1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/pmem.h> 29 #include <linux/sched.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/iomap.h> 35 #include "internal.h" 36 37 /* 38 * We use lowest available bit in exceptional entry for locking, other two 39 * bits to determine entry type. In total 3 special bits. 40 */ 41 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3) 42 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) 43 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) 44 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD) 45 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK) 46 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) 47 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ 48 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \ 49 RADIX_TREE_EXCEPTIONAL_ENTRY)) 50 51 /* We choose 4096 entries - same as per-zone page wait tables */ 52 #define DAX_WAIT_TABLE_BITS 12 53 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 54 55 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 68 pgoff_t index) 69 { 70 unsigned long hash = hash_long((unsigned long)mapping ^ index, 71 DAX_WAIT_TABLE_BITS); 72 return wait_table + hash; 73 } 74 75 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) 76 { 77 struct request_queue *q = bdev->bd_queue; 78 long rc = -EIO; 79 80 dax->addr = ERR_PTR(-EIO); 81 if (blk_queue_enter(q, true) != 0) 82 return rc; 83 84 rc = bdev_direct_access(bdev, dax); 85 if (rc < 0) { 86 dax->addr = ERR_PTR(rc); 87 blk_queue_exit(q); 88 return rc; 89 } 90 return rc; 91 } 92 93 static void dax_unmap_atomic(struct block_device *bdev, 94 const struct blk_dax_ctl *dax) 95 { 96 if (IS_ERR(dax->addr)) 97 return; 98 blk_queue_exit(bdev->bd_queue); 99 } 100 101 struct page *read_dax_sector(struct block_device *bdev, sector_t n) 102 { 103 struct page *page = alloc_pages(GFP_KERNEL, 0); 104 struct blk_dax_ctl dax = { 105 .size = PAGE_SIZE, 106 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), 107 }; 108 long rc; 109 110 if (!page) 111 return ERR_PTR(-ENOMEM); 112 113 rc = dax_map_atomic(bdev, &dax); 114 if (rc < 0) 115 return ERR_PTR(rc); 116 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); 117 dax_unmap_atomic(bdev, &dax); 118 return page; 119 } 120 121 static bool buffer_written(struct buffer_head *bh) 122 { 123 return buffer_mapped(bh) && !buffer_unwritten(bh); 124 } 125 126 /* 127 * When ext4 encounters a hole, it returns without modifying the buffer_head 128 * which means that we can't trust b_size. To cope with this, we set b_state 129 * to 0 before calling get_block and, if any bit is set, we know we can trust 130 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is 131 * and would save us time calling get_block repeatedly. 132 */ 133 static bool buffer_size_valid(struct buffer_head *bh) 134 { 135 return bh->b_state != 0; 136 } 137 138 139 static sector_t to_sector(const struct buffer_head *bh, 140 const struct inode *inode) 141 { 142 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); 143 144 return sector; 145 } 146 147 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, 148 loff_t start, loff_t end, get_block_t get_block, 149 struct buffer_head *bh) 150 { 151 loff_t pos = start, max = start, bh_max = start; 152 bool hole = false; 153 struct block_device *bdev = NULL; 154 int rw = iov_iter_rw(iter), rc; 155 long map_len = 0; 156 struct blk_dax_ctl dax = { 157 .addr = ERR_PTR(-EIO), 158 }; 159 unsigned blkbits = inode->i_blkbits; 160 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1) 161 >> blkbits; 162 163 if (rw == READ) 164 end = min(end, i_size_read(inode)); 165 166 while (pos < end) { 167 size_t len; 168 if (pos == max) { 169 long page = pos >> PAGE_SHIFT; 170 sector_t block = page << (PAGE_SHIFT - blkbits); 171 unsigned first = pos - (block << blkbits); 172 long size; 173 174 if (pos == bh_max) { 175 bh->b_size = PAGE_ALIGN(end - pos); 176 bh->b_state = 0; 177 rc = get_block(inode, block, bh, rw == WRITE); 178 if (rc) 179 break; 180 if (!buffer_size_valid(bh)) 181 bh->b_size = 1 << blkbits; 182 bh_max = pos - first + bh->b_size; 183 bdev = bh->b_bdev; 184 /* 185 * We allow uninitialized buffers for writes 186 * beyond EOF as those cannot race with faults 187 */ 188 WARN_ON_ONCE( 189 (buffer_new(bh) && block < file_blks) || 190 (rw == WRITE && buffer_unwritten(bh))); 191 } else { 192 unsigned done = bh->b_size - 193 (bh_max - (pos - first)); 194 bh->b_blocknr += done >> blkbits; 195 bh->b_size -= done; 196 } 197 198 hole = rw == READ && !buffer_written(bh); 199 if (hole) { 200 size = bh->b_size - first; 201 } else { 202 dax_unmap_atomic(bdev, &dax); 203 dax.sector = to_sector(bh, inode); 204 dax.size = bh->b_size; 205 map_len = dax_map_atomic(bdev, &dax); 206 if (map_len < 0) { 207 rc = map_len; 208 break; 209 } 210 dax.addr += first; 211 size = map_len - first; 212 } 213 /* 214 * pos + size is one past the last offset for IO, 215 * so pos + size can overflow loff_t at extreme offsets. 216 * Cast to u64 to catch this and get the true minimum. 