed a load from a hole in the file. Allocating a new 867 * page in the file would cause excessive storage usage for workloads with 868 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 869 * If this page is ever written to we will re-fault and change the mapping to 870 * point to real DAX storage instead. 871 */ 872 static int dax_load_hole(struct address_space *mapping, void *entry, 873 struct vm_fault *vmf) 874 { 875 struct inode *inode = mapping->host; 876 unsigned long vaddr = vmf->address; 877 int ret = VM_FAULT_NOPAGE; 878 struct page *zero_page; 879 void *entry2; 880 881 zero_page = ZERO_PAGE(0); 882 if (unlikely(!zero_page)) { 883 ret = VM_FAULT_OOM; 884 goto out; 885 } 886 887 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0, 888 RADIX_DAX_ZERO_PAGE, false); 889 if (IS_ERR(entry2)) { 890 ret = VM_FAULT_SIGBUS; 891 goto out; 892 } 893 894 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page)); 895 out: 896 trace_dax_load_hole(inode, vmf, ret); 897 return ret; 898 } 899 900 static bool dax_range_is_aligned(struct block_device *bdev, 901 unsigned int offset, unsigned int length) 902 { 903 unsigned short sector_size = bdev_logical_block_size(bdev); 904 905 if (!IS_ALIGNED(offset, sector_size)) 906 return false; 907 if (!IS_ALIGNED(length, sector_size)) 908 return false; 909 910 return true; 911 } 912 913 int __dax_zero_page_range(struct block_device *bdev, 914 struct dax_device *dax_dev, sector_t sector, 915 unsigned int offset, unsigned int size) 916 { 917 if (dax_range_is_aligned(bdev, offset, size)) { 918 sector_t start_sector = sector + (offset >> 9); 919 920 return blkdev_issue_zeroout(bdev, start_sector, 921 size >> 9, GFP_NOFS, 0); 922 } else { 923 pgoff_t pgoff; 924 long rc, id; 925 void *kaddr; 926 pfn_t pfn; 927 928 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 929 if (rc) 930 return rc; 931 932 id = dax_read_lock(); 933 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, 934 &pfn); 935 if (rc < 0) { 936 dax_read_unlock(id); 937 return rc; 938 } 939 memset(kaddr + offset, 0, size); 940 dax_flush(dax_dev, kaddr + offset, size); 941 dax_read_unlock(id); 942 } 943 return 0; 944 } 945 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 946 947 static loff_t 948 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 949 struct iomap *iomap) 950 { 951 struct block_device *bdev = iomap->bdev; 952 struct dax_device *dax_dev = iomap->dax_dev; 953 struct iov_iter *iter = data; 954 loff_t end = pos + length, done = 0; 955 ssize_t ret = 0; 956 int id; 957 958 if (iov_iter_rw(iter) == READ) { 959 end = min(end, i_size_read(inode)); 960 if (pos >= end) 961 return 0; 962 963 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 964 return iov_iter_zero(min(length, end - pos), iter); 965 } 966 967 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 968 return -EIO; 969 970 /* 971 * Write can allocate block for an area which has a hole page mapped 972 * into page tables. We have to tear down these mappings so that data 973 * written by write(2) is visible in mmap. 974 */ 975 if (iomap->flags & IOMAP_F_NEW) { 976 invalidate_inode_pages2_range(inode->i_mapping, 977 pos >> PAGE_SHIFT, 978 (end - 1) >> PAGE_SHIFT); 979 } 980 981 id = dax_read_lock(); 982 while (pos < end) { 983 unsigned offset = pos & (PAGE_SIZE - 1); 984 const size_t size = ALIGN(length + offset, PAGE_SIZE); 985 const sector_t sector = dax_iomap_sector(iomap, pos); 986 ssize_t map_len; 987 pgoff_t pgoff; 988 void *kaddr; 989 pfn_t pfn; 990 991 if (fatal_signal_pending(current)) { 992 ret = -EINTR; 993 break; 994 } 995 996 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 997 if (ret) 998 break; 999 1000 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1001 &kaddr, &pfn); 1002 if (map_len < 0) { 1003 ret = map_len; 1004 break; 1005 } 1006 1007 map_len = PFN_PHYS(map_len); 1008 kaddr += offset; 1009 map_len -= offset; 1010 if (map_len > end - pos) 1011 map_len = end - pos; 1012 1013 /* 1014 * The userspace address for the memory copy has already been 1015 * validated via access_ok() in either vfs_read() or 1016 * vfs_write(), depending on which operation we are doing. 