xref: /openbmc/linux/fs/dax.c (revision 6a6d6681ac1add9655b7ab5dd0b46b54aeb1b44f)
1  /*
2   * fs/dax.c - Direct Access filesystem code
3   * Copyright (c) 2013-2014 Intel Corporation
4   * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5   * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6   *
7   * This program is free software; you can redistribute it and/or modify it
8   * under the terms and conditions of the GNU General Public License,
9   * version 2, as published by the Free Software Foundation.
10   *
11   * This program is distributed in the hope it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   * more details.
15   */
16  
17  #include <linux/atomic.h>
18  #include <linux/blkdev.h>
19  #include <linux/buffer_head.h>
20  #include <linux/dax.h>
21  #include <linux/fs.h>
22  #include <linux/genhd.h>
23  #include <linux/highmem.h>
24  #include <linux/memcontrol.h>
25  #include <linux/mm.h>
26  #include <linux/mutex.h>
27  #include <linux/pagevec.h>
28  #include <linux/sched.h>
29  #include <linux/sched/signal.h>
30  #include <linux/uio.h>
31  #include <linux/vmstat.h>
32  #include <linux/pfn_t.h>
33  #include <linux/sizes.h>
34  #include <linux/mmu_notifier.h>
35  #include <linux/iomap.h>
36  #include "internal.h"
37  
38  #define CREATE_TRACE_POINTS
39  #include <trace/events/fs_dax.h>
40  
41  static inline unsigned int pe_order(enum page_entry_size pe_size)
42  {
43  	if (pe_size == PE_SIZE_PTE)
44  		return PAGE_SHIFT - PAGE_SHIFT;
45  	if (pe_size == PE_SIZE_PMD)
46  		return PMD_SHIFT - PAGE_SHIFT;
47  	if (pe_size == PE_SIZE_PUD)
48  		return PUD_SHIFT - PAGE_SHIFT;
49  	return ~0;
50  }
51  
52  /* We choose 4096 entries - same as per-zone page wait tables */
53  #define DAX_WAIT_TABLE_BITS 12
54  #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55  
56  /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57  #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
58  #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
59  
60  /* The order of a PMD entry */
61  #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
62  
63  static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64  
65  static int __init init_dax_wait_table(void)
66  {
67  	int i;
68  
69  	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70  		init_waitqueue_head(wait_table + i);
71  	return 0;
72  }
73  fs_initcall(init_dax_wait_table);
74  
75  /*
76   * DAX pagecache entries use XArray value entries so they can't be mistaken
77   * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78   * and two more to tell us if the entry is a zero page or an empty entry that
79   * is just used for locking.  In total four special bits.
80   *
81   * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82   * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83   * block allocation.
84   */
85  #define DAX_SHIFT	(4)
86  #define DAX_LOCKED	(1UL << 0)
87  #define DAX_PMD		(1UL << 1)
88  #define DAX_ZERO_PAGE	(1UL << 2)
89  #define DAX_EMPTY	(1UL << 3)
90  
91  static unsigned long dax_to_pfn(void *entry)
92  {
93  	return xa_to_value(entry) >> DAX_SHIFT;
94  }
95  
96  static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97  {
98  	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99  }
100  
101  static bool dax_is_locked(void *entry)
102  {
103  	return xa_to_value(entry) & DAX_LOCKED;
104  }
105  
106  static unsigned int dax_entry_order(void *entry)
107  {
108  	if (xa_to_value(entry) & DAX_PMD)
109  		return PMD_ORDER;
110  	return 0;
111  }
112  
113  static unsigned long dax_is_pmd_entry(void *entry)
114  {
115  	return xa_to_value(entry) & DAX_PMD;
116  }
117  
118  static bool dax_is_pte_entry(void *entry)
119  {
120  	return !(xa_to_value(entry) & DAX_PMD);
121  }
122  
123  static int dax_is_zero_entry(void *entry)
124  {
125  	return xa_to_value(entry) & DAX_ZERO_PAGE;
126  }
127  
128  static int dax_is_empty_entry(void *entry)
129  {
130  	return xa_to_value(entry) & DAX_EMPTY;
131  }
132  
133  /*
134   * DAX page cache entry locking
135   */
136  struct exceptional_entry_key {
137  	struct xarray *xa;
138  	pgoff_t entry_start;
139  };
140  
141  struct wait_exceptional_entry_queue {
142  	wait_queue_entry_t wait;
143  	struct exceptional_entry_key key;
144  };
145  
146  static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147  		void *entry, struct exceptional_entry_key *key)
148  {
149  	unsigned long hash;
150  	unsigned long index = xas->xa_index;
151  
152  	/*
153  	 * If 'entry' is a PMD, align the 'index' that we use for the wait
154  	 * queue to the start of that PMD.  This ensures that all offsets in
155  	 * the range covered by the PMD map to the same bit lock.