217 */ 218 max = min_t(u64, pos + size, end); 219 } 220 221 if (iov_iter_rw(iter) == WRITE) { 222 len = copy_from_iter_pmem(dax.addr, max - pos, iter); 223 } else if (!hole) 224 len = copy_to_iter((void __force *) dax.addr, max - pos, 225 iter); 226 else 227 len = iov_iter_zero(max - pos, iter); 228 229 if (!len) { 230 rc = -EFAULT; 231 break; 232 } 233 234 pos += len; 235 if (!IS_ERR(dax.addr)) 236 dax.addr += len; 237 } 238 239 dax_unmap_atomic(bdev, &dax); 240 241 return (pos == start) ? rc : pos - start; 242 } 243 244 /** 245 * dax_do_io - Perform I/O to a DAX file 246 * @iocb: The control block for this I/O 247 * @inode: The file which the I/O is directed at 248 * @iter: The addresses to do I/O from or to 249 * @get_block: The filesystem method used to translate file offsets to blocks 250 * @end_io: A filesystem callback for I/O completion 251 * @flags: See below 252 * 253 * This function uses the same locking scheme as do_blockdev_direct_IO: 254 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the 255 * caller for writes. For reads, we take and release the i_mutex ourselves. 256 * If DIO_LOCKING is not set, the filesystem takes care of its own locking. 257 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O 258 * is in progress. 259 */ 260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, 261 struct iov_iter *iter, get_block_t get_block, 262 dio_iodone_t end_io, int flags) 263 { 264 struct buffer_head bh; 265 ssize_t retval = -EINVAL; 266 loff_t pos = iocb->ki_pos; 267 loff_t end = pos + iov_iter_count(iter); 268 269 memset(&bh, 0, sizeof(bh)); 270 bh.b_bdev = inode->i_sb->s_bdev; 271 272 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) 273 inode_lock(inode); 274 275 /* Protects against truncate */ 276 if (!(flags & DIO_SKIP_DIO_COUNT)) 277 inode_dio_begin(inode); 278 279 retval = dax_io(inode, iter, pos, end, get_block, &bh); 280 281 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) 282 inode_unlock(inode); 283 284 if (end_io) { 285 int err; 286 287 err = end_io(iocb, pos, retval, bh.b_private); 288 if (err) 289 retval = err; 290 } 291 292 if (!(flags & DIO_SKIP_DIO_COUNT)) 293 inode_dio_end(inode); 294 return retval; 295 } 296 EXPORT_SYMBOL_GPL(dax_do_io); 297 298 /* 299 * DAX radix tree locking 300 */ 301 struct exceptional_entry_key { 302 struct address_space *mapping; 303 unsigned long index; 304 }; 305 306 struct wait_exceptional_entry_queue { 307 wait_queue_t wait; 308 struct exceptional_entry_key key; 309 }; 310 311 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, 312 int sync, void *keyp) 313 { 314 struct exceptional_entry_key *key = keyp; 315 struct wait_exceptional_entry_queue *ewait = 316 container_of(wait, struct wait_exceptional_entry_queue, wait); 317 318 if (key->mapping != ewait->key.mapping || 319 key->index != ewait->key.index) 320 return 0; 321 return autoremove_wake_function(wait, mode, sync, NULL); 322 } 323 324 /* 325 * Check whether the given slot is locked. The function must be called with 326 * mapping->tree_lock held 327 */ 328 static inline int slot_locked(struct address_space *mapping, void **slot) 329 { 330 unsigned long entry = (unsigned long) 331 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 332 return entry & RADIX_DAX_ENTRY_LOCK; 333 } 334 335 /* 336 * Mark the given slot is locked. The function must be called with 337 * mapping->tree_lock held 338 */ 339 static inline void *lock_slot(struct address_space *mapping, void **slot) 340 { 341 unsigned long entry = (unsigned long) 342 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 343 344 entry |= RADIX_DAX_ENTRY_LOCK; 345 radix_tree_replace_slot(slot, (void *)entry); 346 return (void *)entry; 347 } 348 349 /* 350 * Mark the given slot is unlocked. The function must be called with 351 * mapping->tree_lock held 352 */ 353 static inline void *unlock_slot(struct address_space *mapping, void **slot) 354 { 355 unsigned long entry = (unsigned long) 356 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 357 358 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 359 radix_tree_replace_slot(slot, (void *)entry); 360 return (void *)entry; 361 } 362 363 /* 364 * Lookup entry in radix tree, wait for it to become unlocked if it is 365 * exceptional entry and return it. The caller must call 366 * put_unlocked_mapping_entry() when he decided not to lock the entry or 367 * put_locked_mapping_entry() when he locked the entry and now wants to 368 * unlock it. 369 * 370 * The function must be called with mapping->tree_lock held. 371 */ 372 static void *get_unlocked_mapping_entry(struct address_space *mapping, 373 pgoff_t index, void ***slotp) 374 { 375 void *ret, **slot; 376 struct wait_exceptional_entry_queue ewait; 377 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); 378 379 init_wait(&ewait.wait); 380 ewait.wait.func = wake_exceptional_entry_func; 381 ewait.key.mapping = mapping; 382 ewait.key.index = index; 383 384 for (;;) { 385 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, 386 &slot); 387 if (!ret || !radix_tree_exceptional_entry(ret) || 388 !slot_locked(mapping, slot)) { 389 if (slotp) 390 *slotp = slot; 391 return ret; 392 } 393 prepare_to_wait_exclusive(wq, &ewait.wait, 394 TASK_UNINTERRUPTIBLE); 395 spin_unlock_irq(&mapping->tree_lock); 396 schedule(); 397 finish_wait(wq, &ewait.wait); 398 spin_lock_irq(&mapping->tree_lock); 399 } 400 } 401 402 /* 403 * Find radix tree entry at given index. If it points to a page, return with 404 * the page locked. If it points to the exceptional entry, return with the 405 * radix tree entry locked. If the radix tree doesn't contain given index, 406 * create empty exceptional entry for the index and return with it locked. 407 * 408 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 409 * persistent memory the benefit is doubtful. We can add that later if we can 410 * show it helps. 