xref: /openbmc/linux/fs/dax.c (revision 6f7db389)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 static inline bool dax_mapping_is_cow(struct address_space *mapping)
338 {
339 	return (unsigned long)mapping == PAGE_MAPPING_DAX_COW;
340 }
341 
342 /*
343  * Set the page->mapping with FS_DAX_MAPPING_COW flag, increase the refcount.
344  */
345 static inline void dax_mapping_set_cow(struct page *page)
346 {
347 	if ((uintptr_t)page->mapping != PAGE_MAPPING_DAX_COW) {
348 		/*
349 		 * Reset the index if the page was already mapped
350 		 * regularly before.
351 		 */
352 		if (page->mapping)
353 			page->index = 1;
354 		page->mapping = (void *)PAGE_MAPPING_DAX_COW;
355 	}
356 	page->index++;
357 }
358 
359 /*
360  * When it is called in dax_insert_entry(), the cow flag will indicate that
361  * whether this entry is shared by multiple files.  If so, set the page->mapping
362  * FS_DAX_MAPPING_COW, and use page->index as refcount.
363  */
364 static void dax_associate_entry(void *entry, struct address_space *mapping,
365 		struct vm_area_struct *vma, unsigned long address, bool cow)
366 {
367 	unsigned long size = dax_entry_size(entry), pfn, index;
368 	int i = 0;
369 
370 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 		return;
372 
373 	index = linear_page_index(vma, address & ~(size - 1));
374 	for_each_mapped_pfn(entry, pfn) {
375 		struct page *page = pfn_to_page(pfn);
376 
377 		if (cow) {
378 			dax_mapping_set_cow(page);
379 		} else {
380 			WARN_ON_ONCE(page->mapping);
381 			page->mapping = mapping;
382 			page->index = index + i++;
383 		}
384 	}
385 }
386 
387 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
388 		bool trunc)
389 {
390 	unsigned long pfn;
391 
392 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
393 		return;
394 
395 	for_each_mapped_pfn(entry, pfn) {
396 		struct page *page = pfn_to_page(pfn);
397 
398 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
399 		if (dax_mapping_is_cow(page->mapping)) {
400 			/* keep the CoW flag if this page is still shared */
401 			if (page->index-- > 0)
402 				continue;
403 		} else
404 			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
405 		page->mapping = NULL;
406 		page->index = 0;
407 	}
408 }
409 
410 static struct page *dax_busy_page(void *entry)
411 {
412 	unsigned long pfn;
413 
414 	for_each_mapped_pfn(entry, pfn) {
415 		struct page *page = pfn_to_page(pfn);
416 
417 		if (page_ref_count(page) > 1)
418 			return page;
419 	}
420 	return NULL;
421 }
422 
423 /*
424  * dax_lock_page - Lock the DAX entry corresponding to a page
425  * @page: The page whose entry we want to lock
426  *
427  * Context: Process context.
428  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
429  * not be locked.
430  */
431 dax_entry_t dax_lock_page(struct page *page)
432 {
433 	XA_STATE(xas, NULL, 0);
434 	void *entry;
435 
436 	/* Ensure page->mapping isn't freed while we look at it */
437 	rcu_read_lock();
438 	for (;;) {
439 		struct address_space *mapping = READ_ONCE(page->mapping);
440 
441 		entry = NULL;
442 		if (!mapping || !dax_mapping(mapping))
443 			break;
444 
445 		/*
446 		 * In the device-dax case there's no need to lock, a
447 		 * struct dev_pagemap pin is sufficient to keep the
448 		 * inode alive, and we assume we have dev_pagemap pin
449 		 * otherwise we would not have a valid pfn_to_page()
450 		 * translation.
451 		 */
452 		entry = (void *)~0UL;
453 		if (S_ISCHR(mapping->host->i_mode))
454 			break;
455 
456 		xas.xa = &mapping->i_pages;
457 		xas_lock_irq(&xas);
458 		if (mapping != page->mapping) {
459 			xas_unlock_irq(&xas);
460 			continue;
461 		}
462 		xas_set(&xas, page->index);
463 		entry = xas_load(&xas);
464 		if (dax_is_locked(entry)) {
465 			rcu_read_unlock();
466 			wait_entry_unlocked(&xas, entry);
467 			rcu_read_lock();
468 			continue;
469 		}
470 		dax_lock_entry(&xas, entry);
471 		xas_unlock_irq(&xas);
472 		break;
473 	}
474 	rcu_read_unlock();
475 	return (dax_entry_t)entry;
476 }
477 
478 void dax_unlock_page(struct page *page, dax_entry_t cookie)
479 {
480 	struct address_space *mapping = page->mapping;
481 	XA_STATE(xas, &mapping->i_pages, page->index);
482 
483 	if (S_ISCHR(mapping->host->i_mode))
484 		return;
485 
486 	dax_unlock_entry(&xas, (void *)cookie);
487 }
488 
489 /*
490  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
491  * @mapping: the file's mapping whose entry we want to lock
492  * @index: the offset within this file
493  * @page: output the dax page corresponding to this dax entry
494  *
495  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
496  * could not be locked.
497  */
498 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
499 		struct page **page)
500 {
501 	XA_STATE(xas, NULL, 0);
502 	void *entry;
503 
504 	rcu_read_lock();
505 	for (;;) {
506 		entry = NULL;
507 		if (!dax_mapping(mapping))
508 			break;
509 
510 		xas.xa = &mapping->i_pages;
511 		xas_lock_irq(&xas);
512 		xas_set(&xas, index);
513 		entry = xas_load(&xas);
514 		if (dax_is_locked(entry)) {
515 			rcu_read_unlock();
516 			wait_entry_unlocked(&xas, entry);
517 			rcu_read_lock();
518 			continue;
519 		}
520 		if (!entry ||
521 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
522 			/*
523 			 * Because we are looking for entry from file's mapping
524 			 * and index, so the entry may not be inserted for now,
525 			 * or even a zero/empty entry.  We don't think this is
526 			 * an error case.  So, return a special value and do
527 			 * not output @page.
