1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/sched.h> 29 #include <linux/sched/signal.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/fs_dax.h> 40 41 static inline unsigned int pe_order(enum page_entry_size pe_size) 42 { 43 if (pe_size == PE_SIZE_PTE) 44 return PAGE_SHIFT - PAGE_SHIFT; 45 if (pe_size == PE_SIZE_PMD) 46 return PMD_SHIFT - PAGE_SHIFT; 47 if (pe_size == PE_SIZE_PUD) 48 return PUD_SHIFT - PAGE_SHIFT; 49 return ~0; 50 } 51 52 /* We choose 4096 entries - same as per-zone page wait tables */ 53 #define DAX_WAIT_TABLE_BITS 12 54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 55 56 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 57 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 58 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 59 60 /* The order of a PMD entry */ 61 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 62 63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 64 65 static int __init init_dax_wait_table(void) 66 { 67 int i; 68 69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 70 init_waitqueue_head(wait_table + i); 71 return 0; 72 } 73 fs_initcall(init_dax_wait_table); 74 75 /* 76 * DAX pagecache entries use XArray value entries so they can't be mistaken 77 * for pages. We use one bit for locking, one bit for the entry size (PMD) 78 * and two more to tell us if the entry is a zero page or an empty entry that 79 * is just used for locking. In total four special bits. 80 * 81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 83 * block allocation. 84 */ 85 #define DAX_SHIFT (4) 86 #define DAX_LOCKED (1UL << 0) 87 #define DAX_PMD (1UL << 1) 88 #define DAX_ZERO_PAGE (1UL << 2) 89 #define DAX_EMPTY (1UL << 3) 90 91 static unsigned long dax_to_pfn(void *entry) 92 { 93 return xa_to_value(entry) >> DAX_SHIFT; 94 } 95 96 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 97 { 98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 99 } 100 101 static void *dax_make_page_entry(struct page *page) 102 { 103 pfn_t pfn = page_to_pfn_t(page); 104 return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0); 105 } 106 107 static bool dax_is_locked(void *entry) 108 { 109 return xa_to_value(entry) & DAX_LOCKED; 110 } 111 112 static unsigned int dax_entry_order(void *entry) 113 { 114 if (xa_to_value(entry) & DAX_PMD) 115 return PMD_ORDER; 116 return 0; 117 } 118 119 static int dax_is_pmd_entry(void *entry) 120 { 121 return xa_to_value(entry) & DAX_PMD; 122 } 123 124 static int dax_is_pte_entry(void *entry) 125 { 126 return !(xa_to_value(entry) & DAX_PMD); 127 } 128 129 static int dax_is_zero_entry(void *entry) 130 { 131 return xa_to_value(entry) & DAX_ZERO_PAGE; 132 } 133 134 static int dax_is_empty_entry(void *entry) 135 { 136 return xa_to_value(entry) & DAX_EMPTY; 137 } 138 139 /* 140 * DAX page cache entry locking 141 */ 142 struct exceptional_entry_key { 143 struct xarray *xa; 144 pgoff_t entry_start; 145 }; 146 147 struct wait_exceptional_entry_queue { 148 wait_queue_entry_t wait; 149 struct exceptional_entry_key key; 150 }; 151 152 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 153 void *entry, struct exceptional_entry_key *key) 154 { 155 unsigned long hash; 156 unsigned long index = xas->xa_index; 157 158 /* 159 * If 'entry' is a PMD, align the 'index' that we use for the wait 160 * queue to the start of that PMD. This ensures that all offsets in 161 * the range covered by the PMD map to the same bit lock. 162 */ 163 if (dax_is_pmd_entry(entry)) 164 index &= ~PG_PMD_COLOUR; 165 key->xa = xas->xa; 166 key->entry_start = index; 167 168 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 169 return wait_table + hash; 170 } 171 172 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 173 unsigned int mode, int sync, void *keyp) 174 { 175 struct exceptional_entry_key *key = keyp; 176 struct wait_exceptional_entry_queue *ewait = 177 container_of(wait, struct wait_exceptional_entry_queue, wait); 178 179 if (key->xa != ewait->key.xa || 180 key->entry_start != ewait->key.entry_start) 181 return 0; 182 return autoremove_wake_function(wait, mode, sync, NULL); 183 } 184 185 /* 186 * @entry may no longer be the entry at the index in the mapping. 187 * The important information it's conveying is whether the entry at 188 * this index used to be a PMD entry. 189 */ 190 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 191 { 192 struct exceptional_entry_key key; 193 wait_queue_head_t *wq; 194 195 wq = dax_entry_waitqueue(xas, entry, &key); 196 197 /* 198 * Checking for locked entry and prepare_to_wait_exclusive() happens 199 * under the i_pages lock, ditto for entry handling in our callers. 200 * So at this point all tasks that could have seen our entry locked 201 * must be in the waitqueue and the following check will see them. 202 */ 203 if (waitqueue_active(wq)) 204 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 205 } 206 207 /* 208 * Look up entry in page cache, wait for it to become unlocked if it 209 * is a DAX entry and return it. The caller must subsequently call 210 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 211 * if it did. 212 * 213 * Must be called with the i_pages lock held. 214 */ 215 static void *get_unlocked_entry(struct xa_state *xas) 216 { 217 void *entry; 218 struct wait_exceptional_entry_queue ewait; 219 wait_queue_head_t *wq; 220 221 init_wait(&ewait.wait); 222 ewait.wait.func = wake_exceptional_entry_func; 223 224 for (;;) { 225 entry = xas_load(xas); 226 if (!entry || xa_is_internal(entry) || 227 WARN_ON_ONCE(!xa_is_value(entry)) || 228 !dax_is_locked(entry)) 229 return entry; 230 231 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 232 prepare_to_wait_exclusive(wq, &ewait.wait, 233 TASK_UNINTERRUPTIBLE); 234 xas_unlock_irq(xas); 235 xas_reset(xas); 236 schedule(); 237 finish_wait(wq, &ewait.wait); 238 xas_lock_irq(xas); 239 } 240 } 241 242 static void put_unlocked_entry(struct xa_state *xas, void *entry) 243 { 244 /* If we were the only waiter woken, wake the next one */ 245 if (entry) 246 dax_wake_entry(xas, entry, false); 247 } 248 249 /* 250 * We used the xa_state to get the entry, but then we locked the entry and 251 * dropped the xa_lock, so we know the xa_state is stale and must be reset 252 * before use. 253 */ 254 static void dax_unlock_entry(struct xa_state *xas, void *entry) 255 { 256 void *old; 257 258 xas_reset(xas); 259 xas_lock_irq(xas); 260 old = xas_store(xas, entry); 261 xas_unlock_irq(xas); 262 BUG_ON(!dax_is_locked(old)); 263 dax_wake_entry(xas, entry, false); 264 } 265 266 /* 267 * Return: The entry stored at this location before it was locked. 