411 */ 412 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index) 413 { 414 void *ret, **slot; 415 416 restart: 417 spin_lock_irq(&mapping->tree_lock); 418 ret = get_unlocked_mapping_entry(mapping, index, &slot); 419 /* No entry for given index? Make sure radix tree is big enough. */ 420 if (!ret) { 421 int err; 422 423 spin_unlock_irq(&mapping->tree_lock); 424 err = radix_tree_preload( 425 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 426 if (err) 427 return ERR_PTR(err); 428 ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | 429 RADIX_DAX_ENTRY_LOCK); 430 spin_lock_irq(&mapping->tree_lock); 431 err = radix_tree_insert(&mapping->page_tree, index, ret); 432 radix_tree_preload_end(); 433 if (err) { 434 spin_unlock_irq(&mapping->tree_lock); 435 /* Someone already created the entry? */ 436 if (err == -EEXIST) 437 goto restart; 438 return ERR_PTR(err); 439 } 440 /* Good, we have inserted empty locked entry into the tree. */ 441 mapping->nrexceptional++; 442 spin_unlock_irq(&mapping->tree_lock); 443 return ret; 444 } 445 /* Normal page in radix tree? */ 446 if (!radix_tree_exceptional_entry(ret)) { 447 struct page *page = ret; 448 449 get_page(page); 450 spin_unlock_irq(&mapping->tree_lock); 451 lock_page(page); 452 /* Page got truncated? Retry... */ 453 if (unlikely(page->mapping != mapping)) { 454 unlock_page(page); 455 put_page(page); 456 goto restart; 457 } 458 return page; 459 } 460 ret = lock_slot(mapping, slot); 461 spin_unlock_irq(&mapping->tree_lock); 462 return ret; 463 } 464 465 void dax_wake_mapping_entry_waiter(struct address_space *mapping, 466 pgoff_t index, bool wake_all) 467 { 468 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); 469 470 /* 471 * Checking for locked entry and prepare_to_wait_exclusive() happens 472 * under mapping->tree_lock, ditto for entry handling in our callers. 473 * So at this point all tasks that could have seen our entry locked 474 * must be in the waitqueue and the following check will see them. 475 */ 476 if (waitqueue_active(wq)) { 477 struct exceptional_entry_key key; 478 479 key.mapping = mapping; 480 key.index = index; 481 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 482 } 483 } 484 485 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) 486 { 487 void *ret, **slot; 488 489 spin_lock_irq(&mapping->tree_lock); 490 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 491 if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) || 492 !slot_locked(mapping, slot))) { 493 spin_unlock_irq(&mapping->tree_lock); 494 return; 495 } 496 unlock_slot(mapping, slot); 497 spin_unlock_irq(&mapping->tree_lock); 498 dax_wake_mapping_entry_waiter(mapping, index, false); 499 } 500 501 static void put_locked_mapping_entry(struct address_space *mapping, 502 pgoff_t index, void *entry) 503 { 504 if (!radix_tree_exceptional_entry(entry)) { 505 unlock_page(entry); 506 put_page(entry); 507 } else { 508 dax_unlock_mapping_entry(mapping, index); 509 } 510 } 511 512 /* 513 * Called when we are done with radix tree entry we looked up via 514 * get_unlocked_mapping_entry() and which we didn't lock in the end. 515 */ 516 static void put_unlocked_mapping_entry(struct address_space *mapping, 517 pgoff_t index, void *entry) 518 { 519 if (!radix_tree_exceptional_entry(entry)) 520 return; 521 522 /* We have to wake up next waiter for the radix tree entry lock */ 523 dax_wake_mapping_entry_waiter(mapping, index, false); 524 } 525 526 /* 527 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 528 * entry to get unlocked before deleting it. 529 */ 530 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 531 { 532 void *entry; 533 534 spin_lock_irq(&mapping->tree_lock); 535 entry = get_unlocked_mapping_entry(mapping, index, NULL); 536 /* 537 * This gets called from truncate / punch_hole path. As such, the caller 538 * must hold locks protecting against concurrent modifications of the 539 * radix tree (usually fs-private i_mmap_sem for writing). Since the 540 * caller has seen exceptional entry for this index, we better find it 541 * at that index as well... 542 */ 543 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { 544 spin_unlock_irq(&mapping->tree_lock); 545 return 0; 546 } 547 radix_tree_delete(&mapping->page_tree, index); 548 mapping->nrexceptional--; 549 spin_unlock_irq(&mapping->tree_lock); 550 dax_wake_mapping_entry_waiter(mapping, index, true); 551 552 return 1; 553 } 554 555 /* 556 * The user has performed a load from a hole in the file. Allocating 557 * a new page in the file would cause excessive storage usage for 558 * workloads with sparse files. We allocate a page cache page instead. 559 * We'll kick it out of the page cache if it's ever written to, 560 * otherwise it will simply fall out of the page cache under memory 561 * pressure without ever having been dirtied. 