528 			 */
529 			entry = (void *)~0UL;
530 		} else {
531 			*page = pfn_to_page(dax_to_pfn(entry));
532 			dax_lock_entry(&xas, entry);
533 		}
534 		xas_unlock_irq(&xas);
535 		break;
536 	}
537 	rcu_read_unlock();
538 	return (dax_entry_t)entry;
539 }
540 
541 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
542 		dax_entry_t cookie)
543 {
544 	XA_STATE(xas, &mapping->i_pages, index);
545 
546 	if (cookie == ~0UL)
547 		return;
548 
549 	dax_unlock_entry(&xas, (void *)cookie);
550 }
551 
552 /*
553  * Find page cache entry at given index. If it is a DAX entry, return it
554  * with the entry locked. If the page cache doesn't contain an entry at
555  * that index, add a locked empty entry.
556  *
557  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
558  * either return that locked entry or will return VM_FAULT_FALLBACK.
559  * This will happen if there are any PTE entries within the PMD range
560  * that we are requesting.
561  *
562  * We always favor PTE entries over PMD entries. There isn't a flow where we
563  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
564  * insertion will fail if it finds any PTE entries already in the tree, and a
565  * PTE insertion will cause an existing PMD entry to be unmapped and
566  * downgraded to PTE entries.  This happens for both PMD zero pages as
567  * well as PMD empty entries.
568  *
569  * The exception to this downgrade path is for PMD entries that have
570  * real storage backing them.  We will leave these real PMD entries in
571  * the tree, and PTE writes will simply dirty the entire PMD entry.
572  *
573  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
574  * persistent memory the benefit is doubtful. We can add that later if we can
575  * show it helps.
576  *
577  * On error, this function does not return an ERR_PTR.  Instead it returns
578  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
579  * overlap with xarray value entries.
580  */
581 static void *grab_mapping_entry(struct xa_state *xas,
582 		struct address_space *mapping, unsigned int order)
583 {
584 	unsigned long index = xas->xa_index;
585 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
586 	void *entry;
587 
588 retry:
589 	pmd_downgrade = false;
590 	xas_lock_irq(xas);
591 	entry = get_unlocked_entry(xas, order);
592 
593 	if (entry) {
594 		if (dax_is_conflict(entry))
595 			goto fallback;
596 		if (!xa_is_value(entry)) {
597 			xas_set_err(xas, -EIO);
598 			goto out_unlock;
599 		}
600 
601 		if (order == 0) {
602 			if (dax_is_pmd_entry(entry) &&
603 			    (dax_is_zero_entry(entry) ||
604 			     dax_is_empty_entry(entry))) {
605 				pmd_downgrade = true;
606 			}
607 		}
608 	}
609 
610 	if (pmd_downgrade) {
611 		/*
612 		 * Make sure 'entry' remains valid while we drop
613 		 * the i_pages lock.
614 		 */
615 		dax_lock_entry(xas, entry);
616 
617 		/*
618 		 * Besides huge zero pages the only other thing that gets
619 		 * downgraded are empty entries which don't need to be
620 		 * unmapped.
621 		 */
622 		if (dax_is_zero_entry(entry)) {
623 			xas_unlock_irq(xas);
624 			unmap_mapping_pages(mapping,
625 					xas->xa_index & ~PG_PMD_COLOUR,
626 					PG_PMD_NR, false);
627 			xas_reset(xas);
628 			xas_lock_irq(xas);
629 		}
630 
631 		dax_disassociate_entry(entry, mapping, false);
632 		xas_store(xas, NULL);	/* undo the PMD join */
633 		dax_wake_entry(xas, entry, WAKE_ALL);
634 		mapping->nrpages -= PG_PMD_NR;
635 		entry = NULL;
636 		xas_set(xas, index);
637 	}
638 
639 	if (entry) {
640 		dax_lock_entry(xas, entry);
641 	} else {
642 		unsigned long flags = DAX_EMPTY;
643 
644 		if (order > 0)
645 			flags |= DAX_PMD;
646 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
647 		dax_lock_entry(xas, entry);
648 		if (xas_error(xas))
649 			goto out_unlock;
650 		mapping->nrpages += 1UL << order;
651 	}
652 
653 out_unlock:
654 	xas_unlock_irq(xas);
655 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
656 		goto retry;
657 	if (xas->xa_node == XA_ERROR(-ENOMEM))
658 		return xa_mk_internal(VM_FAULT_OOM);
659 	if (xas_error(xas))
660 		return xa_mk_internal(VM_FAULT_SIGBUS);
661 	return entry;
662 fallback:
663 	xas_unlock_irq(xas);
664 	return xa_mk_internal(VM_FAULT_FALLBACK);
665 }
666 
667 /**
668  * dax_layout_busy_page_range - find first pinned page in @mapping
669  * @mapping: address space to scan for a page with ref count > 1
670  * @start: Starting offset. Page containing 'start' is included.
671  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
672  *       pages from 'start' till the end of file are included.
673  *
674  * DAX requires ZONE_DEVICE mapped pages. These pages are never
675  * 'onlined' to the page allocator so they are considered idle when
676  * page->count == 1. A filesystem uses this interface to determine if
677  * any page in the mapping is busy, i.e. for DMA, or other
678  * get_user_pages() usages.
679  *
680  * It is expected that the filesystem is holding locks to block the
681  * establishment of new mappings in this address_space. I.e. it expects
682  * to be able to run unmap_mapping_range() and subsequently not race
683  * mapping_mapped() becoming true.
684  */
685 struct page *dax_layout_busy_page_range(struct address_space *mapping,
686 					loff_t start, loff_t end)
687 {
688 	void *entry;
689 	unsigned int scanned = 0;
690 	struct page *page = NULL;
691 	pgoff_t start_idx = start >> PAGE_SHIFT;
692 	pgoff_t end_idx;
693 	XA_STATE(xas, &mapping->i_pages, start_idx);
694 
695 	/*
696 	 * In the 'limited' case get_user_pages() for dax is disabled.
697 	 */
698 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
699 		return NULL;
700 
701 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
702 		return NULL;
703 
704 	/* If end == LLONG_MAX, all pages from start to till end of file */
705 	if (end == LLONG_MAX)
706 		end_idx = ULONG_MAX;
707 	else
708 		end_idx = end >> PAGE_SHIFT;
709 	/*
710 	 * If we race get_user_pages_fast() here either we'll see the
711 	 * elevated page count in the iteration and wait, or
712 	 * get_user_pages_fast() will see that the page it took a reference
713 	 * against is no longer mapped in the page tables and bail to the
714 	 * get_user_pages() slow path.  The slow path is protected by
715 	 * pte_lock() and pmd_lock(). New references are not taken without
716 	 * holding those locks, and unmap_mapping_pages() will not zero the
717 	 * pte or pmd without holding the respective lock, so we are
718 	 * guaranteed to either see new references or prevent new
719 	 * references from being established.