1017 */ 1018 if (iov_iter_rw(iter) == WRITE) 1019 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1020 map_len, iter); 1021 else 1022 map_len = copy_to_iter(kaddr, map_len, iter); 1023 if (map_len <= 0) { 1024 ret = map_len ? map_len : -EFAULT; 1025 break; 1026 } 1027 1028 pos += map_len; 1029 length -= map_len; 1030 done += map_len; 1031 } 1032 dax_read_unlock(id); 1033 1034 return done ? done : ret; 1035 } 1036 1037 /** 1038 * dax_iomap_rw - Perform I/O to a DAX file 1039 * @iocb: The control block for this I/O 1040 * @iter: The addresses to do I/O from or to 1041 * @ops: iomap ops passed from the file system 1042 * 1043 * This function performs read and write operations to directly mapped 1044 * persistent memory. The callers needs to take care of read/write exclusion 1045 * and evicting any page cache pages in the region under I/O. 1046 */ 1047 ssize_t 1048 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1049 const struct iomap_ops *ops) 1050 { 1051 struct address_space *mapping = iocb->ki_filp->f_mapping; 1052 struct inode *inode = mapping->host; 1053 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1054 unsigned flags = 0; 1055 1056 if (iov_iter_rw(iter) == WRITE) { 1057 lockdep_assert_held_exclusive(&inode->i_rwsem); 1058 flags |= IOMAP_WRITE; 1059 } else { 1060 lockdep_assert_held(&inode->i_rwsem); 1061 } 1062 1063 while (iov_iter_count(iter)) { 1064 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1065 iter, dax_iomap_actor); 1066 if (ret <= 0) 1067 break; 1068 pos += ret; 1069 done += ret; 1070 } 1071 1072 iocb->ki_pos += done; 1073 return done ? done : ret; 1074 } 1075 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1076 1077 static int dax_fault_return(int error) 1078 { 1079 if (error == 0) 1080 return VM_FAULT_NOPAGE; 1081 if (error == -ENOMEM) 1082 return VM_FAULT_OOM; 1083 return VM_FAULT_SIGBUS; 1084 } 1085 1086 /* 1087 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1088 * flushed on write-faults (non-cow), but not read-faults. 1089 */ 1090 static bool dax_fault_is_synchronous(unsigned long flags, 1091 struct vm_area_struct *vma, struct iomap *iomap) 1092 { 1093 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1094 && (iomap->flags & IOMAP_F_DIRTY); 1095 } 1096 1097 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1098 int *iomap_errp, const struct iomap_ops *ops) 1099 { 1100 struct vm_area_struct *vma = vmf->vma; 1101 struct address_space *mapping = vma->vm_file->f_mapping; 1102 struct inode *inode = mapping->host; 1103 unsigned long vaddr = vmf->address; 1104 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1105 struct iomap iomap = { 0 }; 1106 unsigned flags = IOMAP_FAULT; 1107 int error, major = 0; 1108 bool write = vmf->flags & FAULT_FLAG_WRITE; 1109 bool sync; 1110 int vmf_ret = 0; 1111 void *entry; 1112 pfn_t pfn; 1113 1114 trace_dax_pte_fault(inode, vmf, vmf_ret); 1115 /* 1116 * Check whether offset isn't beyond end of file now. Caller is supposed 1117 * to hold locks serializing us with truncate / punch hole so this is 1118 * a reliable test. 1119 */ 1120 if (pos >= i_size_read(inode)) { 1121 vmf_ret = VM_FAULT_SIGBUS; 1122 goto out; 1123 } 1124 1125 if (write && !vmf->cow_page) 1126 flags |= IOMAP_WRITE; 1127 1128 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 1129 if (IS_ERR(entry)) { 1130 vmf_ret = dax_fault_return(PTR_ERR(entry)); 1131 goto out; 1132 } 1133 1134 /* 1135 * It is possible, particularly with mixed reads & writes to private 1136 * mappings, that we have raced with a PMD fault that overlaps with 1137 * the PTE we need to set up. If so just return and the fault will be 1138 * retried. 1139 */ 1140 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1141 vmf_ret = VM_FAULT_NOPAGE; 1142 goto unlock_entry; 1143 } 1144 1145 /* 1146 * Note that we don't bother to use iomap_apply here: DAX required 1147 * the file system block size to be equal the page size, which means 1148 * that we never have to deal with more than a single extent here. 1149 */ 1150 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1151 if (iomap_errp) 1152 *iomap_errp = error; 1153 if (error) { 1154 vmf_ret = dax_fault_return(error); 1155 goto unlock_entry; 1156 } 1157 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1158 error = -EIO; /* fs corruption? */ 1159 goto error_finish_iomap; 1160 } 1161 1162 if (vmf->cow_page) { 1163 sector_t sector = dax_iomap_sector(&iomap, pos); 1164 1165 switch (iomap.type) { 1166 case IOMAP_HOLE: 1167 case IOMAP_UNWRITTEN: 