xref: /openbmc/linux/fs/dax.c (revision 71844fac)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43 	if (pe_size == PE_SIZE_PTE)
44 		return PAGE_SHIFT - PAGE_SHIFT;
45 	if (pe_size == PE_SIZE_PMD)
46 		return PMD_SHIFT - PAGE_SHIFT;
47 	if (pe_size == PE_SIZE_PUD)
48 		return PUD_SHIFT - PAGE_SHIFT;
49 	return ~0;
50 }
51 
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55 
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
59 
60 /* The order of a PMD entry */
61 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
62 
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64 
65 static int __init init_dax_wait_table(void)
66 {
67 	int i;
68 
69 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 		init_waitqueue_head(wait_table + i);
71 	return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74 
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT	(4)
86 #define DAX_LOCKED	(1UL << 0)
87 #define DAX_PMD		(1UL << 1)
88 #define DAX_ZERO_PAGE	(1UL << 2)
89 #define DAX_EMPTY	(1UL << 3)
90 
91 static unsigned long dax_to_pfn(void *entry)
92 {
93 	return xa_to_value(entry) >> DAX_SHIFT;
94 }
95 
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100 
101 static bool dax_is_locked(void *entry)
102 {
103 	return xa_to_value(entry) & DAX_LOCKED;
104 }
105 
106 static unsigned int dax_entry_order(void *entry)
107 {
108 	if (xa_to_value(entry) & DAX_PMD)
109 		return PMD_ORDER;
110 	return 0;
111 }
112 
113 static unsigned long dax_is_pmd_entry(void *entry)
114 {
115 	return xa_to_value(entry) & DAX_PMD;
116 }
117 
118 static bool dax_is_pte_entry(void *entry)
119 {
120 	return !(xa_to_value(entry) & DAX_PMD);
121 }
122 
123 static int dax_is_zero_entry(void *entry)
124 {
125 	return xa_to_value(entry) & DAX_ZERO_PAGE;
126 }
127 
128 static int dax_is_empty_entry(void *entry)
129 {
130 	return xa_to_value(entry) & DAX_EMPTY;
131 }
132 
133 /*
134  * DAX page cache entry locking
135  */
136 struct exceptional_entry_key {
137 	struct xarray *xa;
138 	pgoff_t entry_start;
139 };
140 
141 struct wait_exceptional_entry_queue {
142 	wait_queue_entry_t wait;
143 	struct exceptional_entry_key key;
144 };
145 
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 		void *entry, struct exceptional_entry_key *key)
148 {
149 	unsigned long hash;
150 	unsigned long index = xas->xa_index;
151 
152 	/*
153 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 	 * queue to the start of that PMD.  This ensures that all offsets in
155 	 * the range covered by the PMD map to the same bit lock.
156 	 */
157 	if (dax_is_pmd_entry(entry))
158 		index &= ~PG_PMD_COLOUR;
159 	key->xa = xas->xa;
160 	key->entry_start = index;
161 
162 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163 	return wait_table + hash;
164 }
165 
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 		unsigned int mode, int sync, void *keyp)
168 {
169 	struct exceptional_entry_key *key = keyp;
170 	struct wait_exceptional_entry_queue *ewait =
171 		container_of(wait, struct wait_exceptional_entry_queue, wait);
172 
173 	if (key->xa != ewait->key.xa ||
174 	    key->entry_start != ewait->key.entry_start)
175 		return 0;
176 	return autoremove_wake_function(wait, mode, sync, NULL);
177 }
178 
179 /*
180  * @entry may no longer be the entry at the index in the mapping.
181  * The important information it's conveying is whether the entry at
182  * this index used to be a PMD entry.
183  */
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185 {
186 	struct exceptional_entry_key key;
187 	wait_queue_head_t *wq;
188 
189 	wq = dax_entry_waitqueue(xas, entry, &key);
190 
191 	/*
192 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
193 	 * under the i_pages lock, ditto for entry handling in our callers.
194 	 * So at this point all tasks that could have seen our entry locked
195 	 * must be in the waitqueue and the following check will see them.
196 	 */
197 	if (waitqueue_active(wq))
198 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199 }
200 
201 /*
202  * Look up entry in page cache, wait for it to become unlocked if it
203  * is a DAX entry and return it.  The caller must subsequently call
204  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205  * if it did.
206  *
207  * Must be called with the i_pages lock held.
208  */
209 static void *get_unlocked_entry(struct xa_state *xas)
210 {
211 	void *entry;
212 	struct wait_exceptional_entry_queue ewait;
213 	wait_queue_head_t *wq;
214 
215 	init_wait(&ewait.wait);
216 	ewait.wait.func = wake_exceptional_entry_func;
217 
218 	for (;;) {
219 		entry = xas_find_conflict(xas);
220 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221 				!dax_is_locked(entry))
222 			return entry;
223 
224 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225 		prepare_to_wait_exclusive(wq, &ewait.wait,
226 					  TASK_UNINTERRUPTIBLE);
227 		xas_unlock_irq(xas);
228 		xas_reset(xas);
229 		schedule();
230 		finish_wait(wq, &ewait.wait);
231 		xas_lock_irq(xas);
232 	}
233 }
234 
235 static void put_unlocked_entry(struct xa_state *xas, void *entry)
236 {
237 	/* If we were the only waiter woken, wake the next one */
238 	if (entry)
239 		dax_wake_entry(xas, entry, false);
240 }
241 
242 /*
243  * We used the xa_state to get the entry, but then we locked the entry and
244  * dropped the xa_lock, so we know the xa_state is stale and must be reset
245  * before use.
246  */
247 static void dax_unlock_entry(struct xa_state *xas, void *entry)
248 {
249 	void *old;
250 
251 	BUG_ON(dax_is_locked(entry));
252 	xas_reset(xas);
253 	xas_lock_irq(xas);
254 	old = xas_store(xas, entry);
255 	xas_unlock_irq(xas);
256 	BUG_ON(!dax_is_locked(old));
257 	dax_wake_entry(xas, entry, false);
258 }
259 
260 /*
261  * Return: The entry stored at this location before it was locked.