268 */ 269 static void *dax_lock_entry(struct xa_state *xas, void *entry) 270 { 271 unsigned long v = xa_to_value(entry); 272 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 273 } 274 275 static unsigned long dax_entry_size(void *entry) 276 { 277 if (dax_is_zero_entry(entry)) 278 return 0; 279 else if (dax_is_empty_entry(entry)) 280 return 0; 281 else if (dax_is_pmd_entry(entry)) 282 return PMD_SIZE; 283 else 284 return PAGE_SIZE; 285 } 286 287 static unsigned long dax_end_pfn(void *entry) 288 { 289 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 290 } 291 292 /* 293 * Iterate through all mapped pfns represented by an entry, i.e. skip 294 * 'empty' and 'zero' entries. 295 */ 296 #define for_each_mapped_pfn(entry, pfn) \ 297 for (pfn = dax_to_pfn(entry); \ 298 pfn < dax_end_pfn(entry); pfn++) 299 300 /* 301 * TODO: for reflink+dax we need a way to associate a single page with 302 * multiple address_space instances at different linear_page_index() 303 * offsets. 304 */ 305 static void dax_associate_entry(void *entry, struct address_space *mapping, 306 struct vm_area_struct *vma, unsigned long address) 307 { 308 unsigned long size = dax_entry_size(entry), pfn, index; 309 int i = 0; 310 311 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 312 return; 313 314 index = linear_page_index(vma, address & ~(size - 1)); 315 for_each_mapped_pfn(entry, pfn) { 316 struct page *page = pfn_to_page(pfn); 317 318 WARN_ON_ONCE(page->mapping); 319 page->mapping = mapping; 320 page->index = index + i++; 321 } 322 } 323 324 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 325 bool trunc) 326 { 327 unsigned long pfn; 328 329 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 330 return; 331 332 for_each_mapped_pfn(entry, pfn) { 333 struct page *page = pfn_to_page(pfn); 334 335 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 336 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 337 page->mapping = NULL; 338 page->index = 0; 339 } 340 } 341 342 static struct page *dax_busy_page(void *entry) 343 { 344 unsigned long pfn; 345 346 for_each_mapped_pfn(entry, pfn) { 347 struct page *page = pfn_to_page(pfn); 348 349 if (page_ref_count(page) > 1) 350 return page; 351 } 352 return NULL; 353 } 354 355 bool dax_lock_mapping_entry(struct page *page) 356 { 357 XA_STATE(xas, NULL, 0); 358 void *entry; 359 360 for (;;) { 361 struct address_space *mapping = READ_ONCE(page->mapping); 362 363 if (!dax_mapping(mapping)) 364 return false; 365 366 /* 367 * In the device-dax case there's no need to lock, a 368 * struct dev_pagemap pin is sufficient to keep the 369 * inode alive, and we assume we have dev_pagemap pin 370 * otherwise we would not have a valid pfn_to_page() 371 * translation. 372 */ 373 if (S_ISCHR(mapping->host->i_mode)) 374 return true; 375 376 xas.xa = &mapping->i_pages; 377 xas_lock_irq(&xas); 378 if (mapping != page->mapping) { 379 xas_unlock_irq(&xas); 380 continue; 381 } 382 xas_set(&xas, page->index); 383 entry = xas_load(&xas); 384 if (dax_is_locked(entry)) { 385 entry = get_unlocked_entry(&xas); 386 /* Did the page move while we slept? */ 387 if (dax_to_pfn(entry) != page_to_pfn(page)) { 388 xas_unlock_irq(&xas); 389 continue; 390 } 391 } 392 dax_lock_entry(&xas, entry); 393 xas_unlock_irq(&xas); 394 return true; 395 } 396 } 397 398 void dax_unlock_mapping_entry(struct page *page) 399 { 400 struct address_space *mapping = page->mapping; 401 XA_STATE(xas, &mapping->i_pages, page->index); 402 403 if (S_ISCHR(mapping->host->i_mode)) 404 return; 405 406 dax_unlock_entry(&xas, dax_make_page_entry(page)); 407 } 408 409 /* 410 * Find page cache entry at given index. If it is a DAX entry, return it 411 * with the entry locked. If the page cache doesn't contain an entry at 412 * that index, add a locked empty entry. 413 * 414 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 415 * either return that locked entry or will return VM_FAULT_FALLBACK. 416 * This will happen if there are any PTE entries within the PMD range 417 * that we are requesting. 418 * 419 * We always favor PTE entries over PMD entries. There isn't a flow where we 420 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 421 * insertion will fail if it finds any PTE entries already in the tree, and a 422 * PTE insertion will cause an existing PMD entry to be unmapped and 423 * downgraded to PTE entries. This happens for both PMD zero pages as 424 * well as PMD empty entries. 425 * 426 * The exception to this downgrade path is for PMD entries that have 427 * real storage backing them. We will leave these real PMD entries in 428 * the tree, and PTE writes will simply dirty the entire PMD entry. 429 * 430 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 431 * persistent memory the benefit is doubtful. We can add that later if we can 432 * show it helps. 433 * 434 * On error, this function does not return an ERR_PTR. Instead it returns 435 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 436 * overlap with xarray value entries. 