720 	 */
721 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
722 
723 	xas_lock_irq(&xas);
724 	xas_for_each(&xas, entry, end_idx) {
725 		if (WARN_ON_ONCE(!xa_is_value(entry)))
726 			continue;
727 		if (unlikely(dax_is_locked(entry)))
728 			entry = get_unlocked_entry(&xas, 0);
729 		if (entry)
730 			page = dax_busy_page(entry);
731 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
732 		if (page)
733 			break;
734 		if (++scanned % XA_CHECK_SCHED)
735 			continue;
736 
737 		xas_pause(&xas);
738 		xas_unlock_irq(&xas);
739 		cond_resched();
740 		xas_lock_irq(&xas);
741 	}
742 	xas_unlock_irq(&xas);
743 	return page;
744 }
745 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
746 
747 struct page *dax_layout_busy_page(struct address_space *mapping)
748 {
749 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
752 
753 static int __dax_invalidate_entry(struct address_space *mapping,
754 					  pgoff_t index, bool trunc)
755 {
756 	XA_STATE(xas, &mapping->i_pages, index);
757 	int ret = 0;
758 	void *entry;
759 
760 	xas_lock_irq(&xas);
761 	entry = get_unlocked_entry(&xas, 0);
762 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
763 		goto out;
764 	if (!trunc &&
765 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
766 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
767 		goto out;
768 	dax_disassociate_entry(entry, mapping, trunc);
769 	xas_store(&xas, NULL);
770 	mapping->nrpages -= 1UL << dax_entry_order(entry);
771 	ret = 1;
772 out:
773 	put_unlocked_entry(&xas, entry, WAKE_ALL);
774 	xas_unlock_irq(&xas);
775 	return ret;
776 }
777 
778 /*
779  * Delete DAX entry at @index from @mapping.  Wait for it
780  * to be unlocked before deleting it.
781  */
782 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
783 {
784 	int ret = __dax_invalidate_entry(mapping, index, true);
785 
786 	/*
787 	 * This gets called from truncate / punch_hole path. As such, the caller
788 	 * must hold locks protecting against concurrent modifications of the
789 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
790 	 * caller has seen a DAX entry for this index, we better find it
791 	 * at that index as well...
792 	 */
793 	WARN_ON_ONCE(!ret);
794 	return ret;
795 }
796 
797 /*
798  * Invalidate DAX entry if it is clean.
799  */
800 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
801 				      pgoff_t index)
802 {
803 	return __dax_invalidate_entry(mapping, index, false);
804 }
805 
806 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
807 {
808 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
809 }
810 
811 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
812 {
813 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
814 	void *vto, *kaddr;
815 	long rc;
816 	int id;
817 
818 	id = dax_read_lock();
819 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
820 				&kaddr, NULL);
821 	if (rc < 0) {
822 		dax_read_unlock(id);
823 		return rc;
824 	}
825 	vto = kmap_atomic(vmf->cow_page);
826 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
827 	kunmap_atomic(vto);
828 	dax_read_unlock(id);
829 	return 0;
830 }
831 
832 /*
833  * MAP_SYNC on a dax mapping guarantees dirty metadata is
834  * flushed on write-faults (non-cow), but not read-faults.
835  */
836 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
837 		struct vm_area_struct *vma)
838 {
839 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
840 		(iter->iomap.flags & IOMAP_F_DIRTY);
841 }
842 
843 static bool dax_fault_is_cow(const struct iomap_iter *iter)
844 {
845 	return (iter->flags & IOMAP_WRITE) &&
846 		(iter->iomap.flags & IOMAP_F_SHARED);
847 }
848 
849 /*
850  * By this point grab_mapping_entry() has ensured that we have a locked entry
851  * of the appropriate size so we don't have to worry about downgrading PMDs to
852  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
853  * already in the tree, we will skip the insertion and just dirty the PMD as
854  * appropriate.
855  */
856 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
857 		const struct iomap_iter *iter, void *entry, pfn_t pfn,
858 		unsigned long flags)
859 {
860 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
861 	void *new_entry = dax_make_entry(pfn, flags);
862 	bool dirty = !dax_fault_is_synchronous(iter, vmf->vma);
863 	bool cow = dax_fault_is_cow(iter);
864 
865 	if (dirty)
866 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
867 
868 	if (cow || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
869 		unsigned long index = xas->xa_index;
870 		/* we are replacing a zero page with block mapping */
871 		if (dax_is_pmd_entry(entry))
872 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
873 					PG_PMD_NR, false);
874 		else /* pte entry */
875 			unmap_mapping_pages(mapping, index, 1, false);
876 	}
877 
878 	xas_reset(xas);
879 	xas_lock_irq(xas);
880 	if (cow || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
881 		void *old;
882 
883 		dax_disassociate_entry(entry, mapping, false);
884 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
885 				cow);
886 		/*
887 		 * Only swap our new entry into the page cache if the current
888 		 * entry is a zero page or an empty entry.  If a normal PTE or
889 		 * PMD entry is already in the cache, we leave it alone.  This
890 		 * means that if we are trying to insert a PTE and the
891 		 * existing entry is a PMD, we will just leave the PMD in the
892 		 * tree and dirty it if necessary.
893 		 */
894 		old = dax_lock_entry(xas, new_entry);
895 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
896 					DAX_LOCKED));
897 		entry = new_entry;
898 	} else {
899 		xas_load(xas);	/* Walk the xa_state */
900 	}
901 
902 	if (dirty)
903 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
904 
905 	if (cow)
906 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
907 
908 	xas_unlock_irq(xas);
909 	return entry;
910 }
911 
912 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
913 		struct address_space *mapping, void *entry)
914 {
915 	unsigned long pfn, index, count, end;
916 	long ret = 0;
917 	struct vm_area_struct *vma;
918 
919 	/*
920 	 * A page got tagged dirty in DAX mapping? Something is seriously
921 	 * wrong.