262  */
263 static void *dax_lock_entry(struct xa_state *xas, void *entry)
264 {
265 	unsigned long v = xa_to_value(entry);
266 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
267 }
268 
269 static unsigned long dax_entry_size(void *entry)
270 {
271 	if (dax_is_zero_entry(entry))
272 		return 0;
273 	else if (dax_is_empty_entry(entry))
274 		return 0;
275 	else if (dax_is_pmd_entry(entry))
276 		return PMD_SIZE;
277 	else
278 		return PAGE_SIZE;
279 }
280 
281 static unsigned long dax_end_pfn(void *entry)
282 {
283 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
284 }
285 
286 /*
287  * Iterate through all mapped pfns represented by an entry, i.e. skip
288  * 'empty' and 'zero' entries.
289  */
290 #define for_each_mapped_pfn(entry, pfn) \
291 	for (pfn = dax_to_pfn(entry); \
292 			pfn < dax_end_pfn(entry); pfn++)
293 
294 /*
295  * TODO: for reflink+dax we need a way to associate a single page with
296  * multiple address_space instances at different linear_page_index()
297  * offsets.
298  */
299 static void dax_associate_entry(void *entry, struct address_space *mapping,
300 		struct vm_area_struct *vma, unsigned long address)
301 {
302 	unsigned long size = dax_entry_size(entry), pfn, index;
303 	int i = 0;
304 
305 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
306 		return;
307 
308 	index = linear_page_index(vma, address & ~(size - 1));
309 	for_each_mapped_pfn(entry, pfn) {
310 		struct page *page = pfn_to_page(pfn);
311 
312 		WARN_ON_ONCE(page->mapping);
313 		page->mapping = mapping;
314 		page->index = index + i++;
315 	}
316 }
317 
318 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
319 		bool trunc)
320 {
321 	unsigned long pfn;
322 
323 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
324 		return;
325 
326 	for_each_mapped_pfn(entry, pfn) {
327 		struct page *page = pfn_to_page(pfn);
328 
329 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
330 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
331 		page->mapping = NULL;
332 		page->index = 0;
333 	}
334 }
335 
336 static struct page *dax_busy_page(void *entry)
337 {
338 	unsigned long pfn;
339 
340 	for_each_mapped_pfn(entry, pfn) {
341 		struct page *page = pfn_to_page(pfn);
342 
343 		if (page_ref_count(page) > 1)
344 			return page;
345 	}
346 	return NULL;
347 }
348 
349 /*
350  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
351  * @page: The page whose entry we want to lock
352  *
353  * Context: Process context.
354  * Return: %true if the entry was locked or does not need to be locked.
355  */
356 bool dax_lock_mapping_entry(struct page *page)
357 {
358 	XA_STATE(xas, NULL, 0);
359 	void *entry;
360 	bool locked;
361 
362 	/* Ensure page->mapping isn't freed while we look at it */
363 	rcu_read_lock();
364 	for (;;) {
365 		struct address_space *mapping = READ_ONCE(page->mapping);
366 
367 		locked = false;
368 		if (!dax_mapping(mapping))
369 			break;
370 
371 		/*
372 		 * In the device-dax case there's no need to lock, a
373 		 * struct dev_pagemap pin is sufficient to keep the
374 		 * inode alive, and we assume we have dev_pagemap pin
375 		 * otherwise we would not have a valid pfn_to_page()
376 		 * translation.
377 		 */
378 		locked = true;
379 		if (S_ISCHR(mapping->host->i_mode))
380 			break;
381 
382 		xas.xa = &mapping->i_pages;
383 		xas_lock_irq(&xas);
384 		if (mapping != page->mapping) {
385 			xas_unlock_irq(&xas);
386 			continue;
387 		}
388 		xas_set(&xas, page->index);
389 		entry = xas_load(&xas);
390 		if (dax_is_locked(entry)) {
391 			rcu_read_unlock();
392 			entry = get_unlocked_entry(&xas);
393 			xas_unlock_irq(&xas);
394 			put_unlocked_entry(&xas, entry);
395 			rcu_read_lock();
396 			continue;
397 		}
398 		dax_lock_entry(&xas, entry);
399 		xas_unlock_irq(&xas);
400 		break;
401 	}
402 	rcu_read_unlock();
403 	return locked;
404 }
405 
406 void dax_unlock_mapping_entry(struct page *page)
407 {
408 	struct address_space *mapping = page->mapping;
409 	XA_STATE(xas, &mapping->i_pages, page->index);
410 	void *entry;
411 
412 	if (S_ISCHR(mapping->host->i_mode))
413 		return;
414 
415 	rcu_read_lock();
416 	entry = xas_load(&xas);
417 	rcu_read_unlock();
418 	entry = dax_make_entry(page_to_pfn_t(page), dax_is_pmd_entry(entry));
419 	dax_unlock_entry(&xas, entry);
420 }
421 
422 /*
423  * Find page cache entry at given index. If it is a DAX entry, return it
424  * with the entry locked. If the page cache doesn't contain an entry at
425  * that index, add a locked empty entry.
426  *
427  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
428  * either return that locked entry or will return VM_FAULT_FALLBACK.
429  * This will happen if there are any PTE entries within the PMD range
430  * that we are requesting.
431  *
432  * We always favor PTE entries over PMD entries. There isn't a flow where we
433  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
434  * insertion will fail if it finds any PTE entries already in the tree, and a
435  * PTE insertion will cause an existing PMD entry to be unmapped and
436  * downgraded to PTE entries.  This happens for both PMD zero pages as
437  * well as PMD empty entries.
438  *
439  * The exception to this downgrade path is for PMD entries that have
440  * real storage backing them.  We will leave these real PMD entries in
441  * the tree, and PTE writes will simply dirty the entire PMD entry.
442  *
443  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
444  * persistent memory the benefit is doubtful. We can add that later if we can
445  * show it helps.
446  *
447  * On error, this function does not return an ERR_PTR.  Instead it returns
448  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
449  * overlap with xarray value entries.