562 */ 563 static int dax_load_hole(struct address_space *mapping, void *entry, 564 struct vm_fault *vmf) 565 { 566 struct page *page; 567 568 /* Hole page already exists? Return it... */ 569 if (!radix_tree_exceptional_entry(entry)) { 570 vmf->page = entry; 571 return VM_FAULT_LOCKED; 572 } 573 574 /* This will replace locked radix tree entry with a hole page */ 575 page = find_or_create_page(mapping, vmf->pgoff, 576 vmf->gfp_mask | __GFP_ZERO); 577 if (!page) { 578 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 579 return VM_FAULT_OOM; 580 } 581 vmf->page = page; 582 return VM_FAULT_LOCKED; 583 } 584 585 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, 586 struct page *to, unsigned long vaddr) 587 { 588 struct blk_dax_ctl dax = { 589 .sector = sector, 590 .size = size, 591 }; 592 void *vto; 593 594 if (dax_map_atomic(bdev, &dax) < 0) 595 return PTR_ERR(dax.addr); 596 vto = kmap_atomic(to); 597 copy_user_page(vto, (void __force *)dax.addr, vaddr, to); 598 kunmap_atomic(vto); 599 dax_unmap_atomic(bdev, &dax); 600 return 0; 601 } 602 603 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT)) 604 605 static void *dax_insert_mapping_entry(struct address_space *mapping, 606 struct vm_fault *vmf, 607 void *entry, sector_t sector) 608 { 609 struct radix_tree_root *page_tree = &mapping->page_tree; 610 int error = 0; 611 bool hole_fill = false; 612 void *new_entry; 613 pgoff_t index = vmf->pgoff; 614 615 if (vmf->flags & FAULT_FLAG_WRITE) 616 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 617 618 /* Replacing hole page with block mapping? */ 619 if (!radix_tree_exceptional_entry(entry)) { 620 hole_fill = true; 621 /* 622 * Unmap the page now before we remove it from page cache below. 623 * The page is locked so it cannot be faulted in again. 624 */ 625 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 626 PAGE_SIZE, 0); 627 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); 628 if (error) 629 return ERR_PTR(error); 630 } 631 632 spin_lock_irq(&mapping->tree_lock); 633 new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) | 634 RADIX_DAX_ENTRY_LOCK); 635 if (hole_fill) { 636 __delete_from_page_cache(entry, NULL); 637 /* Drop pagecache reference */ 638 put_page(entry); 639 error = radix_tree_insert(page_tree, index, new_entry); 640 if (error) { 641 new_entry = ERR_PTR(error); 642 goto unlock; 643 } 644 mapping->nrexceptional++; 645 } else { 646 void **slot; 647 void *ret; 648 649 ret = __radix_tree_lookup(page_tree, index, NULL, &slot); 650 WARN_ON_ONCE(ret != entry); 651 radix_tree_replace_slot(slot, new_entry); 652 } 653 if (vmf->flags & FAULT_FLAG_WRITE) 654 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 655 unlock: 656 spin_unlock_irq(&mapping->tree_lock); 657 if (hole_fill) { 658 radix_tree_preload_end(); 659 /* 660 * We don't need hole page anymore, it has been replaced with 661 * locked radix tree entry now. 662 */ 663 if (mapping->a_ops->freepage) 664 mapping->a_ops->freepage(entry); 665 unlock_page(entry); 666 put_page(entry); 667 } 668 return new_entry; 669 } 670 671 static int dax_writeback_one(struct block_device *bdev, 672 struct address_space *mapping, pgoff_t index, void *entry) 673 { 674 struct radix_tree_root *page_tree = &mapping->page_tree; 675 int type = RADIX_DAX_TYPE(entry); 676 struct radix_tree_node *node; 677 struct blk_dax_ctl dax; 678 void **slot; 679 int ret = 0; 680 681 spin_lock_irq(&mapping->tree_lock); 682 /* 683 * Regular page slots are stabilized by the page lock even 684 * without the tree itself locked. These unlocked entries 685 * need verification under the tree lock. 686 */ 687 if (!__radix_tree_lookup(page_tree, index, &node, &slot)) 688 goto unlock; 689 if (*slot != entry) 690 goto unlock; 691 692 /* another fsync thread may have already written back this entry */ 693 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 694 goto unlock; 695 696 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) { 697 ret = -EIO; 698 goto unlock; 699 } 700 701 dax.sector = RADIX_DAX_SECTOR(entry); 702 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE); 703 spin_unlock_irq(&mapping->tree_lock); 704 705 /* 706 * We cannot hold tree_lock while calling dax_map_atomic() because it 707 * eventually calls cond_resched(). 708 */ 709 ret = dax_map_atomic(bdev, &dax); 710 if (ret < 0) 711 return ret; 712 713 if (WARN_ON_ONCE(ret < dax.size)) { 714 ret = -EIO; 715 goto unmap; 716 } 717 718 wb_cache_pmem(dax.addr, dax.size); 719 720 spin_lock_irq(&mapping->tree_lock); 721 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 722 spin_unlock_irq(&mapping->tree_lock); 723 unmap: 724 dax_unmap_atomic(bdev, &dax); 725 return ret; 726 727 unlock: 728 spin_unlock_irq(&mapping->tree_lock); 729 return ret; 730 } 731 732 /* 733 * Flush the mapping to the persistent domain within the byte range of [start, 734 * end]. This is required by data integrity operations to ensure file data is 735 * on persistent storage prior to completion of the operation. 736 */ 737 int dax_writeback_mapping_range(struct address_space *mapping, 738 struct block_device *bdev, struct writeback_control *wbc) 739 { 740 struct inode *inode = mapping->host; 741 pgoff_t start_index, end_index, pmd_index; 742 pgoff_t indices[PAGEVEC_SIZE]; 743 struct pagevec pvec; 744 bool done = false; 745 int i, ret = 0; 746 void *entry; 747 748 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 749 return -EIO; 750 751 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 752 return 0; 753 754 start_index = wbc->range_start >> PAGE_SHIFT; 755 end_index = wbc->range_end >> PAGE_SHIFT; 756 pmd_index = DAX_PMD_INDEX(start_index); 757 758 rcu_read_lock(); 759 entry = radix_tree_lookup(&mapping->page_tree, pmd_index); 760 rcu_read_unlock(); 761 762 /* see if the start of our range is covered by a PMD entry */ 763 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) 764 start_index = pmd_index; 765 766 tag_pages_for_writeback(mapping, start_index, end_index); 767 768 pagevec_init(&pvec, 0); 769 while (!done) { 770 pvec.nr = find_get_entries_tag(mapping, start_index, 771 