156  	 */
157  	if (dax_is_pmd_entry(entry))
158  		index &= ~PG_PMD_COLOUR;
159  	key->xa = xas->xa;
160  	key->entry_start = index;
161  
162  	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163  	return wait_table + hash;
164  }
165  
166  static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167  		unsigned int mode, int sync, void *keyp)
168  {
169  	struct exceptional_entry_key *key = keyp;
170  	struct wait_exceptional_entry_queue *ewait =
171  		container_of(wait, struct wait_exceptional_entry_queue, wait);
172  
173  	if (key->xa != ewait->key.xa ||
174  	    key->entry_start != ewait->key.entry_start)
175  		return 0;
176  	return autoremove_wake_function(wait, mode, sync, NULL);
177  }
178  
179  /*
180   * @entry may no longer be the entry at the index in the mapping.
181   * The important information it's conveying is whether the entry at
182   * this index used to be a PMD entry.
183   */
184  static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185  {
186  	struct exceptional_entry_key key;
187  	wait_queue_head_t *wq;
188  
189  	wq = dax_entry_waitqueue(xas, entry, &key);
190  
191  	/*
192  	 * Checking for locked entry and prepare_to_wait_exclusive() happens
193  	 * under the i_pages lock, ditto for entry handling in our callers.
194  	 * So at this point all tasks that could have seen our entry locked
195  	 * must be in the waitqueue and the following check will see them.
196  	 */
197  	if (waitqueue_active(wq))
198  		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199  }
200  
201  /*
202   * Look up entry in page cache, wait for it to become unlocked if it
203   * is a DAX entry and return it.  The caller must subsequently call
204   * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205   * if it did.
206   *
207   * Must be called with the i_pages lock held.
208   */
209  static void *get_unlocked_entry(struct xa_state *xas)
210  {
211  	void *entry;
212  	struct wait_exceptional_entry_queue ewait;
213  	wait_queue_head_t *wq;
214  
215  	init_wait(&ewait.wait);
216  	ewait.wait.func = wake_exceptional_entry_func;
217  
218  	for (;;) {
219  		entry = xas_find_conflict(xas);
220  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221  				!dax_is_locked(entry))
222  			return entry;
223  
224  		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225  		prepare_to_wait_exclusive(wq, &ewait.wait,
226  					  TASK_UNINTERRUPTIBLE);
227  		xas_unlock_irq(xas);
228  		xas_reset(xas);
229  		schedule();
230  		finish_wait(wq, &ewait.wait);
231  		xas_lock_irq(xas);
232  	}
233  }
234  
235  static void put_unlocked_entry(struct xa_state *xas, void *entry)
236  {
237  	/* If we were the only waiter woken, wake the next one */
238  	if (entry)
239  		dax_wake_entry(xas, entry, false);
240  }
241  
242  /*
243   * We used the xa_state to get the entry, but then we locked the entry and
244   * dropped the xa_lock, so we know the xa_state is stale and must be reset
245   * before use.
246   */
247  static void dax_unlock_entry(struct xa_state *xas, void *entry)
248  {
249  	void *old;
250  
251  	BUG_ON(dax_is_locked(entry));
252  	xas_reset(xas);
253  	xas_lock_irq(xas);
254  	old = xas_store(xas, entry);
255  	xas_unlock_irq(xas);
256  	BUG_ON(!dax_is_locked(old));
257  	dax_wake_entry(xas, entry, false);
258  }
259  
260  /*
261   * Return: The entry stored at this location before it was locked.
262   */
263  static void *dax_lock_entry(struct xa_state *xas, void *entry)
264  {
265  	unsigned long v = xa_to_value(entry);
266  	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
267  }
268  
269  static unsigned long dax_entry_size(void *entry)
270  {
271  	if (dax_is_zero_entry(entry))
272  		return 0;
273  	else if (dax_is_empty_entry(entry))
274  		return 0;
275  	else if (dax_is_pmd_entry(entry))
276  		return PMD_SIZE;
277  	else
278  		return PAGE_SIZE;
279  }
280  
281  static unsigned long dax_end_pfn(void *entry)
282  {
283  	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
284  }
285  
286  /*
287   * Iterate through all mapped pfns represented by an entry, i.e. skip
288   * 'empty' and 'zero' entries.