450  */
451 static void *grab_mapping_entry(struct xa_state *xas,
452 		struct address_space *mapping, unsigned long size_flag)
453 {
454 	unsigned long index = xas->xa_index;
455 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
456 	void *entry;
457 
458 retry:
459 	xas_lock_irq(xas);
460 	entry = get_unlocked_entry(xas);
461 
462 	if (entry) {
463 		if (!xa_is_value(entry)) {
464 			xas_set_err(xas, EIO);
465 			goto out_unlock;
466 		}
467 
468 		if (size_flag & DAX_PMD) {
469 			if (dax_is_pte_entry(entry)) {
470 				put_unlocked_entry(xas, entry);
471 				goto fallback;
472 			}
473 		} else { /* trying to grab a PTE entry */
474 			if (dax_is_pmd_entry(entry) &&
475 			    (dax_is_zero_entry(entry) ||
476 			     dax_is_empty_entry(entry))) {
477 				pmd_downgrade = true;
478 			}
479 		}
480 	}
481 
482 	if (pmd_downgrade) {
483 		/*
484 		 * Make sure 'entry' remains valid while we drop
485 		 * the i_pages lock.
486 		 */
487 		dax_lock_entry(xas, entry);
488 
489 		/*
490 		 * Besides huge zero pages the only other thing that gets
491 		 * downgraded are empty entries which don't need to be
492 		 * unmapped.
493 		 */
494 		if (dax_is_zero_entry(entry)) {
495 			xas_unlock_irq(xas);
496 			unmap_mapping_pages(mapping,
497 					xas->xa_index & ~PG_PMD_COLOUR,
498 					PG_PMD_NR, false);
499 			xas_reset(xas);
500 			xas_lock_irq(xas);
501 		}
502 
503 		dax_disassociate_entry(entry, mapping, false);
504 		xas_store(xas, NULL);	/* undo the PMD join */
505 		dax_wake_entry(xas, entry, true);
506 		mapping->nrexceptional--;
507 		entry = NULL;
508 		xas_set(xas, index);
509 	}
510 
511 	if (entry) {
512 		dax_lock_entry(xas, entry);
513 	} else {
514 		entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
515 		dax_lock_entry(xas, entry);
516 		if (xas_error(xas))
517 			goto out_unlock;
518 		mapping->nrexceptional++;
519 	}
520 
521 out_unlock:
522 	xas_unlock_irq(xas);
523 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
524 		goto retry;
525 	if (xas->xa_node == XA_ERROR(-ENOMEM))
526 		return xa_mk_internal(VM_FAULT_OOM);
527 	if (xas_error(xas))
528 		return xa_mk_internal(VM_FAULT_SIGBUS);
529 	return entry;
530 fallback:
531 	xas_unlock_irq(xas);
532 	return xa_mk_internal(VM_FAULT_FALLBACK);
533 }
534 
535 /**
536  * dax_layout_busy_page - find first pinned page in @mapping
537  * @mapping: address space to scan for a page with ref count > 1
538  *
539  * DAX requires ZONE_DEVICE mapped pages. These pages are never
540  * 'onlined' to the page allocator so they are considered idle when
541  * page->count == 1. A filesystem uses this interface to determine if
542  * any page in the mapping is busy, i.e. for DMA, or other
543  * get_user_pages() usages.
544  *
545  * It is expected that the filesystem is holding locks to block the
546  * establishment of new mappings in this address_space. I.e. it expects
547  * to be able to run unmap_mapping_range() and subsequently not race
548  * mapping_mapped() becoming true.
549  */
550 struct page *dax_layout_busy_page(struct address_space *mapping)
551 {
552 	XA_STATE(xas, &mapping->i_pages, 0);
553 	void *entry;
554 	unsigned int scanned = 0;
555 	struct page *page = NULL;
556 
557 	/*
558 	 * In the 'limited' case get_user_pages() for dax is disabled.
559 	 */
560 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
561 		return NULL;
562 
563 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
564 		return NULL;
565 
566 	/*
567 	 * If we race get_user_pages_fast() here either we'll see the
568 	 * elevated page count in the iteration and wait, or
569 	 * get_user_pages_fast() will see that the page it took a reference
570 	 * against is no longer mapped in the page tables and bail to the
571 	 * get_user_pages() slow path.  The slow path is protected by
572 	 * pte_lock() and pmd_lock(). New references are not taken without
573 	 * holding those locks, and unmap_mapping_range() will not zero the
574 	 * pte or pmd without holding the respective lock, so we are
575 	 * guaranteed to either see new references or prevent new
576 	 * references from being established.
577 	 */
578 	unmap_mapping_range(mapping, 0, 0, 1);
579 
580 	xas_lock_irq(&xas);
581 	xas_for_each(&xas, entry, ULONG_MAX) {
582 		if (WARN_ON_ONCE(!xa_is_value(entry)))
583 			continue;
584 		if (unlikely(dax_is_locked(entry)))
585 			entry = get_unlocked_entry(&xas);
586 		if (entry)
587 			page = dax_busy_page(entry);
588 		put_unlocked_entry(&xas, entry);
589 		if (page)
590 			break;
591 		if (++scanned % XA_CHECK_SCHED)
592 			continue;
593 
594 		xas_pause(&xas);
595 		xas_unlock_irq(&xas);
596 		cond_resched();
597 		xas_lock_irq(&xas);
598 	}
599 	xas_unlock_irq(&xas);
600 	return page;
601 }
602 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
603 
604 static int __dax_invalidate_entry(struct address_space *mapping,
605 					  pgoff_t index, bool trunc)
606 {
607 	XA_STATE(xas, &mapping->i_pages, index);
608 	int ret = 0;
609 	void *entry;
610 
611 	xas_lock_irq(&xas);
612 	entry = get_unlocked_entry(&xas);
613 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
614 		goto out;
615 	if (!trunc &&
616 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
617 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
618 		goto out;
619 	dax_disassociate_entry(entry, mapping, trunc);
620 	xas_store(&xas, NULL);
621 	mapping->nrexceptional--;
622 	ret = 1;
623 out:
624 	put_unlocked_entry(&xas, entry);
625 	xas_unlock_irq(&xas);
626 	return ret;
627 }
628 
629 /*
630  * Delete DAX entry at @index from @mapping.  Wait for it
631  * to be unlocked before deleting it.
632  */
633 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
634 {
635 	int ret = __dax_invalidate_entry(mapping, index, true);
636 
637 	/*
638 	 * This gets called from truncate / punch_hole path. As such, the caller
639 	 * must hold locks protecting against concurrent modifications of the
640 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
641 	 * caller has seen a DAX entry for this index, we better find it
642 	 * at that index as well...
643 	 */
644 	WARN_ON_ONCE(!ret);
645 	return ret;
646 }
647 
648 /*
649  * Invalidate DAX entry if it is clean.