437 */ 438 static void *grab_mapping_entry(struct xa_state *xas, 439 struct address_space *mapping, unsigned long size_flag) 440 { 441 unsigned long index = xas->xa_index; 442 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 443 void *entry; 444 445 retry: 446 xas_lock_irq(xas); 447 entry = get_unlocked_entry(xas); 448 if (xa_is_internal(entry)) 449 goto fallback; 450 451 if (entry) { 452 if (WARN_ON_ONCE(!xa_is_value(entry))) { 453 xas_set_err(xas, EIO); 454 goto out_unlock; 455 } 456 457 if (size_flag & DAX_PMD) { 458 if (dax_is_pte_entry(entry)) { 459 put_unlocked_entry(xas, entry); 460 goto fallback; 461 } 462 } else { /* trying to grab a PTE entry */ 463 if (dax_is_pmd_entry(entry) && 464 (dax_is_zero_entry(entry) || 465 dax_is_empty_entry(entry))) { 466 pmd_downgrade = true; 467 } 468 } 469 } 470 471 if (pmd_downgrade) { 472 /* 473 * Make sure 'entry' remains valid while we drop 474 * the i_pages lock. 475 */ 476 dax_lock_entry(xas, entry); 477 478 /* 479 * Besides huge zero pages the only other thing that gets 480 * downgraded are empty entries which don't need to be 481 * unmapped. 482 */ 483 if (dax_is_zero_entry(entry)) { 484 xas_unlock_irq(xas); 485 unmap_mapping_pages(mapping, 486 xas->xa_index & ~PG_PMD_COLOUR, 487 PG_PMD_NR, false); 488 xas_reset(xas); 489 xas_lock_irq(xas); 490 } 491 492 dax_disassociate_entry(entry, mapping, false); 493 xas_store(xas, NULL); /* undo the PMD join */ 494 dax_wake_entry(xas, entry, true); 495 mapping->nrexceptional--; 496 entry = NULL; 497 xas_set(xas, index); 498 } 499 500 if (entry) { 501 dax_lock_entry(xas, entry); 502 } else { 503 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY); 504 dax_lock_entry(xas, entry); 505 if (xas_error(xas)) 506 goto out_unlock; 507 mapping->nrexceptional++; 508 } 509 510 out_unlock: 511 xas_unlock_irq(xas); 512 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 513 goto retry; 514 if (xas->xa_node == XA_ERROR(-ENOMEM)) 515 return xa_mk_internal(VM_FAULT_OOM); 516 if (xas_error(xas)) 517 return xa_mk_internal(VM_FAULT_SIGBUS); 518 return entry; 519 fallback: 520 xas_unlock_irq(xas); 521 return xa_mk_internal(VM_FAULT_FALLBACK); 522 } 523 524 /** 525 * dax_layout_busy_page - find first pinned page in @mapping 526 * @mapping: address space to scan for a page with ref count > 1 527 * 528 * DAX requires ZONE_DEVICE mapped pages. These pages are never 529 * 'onlined' to the page allocator so they are considered idle when 530 * page->count == 1. A filesystem uses this interface to determine if 531 * any page in the mapping is busy, i.e. for DMA, or other 532 * get_user_pages() usages. 533 * 534 * It is expected that the filesystem is holding locks to block the 535 * establishment of new mappings in this address_space. I.e. it expects 536 * to be able to run unmap_mapping_range() and subsequently not race 537 * mapping_mapped() becoming true. 538 */ 539 struct page *dax_layout_busy_page(struct address_space *mapping) 540 { 541 XA_STATE(xas, &mapping->i_pages, 0); 542 void *entry; 543 unsigned int scanned = 0; 544 struct page *page = NULL; 545 546 /* 547 * In the 'limited' case get_user_pages() for dax is disabled. 548 */ 549 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 550 return NULL; 551 552 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 553 return NULL; 554 555 /* 556 * If we race get_user_pages_fast() here either we'll see the 557 * elevated page count in the iteration and wait, or 558 * get_user_pages_fast() will see that the page it took a reference 559 * against is no longer mapped in the page tables and bail to the 560 * get_user_pages() slow path. The slow path is protected by 561 * pte_lock() and pmd_lock(). New references are not taken without 562 * holding those locks, and unmap_mapping_range() will not zero the 563 * pte or pmd without holding the respective lock, so we are 564 * guaranteed to either see new references or prevent new 565 * references from being established. 566 */ 567 unmap_mapping_range(mapping, 0, 0, 1); 568 569 xas_lock_irq(&xas); 570 xas_for_each(&xas, entry, ULONG_MAX) { 571 if (WARN_ON_ONCE(!xa_is_value(entry))) 572 continue; 573 if (unlikely(dax_is_locked(entry))) 574 entry = get_unlocked_entry(&xas); 575 if (entry) 576 page = dax_busy_page(entry); 577 put_unlocked_entry(&xas, entry); 578 if (page) 579 break; 580 if (++scanned % XA_CHECK_SCHED) 581 continue; 582 583 xas_pause(&xas); 584 xas_unlock_irq(&xas); 585 cond_resched(); 586 xas_lock_irq(&xas); 587 } 588 xas_unlock_irq(&xas); 589 return page; 590 } 591 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 592 593 static int __dax_invalidate_entry(struct address_space *mapping, 594 pgoff_t index, bool trunc) 595 { 596 XA_STATE(xas, &mapping->i_pages, index); 597 int ret = 0; 598 void *entry; 599 600 xas_lock_irq(&xas); 601 entry = get_unlocked_entry(&xas); 602 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 603 goto out; 604 if (!trunc && 605 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 606 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 607 goto out; 608 dax_disassociate_entry(entry, mapping, trunc); 609 xas_store(&xas, NULL); 610 mapping->nrexceptional--; 611 ret = 1; 612 out: 613 put_unlocked_entry(&xas, entry); 614 xas_unlock_irq(&xas); 615 return ret; 616 } 617 618 /* 619 * Delete DAX entry at @index from @mapping. Wait for it 620 * to be unlocked before deleting it. 621 */ 622 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 623 { 624 int ret = __dax_invalidate_entry(mapping, index, true); 625 626 /* 627 * This gets called from truncate / punch_hole path. As such, the caller 628 * must hold locks protecting against concurrent modifications of the 629 * page cache (usually fs-private i_mmap_sem for writing). Since the 630 * caller has seen a DAX entry for this index, we better find it 631 * at that index as well... 632 */ 633 WARN_ON_ONCE(!ret); 634 return ret; 635 } 636 637 /* 638 * Invalidate DAX entry if it is clean. 639 */ 640 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 641 pgoff_t index) 642 { 643 return __dax_invalidate_entry(mapping, index, false); 644 } 645 646 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 647 sector_t sector, size_t size, struct page *to, 648 unsigned long vaddr) 649 { 650 void *vto, *kaddr; 651 pgoff_t pgoff; 652 long rc; 653 int id; 654 655 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 656 if (rc) 657 return rc; 658 659 id = dax_read_lock(); 660 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 661 if (rc < 0) { 662 dax_read_unlock(id); 663 return rc; 664 } 665 vto = kmap_atomic(to); 666 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 667 kunmap_atomic(vto); 668 dax_read_unlock(id); 669 return 0; 670 } 671 672 /* 673 * By this point grab_mapping_entry() has ensured that we have a locked entry 674 * of the appropriate size so we don't have to worry about downgrading PMDs to 675 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 676 * already in the tree, we will skip the insertion and just dirty the PMD as 677 * appropriate. 