289   */
290  #define for_each_mapped_pfn(entry, pfn) \
291  	for (pfn = dax_to_pfn(entry); \
292  			pfn < dax_end_pfn(entry); pfn++)
293  
294  /*
295   * TODO: for reflink+dax we need a way to associate a single page with
296   * multiple address_space instances at different linear_page_index()
297   * offsets.
298   */
299  static void dax_associate_entry(void *entry, struct address_space *mapping,
300  		struct vm_area_struct *vma, unsigned long address)
301  {
302  	unsigned long size = dax_entry_size(entry), pfn, index;
303  	int i = 0;
304  
305  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
306  		return;
307  
308  	index = linear_page_index(vma, address & ~(size - 1));
309  	for_each_mapped_pfn(entry, pfn) {
310  		struct page *page = pfn_to_page(pfn);
311  
312  		WARN_ON_ONCE(page->mapping);
313  		page->mapping = mapping;
314  		page->index = index + i++;
315  	}
316  }
317  
318  static void dax_disassociate_entry(void *entry, struct address_space *mapping,
319  		bool trunc)
320  {
321  	unsigned long pfn;
322  
323  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
324  		return;
325  
326  	for_each_mapped_pfn(entry, pfn) {
327  		struct page *page = pfn_to_page(pfn);
328  
329  		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
330  		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
331  		page->mapping = NULL;
332  		page->index = 0;
333  	}
334  }
335  
336  static struct page *dax_busy_page(void *entry)
337  {
338  	unsigned long pfn;
339  
340  	for_each_mapped_pfn(entry, pfn) {
341  		struct page *page = pfn_to_page(pfn);
342  
343  		if (page_ref_count(page) > 1)
344  			return page;
345  	}
346  	return NULL;
347  }
348  
349  /*
350   * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
351   * @page: The page whose entry we want to lock
352   *
353   * Context: Process context.
354   * Return: %true if the entry was locked or does not need to be locked.
355   */
356  bool dax_lock_mapping_entry(struct page *page)
357  {
358  	XA_STATE(xas, NULL, 0);
359  	void *entry;
360  	bool locked;
361  
362  	/* Ensure page->mapping isn't freed while we look at it */
363  	rcu_read_lock();
364  	for (;;) {
365  		struct address_space *mapping = READ_ONCE(page->mapping);
366  
367  		locked = false;
368  		if (!dax_mapping(mapping))
369  			break;
370  
371  		/*
372  		 * In the device-dax case there's no need to lock, a
373  		 * struct dev_pagemap pin is sufficient to keep the
374  		 * inode alive, and we assume we have dev_pagemap pin
375  		 * otherwise we would not have a valid pfn_to_page()
376  		 * translation.
377  		 */
378  		locked = true;
379  		if (S_ISCHR(mapping->host->i_mode))
380  			break;
381  
382  		xas.xa = &mapping->i_pages;
383  		xas_lock_irq(&xas);
384  		if (mapping != page->mapping) {
385  			xas_unlock_irq(&xas);
386  			continue;
387  		}
388  		xas_set(&xas, page->index);
389  		entry = xas_load(&xas);
390  		if (dax_is_locked(entry)) {
391  			rcu_read_unlock();
392  			entry = get_unlocked_entry(&xas);
393  			xas_unlock_irq(&xas);
394  			put_unlocked_entry(&xas, entry);
395  			rcu_read_lock();
396  			continue;
397  		}
398  		dax_lock_entry(&xas, entry);
399  		xas_unlock_irq(&xas);
400  		break;
401  	}
402  	rcu_read_unlock();
403  	return locked;
404  }
405  
406  void dax_unlock_mapping_entry(struct page *page)
407  {
408  	struct address_space *mapping = page->mapping;
409  	XA_STATE(xas, &mapping->i_pages, page->index);
410  	void *entry;
411  
412  	if (S_ISCHR(mapping->host->i_mode))
413  		return;
414  
415  	rcu_read_lock();
416  	entry = xas_load(&xas);
417  	rcu_read_unlock();
418  	entry = dax_make_entry(page_to_pfn_t(page), dax_is_pmd_entry(entry));
419  	dax_unlock_entry(&xas, entry);
420  }
421  
422  /*
423   * Find page cache entry at given index. If it is a DAX entry, return it
424   * with the entry locked. If the page cache doesn't contain an entry at
425   * that index, add a locked empty entry.