922 	 */
923 	if (WARN_ON(!xa_is_value(entry)))
924 		return -EIO;
925 
926 	if (unlikely(dax_is_locked(entry))) {
927 		void *old_entry = entry;
928 
929 		entry = get_unlocked_entry(xas, 0);
930 
931 		/* Entry got punched out / reallocated? */
932 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
933 			goto put_unlocked;
934 		/*
935 		 * Entry got reallocated elsewhere? No need to writeback.
936 		 * We have to compare pfns as we must not bail out due to
937 		 * difference in lockbit or entry type.
938 		 */
939 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
940 			goto put_unlocked;
941 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
942 					dax_is_zero_entry(entry))) {
943 			ret = -EIO;
944 			goto put_unlocked;
945 		}
946 
947 		/* Another fsync thread may have already done this entry */
948 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
949 			goto put_unlocked;
950 	}
951 
952 	/* Lock the entry to serialize with page faults */
953 	dax_lock_entry(xas, entry);
954 
955 	/*
956 	 * We can clear the tag now but we have to be careful so that concurrent
957 	 * dax_writeback_one() calls for the same index cannot finish before we
958 	 * actually flush the caches. This is achieved as the calls will look
959 	 * at the entry only under the i_pages lock and once they do that
960 	 * they will see the entry locked and wait for it to unlock.
961 	 */
962 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
963 	xas_unlock_irq(xas);
964 
965 	/*
966 	 * If dax_writeback_mapping_range() was given a wbc->range_start
967 	 * in the middle of a PMD, the 'index' we use needs to be
968 	 * aligned to the start of the PMD.
969 	 * This allows us to flush for PMD_SIZE and not have to worry about
970 	 * partial PMD writebacks.
971 	 */
972 	pfn = dax_to_pfn(entry);
973 	count = 1UL << dax_entry_order(entry);
974 	index = xas->xa_index & ~(count - 1);
975 	end = index + count - 1;
976 
977 	/* Walk all mappings of a given index of a file and writeprotect them */
978 	i_mmap_lock_read(mapping);
979 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
980 		pfn_mkclean_range(pfn, count, index, vma);
981 		cond_resched();
982 	}
983 	i_mmap_unlock_read(mapping);
984 
985 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
986 	/*
987 	 * After we have flushed the cache, we can clear the dirty tag. There
988 	 * cannot be new dirty data in the pfn after the flush has completed as
989 	 * the pfn mappings are writeprotected and fault waits for mapping
990 	 * entry lock.
991 	 */
992 	xas_reset(xas);
993 	xas_lock_irq(xas);
994 	xas_store(xas, entry);
995 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
996 	dax_wake_entry(xas, entry, WAKE_NEXT);
997 
998 	trace_dax_writeback_one(mapping->host, index, count);
999 	return ret;
1000 
1001  put_unlocked:
1002 	put_unlocked_entry(xas, entry, WAKE_NEXT);
1003 	return ret;
1004 }
1005 
1006 /*
1007  * Flush the mapping to the persistent domain within the byte range of [start,
1008  * end]. This is required by data integrity operations to ensure file data is
1009  * on persistent storage prior to completion of the operation.
1010  */
1011 int dax_writeback_mapping_range(struct address_space *mapping,
1012 		struct dax_device *dax_dev, struct writeback_control *wbc)
1013 {
1014 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1015 	struct inode *inode = mapping->host;
1016 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1017 	void *entry;
1018 	int ret = 0;
1019 	unsigned int scanned = 0;
1020 
1021 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1022 		return -EIO;
1023 
1024 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1025 		return 0;
1026 
1027 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1028 
1029 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1030 
1031 	xas_lock_irq(&xas);
1032 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1033 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1034 		if (ret < 0) {
1035 			mapping_set_error(mapping, ret);
1036 			break;
1037 		}
1038 		if (++scanned % XA_CHECK_SCHED)
1039 			continue;
1040 
1041 		xas_pause(&xas);
1042 		xas_unlock_irq(&xas);
1043 		cond_resched();
1044 		xas_lock_irq(&xas);
1045 	}
1046 	xas_unlock_irq(&xas);
1047 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1051 
1052 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1053 		size_t size, void **kaddr, pfn_t *pfnp)
1054 {
1055 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1056 	int id, rc = 0;
1057 	long length;
1058 
1059 	id = dax_read_lock();
1060 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1061 				   DAX_ACCESS, kaddr, pfnp);
1062 	if (length < 0) {
1063 		rc = length;
1064 		goto out;
1065 	}
1066 	if (!pfnp)
1067 		goto out_check_addr;
1068 	rc = -EINVAL;
1069 	if (PFN_PHYS(length) < size)
1070 		goto out;
1071 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1072 		goto out;
1073 	/* For larger pages we need devmap */
1074 	if (length > 1 && !pfn_t_devmap(*pfnp))
1075 		goto out;
1076 	rc = 0;
1077 
1078 out_check_addr:
1079 	if (!kaddr)
1080 		goto out;
1081 	if (!*kaddr)
1082 		rc = -EFAULT;
1083 out:
1084 	dax_read_unlock(id);
1085 	return rc;
1086 }
1087 
1088 /**
1089  * dax_iomap_cow_copy - Copy the data from source to destination before write
1090  * @pos:	address to do copy from.
1091  * @length:	size of copy operation.
1092  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1093  * @srcmap:	iomap srcmap
1094  * @daddr:	destination address to copy to.
1095  *
1096  * This can be called from two places. Either during DAX write fault (page
1097  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1098  * write operation, dax_iomap_actor() might call this to do the copy of either
1099  * start or end unaligned address. In the latter case the rest of the copy of
1100  * aligned ranges is taken care by dax_iomap_actor() itself.