1168 clear_user_highpage(vmf->cow_page, vaddr); 1169 break; 1170 case IOMAP_MAPPED: 1171 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1172 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1173 break; 1174 default: 1175 WARN_ON_ONCE(1); 1176 error = -EIO; 1177 break; 1178 } 1179 1180 if (error) 1181 goto error_finish_iomap; 1182 1183 __SetPageUptodate(vmf->cow_page); 1184 vmf_ret = finish_fault(vmf); 1185 if (!vmf_ret) 1186 vmf_ret = VM_FAULT_DONE_COW; 1187 goto finish_iomap; 1188 } 1189 1190 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1191 1192 switch (iomap.type) { 1193 case IOMAP_MAPPED: 1194 if (iomap.flags & IOMAP_F_NEW) { 1195 count_vm_event(PGMAJFAULT); 1196 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1197 major = VM_FAULT_MAJOR; 1198 } 1199 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1200 if (error < 0) 1201 goto error_finish_iomap; 1202 1203 entry = dax_insert_mapping_entry(mapping, vmf, entry, 1204 dax_iomap_sector(&iomap, pos), 1205 0, write && !sync); 1206 if (IS_ERR(entry)) { 1207 error = PTR_ERR(entry); 1208 goto error_finish_iomap; 1209 } 1210 1211 /* 1212 * If we are doing synchronous page fault and inode needs fsync, 1213 * we can insert PTE into page tables only after that happens. 1214 * Skip insertion for now and return the pfn so that caller can 1215 * insert it after fsync is done. 1216 */ 1217 if (sync) { 1218 if (WARN_ON_ONCE(!pfnp)) { 1219 error = -EIO; 1220 goto error_finish_iomap; 1221 } 1222 *pfnp = pfn; 1223 vmf_ret = VM_FAULT_NEEDDSYNC | major; 1224 goto finish_iomap; 1225 } 1226 trace_dax_insert_mapping(inode, vmf, entry); 1227 if (write) 1228 error = vm_insert_mixed_mkwrite(vma, vaddr, pfn); 1229 else 1230 error = vm_insert_mixed(vma, vaddr, pfn); 1231 1232 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1233 if (error == -EBUSY) 1234 error = 0; 1235 break; 1236 case IOMAP_UNWRITTEN: 1237 case IOMAP_HOLE: 1238 if (!write) { 1239 vmf_ret = dax_load_hole(mapping, entry, vmf); 1240 goto finish_iomap; 1241 } 1242 /*FALLTHRU*/ 1243 default: 1244 WARN_ON_ONCE(1); 1245 error = -EIO; 1246 break; 1247 } 1248 1249 error_finish_iomap: 1250 vmf_ret = dax_fault_return(error) | major; 1251 finish_iomap: 1252 if (ops->iomap_end) { 1253 int copied = PAGE_SIZE; 1254 1255 if (vmf_ret & VM_FAULT_ERROR) 1256 copied = 0; 1257 /* 1258 * The fault is done by now and there's no way back (other 1259 * thread may be already happily using PTE we have installed). 1260 * Just ignore error from ->iomap_end since we cannot do much 1261 * with it. 1262 */ 1263 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1264 } 1265 unlock_entry: 1266 put_locked_mapping_entry(mapping, vmf->pgoff); 1267 out: 1268 trace_dax_pte_fault_done(inode, vmf, vmf_ret); 1269 return vmf_ret; 1270 } 1271 1272 #ifdef CONFIG_FS_DAX_PMD 1273 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, 1274 void *entry) 1275 { 1276 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1277 unsigned long pmd_addr = vmf->address & PMD_MASK; 1278 struct inode *inode = mapping->host; 1279 struct page *zero_page; 1280 void *ret = NULL; 1281 spinlock_t *ptl; 1282 pmd_t pmd_entry; 1283 1284 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1285 1286 if (unlikely(!zero_page)) 1287 goto fallback; 1288 1289 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0, 1290 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false); 1291 if (IS_ERR(ret)) 1292 goto fallback; 1293 1294 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1295 if (!pmd_none(*(vmf->pmd))) { 1296 spin_unlock(ptl); 1297 goto fallback; 1298 } 1299 1300 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1301 pmd_entry = pmd_mkhuge(pmd_entry); 1302 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1303 spin_unlock(ptl); 1304 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); 1305 return VM_FAULT_NOPAGE; 1306 1307 fallback: 1308 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); 1309 return VM_FAULT_FALLBACK; 1310 } 1311 1312 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1313 const struct iomap_ops *ops) 1314 { 1315 struct vm_area_struct *vma = vmf->vma; 1316 struct address_space *mapping = vma->vm_file->f_mapping; 1317 unsigned long pmd_addr = vmf->address & PMD_MASK; 1318 bool write = vmf->flags & FAULT_FLAG_WRITE; 1319 bool sync; 1320 