426   *
427   * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
428   * either return that locked entry or will return VM_FAULT_FALLBACK.
429   * This will happen if there are any PTE entries within the PMD range
430   * that we are requesting.
431   *
432   * We always favor PTE entries over PMD entries. There isn't a flow where we
433   * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
434   * insertion will fail if it finds any PTE entries already in the tree, and a
435   * PTE insertion will cause an existing PMD entry to be unmapped and
436   * downgraded to PTE entries.  This happens for both PMD zero pages as
437   * well as PMD empty entries.
438   *
439   * The exception to this downgrade path is for PMD entries that have
440   * real storage backing them.  We will leave these real PMD entries in
441   * the tree, and PTE writes will simply dirty the entire PMD entry.
442   *
443   * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
444   * persistent memory the benefit is doubtful. We can add that later if we can
445   * show it helps.
446   *
447   * On error, this function does not return an ERR_PTR.  Instead it returns
448   * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
449   * overlap with xarray value entries.
450   */
451  static void *grab_mapping_entry(struct xa_state *xas,
452  		struct address_space *mapping, unsigned long size_flag)
453  {
454  	unsigned long index = xas->xa_index;
455  	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
456  	void *entry;
457  
458  retry:
459  	xas_lock_irq(xas);
460  	entry = get_unlocked_entry(xas);
461  
462  	if (entry) {
463  		if (!xa_is_value(entry)) {
464  			xas_set_err(xas, EIO);
465  			goto out_unlock;
466  		}
467  
468  		if (size_flag & DAX_PMD) {
469  			if (dax_is_pte_entry(entry)) {
470  				put_unlocked_entry(xas, entry);
471  				goto fallback;
472  			}
473  		} else { /* trying to grab a PTE entry */
474  			if (dax_is_pmd_entry(entry) &&
475  			    (dax_is_zero_entry(entry) ||
476  			     dax_is_empty_entry(entry))) {
477  				pmd_downgrade = true;
478  			}
479  		}
480  	}
481  
482  	if (pmd_downgrade) {
483  		/*
484  		 * Make sure 'entry' remains valid while we drop
485  		 * the i_pages lock.
486  		 */
487  		dax_lock_entry(xas, entry);
488  
489  		/*
490  		 * Besides huge zero pages the only other thing that gets
491  		 * downgraded are empty entries which don't need to be
492  		 * unmapped.
493  		 */
494  		if (dax_is_zero_entry(entry)) {
495  			xas_unlock_irq(xas);
496  			unmap_mapping_pages(mapping,
497  					xas->xa_index & ~PG_PMD_COLOUR,
498  					PG_PMD_NR, false);
499  			xas_reset(xas);
500  			xas_lock_irq(xas);
501  		}
502  
503  		dax_disassociate_entry(entry, mapping, false);
504  		xas_store(xas, NULL);	/* undo the PMD join */
505  		dax_wake_entry(xas, entry, true);
506  		mapping->nrexceptional--;
507  		entry = NULL;
508  		xas_set(xas, index);
509  	}
510  
511  	if (entry) {
512  		dax_lock_entry(xas, entry);
513  	} else {
514  		entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
515  		dax_lock_entry(xas, entry);
516  		if (xas_error(xas))
517  			goto out_unlock;
518  		mapping->nrexceptional++;
519  	}
520  
521  out_unlock:
522  	xas_unlock_irq(xas);
523  	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
524  		goto retry;
525  	if (xas->xa_node == XA_ERROR(-ENOMEM))
526  		return xa_mk_internal(VM_FAULT_OOM);
527  	if (xas_error(xas))
528  		return xa_mk_internal(VM_FAULT_SIGBUS);
529  	return entry;
530  fallback:
531  	xas_unlock_irq(xas);
532  	return xa_mk_internal(VM_FAULT_FALLBACK);
533  }
534  
535  /**
536   * dax_layout_busy_page - find first pinned page in @mapping
537   * @mapping: address space to scan for a page with ref count > 1
538   *
539   * DAX requires ZONE_DEVICE mapped pages. These pages are never
540   * 'onlined' to the page allocator so they are considered idle when
541   * page->count == 1. A filesystem uses this interface to determine if
542   * any page in the mapping is busy, i.e. for DMA, or other
543   * get_user_pages() usages.