1101  */
1102 static int dax_iomap_cow_copy(loff_t pos, uint64_t length, size_t align_size,
1103 		const struct iomap *srcmap, void *daddr)
1104 {
1105 	loff_t head_off = pos & (align_size - 1);
1106 	size_t size = ALIGN(head_off + length, align_size);
1107 	loff_t end = pos + length;
1108 	loff_t pg_end = round_up(end, align_size);
1109 	bool copy_all = head_off == 0 && end == pg_end;
1110 	void *saddr = 0;
1111 	int ret = 0;
1112 
1113 	ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1114 	if (ret)
1115 		return ret;
1116 
1117 	if (copy_all) {
1118 		ret = copy_mc_to_kernel(daddr, saddr, length);
1119 		return ret ? -EIO : 0;
1120 	}
1121 
1122 	/* Copy the head part of the range */
1123 	if (head_off) {
1124 		ret = copy_mc_to_kernel(daddr, saddr, head_off);
1125 		if (ret)
1126 			return -EIO;
1127 	}
1128 
1129 	/* Copy the tail part of the range */
1130 	if (end < pg_end) {
1131 		loff_t tail_off = head_off + length;
1132 		loff_t tail_len = pg_end - end;
1133 
1134 		ret = copy_mc_to_kernel(daddr + tail_off, saddr + tail_off,
1135 					tail_len);
1136 		if (ret)
1137 			return -EIO;
1138 	}
1139 	return 0;
1140 }
1141 
1142 /*
1143  * The user has performed a load from a hole in the file.  Allocating a new
1144  * page in the file would cause excessive storage usage for workloads with
1145  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1146  * If this page is ever written to we will re-fault and change the mapping to
1147  * point to real DAX storage instead.
1148  */
1149 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1150 		const struct iomap_iter *iter, void **entry)
1151 {
1152 	struct inode *inode = iter->inode;
1153 	unsigned long vaddr = vmf->address;
1154 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1155 	vm_fault_t ret;
1156 
1157 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1158 
1159 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1160 	trace_dax_load_hole(inode, vmf, ret);
1161 	return ret;
1162 }
1163 
1164 #ifdef CONFIG_FS_DAX_PMD
1165 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1166 		const struct iomap_iter *iter, void **entry)
1167 {
1168 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1169 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1170 	struct vm_area_struct *vma = vmf->vma;
1171 	struct inode *inode = mapping->host;
1172 	pgtable_t pgtable = NULL;
1173 	struct page *zero_page;
1174 	spinlock_t *ptl;
1175 	pmd_t pmd_entry;
1176 	pfn_t pfn;
1177 
1178 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1179 
1180 	if (unlikely(!zero_page))
1181 		goto fallback;
1182 
1183 	pfn = page_to_pfn_t(zero_page);
1184 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1185 				  DAX_PMD | DAX_ZERO_PAGE);
1186 
1187 	if (arch_needs_pgtable_deposit()) {
1188 		pgtable = pte_alloc_one(vma->vm_mm);
1189 		if (!pgtable)
1190 			return VM_FAULT_OOM;
1191 	}
1192 
1193 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1194 	if (!pmd_none(*(vmf->pmd))) {
1195 		spin_unlock(ptl);
1196 		goto fallback;
1197 	}
1198 
1199 	if (pgtable) {
1200 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1201 		mm_inc_nr_ptes(vma->vm_mm);
1202 	}
1203 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1204 	pmd_entry = pmd_mkhuge(pmd_entry);
1205 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1206 	spin_unlock(ptl);
1207 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1208 	return VM_FAULT_NOPAGE;
1209 
1210 fallback:
1211 	if (pgtable)
1212 		pte_free(vma->vm_mm, pgtable);
1213 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1214 	return VM_FAULT_FALLBACK;
1215 }
1216 #else
1217 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1218 		const struct iomap_iter *iter, void **entry)
1219 {
1220 	return VM_FAULT_FALLBACK;
1221 }
1222 #endif /* CONFIG_FS_DAX_PMD */
1223 
1224 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1225 {
1226 	const struct iomap *iomap = &iter->iomap;
1227 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1228 	unsigned offset = offset_in_page(pos);
1229 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1230 	void *kaddr;
1231 	long ret;
1232 
1233 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1234 				NULL);
1235 	if (ret < 0)
1236 		return ret;
1237 	memset(kaddr + offset, 0, size);
1238 	if (srcmap->addr != iomap->addr) {
1239 		ret = dax_iomap_cow_copy(pos, size, PAGE_SIZE, srcmap,
1240 					 kaddr);
1241 		if (ret < 0)
1242 			return ret;
1243 		dax_flush(iomap->dax_dev, kaddr, PAGE_SIZE);
1244 	} else
1245 		dax_flush(iomap->dax_dev, kaddr + offset, size);
1246 	return ret;
1247 }
1248 
1249 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1250 {
1251 	const struct iomap *iomap = &iter->iomap;
1252 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1253 	loff_t pos = iter->pos;
1254 	u64 length = iomap_length(iter);
1255 	s64 written = 0;
1256 
1257 	/* already zeroed?  we're done. */
1258 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1259 		return length;
1260 
1261 	do {
1262 		unsigned offset = offset_in_page(pos);
1263 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1264 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1265 		long rc;
1266 		int id;
1267 
1268 		id = dax_read_lock();
1269 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1270 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1271 		else
1272 			rc = dax_memzero(iter, pos, size);
1273 		dax_read_unlock(id);
1274 
1275 		if (rc < 0)
1276 			return rc;
1277 		pos += size;
1278 		length -= size;
1279 		written += size;
1280 		if (did_zero)
1281 			*did_zero = true;
1282 	} while (length > 0);
1283 
1284 	return written;
1285 }
1286 
1287 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1288 		const struct iomap_ops *ops)
1289 {
1290 	struct iomap_iter iter = {
1291 		.inode		= inode,
1292 		.pos		= pos,
1293 		.len		= len,
1294 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1295 	};
1296 	int ret;
1297 
1298 	while ((ret = iomap_iter(&iter, ops)) > 0)
1299 		iter.processed = dax_zero_iter(&iter, did_zero);
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(dax_zero_range);
1303 
1304 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1305 		const struct iomap_ops *ops)
1306 {
1307 	unsigned int blocksize = i_blocksize(inode);
1308 	unsigned int off = pos & (blocksize - 1);
1309 
1310 	/* Block boundary? Nothing to do */
1311 	if (!off)
1312 		return 0;
1313 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1314 }
1315 EXPORT_SYMBOL_GPL(dax_truncate_page);
1316 
1317 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1318 		struct iov_iter *iter)
1319 {
1320 	const struct iomap *iomap = &iomi->iomap;
1321 	const struct iomap *srcmap = &iomi->srcmap;
1322 	loff_t length = iomap_length(iomi);
1323 	loff_t pos = iomi->pos;
1324 	struct dax_device *dax_dev = iomap->dax_dev;
1325 	loff_t end = pos + length, done = 0;
1326 	bool write = iov_iter_rw(iter) == WRITE;
1327 	ssize_t ret = 0;
1328 	size_t xfer;
1329 	int id;
1330 
1331 	if (!write) {
1332 		end = min(end, i_size_read(iomi->inode));
1333 		if (pos >= end)
1334 			return 0;
1335 
1336 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1337 			return iov_iter_zero(min(length, end - pos), iter);
1338 	}
1339 
1340 	/*
1341 	 * In DAX mode, enforce either pure overwrites of written extents, or
1342 	 * writes to unwritten extents as part of a copy-on-write operation.