650  */
651 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
652 				      pgoff_t index)
653 {
654 	return __dax_invalidate_entry(mapping, index, false);
655 }
656 
657 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
658 		sector_t sector, size_t size, struct page *to,
659 		unsigned long vaddr)
660 {
661 	void *vto, *kaddr;
662 	pgoff_t pgoff;
663 	long rc;
664 	int id;
665 
666 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
667 	if (rc)
668 		return rc;
669 
670 	id = dax_read_lock();
671 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
672 	if (rc < 0) {
673 		dax_read_unlock(id);
674 		return rc;
675 	}
676 	vto = kmap_atomic(to);
677 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
678 	kunmap_atomic(vto);
679 	dax_read_unlock(id);
680 	return 0;
681 }
682 
683 /*
684  * By this point grab_mapping_entry() has ensured that we have a locked entry
685  * of the appropriate size so we don't have to worry about downgrading PMDs to
686  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
687  * already in the tree, we will skip the insertion and just dirty the PMD as
688  * appropriate.
689  */
690 static void *dax_insert_entry(struct xa_state *xas,
691 		struct address_space *mapping, struct vm_fault *vmf,
692 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
693 {
694 	void *new_entry = dax_make_entry(pfn, flags);
695 
696 	if (dirty)
697 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698 
699 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
700 		unsigned long index = xas->xa_index;
701 		/* we are replacing a zero page with block mapping */
702 		if (dax_is_pmd_entry(entry))
703 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
704 					PG_PMD_NR, false);
705 		else /* pte entry */
706 			unmap_mapping_pages(mapping, index, 1, false);
707 	}
708 
709 	xas_reset(xas);
710 	xas_lock_irq(xas);
711 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
712 		dax_disassociate_entry(entry, mapping, false);
713 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
714 	}
715 
716 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
717 		/*
718 		 * Only swap our new entry into the page cache if the current
719 		 * entry is a zero page or an empty entry.  If a normal PTE or
720 		 * PMD entry is already in the cache, we leave it alone.  This
721 		 * means that if we are trying to insert a PTE and the
722 		 * existing entry is a PMD, we will just leave the PMD in the
723 		 * tree and dirty it if necessary.
724 		 */
725 		void *old = dax_lock_entry(xas, new_entry);
726 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
727 					DAX_LOCKED));
728 		entry = new_entry;
729 	} else {
730 		xas_load(xas);	/* Walk the xa_state */
731 	}
732 
733 	if (dirty)
734 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
735 
736 	xas_unlock_irq(xas);
737 	return entry;
738 }
739 
740 static inline
741 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
742 {
743 	unsigned long address;
744 
745 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
746 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
747 	return address;
748 }
749 
750 /* Walk all mappings of a given index of a file and writeprotect them */
751 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
752 		unsigned long pfn)
753 {
754 	struct vm_area_struct *vma;
755 	pte_t pte, *ptep = NULL;
756 	pmd_t *pmdp = NULL;
757 	spinlock_t *ptl;
758 
759 	i_mmap_lock_read(mapping);
760 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
761 		unsigned long address, start, end;
762 
763 		cond_resched();
764 
765 		if (!(vma->vm_flags & VM_SHARED))
766 			continue;
767 
768 		address = pgoff_address(index, vma);
769 
770 		/*
771 		 * Note because we provide start/end to follow_pte_pmd it will
772 		 * call mmu_notifier_invalidate_range_start() on our behalf
773 		 * before taking any lock.
774 		 */
775 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
776 			continue;
777 
778 		/*
779 		 * No need to call mmu_notifier_invalidate_range() as we are
780 		 * downgrading page table protection not changing it to point
781 		 * to a new page.
782 		 *
783 		 * See Documentation/vm/mmu_notifier.rst
784 		 */
785 		if (pmdp) {
786 #ifdef CONFIG_FS_DAX_PMD
787 			pmd_t pmd;
788 
789 			if (pfn != pmd_pfn(*pmdp))
790 				goto unlock_pmd;
791 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
792 				goto unlock_pmd;
793 
794 			flush_cache_page(vma, address, pfn);
795 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
796 			pmd = pmd_wrprotect(pmd);
797 			pmd = pmd_mkclean(pmd);
798 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
799 unlock_pmd:
800 #endif
801 			spin_unlock(ptl);
802 		} else {
803 			if (pfn != pte_pfn(*ptep))
804 				goto unlock_pte;
805 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
806 				goto unlock_pte;
807 
808 			flush_cache_page(vma, address, pfn);
809 			pte = ptep_clear_flush(vma, address, ptep);
810 			pte = pte_wrprotect(pte);
811 			pte = pte_mkclean(pte);
812 			set_pte_at(vma->vm_mm, address, ptep, pte);
813 unlock_pte:
814 			pte_unmap_unlock(ptep, ptl);
815 		}
816 
817 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
818 	}
819 	i_mmap_unlock_read(mapping);
820 }
821 
822 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
823 		struct address_space *mapping, void *entry)
824 {
825 	unsigned long pfn;
826 	long ret = 0;
827 	size_t size;
828 
829 	/*
830 	 * A page got tagged dirty in DAX mapping? Something is seriously
831 	 * wrong.
832 	 */
833 	if (WARN_ON(!xa_is_value(entry)))
834 		return -EIO;
835 
836 	if (unlikely(dax_is_locked(entry))) {
837 		void *old_entry = entry;
838 
839 		entry = get_unlocked_entry(xas);
840 
841 		/* Entry got punched out / reallocated? */
842 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
843 			goto put_unlocked;
844 		/*
845 		 * Entry got reallocated elsewhere? No need to writeback.
846 		 * We have to compare pfns as we must not bail out due to
847 		 * difference in lockbit or entry type.
848 		 */
849 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
850 			goto put_unlocked;
851 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
852 					dax_is_zero_entry(entry))) {
853 			ret = -EIO;
854 			goto put_unlocked;
855 		}
856 
857 		/* Another fsync thread may have already done this entry */
858 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
859 			goto put_unlocked;
860 	}
861 
862 	/* Lock the entry to serialize with page faults */
863 	dax_lock_entry(xas, entry);
864 
865 	/*
866 	 * We can clear the tag now but we have to be careful so that concurrent
867 	 * dax_writeback_one() calls for the same index cannot finish before we
868 	 * actually flush the caches. This is achieved as the calls will look
869 	 * at the entry only under the i_pages lock and once they do that
870 	 * they will see the entry locked and wait for it to unlock.