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1321 struct inode *inode = mapping->host; 1322 int result = VM_FAULT_FALLBACK; 1323 struct iomap iomap = { 0 }; 1324 pgoff_t max_pgoff, pgoff; 1325 void *entry; 1326 loff_t pos; 1327 int error; 1328 pfn_t pfn; 1329 1330 /* 1331 * Check whether offset isn't beyond end of file now. Caller is 1332 * supposed to hold locks serializing us with truncate / punch hole so 1333 * this is a reliable test. 1334 */ 1335 pgoff = linear_page_index(vma, pmd_addr); 1336 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1337 1338 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1339 1340 /* 1341 * Make sure that the faulting address's PMD offset (color) matches 1342 * the PMD offset from the start of the file. This is necessary so 1343 * that a PMD range in the page table overlaps exactly with a PMD 1344 * range in the radix tree. 1345 */ 1346 if ((vmf->pgoff & PG_PMD_COLOUR) != 1347 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1348 goto fallback; 1349 1350 /* Fall back to PTEs if we're going to COW */ 1351 if (write && !(vma->vm_flags & VM_SHARED)) 1352 goto fallback; 1353 1354 /* If the PMD would extend outside the VMA */ 1355 if (pmd_addr < vma->vm_start) 1356 goto fallback; 1357 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1358 goto fallback; 1359 1360 if (pgoff >= max_pgoff) { 1361 result = VM_FAULT_SIGBUS; 1362 goto out; 1363 } 1364 1365 /* If the PMD would extend beyond the file size */ 1366 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff) 1367 goto fallback; 1368 1369 /* 1370 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a 1371 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page 1372 * is already in the tree, for instance), it will return -EEXIST and 1373 * we just fall back to 4k entries. 1374 */ 1375 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1376 if (IS_ERR(entry)) 1377 goto fallback; 1378 1379 /* 1380 * It is possible, particularly with mixed reads & writes to private 1381 * mappings, that we have raced with a PTE fault that overlaps with 1382 * the PMD we need to set up. If so just return and the fault will be 1383 * retried. 1384 */ 1385 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1386 !pmd_devmap(*vmf->pmd)) { 1387 result = 0; 1388 goto unlock_entry; 1389 } 1390 1391 /* 1392 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1393 * setting up a mapping, so really we're using iomap_begin() as a way 1394 * to look up our filesystem block. 1395 */ 1396 pos = (loff_t)pgoff << PAGE_SHIFT; 1397 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1398 if (error) 1399 goto unlock_entry; 1400 1401 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1402 goto finish_iomap; 1403 1404 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1405 1406 switch (iomap.type) { 1407 case IOMAP_MAPPED: 1408 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1409 if (error < 0) 1410 goto finish_iomap; 1411 1412 entry = dax_insert_mapping_entry(mapping, vmf, entry, 1413 dax_iomap_sector(&iomap, pos), 1414 RADIX_DAX_PMD, write && !sync); 1415 if (IS_ERR(entry)) 1416 goto finish_iomap; 1417 1418 /* 1419 * If we are doing synchronous page fault and inode needs fsync, 1420 * we can insert PMD into page tables only after that happens. 1421 * Skip insertion for now and return the pfn so that caller can 1422 * insert it after fsync is done. 1423 */ 1424 if (sync) { 1425 if (WARN_ON_ONCE(!pfnp)) 1426 goto finish_iomap; 1427 *pfnp = pfn; 1428 result = VM_FAULT_NEEDDSYNC; 1429 goto finish_iomap; 1430 } 1431 1432 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1433 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, 1434 write); 1435 break; 1436 case IOMAP_UNWRITTEN: 1437 case IOMAP_HOLE: 1438 if (WARN_ON_ONCE(write)) 1439 break; 1440 result = dax_pmd_load_hole(vmf, &iomap, entry); 1441 break; 1442 default: 1443 WARN_ON_ONCE(1); 1444 break; 1445 } 1446 1447 finish_iomap: 1448 if (ops->iomap_end) { 1449 int copied = PMD_SIZE; 1450 1451 if (result == VM_FAULT_FALLBACK) 1452 copied = 0; 1453 /* 1454 * The fault is done by now and there's no way back (other 1455 * thread may be already happily using PMD we have installed). 