1343 	 */
1344 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1345 			!(iomap->flags & IOMAP_F_SHARED)))
1346 		return -EIO;
1347 
1348 	/*
1349 	 * Write can allocate block for an area which has a hole page mapped
1350 	 * into page tables. We have to tear down these mappings so that data
1351 	 * written by write(2) is visible in mmap.
1352 	 */
1353 	if (iomap->flags & IOMAP_F_NEW) {
1354 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1355 					      pos >> PAGE_SHIFT,
1356 					      (end - 1) >> PAGE_SHIFT);
1357 	}
1358 
1359 	id = dax_read_lock();
1360 	while (pos < end) {
1361 		unsigned offset = pos & (PAGE_SIZE - 1);
1362 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1363 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1364 		ssize_t map_len;
1365 		bool recovery = false;
1366 		void *kaddr;
1367 
1368 		if (fatal_signal_pending(current)) {
1369 			ret = -EINTR;
1370 			break;
1371 		}
1372 
1373 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1374 				DAX_ACCESS, &kaddr, NULL);
1375 		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1376 			map_len = dax_direct_access(dax_dev, pgoff,
1377 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1378 					&kaddr, NULL);
1379 			if (map_len > 0)
1380 				recovery = true;
1381 		}
1382 		if (map_len < 0) {
1383 			ret = map_len;
1384 			break;
1385 		}
1386 
1387 		if (write &&
1388 		    srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1389 			ret = dax_iomap_cow_copy(pos, length, PAGE_SIZE, srcmap,
1390 						 kaddr);
1391 			if (ret)
1392 				break;
1393 		}
1394 
1395 		map_len = PFN_PHYS(map_len);
1396 		kaddr += offset;
1397 		map_len -= offset;
1398 		if (map_len > end - pos)
1399 			map_len = end - pos;
1400 
1401 		if (recovery)
1402 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1403 					map_len, iter);
1404 		else if (write)
1405 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1406 					map_len, iter);
1407 		else
1408 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1409 					map_len, iter);
1410 
1411 		pos += xfer;
1412 		length -= xfer;
1413 		done += xfer;
1414 
1415 		if (xfer == 0)
1416 			ret = -EFAULT;
1417 		if (xfer < map_len)
1418 			break;
1419 	}
1420 	dax_read_unlock(id);
1421 
1422 	return done ? done : ret;
1423 }
1424 
1425 /**
1426  * dax_iomap_rw - Perform I/O to a DAX file
1427  * @iocb:	The control block for this I/O
1428  * @iter:	The addresses to do I/O from or to
1429  * @ops:	iomap ops passed from the file system
1430  *
1431  * This function performs read and write operations to directly mapped
1432  * persistent memory.  The callers needs to take care of read/write exclusion
1433  * and evicting any page cache pages in the region under I/O.
1434  */
1435 ssize_t
1436 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1437 		const struct iomap_ops *ops)
1438 {
1439 	struct iomap_iter iomi = {
1440 		.inode		= iocb->ki_filp->f_mapping->host,
1441 		.pos		= iocb->ki_pos,
1442 		.len		= iov_iter_count(iter),
1443 		.flags		= IOMAP_DAX,
1444 	};
1445 	loff_t done = 0;
1446 	int ret;
1447 
1448 	if (iov_iter_rw(iter) == WRITE) {
1449 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1450 		iomi.flags |= IOMAP_WRITE;
1451 	} else {
1452 		lockdep_assert_held(&iomi.inode->i_rwsem);
1453 	}
1454 
1455 	if (iocb->ki_flags & IOCB_NOWAIT)
1456 		iomi.flags |= IOMAP_NOWAIT;
1457 
1458 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1459 		iomi.processed = dax_iomap_iter(&iomi, iter);
1460 
1461 	done = iomi.pos - iocb->ki_pos;
1462 	iocb->ki_pos = iomi.pos;
1463 	return done ? done : ret;
1464 }
1465 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1466 
1467 static vm_fault_t dax_fault_return(int error)
1468 {
1469 	if (error == 0)
1470 		return VM_FAULT_NOPAGE;
1471 	return vmf_error(error);
1472 }
1473 
1474 /*
1475  * When handling a synchronous page fault and the inode need a fsync, we can
1476  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1477  * insertion for now and return the pfn so that caller can insert it after the
1478  * fsync is done.