678 */ 679 static void *dax_insert_entry(struct xa_state *xas, 680 struct address_space *mapping, struct vm_fault *vmf, 681 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 682 { 683 void *new_entry = dax_make_entry(pfn, flags); 684 685 if (dirty) 686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 687 688 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 689 unsigned long index = xas->xa_index; 690 /* we are replacing a zero page with block mapping */ 691 if (dax_is_pmd_entry(entry)) 692 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 693 PG_PMD_NR, false); 694 else /* pte entry */ 695 unmap_mapping_pages(mapping, index, 1, false); 696 } 697 698 xas_reset(xas); 699 xas_lock_irq(xas); 700 if (dax_entry_size(entry) != dax_entry_size(new_entry)) { 701 dax_disassociate_entry(entry, mapping, false); 702 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 703 } 704 705 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 706 /* 707 * Only swap our new entry into the page cache if the current 708 * entry is a zero page or an empty entry. If a normal PTE or 709 * PMD entry is already in the cache, we leave it alone. This 710 * means that if we are trying to insert a PTE and the 711 * existing entry is a PMD, we will just leave the PMD in the 712 * tree and dirty it if necessary. 713 */ 714 void *old = dax_lock_entry(xas, new_entry); 715 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 716 DAX_LOCKED)); 717 entry = new_entry; 718 } else { 719 xas_load(xas); /* Walk the xa_state */ 720 } 721 722 if (dirty) 723 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 724 725 xas_unlock_irq(xas); 726 return entry; 727 } 728 729 static inline 730 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 731 { 732 unsigned long address; 733 734 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 735 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 736 return address; 737 } 738 739 /* Walk all mappings of a given index of a file and writeprotect them */ 740 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 741 unsigned long pfn) 742 { 743 struct vm_area_struct *vma; 744 pte_t pte, *ptep = NULL; 745 pmd_t *pmdp = NULL; 746 spinlock_t *ptl; 747 748 i_mmap_lock_read(mapping); 749 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 750 unsigned long address, start, end; 751 752 cond_resched(); 753 754 if (!(vma->vm_flags & VM_SHARED)) 755 continue; 756 757 address = pgoff_address(index, vma); 758 759 /* 760 * Note because we provide start/end to follow_pte_pmd it will 761 * call mmu_notifier_invalidate_range_start() on our behalf 762 * before taking any lock. 763 */ 764 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) 765 continue; 766 767 /* 768 * No need to call mmu_notifier_invalidate_range() as we are 769 * downgrading page table protection not changing it to point 770 * to a new page. 771 * 772 * See Documentation/vm/mmu_notifier.rst 773 */ 774 if (pmdp) { 775 #ifdef CONFIG_FS_DAX_PMD 776 pmd_t pmd; 777 778 if (pfn != pmd_pfn(*pmdp)) 779 goto unlock_pmd; 780 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 781 goto unlock_pmd; 782 783 flush_cache_page(vma, address, pfn); 784 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 785 pmd = pmd_wrprotect(pmd); 786 pmd = pmd_mkclean(pmd); 787 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 788 unlock_pmd: 789 #endif 790 spin_unlock(ptl); 791 } else { 792 if (pfn != pte_pfn(*ptep)) 793 goto unlock_pte; 794 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 795 goto unlock_pte; 796 797 flush_cache_page(vma, address, pfn); 798 pte = ptep_clear_flush(vma, address, ptep); 799 pte = pte_wrprotect(pte); 800 pte = pte_mkclean(pte); 801 set_pte_at(vma->vm_mm, address, ptep, pte); 802 unlock_pte: 803 pte_unmap_unlock(ptep, ptl); 804 } 805 806 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 807 } 808 i_mmap_unlock_read(mapping); 809 } 810 811 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 812 struct address_space *mapping, void *entry) 813 { 814 unsigned long pfn; 815 long ret = 0; 816 size_t size; 817 818 /* 819 * A page got tagged dirty in DAX mapping? Something is seriously 820 * wrong. 821 */ 822 if (WARN_ON(!xa_is_value(entry))) 823 return -EIO; 824 825 if (unlikely(dax_is_locked(entry))) { 826 void *old_entry = entry; 827 828 entry = get_unlocked_entry(xas); 829 830 /* Entry got punched out / reallocated? */ 831 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 832 goto put_unlocked; 833 /* 834 * Entry got reallocated elsewhere? No need to writeback. 835 * We have to compare pfns as we must not bail out due to 836 * difference in lockbit or entry type. 837 */ 838 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 839 goto put_unlocked; 840 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 841 dax_is_zero_entry(entry))) { 842 ret = -EIO; 843 goto put_unlocked; 844 } 845 846 /* Another fsync thread may have already done this entry */ 847 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 848 goto put_unlocked; 849 } 850 851 /* Lock the entry to serialize with page faults */ 852 dax_lock_entry(xas, entry); 853 854 /* 855 * We can clear the tag now but we have to be careful so that concurrent 856 * dax_writeback_one() calls for the same index cannot finish before we 857 * actually flush the caches. This is achieved as the calls will look 858 * at the entry only under the i_pages lock and once they do that 859 * they will see the entry locked and wait for it to unlock. 860 */ 861 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 862 xas_unlock_irq(xas); 863 864 /* 865 * Even if dax_writeback_mapping_range() was given a wbc->range_start 866 * in the middle of a PMD, the 'index' we are given will be aligned to 867 * the start index of the PMD, as will the pfn we pull from 'entry'. 