1456 * Just ignore error from ->iomap_end since we cannot do much 1457 * with it. 1458 */ 1459 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1460 &iomap); 1461 } 1462 unlock_entry: 1463 put_locked_mapping_entry(mapping, pgoff); 1464 fallback: 1465 if (result == VM_FAULT_FALLBACK) { 1466 split_huge_pmd(vma, vmf->pmd, vmf->address); 1467 count_vm_event(THP_FAULT_FALLBACK); 1468 } 1469 out: 1470 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1471 return result; 1472 } 1473 #else 1474 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1475 const struct iomap_ops *ops) 1476 { 1477 return VM_FAULT_FALLBACK; 1478 } 1479 #endif /* CONFIG_FS_DAX_PMD */ 1480 1481 /** 1482 * dax_iomap_fault - handle a page fault on a DAX file 1483 * @vmf: The description of the fault 1484 * @pe_size: Size of the page to fault in 1485 * @pfnp: PFN to insert for synchronous faults if fsync is required 1486 * @iomap_errp: Storage for detailed error code in case of error 1487 * @ops: Iomap ops passed from the file system 1488 * 1489 * When a page fault occurs, filesystems may call this helper in 1490 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1491 * has done all the necessary locking for page fault to proceed 1492 * successfully. 1493 */ 1494 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1495 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1496 { 1497 switch (pe_size) { 1498 case PE_SIZE_PTE: 1499 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1500 case PE_SIZE_PMD: 1501 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1502 default: 1503 return VM_FAULT_FALLBACK; 1504 } 1505 } 1506 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1507 1508 /** 1509 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1510 * @vmf: The description of the fault 1511 * @pe_size: Size of entry to be inserted 1512 * @pfn: PFN to insert 1513 * 1514 * This function inserts writeable PTE or PMD entry into page tables for mmaped 1515 * DAX file. It takes care of marking corresponding radix tree entry as dirty 1516 * as well. 1517 */ 1518 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf, 1519 enum page_entry_size pe_size, 1520 pfn_t pfn) 1521 { 1522 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1523 void *entry, **slot; 1524 pgoff_t index = vmf->pgoff; 1525 int vmf_ret, error; 1526 1527 spin_lock_irq(&mapping->tree_lock); 1528 entry = get_unlocked_mapping_entry(mapping, index, &slot); 1529 /* Did we race with someone splitting entry or so? */ 1530 if (!entry || 1531 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) || 1532 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) { 1533 put_unlocked_mapping_entry(mapping, index, entry); 1534 spin_unlock_irq(&mapping->tree_lock); 1535 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1536 VM_FAULT_NOPAGE); 1537 return VM_FAULT_NOPAGE; 1538 } 1539 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 1540 entry = lock_slot(mapping, slot); 1541 spin_unlock_irq(&mapping->tree_lock); 1542 switch (pe_size) { 1543 case PE_SIZE_PTE: 1544 error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1545 vmf_ret = dax_fault_return(error); 1546 break; 1547 #ifdef CONFIG_FS_DAX_PMD 1548 case PE_SIZE_PMD: 1549 vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1550 pfn, true); 1551 break; 1552 #endif 1553 default: 1554 vmf_ret = VM_FAULT_FALLBACK; 1555 } 1556 put_locked_mapping_entry(mapping, index); 1557 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret); 1558 return vmf_ret; 1559 } 1560 1561 /** 1562 * dax_finish_sync_fault - finish synchronous page fault 1563 * @vmf: The description of the fault 1564 * @pe_size: Size of entry to be inserted 1565 * @pfn: PFN to insert 1566 * 1567 * This function ensures that the file range touched by the page fault is 1568 * stored persistently on the media and handles inserting of appropriate page 1569 * table entry. 1570 */ 1571 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1572 pfn_t pfn) 1573 { 1574 int err; 1575 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1576 size_t len = 0; 1577 1578 if (pe_size == PE_SIZE_PTE) 1579 len = PAGE_SIZE; 1580 else if (pe_size == PE_SIZE_PMD) 1581 len = PMD_SIZE; 1582 else 1583 WARN_ON_ONCE(1); 1584 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1585 if (err) 1586 return VM_FAULT_SIGBUS; 1587 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn); 1588 } 1589 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1590