1479  */
1480 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1481 {
1482 	if (WARN_ON_ONCE(!pfnp))
1483 		return VM_FAULT_SIGBUS;
1484 	*pfnp = pfn;
1485 	return VM_FAULT_NEEDDSYNC;
1486 }
1487 
1488 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1489 		const struct iomap_iter *iter)
1490 {
1491 	vm_fault_t ret;
1492 	int error = 0;
1493 
1494 	switch (iter->iomap.type) {
1495 	case IOMAP_HOLE:
1496 	case IOMAP_UNWRITTEN:
1497 		clear_user_highpage(vmf->cow_page, vmf->address);
1498 		break;
1499 	case IOMAP_MAPPED:
1500 		error = copy_cow_page_dax(vmf, iter);
1501 		break;
1502 	default:
1503 		WARN_ON_ONCE(1);
1504 		error = -EIO;
1505 		break;
1506 	}
1507 
1508 	if (error)
1509 		return dax_fault_return(error);
1510 
1511 	__SetPageUptodate(vmf->cow_page);
1512 	ret = finish_fault(vmf);
1513 	if (!ret)
1514 		return VM_FAULT_DONE_COW;
1515 	return ret;
1516 }
1517 
1518 /**
1519  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1520  * @vmf:	vm fault instance
1521  * @iter:	iomap iter
1522  * @pfnp:	pfn to be returned
1523  * @xas:	the dax mapping tree of a file
1524  * @entry:	an unlocked dax entry to be inserted
1525  * @pmd:	distinguish whether it is a pmd fault
1526  */
1527 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1528 		const struct iomap_iter *iter, pfn_t *pfnp,
1529 		struct xa_state *xas, void **entry, bool pmd)
1530 {
1531 	const struct iomap *iomap = &iter->iomap;
1532 	const struct iomap *srcmap = &iter->srcmap;
1533 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1534 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1535 	bool write = iter->flags & IOMAP_WRITE;
1536 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1537 	int err = 0;
1538 	pfn_t pfn;
1539 	void *kaddr;
1540 
1541 	if (!pmd && vmf->cow_page)
1542 		return dax_fault_cow_page(vmf, iter);
1543 
1544 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1545 	if (!write &&
1546 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1547 		if (!pmd)
1548 			return dax_load_hole(xas, vmf, iter, entry);
1549 		return dax_pmd_load_hole(xas, vmf, iter, entry);
1550 	}
1551 
1552 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1553 		WARN_ON_ONCE(1);
1554 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1555 	}
1556 
1557 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1558 	if (err)
1559 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1560 
1561 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1562 
1563 	if (write &&
1564 	    srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1565 		err = dax_iomap_cow_copy(pos, size, size, srcmap, kaddr);
1566 		if (err)
1567 			return dax_fault_return(err);
1568 	}
1569 
1570 	if (dax_fault_is_synchronous(iter, vmf->vma))
1571 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1572 
1573 	/* insert PMD pfn */
1574 	if (pmd)
1575 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1576 
1577 	/* insert PTE pfn */
1578 	if (write)
1579 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1580 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1581 }
1582 
1583 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1584 			       int *iomap_errp, const struct iomap_ops *ops)
1585 {
1586 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1587 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1588 	struct iomap_iter iter = {
1589 		.inode		= mapping->host,
1590 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1591 		.len		= PAGE_SIZE,
1592 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1593 	};
1594 	vm_fault_t ret = 0;
1595 	void *entry;
1596 	int error;
1597 
1598 	trace_dax_pte_fault(iter.inode, vmf, ret);
1599 	/*
1600 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1601 	 * to hold locks serializing us with truncate / punch hole so this is
1602 	 * a reliable test.
1603 	 */
1604 	if (iter.pos >= i_size_read(iter.inode)) {
1605 		ret = VM_FAULT_SIGBUS;
1606 		goto out;
1607 	}
1608 
1609 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1610 		iter.flags |= IOMAP_WRITE;
1611 
1612 	entry = grab_mapping_entry(&xas, mapping, 0);
1613 	if (xa_is_internal(entry)) {
1614 		ret = xa_to_internal(entry);
1615 		goto out;
1616 	}
1617 
1618 	/*
1619 	 * It is possible, particularly with mixed reads & writes to private
1620 	 * mappings, that we have raced with a PMD fault that overlaps with
1621 	 * the PTE we need to set up.  If so just return and the fault will be
1622 	 * retried.
1623 	 */
1624 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1625 		ret = VM_FAULT_NOPAGE;
1626 		goto unlock_entry;
1627 	}
1628 
1629 	while ((error = iomap_iter(&iter, ops)) > 0) {
1630 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1631 			iter.processed = -EIO;	/* fs corruption? */
1632 			continue;
1633 		}
1634 
1635 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1636 		if (ret != VM_FAULT_SIGBUS &&
1637 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1638 			count_vm_event(PGMAJFAULT);
1639 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1640 			ret |= VM_FAULT_MAJOR;
1641 		}
1642 
1643 		if (!(ret & VM_FAULT_ERROR))
1644 			iter.processed = PAGE_SIZE;
1645 	}
1646 
1647 	if (iomap_errp)
1648 		*iomap_errp = error;
1649 	if (!ret && error)
1650 		ret = dax_fault_return(error);
1651 
1652 unlock_entry:
1653 	dax_unlock_entry(&xas, entry);
1654 out:
1655 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1656 	return ret;
1657 }
1658 
1659 #ifdef CONFIG_FS_DAX_PMD
1660 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1661 		pgoff_t max_pgoff)
1662 {
1663 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1664 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1665 
1666 	/*
1667 	 * Make sure that the faulting address's PMD offset (color) matches
1668 	 * the PMD offset from the start of the file.  This is necessary so
1669 	 * that a PMD range in the page table overlaps exactly with a PMD
1670 	 * range in the page cache.
1671 	 */
1672 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1673 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1674 		return true;
1675 
1676 	/* Fall back to PTEs if we're going to COW */
1677 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1678 		return true;
1679 
1680 	/* If the PMD would extend outside the VMA */
1681 	if (pmd_addr < vmf->vma->vm_start)
1682 		return true;
1683 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1684 		return true;
1685 
1686 	/* If the PMD would extend beyond the file size */
1687 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1688 		return true;
1689 
1690 	return false;
1691 }
1692 
1693 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1694 			       const struct iomap_ops *ops)
1695 {
1696 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1697 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1698 	struct iomap_iter iter = {
1699 		.inode		= mapping->host,
1700 		.len		= PMD_SIZE,
1701 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1702 	};
1703 	vm_fault_t ret = VM_FAULT_FALLBACK;
1704 	pgoff_t max_pgoff;
1705 	void *entry;
1706 	int error;
1707 
1708 	if (vmf->flags & FAULT_FLAG_WRITE)
1709 		iter.flags |= IOMAP_WRITE;
1710 
1711 	/*
1712 	 * Check whether offset isn't beyond end of file now. Caller is
1713 	 * supposed to hold locks serializing us with truncate / punch hole so
1714 	 * this is a reliable test.
1715 	 */
1716 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1717 
1718 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1719 
1720 	if (xas.xa_index >= max_pgoff) {
1721 		ret = VM_FAULT_SIGBUS;
1722 		goto out;
1723 	}
1724 
1725 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1726 		goto fallback;
1727 
1728 	/*
1729 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1730 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1731 	 * entry is already in the array, for instance), it will return
1732 	 * VM_FAULT_FALLBACK.
1733 	 */
1734 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1735 	if (xa_is_internal(entry)) {
1736 		ret = xa_to_internal(entry);
1737 		goto fallback;
1738 	}
1739 
1740 	/*
1741 	 * It is possible, particularly with mixed reads & writes to private
1742 	 * mappings, that we have raced with a PTE fault that overlaps with
1743 	 * the PMD we need to set up.  If so just return and the fault will be
1744 	 * retried.