868 * This allows us to flush for PMD_SIZE and not have to worry about 869 * partial PMD writebacks. 870 */ 871 pfn = dax_to_pfn(entry); 872 size = PAGE_SIZE << dax_entry_order(entry); 873 874 dax_entry_mkclean(mapping, xas->xa_index, pfn); 875 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size); 876 /* 877 * After we have flushed the cache, we can clear the dirty tag. There 878 * cannot be new dirty data in the pfn after the flush has completed as 879 * the pfn mappings are writeprotected and fault waits for mapping 880 * entry lock. 881 */ 882 xas_reset(xas); 883 xas_lock_irq(xas); 884 xas_store(xas, entry); 885 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 886 dax_wake_entry(xas, entry, false); 887 888 trace_dax_writeback_one(mapping->host, xas->xa_index, 889 size >> PAGE_SHIFT); 890 return ret; 891 892 put_unlocked: 893 put_unlocked_entry(xas, entry); 894 return ret; 895 } 896 897 /* 898 * Flush the mapping to the persistent domain within the byte range of [start, 899 * end]. This is required by data integrity operations to ensure file data is 900 * on persistent storage prior to completion of the operation. 901 */ 902 int dax_writeback_mapping_range(struct address_space *mapping, 903 struct block_device *bdev, struct writeback_control *wbc) 904 { 905 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 906 struct inode *inode = mapping->host; 907 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 908 struct dax_device *dax_dev; 909 void *entry; 910 int ret = 0; 911 unsigned int scanned = 0; 912 913 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 914 return -EIO; 915 916 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 917 return 0; 918 919 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 920 if (!dax_dev) 921 return -EIO; 922 923 trace_dax_writeback_range(inode, xas.xa_index, end_index); 924 925 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 926 927 xas_lock_irq(&xas); 928 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 929 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 930 if (ret < 0) { 931 mapping_set_error(mapping, ret); 932 break; 933 } 934 if (++scanned % XA_CHECK_SCHED) 935 continue; 936 937 xas_pause(&xas); 938 xas_unlock_irq(&xas); 939 cond_resched(); 940 xas_lock_irq(&xas); 941 } 942 xas_unlock_irq(&xas); 943 put_dax(dax_dev); 944 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 945 return ret; 946 } 947 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 948 949 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 950 { 951 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 952 } 953 954 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 955 pfn_t *pfnp) 956 { 957 const sector_t sector = dax_iomap_sector(iomap, pos); 958 pgoff_t pgoff; 959 int id, rc; 960 long length; 961 962 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 963 if (rc) 964 return rc; 965 id = dax_read_lock(); 966 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 967 NULL, pfnp); 968 if (length < 0) { 969 rc = length; 970 goto out; 971 } 972 rc = -EINVAL; 973 if (PFN_PHYS(length) < size) 974 goto out; 975 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 976 goto out; 977 /* For larger pages we need devmap */ 978 if (length > 1 && !pfn_t_devmap(*pfnp)) 979 goto out; 980 rc = 0; 981 out: 982 dax_read_unlock(id); 983 return rc; 984 } 985 986 /* 987 * The user has performed a load from a hole in the file. Allocating a new 988 * page in the file would cause excessive storage usage for workloads with 989 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 990 * If this page is ever written to we will re-fault and change the mapping to 991 * point to real DAX storage instead. 992 */ 993 static vm_fault_t dax_load_hole(struct xa_state *xas, 994 struct address_space *mapping, void **entry, 995 struct vm_fault *vmf) 996 { 997 struct inode *inode = mapping->host; 998 unsigned long vaddr = vmf->address; 999 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1000 vm_fault_t ret; 1001 1002 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1003 DAX_ZERO_PAGE, false); 1004 1005 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1006 trace_dax_load_hole(inode, vmf, ret); 1007 return ret; 1008 } 1009 1010 static bool dax_range_is_aligned(struct block_device *bdev, 1011 unsigned int offset, unsigned int length) 1012 { 1013 unsigned short sector_size = bdev_logical_block_size(bdev); 1014 1015 if (!IS_ALIGNED(offset, sector_size)) 1016 return false; 1017 if (!IS_ALIGNED(length, sector_size)) 1018 return false; 1019 1020 return true; 1021 } 1022 1023 int __dax_zero_page_range(struct block_device *bdev, 1024 struct dax_device *dax_dev, sector_t sector, 1025 unsigned int offset, unsigned int size) 1026 { 1027 if (dax_range_is_aligned(bdev, offset, size)) { 1028 sector_t start_sector = sector + (offset >> 9); 1029 1030 return blkdev_issue_zeroout(bdev, start_sector, 1031 size >> 9, GFP_NOFS, 0); 1032 } else { 1033 pgoff_t pgoff; 1034 long rc, id; 1035 void *kaddr; 1036 1037 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1038 if (rc) 1039 return rc; 1040 1041 id = dax_read_lock(); 1042 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1043 if (rc < 0) { 1044 dax_read_unlock(id); 1045 return rc; 1046 } 1047 memset(kaddr + offset, 0, size); 1048 dax_flush(dax_dev, kaddr + offset, size); 1049 dax_read_unlock(id); 1050 } 1051 return 0; 1052 } 1053 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1054 1055 static loff_t 1056 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1057 struct iomap *iomap) 1058 { 1059 struct block_device *bdev = iomap->bdev; 1060 struct dax_device *dax_dev = iomap->dax_dev; 1061 struct iov_iter *iter = data; 1062 loff_t end = pos + length, done = 0; 1063 ssize_t ret = 0; 1064 size_t xfer; 1065 int id; 1066 1067 if (iov_iter_rw(iter) == READ) { 1068 end = min(end, i_size_read(inode)); 1069 if (pos >= end) 1070 return 0; 1071 