871 	 */
872 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
873 	xas_unlock_irq(xas);
874 
875 	/*
876 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
877 	 * in the middle of a PMD, the 'index' we are given will be aligned to
878 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
879 	 * This allows us to flush for PMD_SIZE and not have to worry about
880 	 * partial PMD writebacks.
881 	 */
882 	pfn = dax_to_pfn(entry);
883 	size = PAGE_SIZE << dax_entry_order(entry);
884 
885 	dax_entry_mkclean(mapping, xas->xa_index, pfn);
886 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
887 	/*
888 	 * After we have flushed the cache, we can clear the dirty tag. There
889 	 * cannot be new dirty data in the pfn after the flush has completed as
890 	 * the pfn mappings are writeprotected and fault waits for mapping
891 	 * entry lock.
892 	 */
893 	xas_reset(xas);
894 	xas_lock_irq(xas);
895 	xas_store(xas, entry);
896 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
897 	dax_wake_entry(xas, entry, false);
898 
899 	trace_dax_writeback_one(mapping->host, xas->xa_index,
900 			size >> PAGE_SHIFT);
901 	return ret;
902 
903  put_unlocked:
904 	put_unlocked_entry(xas, entry);
905 	return ret;
906 }
907 
908 /*
909  * Flush the mapping to the persistent domain within the byte range of [start,
910  * end]. This is required by data integrity operations to ensure file data is
911  * on persistent storage prior to completion of the operation.
912  */
913 int dax_writeback_mapping_range(struct address_space *mapping,
914 		struct block_device *bdev, struct writeback_control *wbc)
915 {
916 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
917 	struct inode *inode = mapping->host;
918 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
919 	struct dax_device *dax_dev;
920 	void *entry;
921 	int ret = 0;
922 	unsigned int scanned = 0;
923 
924 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
925 		return -EIO;
926 
927 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
928 		return 0;
929 
930 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
931 	if (!dax_dev)
932 		return -EIO;
933 
934 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
935 
936 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
937 
938 	xas_lock_irq(&xas);
939 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
940 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
941 		if (ret < 0) {
942 			mapping_set_error(mapping, ret);
943 			break;
944 		}
945 		if (++scanned % XA_CHECK_SCHED)
946 			continue;
947 
948 		xas_pause(&xas);
949 		xas_unlock_irq(&xas);
950 		cond_resched();
951 		xas_lock_irq(&xas);
952 	}
953 	xas_unlock_irq(&xas);
954 	put_dax(dax_dev);
955 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
956 	return ret;
957 }
958 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959 
960 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
961 {
962 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
963 }
964 
965 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966 			 pfn_t *pfnp)
967 {
968 	const sector_t sector = dax_iomap_sector(iomap, pos);
969 	pgoff_t pgoff;
970 	int id, rc;
971 	long length;
972 
973 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
974 	if (rc)
975 		return rc;
976 	id = dax_read_lock();
977 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
978 				   NULL, pfnp);
979 	if (length < 0) {
980 		rc = length;
981 		goto out;
982 	}
983 	rc = -EINVAL;
984 	if (PFN_PHYS(length) < size)
985 		goto out;
986 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
987 		goto out;
988 	/* For larger pages we need devmap */
989 	if (length > 1 && !pfn_t_devmap(*pfnp))
990 		goto out;
991 	rc = 0;
992 out:
993 	dax_read_unlock(id);
994 	return rc;
995 }
996 
997 /*
998  * The user has performed a load from a hole in the file.  Allocating a new
999  * page in the file would cause excessive storage usage for workloads with
1000  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1001  * If this page is ever written to we will re-fault and change the mapping to
1002  * point to real DAX storage instead.
1003  */
1004 static vm_fault_t dax_load_hole(struct xa_state *xas,
1005 		struct address_space *mapping, void **entry,
1006 		struct vm_fault *vmf)
1007 {
1008 	struct inode *inode = mapping->host;
1009 	unsigned long vaddr = vmf->address;
1010 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1011 	vm_fault_t ret;
1012 
1013 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1014 			DAX_ZERO_PAGE, false);
1015 
1016 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1017 	trace_dax_load_hole(inode, vmf, ret);
1018 	return ret;
1019 }
1020 
1021 static bool dax_range_is_aligned(struct block_device *bdev,
1022 				 unsigned int offset, unsigned int length)
1023 {
1024 	unsigned short sector_size = bdev_logical_block_size(bdev);
1025 
1026 	if (!IS_ALIGNED(offset, sector_size))
1027 		return false;
1028 	if (!IS_ALIGNED(length, sector_size))
1029 		return false;
1030 
1031 	return true;
1032 }
1033 
1034 int __dax_zero_page_range(struct block_device *bdev,
1035 		struct dax_device *dax_dev, sector_t sector,
1036 		unsigned int offset, unsigned int size)
1037 {
1038 	if (dax_range_is_aligned(bdev, offset, size)) {
1039 		sector_t start_sector = sector + (offset >> 9);
1040 
1041 		return blkdev_issue_zeroout(bdev, start_sector,
1042 				size >> 9, GFP_NOFS, 0);
1043 	} else {
1044 		pgoff_t pgoff;
1045 		long rc, id;
1046 		void *kaddr;
1047 
1048 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1049 		if (rc)
1050 			return rc;
1051 
1052 		id = dax_read_lock();
1053 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1054 		if (rc < 0) {
1055 			dax_read_unlock(id);
1056 			return rc;
1057 		}
1058 		memset(kaddr + offset, 0, size);
1059 		dax_flush(dax_dev, kaddr + offset, size);
1060 		dax_read_unlock(id);
1061 	}
1062 	return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1065 
1066 static loff_t
1067 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1068 		struct iomap *iomap)
1069 {
1070 	struct block_device *bdev = iomap->bdev;
1071 	struct dax_device *dax_dev = iomap->dax_dev;
1072 	struct iov_iter *iter = data;
1073 	loff_t end = pos + length, done = 0;
1074 	ssize_t ret = 0;
1075 	size_t xfer;
1076 	int id;
1077 
1078 	if (iov_iter_rw(iter) == READ) {
1079 		end = min(end, i_size_read(inode));
1080 		if (pos >= end)
1081 			return 0;
1082 
1083 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1084 			return iov_iter_zero(min(length, end - pos), iter);
1085 	}
1086 
1087 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1088 		return -EIO;
1089 
1090 	/*
1091 	 * Write can allocate block for an area which has a hole page mapped
1092 	 * into page tables. We have to tear down these mappings so that data
1093 	 * written by write(2) is visible in mmap.