1745 	 */
1746 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1747 			!pmd_devmap(*vmf->pmd)) {
1748 		ret = 0;
1749 		goto unlock_entry;
1750 	}
1751 
1752 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1753 	while ((error = iomap_iter(&iter, ops)) > 0) {
1754 		if (iomap_length(&iter) < PMD_SIZE)
1755 			continue; /* actually breaks out of the loop */
1756 
1757 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1758 		if (ret != VM_FAULT_FALLBACK)
1759 			iter.processed = PMD_SIZE;
1760 	}
1761 
1762 unlock_entry:
1763 	dax_unlock_entry(&xas, entry);
1764 fallback:
1765 	if (ret == VM_FAULT_FALLBACK) {
1766 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1767 		count_vm_event(THP_FAULT_FALLBACK);
1768 	}
1769 out:
1770 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1771 	return ret;
1772 }
1773 #else
1774 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1775 			       const struct iomap_ops *ops)
1776 {
1777 	return VM_FAULT_FALLBACK;
1778 }
1779 #endif /* CONFIG_FS_DAX_PMD */
1780 
1781 /**
1782  * dax_iomap_fault - handle a page fault on a DAX file
1783  * @vmf: The description of the fault
1784  * @pe_size: Size of the page to fault in
1785  * @pfnp: PFN to insert for synchronous faults if fsync is required
1786  * @iomap_errp: Storage for detailed error code in case of error
1787  * @ops: Iomap ops passed from the file system
1788  *
1789  * When a page fault occurs, filesystems may call this helper in
1790  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1791  * has done all the necessary locking for page fault to proceed
1792  * successfully.
1793  */
1794 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1795 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1796 {
1797 	switch (pe_size) {
1798 	case PE_SIZE_PTE:
1799 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1800 	case PE_SIZE_PMD:
1801 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1802 	default:
1803 		return VM_FAULT_FALLBACK;
1804 	}
1805 }
1806 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1807 
1808 /*
1809  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1810  * @vmf: The description of the fault
1811  * @pfn: PFN to insert
1812  * @order: Order of entry to insert.
1813  *
1814  * This function inserts a writeable PTE or PMD entry into the page tables
1815  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1816  */
1817 static vm_fault_t
1818 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1819 {
1820 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1821 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1822 	void *entry;
1823 	vm_fault_t ret;
1824 
1825 	xas_lock_irq(&xas);
1826 	entry = get_unlocked_entry(&xas, order);
1827 	/* Did we race with someone splitting entry or so? */
1828 	if (!entry || dax_is_conflict(entry) ||
1829 	    (order == 0 && !dax_is_pte_entry(entry))) {
1830 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1831 		xas_unlock_irq(&xas);
1832 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1833 						      VM_FAULT_NOPAGE);
1834 		return VM_FAULT_NOPAGE;
1835 	}
1836 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1837 	dax_lock_entry(&xas, entry);
1838 	xas_unlock_irq(&xas);
1839 	if (order == 0)
1840 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1841 #ifdef CONFIG_FS_DAX_PMD
1842 	else if (order == PMD_ORDER)
1843 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1844 #endif
1845 	else
1846 		ret = VM_FAULT_FALLBACK;
1847 	dax_unlock_entry(&xas, entry);
1848 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1849 	return ret;
1850 }
1851 
1852 /**
1853  * dax_finish_sync_fault - finish synchronous page fault
1854  * @vmf: The description of the fault
1855  * @pe_size: Size of entry to be inserted
1856  * @pfn: PFN to insert
1857  *
1858  * This function ensures that the file range touched by the page fault is
1859  * stored persistently on the media and handles inserting of appropriate page
1860  * table entry.
1861  */
1862 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1863 		enum page_entry_size pe_size, pfn_t pfn)
1864 {
1865 	int err;
1866 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1867 	unsigned int order = pe_order(pe_size);
1868 	size_t len = PAGE_SIZE << order;
1869 
1870 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1871 	if (err)
1872 		return VM_FAULT_SIGBUS;
1873 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1874 }
1875 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1876 
1877 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1878 		struct iomap_iter *it_dest, u64 len, bool *same)
1879 {
1880 	const struct iomap *smap = &it_src->iomap;
1881 	const struct iomap *dmap = &it_dest->iomap;
1882 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1883 	void *saddr, *daddr;
1884 	int id, ret;
1885 
1886 	len = min(len, min(smap->length, dmap->length));
1887 
1888 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1889 		*same = true;
1890 		return len;
1891 	}
1892 
1893 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1894 		*same = false;
1895 		return 0;
1896 	}
1897 
1898 	id = dax_read_lock();
1899 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1900 				      &saddr, NULL);
1901 	if (ret < 0)
1902 		goto out_unlock;
1903 
1904 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1905 				      &daddr, NULL);
1906 	if (ret < 0)
1907 		goto out_unlock;
1908 
1909 	*same = !memcmp(saddr, daddr, len);
1910 	if (!*same)
1911 		len = 0;
1912 	dax_read_unlock(id);
1913 	return len;
1914 
1915 out_unlock:
1916 	dax_read_unlock(id);
1917 	return -EIO;
1918 }
1919 
1920 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
1921 		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
1922 		const struct iomap_ops *ops)
1923 {
1924 	struct iomap_iter src_iter = {
1925 		.inode		= src,
1926 		.pos		= srcoff,
1927 		.len		= len,
1928 		.flags		= IOMAP_DAX,
1929 	};
1930 	struct iomap_iter dst_iter = {
1931 		.inode		= dst,
1932 		.pos		= dstoff,
1933 		.len		= len,
1934 		.flags		= IOMAP_DAX,
1935 	};
1936 	int ret;
1937 
1938 	while ((ret = iomap_iter(&src_iter, ops)) > 0) {
1939 		while ((ret = iomap_iter(&dst_iter, ops)) > 0) {
1940 			dst_iter.processed = dax_range_compare_iter(&src_iter,
1941 						&dst_iter, len, same);
1942 		}
1943 		if (ret <= 0)
1944 			src_iter.processed = ret;
1945 	}
1946 	return ret;
1947 }
1948 
1949 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
1950 			      struct file *file_out, loff_t pos_out,
1951 			      loff_t *len, unsigned int remap_flags,
1952 			      const struct iomap_ops *ops)
1953 {
1954 	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
1955 					       pos_out, len, remap_flags, ops);
1956 }
1957 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
1958