544   *
545   * It is expected that the filesystem is holding locks to block the
546   * establishment of new mappings in this address_space. I.e. it expects
547   * to be able to run unmap_mapping_range() and subsequently not race
548   * mapping_mapped() becoming true.
549   */
550  struct page *dax_layout_busy_page(struct address_space *mapping)
551  {
552  	XA_STATE(xas, &mapping->i_pages, 0);
553  	void *entry;
554  	unsigned int scanned = 0;
555  	struct page *page = NULL;
556  
557  	/*
558  	 * In the 'limited' case get_user_pages() for dax is disabled.
559  	 */
560  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
561  		return NULL;
562  
563  	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
564  		return NULL;
565  
566  	/*
567  	 * If we race get_user_pages_fast() here either we'll see the
568  	 * elevated page count in the iteration and wait, or
569  	 * get_user_pages_fast() will see that the page it took a reference
570  	 * against is no longer mapped in the page tables and bail to the
571  	 * get_user_pages() slow path.  The slow path is protected by
572  	 * pte_lock() and pmd_lock(). New references are not taken without
573  	 * holding those locks, and unmap_mapping_range() will not zero the
574  	 * pte or pmd without holding the respective lock, so we are
575  	 * guaranteed to either see new references or prevent new
576  	 * references from being established.
577  	 */
578  	unmap_mapping_range(mapping, 0, 0, 1);
579  
580  	xas_lock_irq(&xas);
581  	xas_for_each(&xas, entry, ULONG_MAX) {
582  		if (WARN_ON_ONCE(!xa_is_value(entry)))
583  			continue;
584  		if (unlikely(dax_is_locked(entry)))
585  			entry = get_unlocked_entry(&xas);
586  		if (entry)
587  			page = dax_busy_page(entry);
588  		put_unlocked_entry(&xas, entry);
589  		if (page)
590  			break;
591  		if (++scanned % XA_CHECK_SCHED)
592  			continue;
593  
594  		xas_pause(&xas);
595  		xas_unlock_irq(&xas);
596  		cond_resched();
597  		xas_lock_irq(&xas);
598  	}
599  	xas_unlock_irq(&xas);
600  	return page;
601  }
602  EXPORT_SYMBOL_GPL(dax_layout_busy_page);
603  
604  static int __dax_invalidate_entry(struct address_space *mapping,
605  					  pgoff_t index, bool trunc)
606  {
607  	XA_STATE(xas, &mapping->i_pages, index);
608  	int ret = 0;
609  	void *entry;
610  
611  	xas_lock_irq(&xas);
612  	entry = get_unlocked_entry(&xas);
613  	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
614  		goto out;
615  	if (!trunc &&
616  	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
617  	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
618  		goto out;
619  	dax_disassociate_entry(entry, mapping, trunc);
620  	xas_store(&xas, NULL);
621  	mapping->nrexceptional--;
622  	ret = 1;
623  out:
624  	put_unlocked_entry(&xas, entry);
625  	xas_unlock_irq(&xas);
626  	return ret;
627  }
628  
629  /*
630   * Delete DAX entry at @index from @mapping.  Wait for it
631   * to be unlocked before deleting it.
632   */
633  int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
634  {
635  	int ret = __dax_invalidate_entry(mapping, index, true);
636  
637  	/*
638  	 * This gets called from truncate / punch_hole path. As such, the caller
639  	 * must hold locks protecting against concurrent modifications of the
640  	 * page cache (usually fs-private i_mmap_sem for writing). Since the
641  	 * caller has seen a DAX entry for this index, we better find it
642  	 * at that index as well...
643  	 */
644  	WARN_ON_ONCE(!ret);
645  	return ret;
646  }
647  
648  /*
649   * Invalidate DAX entry if it is clean.