1094 	 */
1095 	if (iomap->flags & IOMAP_F_NEW) {
1096 		invalidate_inode_pages2_range(inode->i_mapping,
1097 					      pos >> PAGE_SHIFT,
1098 					      (end - 1) >> PAGE_SHIFT);
1099 	}
1100 
1101 	id = dax_read_lock();
1102 	while (pos < end) {
1103 		unsigned offset = pos & (PAGE_SIZE - 1);
1104 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1105 		const sector_t sector = dax_iomap_sector(iomap, pos);
1106 		ssize_t map_len;
1107 		pgoff_t pgoff;
1108 		void *kaddr;
1109 
1110 		if (fatal_signal_pending(current)) {
1111 			ret = -EINTR;
1112 			break;
1113 		}
1114 
1115 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1116 		if (ret)
1117 			break;
1118 
1119 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1120 				&kaddr, NULL);
1121 		if (map_len < 0) {
1122 			ret = map_len;
1123 			break;
1124 		}
1125 
1126 		map_len = PFN_PHYS(map_len);
1127 		kaddr += offset;
1128 		map_len -= offset;
1129 		if (map_len > end - pos)
1130 			map_len = end - pos;
1131 
1132 		/*
1133 		 * The userspace address for the memory copy has already been
1134 		 * validated via access_ok() in either vfs_read() or
1135 		 * vfs_write(), depending on which operation we are doing.
1136 		 */
1137 		if (iov_iter_rw(iter) == WRITE)
1138 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1139 					map_len, iter);
1140 		else
1141 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1142 					map_len, iter);
1143 
1144 		pos += xfer;
1145 		length -= xfer;
1146 		done += xfer;
1147 
1148 		if (xfer == 0)
1149 			ret = -EFAULT;
1150 		if (xfer < map_len)
1151 			break;
1152 	}
1153 	dax_read_unlock(id);
1154 
1155 	return done ? done : ret;
1156 }
1157 
1158 /**
1159  * dax_iomap_rw - Perform I/O to a DAX file
1160  * @iocb:	The control block for this I/O
1161  * @iter:	The addresses to do I/O from or to
1162  * @ops:	iomap ops passed from the file system
1163  *
1164  * This function performs read and write operations to directly mapped
1165  * persistent memory.  The callers needs to take care of read/write exclusion
1166  * and evicting any page cache pages in the region under I/O.
1167  */
1168 ssize_t
1169 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1170 		const struct iomap_ops *ops)
1171 {
1172 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1173 	struct inode *inode = mapping->host;
1174 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1175 	unsigned flags = 0;
1176 
1177 	if (iov_iter_rw(iter) == WRITE) {
1178 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1179 		flags |= IOMAP_WRITE;
1180 	} else {
1181 		lockdep_assert_held(&inode->i_rwsem);
1182 	}
1183 
1184 	while (iov_iter_count(iter)) {
1185 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1186 				iter, dax_iomap_actor);
1187 		if (ret <= 0)
1188 			break;
1189 		pos += ret;
1190 		done += ret;
1191 	}
1192 
1193 	iocb->ki_pos += done;
1194 	return done ? done : ret;
1195 }
1196 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1197 
1198 static vm_fault_t dax_fault_return(int error)
1199 {
1200 	if (error == 0)
1201 		return VM_FAULT_NOPAGE;
1202 	if (error == -ENOMEM)
1203 		return VM_FAULT_OOM;
1204 	return VM_FAULT_SIGBUS;
1205 }
1206 
1207 /*
1208  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1209  * flushed on write-faults (non-cow), but not read-faults.
1210  */
1211 static bool dax_fault_is_synchronous(unsigned long flags,
1212 		struct vm_area_struct *vma, struct iomap *iomap)
1213 {
1214 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1215 		&& (iomap->flags & IOMAP_F_DIRTY);
1216 }
1217 
1218 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1219 			       int *iomap_errp, const struct iomap_ops *ops)
1220 {
1221 	struct vm_area_struct *vma = vmf->vma;
1222 	struct address_space *mapping = vma->vm_file->f_mapping;
1223 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1224 	struct inode *inode = mapping->host;
1225 	unsigned long vaddr = vmf->address;
1226 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1227 	struct iomap iomap = { 0 };
1228 	unsigned flags = IOMAP_FAULT;
1229 	int error, major = 0;
1230 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1231 	bool sync;
1232 	vm_fault_t ret = 0;
1233 	void *entry;
1234 	pfn_t pfn;
1235 
1236 	trace_dax_pte_fault(inode, vmf, ret);
1237 	/*
1238 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1239 	 * to hold locks serializing us with truncate / punch hole so this is
1240 	 * a reliable test.
1241 	 */
1242 	if (pos >= i_size_read(inode)) {
1243 		ret = VM_FAULT_SIGBUS;
1244 		goto out;
1245 	}
1246 
1247 	if (write && !vmf->cow_page)
1248 		flags |= IOMAP_WRITE;
1249 
1250 	entry = grab_mapping_entry(&xas, mapping, 0);
1251 	if (xa_is_internal(entry)) {
1252 		ret = xa_to_internal(entry);
1253 		goto out;
1254 	}
1255 
1256 	/*
1257 	 * It is possible, particularly with mixed reads & writes to private
1258 	 * mappings, that we have raced with a PMD fault that overlaps with
1259 	 * the PTE we need to set up.  If so just return and the fault will be
1260 	 * retried.
1261 	 */
1262 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1263 		ret = VM_FAULT_NOPAGE;
1264 		goto unlock_entry;
1265 	}
1266 
1267 	/*
1268 	 * Note that we don't bother to use iomap_apply here: DAX required
1269 	 * the file system block size to be equal the page size, which means
1270 	 * that we never have to deal with more than a single extent here.