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 772 pvec.pages, indices); 773 774 if (pvec.nr == 0) 775 break; 776 777 for (i = 0; i < pvec.nr; i++) { 778 if (indices[i] > end_index) { 779 done = true; 780 break; 781 } 782 783 ret = dax_writeback_one(bdev, mapping, indices[i], 784 pvec.pages[i]); 785 if (ret < 0) 786 return ret; 787 } 788 } 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 792 793 static int dax_insert_mapping(struct address_space *mapping, 794 struct block_device *bdev, sector_t sector, size_t size, 795 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) 796 { 797 unsigned long vaddr = (unsigned long)vmf->virtual_address; 798 struct blk_dax_ctl dax = { 799 .sector = sector, 800 .size = size, 801 }; 802 void *ret; 803 void *entry = *entryp; 804 805 if (dax_map_atomic(bdev, &dax) < 0) 806 return PTR_ERR(dax.addr); 807 dax_unmap_atomic(bdev, &dax); 808 809 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector); 810 if (IS_ERR(ret)) 811 return PTR_ERR(ret); 812 *entryp = ret; 813 814 return vm_insert_mixed(vma, vaddr, dax.pfn); 815 } 816 817 /** 818 * dax_fault - handle a page fault on a DAX file 819 * @vma: The virtual memory area where the fault occurred 820 * @vmf: The description of the fault 821 * @get_block: The filesystem method used to translate file offsets to blocks 822 * 823 * When a page fault occurs, filesystems may call this helper in their 824 * fault handler for DAX files. dax_fault() assumes the caller has done all 825 * the necessary locking for the page fault to proceed successfully. 826 */ 827 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 828 get_block_t get_block) 829 { 830 struct file *file = vma->vm_file; 831 struct address_space *mapping = file->f_mapping; 832 struct inode *inode = mapping->host; 833 void *entry; 834 struct buffer_head bh; 835 unsigned long vaddr = (unsigned long)vmf->virtual_address; 836 unsigned blkbits = inode->i_blkbits; 837 sector_t block; 838 pgoff_t size; 839 int error; 840 int major = 0; 841 842 /* 843 * Check whether offset isn't beyond end of file now. Caller is supposed 844 * to hold locks serializing us with truncate / punch hole so this is 845 * a reliable test. 846 */ 847 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 848 if (vmf->pgoff >= size) 849 return VM_FAULT_SIGBUS; 850 851 memset(&bh, 0, sizeof(bh)); 852 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); 853 bh.b_bdev = inode->i_sb->s_bdev; 854 bh.b_size = PAGE_SIZE; 855 856 entry = grab_mapping_entry(mapping, vmf->pgoff); 857 if (IS_ERR(entry)) { 858 error = PTR_ERR(entry); 859 goto out; 860 } 861 862 error = get_block(inode, block, &bh, 0); 863 if (!error && (bh.b_size < PAGE_SIZE)) 864 error = -EIO; /* fs corruption? */ 865 if (error) 866 goto unlock_entry; 867 868 if (vmf->cow_page) { 869 struct page *new_page = vmf->cow_page; 870 if (buffer_written(&bh)) 871 error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode), 872 bh.b_size, new_page, vaddr); 873 else 874 clear_user_highpage(new_page, vaddr); 875 if (error) 876 goto unlock_entry; 877 if (!radix_tree_exceptional_entry(entry)) { 878 vmf->page = entry; 879 return VM_FAULT_LOCKED; 880 } 881 vmf->entry = entry; 882 return VM_FAULT_DAX_LOCKED; 883 } 884 885 if (!buffer_mapped(&bh)) { 886 if (vmf->flags & FAULT_FLAG_WRITE) { 887 error = get_block(inode, block, &bh, 1); 888 count_vm_event(PGMAJFAULT); 889 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 890 major = VM_FAULT_MAJOR; 891 if (!error && (bh.b_size < PAGE_SIZE)) 892 error = -EIO; 893 if (error) 894 goto unlock_entry; 895 } else { 896 return dax_load_hole(mapping, entry, vmf); 897 } 898 } 899 900 /* Filesystem should not return unwritten buffers to us! */ 901 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); 902 error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode), 903 bh.b_size, &entry, vma, vmf); 904 unlock_entry: 905 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 906 out: 907 if (error == -ENOMEM) 908 return VM_FAULT_OOM | major; 909 /* -EBUSY is fine, somebody else faulted on the same PTE */ 910 if ((error < 0) && (error != -EBUSY)) 911 return VM_FAULT_SIGBUS | major; 912 return VM_FAULT_NOPAGE | major; 913 } 914 EXPORT_SYMBOL_GPL(dax_fault); 915 916 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 917 /* 918 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 919 * more often than one might expect in the below function. 920 */ 921 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 922 923 static void __dax_dbg(struct buffer_head *bh, unsigned long address, 924 const char *reason, const char *fn) 925 { 926 if (bh) { 927 char bname[BDEVNAME_SIZE]; 928 bdevname(bh->b_bdev, bname); 929 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld " 930 "length %zd fallback: %s\n", fn, current->comm, 931 address, bname, bh->b_state, (u64)bh->b_blocknr, 932 bh->b_size, reason); 933 } else { 934 pr_debug("%s: %s addr: %lx fallback: %s\n", fn, 935 current->comm, address, reason); 936 } 937 } 938 939 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd") 940 941 /** 942 * dax_pmd_fault - handle a PMD fault on a DAX file 943 * @vma: The virtual memory area where the fault occurred 944 * @vmf: The description of the fault 945 * @get_block: The filesystem method used to translate file offsets to blocks 946 * 947 * When a page fault occurs, filesystems may call this helper in their 948 * pmd_fault handler for DAX files. 