1072 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1073 return iov_iter_zero(min(length, end - pos), iter); 1074 } 1075 1076 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1077 return -EIO; 1078 1079 /* 1080 * Write can allocate block for an area which has a hole page mapped 1081 * into page tables. We have to tear down these mappings so that data 1082 * written by write(2) is visible in mmap. 1083 */ 1084 if (iomap->flags & IOMAP_F_NEW) { 1085 invalidate_inode_pages2_range(inode->i_mapping, 1086 pos >> PAGE_SHIFT, 1087 (end - 1) >> PAGE_SHIFT); 1088 } 1089 1090 id = dax_read_lock(); 1091 while (pos < end) { 1092 unsigned offset = pos & (PAGE_SIZE - 1); 1093 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1094 const sector_t sector = dax_iomap_sector(iomap, pos); 1095 ssize_t map_len; 1096 pgoff_t pgoff; 1097 void *kaddr; 1098 1099 if (fatal_signal_pending(current)) { 1100 ret = -EINTR; 1101 break; 1102 } 1103 1104 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1105 if (ret) 1106 break; 1107 1108 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1109 &kaddr, NULL); 1110 if (map_len < 0) { 1111 ret = map_len; 1112 break; 1113 } 1114 1115 map_len = PFN_PHYS(map_len); 1116 kaddr += offset; 1117 map_len -= offset; 1118 if (map_len > end - pos) 1119 map_len = end - pos; 1120 1121 /* 1122 * The userspace address for the memory copy has already been 1123 * validated via access_ok() in either vfs_read() or 1124 * vfs_write(), depending on which operation we are doing. 1125 */ 1126 if (iov_iter_rw(iter) == WRITE) 1127 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1128 map_len, iter); 1129 else 1130 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1131 map_len, iter); 1132 1133 pos += xfer; 1134 length -= xfer; 1135 done += xfer; 1136 1137 if (xfer == 0) 1138 ret = -EFAULT; 1139 if (xfer < map_len) 1140 break; 1141 } 1142 dax_read_unlock(id); 1143 1144 return done ? done : ret; 1145 } 1146 1147 /** 1148 * dax_iomap_rw - Perform I/O to a DAX file 1149 * @iocb: The control block for this I/O 1150 * @iter: The addresses to do I/O from or to 1151 * @ops: iomap ops passed from the file system 1152 * 1153 * This function performs read and write operations to directly mapped 1154 * persistent memory. The callers needs to take care of read/write exclusion 1155 * and evicting any page cache pages in the region under I/O. 1156 */ 1157 ssize_t 1158 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1159 const struct iomap_ops *ops) 1160 { 1161 struct address_space *mapping = iocb->ki_filp->f_mapping; 1162 struct inode *inode = mapping->host; 1163 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1164 unsigned flags = 0; 1165 1166 if (iov_iter_rw(iter) == WRITE) { 1167 lockdep_assert_held_exclusive(&inode->i_rwsem); 1168 flags |= IOMAP_WRITE; 1169 } else { 1170 lockdep_assert_held(&inode->i_rwsem); 1171 } 1172 1173 while (iov_iter_count(iter)) { 1174 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1175 iter, dax_iomap_actor); 1176 if (ret <= 0) 1177 break; 1178 pos += ret; 1179 done += ret; 1180 } 1181 1182 iocb->ki_pos += done; 1183 return done ? done : ret; 1184 } 1185 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1186 1187 static vm_fault_t dax_fault_return(int error) 1188 { 1189 if (error == 0) 1190 return VM_FAULT_NOPAGE; 1191 if (error == -ENOMEM) 1192 return VM_FAULT_OOM; 1193 return VM_FAULT_SIGBUS; 1194 } 1195 1196 /* 1197 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1198 * flushed on write-faults (non-cow), but not read-faults. 1199 */ 1200 static bool dax_fault_is_synchronous(unsigned long flags, 1201 struct vm_area_struct *vma, struct iomap *iomap) 1202 { 1203 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1204 && (iomap->flags & IOMAP_F_DIRTY); 1205 } 1206 1207 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1208 int *iomap_errp, const struct iomap_ops *ops) 1209 { 1210 struct vm_area_struct *vma = vmf->vma; 1211 struct address_space *mapping = vma->vm_file->f_mapping; 1212 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1213 struct inode *inode = mapping->host; 1214 unsigned long vaddr = vmf->address; 1215 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1216 struct iomap iomap = { 0 }; 1217 unsigned flags = IOMAP_FAULT; 1218 int error, major = 0; 1219 bool write = vmf->flags & FAULT_FLAG_WRITE; 1220 bool sync; 1221 vm_fault_t ret = 0; 1222 void *entry; 1223 pfn_t pfn; 1224 1225 trace_dax_pte_fault(inode, vmf, ret); 1226 /* 1227 * Check whether offset isn't beyond end of file now. Caller is supposed 1228 * to hold locks serializing us with truncate / punch hole so this is 1229 * a reliable test. 1230 */ 1231 if (pos >= i_size_read(inode)) { 1232 ret = VM_FAULT_SIGBUS; 1233 goto out; 1234 } 1235 1236 if (write && !vmf->cow_page) 1237 flags |= IOMAP_WRITE; 1238 1239 entry = grab_mapping_entry(&xas, mapping, 0); 1240 if (xa_is_internal(entry)) { 1241 ret = xa_to_internal(entry); 1242 goto out; 1243 } 1244 1245 /* 1246 * It is possible, particularly with mixed reads & writes to private 1247 * mappings, that we have raced with a PMD fault that overlaps with 1248 * the PTE we need to set up. If so just return and the fault will be 1249 * retried. 