1271 	 */
1272 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1273 	if (iomap_errp)
1274 		*iomap_errp = error;
1275 	if (error) {
1276 		ret = dax_fault_return(error);
1277 		goto unlock_entry;
1278 	}
1279 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1280 		error = -EIO;	/* fs corruption? */
1281 		goto error_finish_iomap;
1282 	}
1283 
1284 	if (vmf->cow_page) {
1285 		sector_t sector = dax_iomap_sector(&iomap, pos);
1286 
1287 		switch (iomap.type) {
1288 		case IOMAP_HOLE:
1289 		case IOMAP_UNWRITTEN:
1290 			clear_user_highpage(vmf->cow_page, vaddr);
1291 			break;
1292 		case IOMAP_MAPPED:
1293 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1294 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1295 			break;
1296 		default:
1297 			WARN_ON_ONCE(1);
1298 			error = -EIO;
1299 			break;
1300 		}
1301 
1302 		if (error)
1303 			goto error_finish_iomap;
1304 
1305 		__SetPageUptodate(vmf->cow_page);
1306 		ret = finish_fault(vmf);
1307 		if (!ret)
1308 			ret = VM_FAULT_DONE_COW;
1309 		goto finish_iomap;
1310 	}
1311 
1312 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1313 
1314 	switch (iomap.type) {
1315 	case IOMAP_MAPPED:
1316 		if (iomap.flags & IOMAP_F_NEW) {
1317 			count_vm_event(PGMAJFAULT);
1318 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1319 			major = VM_FAULT_MAJOR;
1320 		}
1321 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1322 		if (error < 0)
1323 			goto error_finish_iomap;
1324 
1325 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1326 						 0, write && !sync);
1327 
1328 		/*
1329 		 * If we are doing synchronous page fault and inode needs fsync,
1330 		 * we can insert PTE into page tables only after that happens.
1331 		 * Skip insertion for now and return the pfn so that caller can
1332 		 * insert it after fsync is done.
1333 		 */
1334 		if (sync) {
1335 			if (WARN_ON_ONCE(!pfnp)) {
1336 				error = -EIO;
1337 				goto error_finish_iomap;
1338 			}
1339 			*pfnp = pfn;
1340 			ret = VM_FAULT_NEEDDSYNC | major;
1341 			goto finish_iomap;
1342 		}
1343 		trace_dax_insert_mapping(inode, vmf, entry);
1344 		if (write)
1345 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1346 		else
1347 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1348 
1349 		goto finish_iomap;
1350 	case IOMAP_UNWRITTEN:
1351 	case IOMAP_HOLE:
1352 		if (!write) {
1353 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1354 			goto finish_iomap;
1355 		}
1356 		/*FALLTHRU*/
1357 	default:
1358 		WARN_ON_ONCE(1);
1359 		error = -EIO;
1360 		break;
1361 	}
1362 
1363  error_finish_iomap:
1364 	ret = dax_fault_return(error);
1365  finish_iomap:
1366 	if (ops->iomap_end) {
1367 		int copied = PAGE_SIZE;
1368 
1369 		if (ret & VM_FAULT_ERROR)
1370 			copied = 0;
1371 		/*
1372 		 * The fault is done by now and there's no way back (other
1373 		 * thread may be already happily using PTE we have installed).
1374 		 * Just ignore error from ->iomap_end since we cannot do much
1375 		 * with it.
1376 		 */
1377 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1378 	}
1379  unlock_entry:
1380 	dax_unlock_entry(&xas, entry);
1381  out:
1382 	trace_dax_pte_fault_done(inode, vmf, ret);
1383 	return ret | major;
1384 }
1385 
1386 #ifdef CONFIG_FS_DAX_PMD
1387 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1388 		struct iomap *iomap, void **entry)
1389 {
1390 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1391 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1392 	struct inode *inode = mapping->host;
1393 	struct page *zero_page;
1394 	spinlock_t *ptl;
1395 	pmd_t pmd_entry;
1396 	pfn_t pfn;
1397 
1398 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1399 
1400 	if (unlikely(!zero_page))
1401 		goto fallback;
1402 
1403 	pfn = page_to_pfn_t(zero_page);
1404 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1405 			DAX_PMD | DAX_ZERO_PAGE, false);
1406 
1407 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1408 	if (!pmd_none(*(vmf->pmd))) {
1409 		spin_unlock(ptl);
1410 		goto fallback;
1411 	}
1412 
1413 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1414 	pmd_entry = pmd_mkhuge(pmd_entry);
1415 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1416 	spin_unlock(ptl);
1417 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1418 	return VM_FAULT_NOPAGE;
1419 
1420 fallback:
1421 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1422 	return VM_FAULT_FALLBACK;
1423 }
1424 
1425 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1426 			       const struct iomap_ops *ops)
1427 {
1428 	struct vm_area_struct *vma = vmf->vma;
1429 	struct address_space *mapping = vma->vm_file->f_mapping;
1430 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1431 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1432 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1433 	bool sync;
1434 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1435 	struct inode *inode = mapping->host;
1436 	vm_fault_t result = VM_FAULT_FALLBACK;
1437 	struct iomap iomap = { 0 };
1438 	pgoff_t max_pgoff;
1439 	void *entry;
1440 	loff_t pos;
1441 	int error;
1442 	pfn_t pfn;
1443 
1444 	/*
1445 	 * Check whether offset isn't beyond end of file now. Caller is
1446 	 * supposed to hold locks serializing us with truncate / punch hole so
1447 	 * this is a reliable test.
1448 	 */
1449 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1450 
1451 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1452 
1453 	/*
1454 	 * Make sure that the faulting address's PMD offset (color) matches
1455 	 * the PMD offset from the start of the file.  This is necessary so
1456 	 * that a PMD range in the page table overlaps exactly with a PMD
1457 	 * range in the page cache.
1458 	 */
1459 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1460 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1461 		goto fallback;
1462 
1463 	/* Fall back to PTEs if we're going to COW */
1464 	if (write && !(vma->vm_flags & VM_SHARED))
1465 		goto fallback;
1466 
1467 	/* If the PMD would extend outside the VMA */
1468 	if (pmd_addr < vma->vm_start)
1469 		goto fallback;
1470 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1471 		goto fallback;
1472 
1473 	if (xas.xa_index >= max_pgoff) {
1474 		result = VM_FAULT_SIGBUS;
1475 		goto out;
1476 	}
1477 
1478 	/* If the PMD would extend beyond the file size */
1479 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1480 		goto fallback;
1481 
1482 	/*
1483 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1484 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1485 	 * entry is already in the array, for instance), it will return
1486 	 * VM_FAULT_FALLBACK.