949 */ 950 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, 951 pmd_t *pmd, unsigned int flags, get_block_t get_block) 952 { 953 struct file *file = vma->vm_file; 954 struct address_space *mapping = file->f_mapping; 955 struct inode *inode = mapping->host; 956 struct buffer_head bh; 957 unsigned blkbits = inode->i_blkbits; 958 unsigned long pmd_addr = address & PMD_MASK; 959 bool write = flags & FAULT_FLAG_WRITE; 960 struct block_device *bdev; 961 pgoff_t size, pgoff; 962 sector_t block; 963 int result = 0; 964 bool alloc = false; 965 966 /* dax pmd mappings require pfn_t_devmap() */ 967 if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) 968 return VM_FAULT_FALLBACK; 969 970 /* Fall back to PTEs if we're going to COW */ 971 if (write && !(vma->vm_flags & VM_SHARED)) { 972 split_huge_pmd(vma, pmd, address); 973 dax_pmd_dbg(NULL, address, "cow write"); 974 return VM_FAULT_FALLBACK; 975 } 976 /* If the PMD would extend outside the VMA */ 977 if (pmd_addr < vma->vm_start) { 978 dax_pmd_dbg(NULL, address, "vma start unaligned"); 979 return VM_FAULT_FALLBACK; 980 } 981 if ((pmd_addr + PMD_SIZE) > vma->vm_end) { 982 dax_pmd_dbg(NULL, address, "vma end unaligned"); 983 return VM_FAULT_FALLBACK; 984 } 985 986 pgoff = linear_page_index(vma, pmd_addr); 987 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 988 if (pgoff >= size) 989 return VM_FAULT_SIGBUS; 990 /* If the PMD would cover blocks out of the file */ 991 if ((pgoff | PG_PMD_COLOUR) >= size) { 992 dax_pmd_dbg(NULL, address, 993 "offset + huge page size > file size"); 994 return VM_FAULT_FALLBACK; 995 } 996 997 memset(&bh, 0, sizeof(bh)); 998 bh.b_bdev = inode->i_sb->s_bdev; 999 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); 1000 1001 bh.b_size = PMD_SIZE; 1002 1003 if (get_block(inode, block, &bh, 0) != 0) 1004 return VM_FAULT_SIGBUS; 1005 1006 if (!buffer_mapped(&bh) && write) { 1007 if (get_block(inode, block, &bh, 1) != 0) 1008 return VM_FAULT_SIGBUS; 1009 alloc = true; 1010 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); 1011 } 1012 1013 bdev = bh.b_bdev; 1014 1015 /* 1016 * If the filesystem isn't willing to tell us the length of a hole, 1017 * just fall back to PTEs. Calling get_block 512 times in a loop 1018 * would be silly. 1019 */ 1020 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) { 1021 dax_pmd_dbg(&bh, address, "allocated block too small"); 1022 return VM_FAULT_FALLBACK; 1023 } 1024 1025 /* 1026 * If we allocated new storage, make sure no process has any 1027 * zero pages covering this hole 1028 */ 1029 if (alloc) { 1030 loff_t lstart = pgoff << PAGE_SHIFT; 1031 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */ 1032 1033 truncate_pagecache_range(inode, lstart, lend); 1034 } 1035 1036 if (!write && !buffer_mapped(&bh)) { 1037 spinlock_t *ptl; 1038 pmd_t entry; 1039 struct page *zero_page = mm_get_huge_zero_page(vma->vm_mm); 1040 1041 if (unlikely(!zero_page)) { 1042 dax_pmd_dbg(&bh, address, "no zero page"); 1043 goto fallback; 1044 } 1045 1046 ptl = pmd_lock(vma->vm_mm, pmd); 1047 if (!pmd_none(*pmd)) { 1048 spin_unlock(ptl); 1049 dax_pmd_dbg(&bh, address, "pmd already present"); 1050 goto fallback; 1051 } 1052 1053 dev_dbg(part_to_dev(bdev->bd_part), 1054 "%s: %s addr: %lx pfn: <zero> sect: %llx\n", 1055 __func__, current->comm, address, 1056 (unsigned long long) to_sector(&bh, inode)); 1057 1058 entry = mk_pmd(zero_page, vma->vm_page_prot); 1059 entry = pmd_mkhuge(entry); 1060 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); 1061 result = VM_FAULT_NOPAGE; 1062 spin_unlock(ptl); 1063 } else { 1064 struct blk_dax_ctl dax = { 1065 .sector = to_sector(&bh, inode), 1066 .size = PMD_SIZE, 1067 }; 1068 long length = dax_map_atomic(bdev, &dax); 1069 1070 if (length < 0) { 1071 dax_pmd_dbg(&bh, address, "dax-error fallback"); 1072 goto fallback; 1073 } 1074 if (length < PMD_SIZE) { 1075 dax_pmd_dbg(&bh, address, "dax-length too small"); 1076 dax_unmap_atomic(bdev, &dax); 1077 goto fallback; 1078 } 1079 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) { 1080 dax_pmd_dbg(&bh, address, "pfn unaligned"); 1081 dax_unmap_atomic(bdev, &dax); 1082 goto fallback; 1083 } 1084 1085 if (!pfn_t_devmap(dax.pfn)) { 1086 dax_unmap_atomic(bdev, &dax); 1087 dax_pmd_dbg(&bh, address, "pfn not in memmap"); 1088 goto fallback; 1089 } 1090 dax_unmap_atomic(bdev, &dax); 1091 1092 /* 1093 * For PTE faults we insert a radix tree entry for reads, and 1094 * leave it clean. Then on the first write we dirty the radix 1095 * tree entry via the dax_pfn_mkwrite() path. This sequence 1096 * allows the dax_pfn_mkwrite() call to be simpler and avoid a 1097 * call into get_block() to translate the pgoff to a sector in 1098 * order to be able to create a new radix tree entry. 1099 * 1100 * The PMD path doesn't have an equivalent to 1101 * dax_pfn_mkwrite(), though, so for a read followed by a 1102 * write we traverse all the way through dax_pmd_fault() 1103 * twice. This means we can just skip inserting a radix tree 1104 * entry completely on the initial read and just wait until 1105 * the write to insert a dirty entry. 1106 */ 1107 if (write) { 1108 /* 1109 * We should insert radix-tree entry and dirty it here. 1110 * For now this is broken... 