650   */
651  int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
652  				      pgoff_t index)
653  {
654  	return __dax_invalidate_entry(mapping, index, false);
655  }
656  
657  static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
658  		sector_t sector, size_t size, struct page *to,
659  		unsigned long vaddr)
660  {
661  	void *vto, *kaddr;
662  	pgoff_t pgoff;
663  	long rc;
664  	int id;
665  
666  	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
667  	if (rc)
668  		return rc;
669  
670  	id = dax_read_lock();
671  	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
672  	if (rc < 0) {
673  		dax_read_unlock(id);
674  		return rc;
675  	}
676  	vto = kmap_atomic(to);
677  	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
678  	kunmap_atomic(vto);
679  	dax_read_unlock(id);
680  	return 0;
681  }
682  
683  /*
684   * By this point grab_mapping_entry() has ensured that we have a locked entry
685   * of the appropriate size so we don't have to worry about downgrading PMDs to
686   * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
687   * already in the tree, we will skip the insertion and just dirty the PMD as
688   * appropriate.
689   */
690  static void *dax_insert_entry(struct xa_state *xas,
691  		struct address_space *mapping, struct vm_fault *vmf,
692  		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
693  {
694  	void *new_entry = dax_make_entry(pfn, flags);
695  
696  	if (dirty)
697  		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698  
699  	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
700  		unsigned long index = xas->xa_index;
701  		/* we are replacing a zero page with block mapping */
702  		if (dax_is_pmd_entry(entry))
703  			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
704  					PG_PMD_NR, false);
705  		else /* pte entry */
706  			unmap_mapping_pages(mapping, index, 1, false);
707  	}
708  
709  	xas_reset(xas);
710  	xas_lock_irq(xas);
711  	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
712  		dax_disassociate_entry(entry, mapping, false);
713  		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
714  	}
715  
716  	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
717  		/*
718  		 * Only swap our new entry into the page cache if the current
719  		 * entry is a zero page or an empty entry.  If a normal PTE or
720  		 * PMD entry is already in the cache, we leave it alone.  This
721  		 * means that if we are trying to insert a PTE and the
722  		 * existing entry is a PMD, we will just leave the PMD in the
723  		 * tree and dirty it if necessary.
724  		 */
725  		void *old = dax_lock_entry(xas, new_entry);
726  		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
727  					DAX_LOCKED));
728  		entry = new_entry;
729  	} else {
730  		xas_load(xas);	/* Walk the xa_state */
731  	}
732  
733  	if (dirty)
734  		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
735  
736  	xas_unlock_irq(xas);
737  	return entry;
738  }
739  
740  static inline
741  unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
742  {
743  	unsigned long address;
744  
745  	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
746  	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
747  	return address;
748  }
749  
750  /* Walk all mappings of a given index of a file and writeprotect them */
751  static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
752  		unsigned long pfn)
753  {
754  	struct vm_area_struct *vma;
755  	pte_t pte, *ptep = NULL;
756  	pmd_t *pmdp = NULL;
757  	spinlock_t *ptl;
758  
759  	i_mmap_lock_read(mapping);
760  	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
761  		unsigned long address, start, end;
762  
763  		cond_resched();
764  
765  		if (!(vma->vm_flags & VM_SHARED))
766  			continue;
767  
768  		address = pgoff_address(index, vma);
769  
770  		/*
771  		 * Note because we provide start/end to follow_pte_pmd it will
772  		 * call mmu_notifier_invalidate_range_start() on our behalf
773  		 * before taking any lock.
774  		 */
775  		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
776  			continue;
777  
778  		/*
779  		 * No need to call mmu_notifier_invalidate_range() as we are
780  		 * downgrading page table protection not changing it to point
781  		 * to a new page.
782  		 *
783  		 * See Documentation/vm/mmu_notifier.rst
784  		 */
785  		if (pmdp) {
786  #ifdef CONFIG_FS_DAX_PMD
787  			pmd_t pmd;
788  
789  			if (pfn != pmd_pfn(*pmdp))
790  				goto unlock_pmd;
791  			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
792  				goto unlock_pmd;
793  
794  			flush_cache_page(vma, address, pfn);
795  			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
796  			pmd = pmd_wrprotect(pmd);
797  			pmd = pmd_mkclean(pmd);
798  			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
799  unlock_pmd:
800  #endif
801  			spin_unlock(ptl);
802  		} else {
803  			if (pfn != pte_pfn(*ptep))
804  				goto unlock_pte;
805  			if (!pte_dirty(*ptep) && !pte_write(*ptep))
806  				goto unlock_pte;
807  
808  			flush_cache_page(vma, address, pfn);
809  			pte = ptep_clear_flush(vma, address, ptep);
810  			pte = pte_wrprotect(pte);
811  			pte = pte_mkclean(pte);
812  			set_pte_at(vma->vm_mm, address, ptep, pte);
813  unlock_pte:
814  			pte_unmap_unlock(ptep, ptl);
815  		}
816  
817  		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
818  	}
819  	i_mmap_unlock_read(mapping);
820  }
821  
822  static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
823  		struct address_space *mapping, void *entry)
824  {
825  	unsigned long pfn;
826  	long ret = 0;
827  	size_t size;
828  
829  	/*
830  	 * A page got tagged dirty in DAX mapping? Something is seriously
831  	 * wrong.