1487 	 */
1488 	entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1489 	if (xa_is_internal(entry)) {
1490 		result = xa_to_internal(entry);
1491 		goto fallback;
1492 	}
1493 
1494 	/*
1495 	 * It is possible, particularly with mixed reads & writes to private
1496 	 * mappings, that we have raced with a PTE fault that overlaps with
1497 	 * the PMD we need to set up.  If so just return and the fault will be
1498 	 * retried.
1499 	 */
1500 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1501 			!pmd_devmap(*vmf->pmd)) {
1502 		result = 0;
1503 		goto unlock_entry;
1504 	}
1505 
1506 	/*
1507 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1508 	 * setting up a mapping, so really we're using iomap_begin() as a way
1509 	 * to look up our filesystem block.
1510 	 */
1511 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1512 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1513 	if (error)
1514 		goto unlock_entry;
1515 
1516 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1517 		goto finish_iomap;
1518 
1519 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1520 
1521 	switch (iomap.type) {
1522 	case IOMAP_MAPPED:
1523 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1524 		if (error < 0)
1525 			goto finish_iomap;
1526 
1527 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1528 						DAX_PMD, write && !sync);
1529 
1530 		/*
1531 		 * If we are doing synchronous page fault and inode needs fsync,
1532 		 * we can insert PMD into page tables only after that happens.
1533 		 * Skip insertion for now and return the pfn so that caller can
1534 		 * insert it after fsync is done.
1535 		 */
1536 		if (sync) {
1537 			if (WARN_ON_ONCE(!pfnp))
1538 				goto finish_iomap;
1539 			*pfnp = pfn;
1540 			result = VM_FAULT_NEEDDSYNC;
1541 			goto finish_iomap;
1542 		}
1543 
1544 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1545 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1546 					    write);
1547 		break;
1548 	case IOMAP_UNWRITTEN:
1549 	case IOMAP_HOLE:
1550 		if (WARN_ON_ONCE(write))
1551 			break;
1552 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1553 		break;
1554 	default:
1555 		WARN_ON_ONCE(1);
1556 		break;
1557 	}
1558 
1559  finish_iomap:
1560 	if (ops->iomap_end) {
1561 		int copied = PMD_SIZE;
1562 
1563 		if (result == VM_FAULT_FALLBACK)
1564 			copied = 0;
1565 		/*
1566 		 * The fault is done by now and there's no way back (other
1567 		 * thread may be already happily using PMD we have installed).
1568 		 * Just ignore error from ->iomap_end since we cannot do much
1569 		 * with it.
1570 		 */
1571 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1572 				&iomap);
1573 	}
1574  unlock_entry:
1575 	dax_unlock_entry(&xas, entry);
1576  fallback:
1577 	if (result == VM_FAULT_FALLBACK) {
1578 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1579 		count_vm_event(THP_FAULT_FALLBACK);
1580 	}
1581 out:
1582 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1583 	return result;
1584 }
1585 #else
1586 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1587 			       const struct iomap_ops *ops)
1588 {
1589 	return VM_FAULT_FALLBACK;
1590 }
1591 #endif /* CONFIG_FS_DAX_PMD */
1592 
1593 /**
1594  * dax_iomap_fault - handle a page fault on a DAX file
1595  * @vmf: The description of the fault
1596  * @pe_size: Size of the page to fault in
1597  * @pfnp: PFN to insert for synchronous faults if fsync is required
1598  * @iomap_errp: Storage for detailed error code in case of error
1599  * @ops: Iomap ops passed from the file system
1600  *
1601  * When a page fault occurs, filesystems may call this helper in
1602  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1603  * has done all the necessary locking for page fault to proceed
1604  * successfully.
1605  */
1606 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1607 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1608 {
1609 	switch (pe_size) {
1610 	case PE_SIZE_PTE:
1611 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1612 	case PE_SIZE_PMD:
1613 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1614 	default:
1615 		return VM_FAULT_FALLBACK;
1616 	}
1617 }
1618 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1619 
1620 /*
1621  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1622  * @vmf: The description of the fault
1623  * @pfn: PFN to insert
1624  * @order: Order of entry to insert.
1625  *
1626  * This function inserts a writeable PTE or PMD entry into the page tables
1627  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1628  */
1629 static vm_fault_t
1630 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1631 {
1632 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1633 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1634 	void *entry;
1635 	vm_fault_t ret;
1636 
1637 	xas_lock_irq(&xas);
1638 	entry = get_unlocked_entry(&xas);
1639 	/* Did we race with someone splitting entry or so? */
1640 	if (!entry ||
1641 	    (order == 0 && !dax_is_pte_entry(entry)) ||
1642 	    (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1643 		put_unlocked_entry(&xas, entry);
1644 		xas_unlock_irq(&xas);
1645 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1646 						      VM_FAULT_NOPAGE);
1647 		return VM_FAULT_NOPAGE;
1648 	}
1649 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1650 	dax_lock_entry(&xas, entry);
1651 	xas_unlock_irq(&xas);
1652 	if (order == 0)
1653 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1654 #ifdef CONFIG_FS_DAX_PMD
1655 	else if (order == PMD_ORDER)
1656 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1657 			pfn, true);
1658 #endif
1659 	else
1660 		ret = VM_FAULT_FALLBACK;
1661 	dax_unlock_entry(&xas, entry);
1662 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1663 	return ret;
1664 }
1665 
1666 /**
1667  * dax_finish_sync_fault - finish synchronous page fault
1668  * @vmf: The description of the fault
1669  * @pe_size: Size of entry to be inserted
1670  * @pfn: PFN to insert
1671  *
1672  * This function ensures that the file range touched by the page fault is
1673  * stored persistently on the media and handles inserting of appropriate page
1674  * table entry.
1675  */
1676 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1677 		enum page_entry_size pe_size, pfn_t pfn)
1678 {
1679 	int err;
1680 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1681 	unsigned int order = pe_order(pe_size);
1682 	size_t len = PAGE_SIZE << order;
1683 
1684 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1685 	if (err)
1686 		return VM_FAULT_SIGBUS;
1687 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1688 }
1689 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1690