1250 */ 1251 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1252 ret = VM_FAULT_NOPAGE; 1253 goto unlock_entry; 1254 } 1255 1256 /* 1257 * Note that we don't bother to use iomap_apply here: DAX required 1258 * the file system block size to be equal the page size, which means 1259 * that we never have to deal with more than a single extent here. 1260 */ 1261 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1262 if (iomap_errp) 1263 *iomap_errp = error; 1264 if (error) { 1265 ret = dax_fault_return(error); 1266 goto unlock_entry; 1267 } 1268 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1269 error = -EIO; /* fs corruption? */ 1270 goto error_finish_iomap; 1271 } 1272 1273 if (vmf->cow_page) { 1274 sector_t sector = dax_iomap_sector(&iomap, pos); 1275 1276 switch (iomap.type) { 1277 case IOMAP_HOLE: 1278 case IOMAP_UNWRITTEN: 1279 clear_user_highpage(vmf->cow_page, vaddr); 1280 break; 1281 case IOMAP_MAPPED: 1282 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1283 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1284 break; 1285 default: 1286 WARN_ON_ONCE(1); 1287 error = -EIO; 1288 break; 1289 } 1290 1291 if (error) 1292 goto error_finish_iomap; 1293 1294 __SetPageUptodate(vmf->cow_page); 1295 ret = finish_fault(vmf); 1296 if (!ret) 1297 ret = VM_FAULT_DONE_COW; 1298 goto finish_iomap; 1299 } 1300 1301 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1302 1303 switch (iomap.type) { 1304 case IOMAP_MAPPED: 1305 if (iomap.flags & IOMAP_F_NEW) { 1306 count_vm_event(PGMAJFAULT); 1307 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1308 major = VM_FAULT_MAJOR; 1309 } 1310 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1311 if (error < 0) 1312 goto error_finish_iomap; 1313 1314 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1315 0, write && !sync); 1316 1317 /* 1318 * If we are doing synchronous page fault and inode needs fsync, 1319 * we can insert PTE into page tables only after that happens. 1320 * Skip insertion for now and return the pfn so that caller can 1321 * insert it after fsync is done. 1322 */ 1323 if (sync) { 1324 if (WARN_ON_ONCE(!pfnp)) { 1325 error = -EIO; 1326 goto error_finish_iomap; 1327 } 1328 *pfnp = pfn; 1329 ret = VM_FAULT_NEEDDSYNC | major; 1330 goto finish_iomap; 1331 } 1332 trace_dax_insert_mapping(inode, vmf, entry); 1333 if (write) 1334 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1335 else 1336 ret = vmf_insert_mixed(vma, vaddr, pfn); 1337 1338 goto finish_iomap; 1339 case IOMAP_UNWRITTEN: 1340 case IOMAP_HOLE: 1341 if (!write) { 1342 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1343 goto finish_iomap; 1344 } 1345 /*FALLTHRU*/ 1346 default: 1347 WARN_ON_ONCE(1); 1348 error = -EIO; 1349 break; 1350 } 1351 1352 error_finish_iomap: 1353 ret = dax_fault_return(error); 1354 finish_iomap: 1355 if (ops->iomap_end) { 1356 int copied = PAGE_SIZE; 1357 1358 if (ret & VM_FAULT_ERROR) 1359 copied = 0; 1360 /* 1361 * The fault is done by now and there's no way back (other 1362 * thread may be already happily using PTE we have installed). 1363 * Just ignore error from ->iomap_end since we cannot do much 1364 * with it. 1365 */ 1366 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1367 } 1368 unlock_entry: 1369 dax_unlock_entry(&xas, entry); 1370 out: 1371 trace_dax_pte_fault_done(inode, vmf, ret); 1372 return ret | major; 1373 } 1374 1375 #ifdef CONFIG_FS_DAX_PMD 1376 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1377 struct iomap *iomap, void **entry) 1378 { 1379 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1380 unsigned long pmd_addr = vmf->address & PMD_MASK; 1381 struct inode *inode = mapping->host; 1382 struct page *zero_page; 1383 spinlock_t *ptl; 1384 pmd_t pmd_entry; 1385 pfn_t pfn; 1386 1387 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1388 1389 if (unlikely(!zero_page)) 1390 goto fallback; 1391 1392 pfn = page_to_pfn_t(zero_page); 1393 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1394 DAX_PMD | DAX_ZERO_PAGE, false); 1395 1396 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1397 if (!pmd_none(*(vmf->pmd))) { 1398 spin_unlock(ptl); 1399 goto fallback; 1400 } 1401 1402 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1403 pmd_entry = pmd_mkhuge(pmd_entry); 1404 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1405 spin_unlock(ptl); 1406 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1407 return VM_FAULT_NOPAGE; 1408 1409 fallback: 1410 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1411 return VM_FAULT_FALLBACK; 1412 } 1413 1414 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1415 const struct iomap_ops *ops) 1416 { 1417 struct vm_area_struct *vma = vmf->vma; 1418 struct address_space *mapping = vma->vm_file->f_mapping; 1419 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1420 unsigned long pmd_addr = vmf->address & PMD_MASK; 1421 bool write = vmf->flags & FAULT_FLAG_WRITE; 1422 bool sync; 1423 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1424 struct inode *inode = mapping->host; 1425 vm_fault_t result = VM_FAULT_FALLBACK; 1426 struct iomap iomap = { 0 }; 1427 pgoff_t max_pgoff; 1428 void *entry; 1429 loff_t pos; 1430 int error; 1431 pfn_t pfn; 1432 1433 /* 1434 * Check whether offset isn't beyond end of file now. Caller is 1435 * supposed to hold locks serializing us with truncate / punch hole so 1436 * this is a reliable test. 1437 */ 1438 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1439 1440 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1441 1442 /* 1443 * Make sure that the faulting address's PMD offset (color) matches 1444 * the PMD offset from the start of the file. This is necessary so 1445 * that a PMD range in the page table overlaps exactly with a PMD 1446 * range in the page cache. 1447 */ 1448 if ((vmf->pgoff & PG_PMD_COLOUR) != 1449 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1450 goto fallback; 1451 1452 /* Fall back to PTEs if we're going to COW */ 1453 if (write && !(vma->vm_flags & VM_SHARED)) 1454 goto fallback; 1455 1456 /* If the PMD would extend outside the VMA */ 1457 if (pmd_addr < vma->vm_start) 1458 goto fallback; 1459 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1460 goto fallback; 1461 1462 if (xas.xa_index >= max_pgoff) { 1463 result = VM_FAULT_SIGBUS; 1464 goto out; 1465 } 1466 1467 /* If the PMD would extend beyond the file size */ 1468 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1469 goto fallback; 1470 1471 /* 1472 * grab_mapping_entry() will make sure we get an empty PMD entry, 1473 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1474 * entry is already in the array, for instance), it will return 1475 * VM_FAULT_FALLBACK. 1476 */ 1477 entry = grab_mapping_entry(&xas, mapping, DAX_PMD); 1478 if (xa_is_internal(entry)) { 1479 result = xa_to_internal(entry); 1480 goto fallback; 1481 } 1482 1483 /* 1484 * It is possible, particularly with mixed reads & writes to private 1485 * mappings, that we have raced with a PTE fault that overlaps with 1486 * the PMD we need to set up. If so just return and the fault will be 1487 * retried. 