1111 */ 1112 } 1113 1114 dev_dbg(part_to_dev(bdev->bd_part), 1115 "%s: %s addr: %lx pfn: %lx sect: %llx\n", 1116 __func__, current->comm, address, 1117 pfn_t_to_pfn(dax.pfn), 1118 (unsigned long long) dax.sector); 1119 result |= vmf_insert_pfn_pmd(vma, address, pmd, 1120 dax.pfn, write); 1121 } 1122 1123 out: 1124 return result; 1125 1126 fallback: 1127 count_vm_event(THP_FAULT_FALLBACK); 1128 result = VM_FAULT_FALLBACK; 1129 goto out; 1130 } 1131 EXPORT_SYMBOL_GPL(dax_pmd_fault); 1132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1133 1134 /** 1135 * dax_pfn_mkwrite - handle first write to DAX page 1136 * @vma: The virtual memory area where the fault occurred 1137 * @vmf: The description of the fault 1138 */ 1139 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1140 { 1141 struct file *file = vma->vm_file; 1142 struct address_space *mapping = file->f_mapping; 1143 void *entry; 1144 pgoff_t index = vmf->pgoff; 1145 1146 spin_lock_irq(&mapping->tree_lock); 1147 entry = get_unlocked_mapping_entry(mapping, index, NULL); 1148 if (!entry || !radix_tree_exceptional_entry(entry)) 1149 goto out; 1150 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 1151 put_unlocked_mapping_entry(mapping, index, entry); 1152 out: 1153 spin_unlock_irq(&mapping->tree_lock); 1154 return VM_FAULT_NOPAGE; 1155 } 1156 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 1157 1158 static bool dax_range_is_aligned(struct block_device *bdev, 1159 unsigned int offset, unsigned int length) 1160 { 1161 unsigned short sector_size = bdev_logical_block_size(bdev); 1162 1163 if (!IS_ALIGNED(offset, sector_size)) 1164 return false; 1165 if (!IS_ALIGNED(length, sector_size)) 1166 return false; 1167 1168 return true; 1169 } 1170 1171 int __dax_zero_page_range(struct block_device *bdev, sector_t sector, 1172 unsigned int offset, unsigned int length) 1173 { 1174 struct blk_dax_ctl dax = { 1175 .sector = sector, 1176 .size = PAGE_SIZE, 1177 }; 1178 1179 if (dax_range_is_aligned(bdev, offset, length)) { 1180 sector_t start_sector = dax.sector + (offset >> 9); 1181 1182 return blkdev_issue_zeroout(bdev, start_sector, 1183 length >> 9, GFP_NOFS, true); 1184 } else { 1185 if (dax_map_atomic(bdev, &dax) < 0) 1186 return PTR_ERR(dax.addr); 1187 clear_pmem(dax.addr + offset, length); 1188 dax_unmap_atomic(bdev, &dax); 1189 } 1190 return 0; 1191 } 1192 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1193 1194 /** 1195 * dax_zero_page_range - zero a range within a page of a DAX file 1196 * @inode: The file being truncated 1197 * @from: The file offset that is being truncated to 1198 * @length: The number of bytes to zero 1199 * @get_block: The filesystem method used to translate file offsets to blocks 1200 * 1201 * This function can be called by a filesystem when it is zeroing part of a 1202 * page in a DAX file. This is intended for hole-punch operations. If 1203 * you are truncating a file, the helper function dax_truncate_page() may be 1204 * more convenient. 1205 */ 1206 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, 1207 get_block_t get_block) 1208 { 1209 struct buffer_head bh; 1210 pgoff_t index = from >> PAGE_SHIFT; 1211 unsigned offset = from & (PAGE_SIZE-1); 1212 int err; 1213 1214 /* Block boundary? Nothing to do */ 1215 if (!length) 1216 return 0; 1217 BUG_ON((offset + length) > PAGE_SIZE); 1218 1219 memset(&bh, 0, sizeof(bh)); 1220 bh.b_bdev = inode->i_sb->s_bdev; 1221 bh.b_size = PAGE_SIZE; 1222 err = get_block(inode, index, &bh, 0); 1223 if (err < 0 || !buffer_written(&bh)) 1224 return err; 1225 1226 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode), 1227 offset, length); 1228 } 1229 EXPORT_SYMBOL_GPL(dax_zero_page_range); 1230 1231 /** 1232 * dax_truncate_page - handle a partial page being truncated in a DAX file 1233 * @inode: The file being truncated 1234 * @from: The file offset that is being truncated to 1235 * @get_block: The filesystem method used to translate file offsets to blocks 1236 * 1237 * Similar to block_truncate_page(), this function can be called by a 1238 * filesystem when it is truncating a DAX file to handle the partial page. 1239 */ 1240 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) 1241 { 1242 unsigned length = PAGE_ALIGN(from) - from; 1243 return dax_zero_page_range(inode, from, length, get_block); 1244 } 1245 EXPORT_SYMBOL_GPL(dax_truncate_page); 1246 1247 #ifdef CONFIG_FS_IOMAP 1248 static loff_t 1249 iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1250 struct iomap *iomap) 1251 { 1252 struct iov_iter *iter = data; 1253 loff_t end = pos + length, done = 0; 1254 ssize_t ret = 0; 1255 1256 if (iov_iter_rw(iter) == READ) { 1257 end = min(end, i_size_read(inode)); 1258 if (pos >= end) 1259 return 0; 1260 1261 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1262 return iov_iter_zero(min(length, end - pos), iter); 1263 } 1264 1265 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1266 return -EIO; 1267 1268 while (pos < end) { 1269 unsigned offset = pos & (PAGE_SIZE - 1); 1270 struct blk_dax_ctl dax = { 0 }; 1271 ssize_t map_len; 1272 1273 dax.sector = iomap->blkno + 1274 (((pos & PAGE_MASK) - iomap->offset) >> 9); 1275 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; 1276 map_len = dax_map_atomic(iomap->bdev, &dax); 1277 if (map_len < 0) { 1278 ret = map_len; 1279 break; 1280 } 1281 1282 dax.addr += offset; 1283 map_len -= offset; 1284 if (map_len > end - pos) 1285 map_len = end - pos; 1286 1287 if (iov_iter_rw(iter) == WRITE) 1288 map_len = copy_from_iter_pmem(dax.addr, map_len, iter); 1289 else 1290 map_len = copy_to_iter(dax.addr, map_len, iter); 1291 dax_unmap_atomic(iomap->bdev, &dax); 1292 if (map_len <= 0) { 1293 ret = map_len ? map_len : -EFAULT; 1294 break; 1295 } 1296 1297 pos += map_len; 1298 length -= map_len; 1299 done += map_len; 1300 } 1301 1302 return done ? done : ret; 1303 } 1304 1305 /** 1306 * iomap_dax_rw - Perform I/O to a DAX file 1307 * @iocb: The control block for this I/O 1308 * @iter: The addresses to do I/O from or to 1309 * @ops: iomap ops passed from the file system 1310 * 1311 * This function performs read and write operations to directly mapped 1312 * persistent memory. The callers needs to take care of read/write exclusion 1313 * and evicting any page cache pages in the region under I/O. 1314 */ 1315 ssize_t 1316 iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter, 1317 struct iomap_ops *ops) 1318 { 1319 struct address_space *mapping = iocb->ki_filp->f_mapping; 1320 struct inode *inode = mapping->host; 1321 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1322 unsigned flags = 0; 1323 1324 if (iov_iter_rw(iter) == WRITE) 1325 flags |= IOMAP_WRITE; 1326 1327 /* 1328 * Yes, even DAX files can have page cache attached to them: A zeroed 1329 * page is inserted into the pagecache when we have to serve a write 1330 * fault on a hole. It should never be dirtied and can simply be 1331 * dropped from the pagecache once we get real data for the page. 1332 * 1333 * XXX: This is racy against mmap, and there's nothing we can do about 1334 * it. We'll eventually need to shift this down even further so that 1335 * we can check if we allocated blocks over a hole first. 1336 */ 1337 if (mapping->nrpages) { 1338 ret = invalidate_inode_pages2_range(mapping, 1339 pos >> PAGE_SHIFT, 1340 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT); 1341 WARN_ON_ONCE(ret); 1342 } 1343 1344 while (iov_iter_count(iter)) { 1345 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1346 iter, iomap_dax_actor); 1347 if (ret <= 0) 1348 break; 1349 pos += ret; 1350 done += ret; 1351 } 1352 1353 iocb->ki_pos += done; 1354 return done ? done : ret; 1355 } 1356 EXPORT_SYMBOL_GPL(iomap_dax_rw); 1357 1358 /** 1359 * iomap_dax_fault - handle a page fault on a DAX file 1360 * @vma: The virtual memory area where the fault occurred 1361 * @vmf: The description of the fault 1362 * @ops: iomap ops passed from the file system 1363 * 1364 * When a page fault occurs, filesystems may call this helper in their fault 1365 * or mkwrite handler for DAX files. Assumes the caller has done all the 1366 * necessary locking for the page fault to proceed successfully. 1367 */ 1368 int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 1369 struct iomap_ops *ops) 1370 { 1371 struct address_space *mapping = vma->vm_file->f_mapping; 1372 struct inode *inode = mapping->host; 1373 unsigned long vaddr = (unsigned long)vmf->virtual_address; 1374 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1375 sector_t sector; 1376 struct iomap iomap = { 0 }; 1377 unsigned flags = 0; 1378 int error, major = 0; 1379 void *entry; 1380 1381 /* 1382 * Check whether offset isn't beyond end of file now. Caller is supposed 1383 * to hold locks serializing us with truncate / punch hole so this is 1384 * a reliable test. 1385 */ 1386 if (pos >= i_size_read(inode)) 1387 return VM_FAULT_SIGBUS; 1388 1389 entry = grab_mapping_entry(mapping, vmf->pgoff); 1390 if (IS_ERR(entry)) { 1391 error = PTR_ERR(entry); 1392 goto out; 1393 } 1394 1395 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1396 flags |= IOMAP_WRITE; 1397 1398 /* 1399 * Note that we don't bother to use iomap_apply here: DAX required 1400 * the file system block size to be equal the page size, which means 1401 * that we never have to deal with more than a single extent here. 1402 */ 1403 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1404 if (error) 1405 goto unlock_entry; 1406 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1407 error = -EIO; /* fs corruption? */ 1408 goto unlock_entry; 1409 } 1410 1411 sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9); 1412 1413 if (vmf->cow_page) { 1414 switch (iomap.type) { 1415 case IOMAP_HOLE: 1416 case IOMAP_UNWRITTEN: 1417 clear_user_highpage(vmf->cow_page, vaddr); 1418 break; 1419 case IOMAP_MAPPED: 1420 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, 1421 vmf->cow_page, vaddr); 1422 break; 1423 default: 1424 WARN_ON_ONCE(1); 1425 error = -EIO; 1426 break; 1427 } 1428 1429 if (error) 1430 goto unlock_entry; 1431 if (!radix_tree_exceptional_entry(entry)) { 1432 vmf->page = entry; 1433 return VM_FAULT_LOCKED; 1434 } 1435 vmf->entry = entry; 1436 return VM_FAULT_DAX_LOCKED; 1437 } 1438 1439 switch (iomap.type) { 1440 case IOMAP_MAPPED: 1441 if (iomap.flags & IOMAP_F_NEW) { 1442 count_vm_event(PGMAJFAULT); 1443 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1444 major = VM_FAULT_MAJOR; 1445 } 1446 error = dax_insert_mapping(mapping, iomap.bdev, sector, 1447 PAGE_SIZE, &entry, vma, vmf); 1448 break; 1449 case IOMAP_UNWRITTEN: 1450 case IOMAP_HOLE: 1451 if (!(vmf->flags & FAULT_FLAG_WRITE)) 1452 return dax_load_hole(mapping, entry, vmf); 1453 /*FALLTHRU*/ 1454 default: 1455 WARN_ON_ONCE(1); 1456 error = -EIO; 1457 break; 1458 } 1459 1460 unlock_entry: 1461 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 1462 out: 1463 if (error == -ENOMEM) 1464 return VM_FAULT_OOM | major; 1465 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1466 if (error < 0 && error != -EBUSY) 1467 return VM_FAULT_SIGBUS | major; 1468 return VM_FAULT_NOPAGE | major; 1469 } 1470 EXPORT_SYMBOL_GPL(iomap_dax_fault); 1471 #endif /* CONFIG_FS_IOMAP */ 1472