1488 */ 1489 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1490 !pmd_devmap(*vmf->pmd)) { 1491 result = 0; 1492 goto unlock_entry; 1493 } 1494 1495 /* 1496 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1497 * setting up a mapping, so really we're using iomap_begin() as a way 1498 * to look up our filesystem block. 1499 */ 1500 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1501 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1502 if (error) 1503 goto unlock_entry; 1504 1505 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1506 goto finish_iomap; 1507 1508 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1509 1510 switch (iomap.type) { 1511 case IOMAP_MAPPED: 1512 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1513 if (error < 0) 1514 goto finish_iomap; 1515 1516 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1517 DAX_PMD, write && !sync); 1518 1519 /* 1520 * If we are doing synchronous page fault and inode needs fsync, 1521 * we can insert PMD into page tables only after that happens. 1522 * Skip insertion for now and return the pfn so that caller can 1523 * insert it after fsync is done. 1524 */ 1525 if (sync) { 1526 if (WARN_ON_ONCE(!pfnp)) 1527 goto finish_iomap; 1528 *pfnp = pfn; 1529 result = VM_FAULT_NEEDDSYNC; 1530 goto finish_iomap; 1531 } 1532 1533 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1534 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, 1535 write); 1536 break; 1537 case IOMAP_UNWRITTEN: 1538 case IOMAP_HOLE: 1539 if (WARN_ON_ONCE(write)) 1540 break; 1541 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1542 break; 1543 default: 1544 WARN_ON_ONCE(1); 1545 break; 1546 } 1547 1548 finish_iomap: 1549 if (ops->iomap_end) { 1550 int copied = PMD_SIZE; 1551 1552 if (result == VM_FAULT_FALLBACK) 1553 copied = 0; 1554 /* 1555 * The fault is done by now and there's no way back (other 1556 * thread may be already happily using PMD we have installed). 1557 * Just ignore error from ->iomap_end since we cannot do much 1558 * with it. 1559 */ 1560 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1561 &iomap); 1562 } 1563 unlock_entry: 1564 dax_unlock_entry(&xas, entry); 1565 fallback: 1566 if (result == VM_FAULT_FALLBACK) { 1567 split_huge_pmd(vma, vmf->pmd, vmf->address); 1568 count_vm_event(THP_FAULT_FALLBACK); 1569 } 1570 out: 1571 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1572 return result; 1573 } 1574 #else 1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1576 const struct iomap_ops *ops) 1577 { 1578 return VM_FAULT_FALLBACK; 1579 } 1580 #endif /* CONFIG_FS_DAX_PMD */ 1581 1582 /** 1583 * dax_iomap_fault - handle a page fault on a DAX file 1584 * @vmf: The description of the fault 1585 * @pe_size: Size of the page to fault in 1586 * @pfnp: PFN to insert for synchronous faults if fsync is required 1587 * @iomap_errp: Storage for detailed error code in case of error 1588 * @ops: Iomap ops passed from the file system 1589 * 1590 * When a page fault occurs, filesystems may call this helper in 1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1592 * has done all the necessary locking for page fault to proceed 1593 * successfully. 1594 */ 1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1597 { 1598 switch (pe_size) { 1599 case PE_SIZE_PTE: 1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1601 case PE_SIZE_PMD: 1602 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1603 default: 1604 return VM_FAULT_FALLBACK; 1605 } 1606 } 1607 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1608 1609 /* 1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1611 * @vmf: The description of the fault 1612 * @pfn: PFN to insert 1613 * @order: Order of entry to insert. 1614 * 1615 * This function inserts a writeable PTE or PMD entry into the page tables 1616 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1617 */ 1618 static vm_fault_t 1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1620 { 1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1623 void *entry; 1624 vm_fault_t ret; 1625 1626 xas_lock_irq(&xas); 1627 entry = get_unlocked_entry(&xas); 1628 /* Did we race with someone splitting entry or so? */ 1629 if (!entry || 1630 (order == 0 && !dax_is_pte_entry(entry)) || 1631 (order == PMD_ORDER && (xa_is_internal(entry) || 1632 !dax_is_pmd_entry(entry)))) { 1633 put_unlocked_entry(&xas, entry); 1634 xas_unlock_irq(&xas); 1635 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1636 VM_FAULT_NOPAGE); 1637 return VM_FAULT_NOPAGE; 1638 } 1639 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1640 dax_lock_entry(&xas, entry); 1641 xas_unlock_irq(&xas); 1642 if (order == 0) 1643 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1644 #ifdef CONFIG_FS_DAX_PMD 1645 else if (order == PMD_ORDER) 1646 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1647 pfn, true); 1648 #endif 1649 else 1650 ret = VM_FAULT_FALLBACK; 1651 dax_unlock_entry(&xas, entry); 1652 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1653 return ret; 1654 } 1655 1656 /** 1657 * dax_finish_sync_fault - finish synchronous page fault 1658 * @vmf: The description of the fault 1659 * @pe_size: Size of entry to be inserted 1660 * @pfn: PFN to insert 1661 * 1662 * This function ensures that the file range touched by the page fault is 1663 * stored persistently on the media and handles inserting of appropriate page 1664 * table entry. 1665 */ 1666 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1667 enum page_entry_size pe_size, pfn_t pfn) 1668 { 1669 int err; 1670 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1671 unsigned int order = pe_order(pe_size); 1672 size_t len = PAGE_SIZE << order; 1673 1674 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1675 if (err) 1676 return VM_FAULT_SIGBUS; 1677 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1678 } 1679 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1680