832  	 */
833  	if (WARN_ON(!xa_is_value(entry)))
834  		return -EIO;
835  
836  	if (unlikely(dax_is_locked(entry))) {
837  		void *old_entry = entry;
838  
839  		entry = get_unlocked_entry(xas);
840  
841  		/* Entry got punched out / reallocated? */
842  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
843  			goto put_unlocked;
844  		/*
845  		 * Entry got reallocated elsewhere? No need to writeback.
846  		 * We have to compare pfns as we must not bail out due to
847  		 * difference in lockbit or entry type.
848  		 */
849  		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
850  			goto put_unlocked;
851  		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
852  					dax_is_zero_entry(entry))) {
853  			ret = -EIO;
854  			goto put_unlocked;
855  		}
856  
857  		/* Another fsync thread may have already done this entry */
858  		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
859  			goto put_unlocked;
860  	}
861  
862  	/* Lock the entry to serialize with page faults */
863  	dax_lock_entry(xas, entry);
864  
865  	/*
866  	 * We can clear the tag now but we have to be careful so that concurrent
867  	 * dax_writeback_one() calls for the same index cannot finish before we
868  	 * actually flush the caches. This is achieved as the calls will look
869  	 * at the entry only under the i_pages lock and once they do that
870  	 * they will see the entry locked and wait for it to unlock.
871  	 */
872  	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
873  	xas_unlock_irq(xas);
874  
875  	/*
876  	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
877  	 * in the middle of a PMD, the 'index' we are given will be aligned to
878  	 * the start index of the PMD, as will the pfn we pull from 'entry'.
879  	 * This allows us to flush for PMD_SIZE and not have to worry about
880  	 * partial PMD writebacks.
881  	 */
882  	pfn = dax_to_pfn(entry);
883  	size = PAGE_SIZE << dax_entry_order(entry);
884  
885  	dax_entry_mkclean(mapping, xas->xa_index, pfn);
886  	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
887  	/*
888  	 * After we have flushed the cache, we can clear the dirty tag. There
889  	 * cannot be new dirty data in the pfn after the flush has completed as
890  	 * the pfn mappings are writeprotected and fault waits for mapping
891  	 * entry lock.
892  	 */
893  	xas_reset(xas);
894  	xas_lock_irq(xas);
895  	xas_store(xas, entry);
896  	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
897  	dax_wake_entry(xas, entry, false);
898  
899  	trace_dax_writeback_one(mapping->host, xas->xa_index,
900  			size >> PAGE_SHIFT);
901  	return ret;
902  
903   put_unlocked:
904  	put_unlocked_entry(xas, entry);
905  	return ret;
906  }
907  
908  /*
909   * Flush the mapping to the persistent domain within the byte range of [start,
910   * end]. This is required by data integrity operations to ensure file data is
911   * on persistent storage prior to completion of the operation.
912   */
913  int dax_writeback_mapping_range(struct address_space *mapping,
914  		struct block_device *bdev, struct writeback_control *wbc)
915  {
916  	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
917  	struct inode *inode = mapping->host;
918  	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
919  	struct dax_device *dax_dev;
920  	void *entry;
921  	int ret = 0;
922  	unsigned int scanned = 0;
923  
924  	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
925  		return -EIO;
926  
927  	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
928  		return 0;
929  
930  	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
931  	if (!dax_dev)
932  		return -EIO;
933  
934  	trace_dax_writeback_range(inode, xas.xa_index, end_index);
935  
936  	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
937  
938  	xas_lock_irq(&xas);
939  	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
940  		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
941  		if (ret < 0) {
942  			mapping_set_error(mapping, ret);
943  			break;
944  		}
945  		if (++scanned % XA_CHECK_SCHED)
946  			continue;
947  
948  		xas_pause(&xas);
949  		xas_unlock_irq(&xas);
950  		cond_resched();
951  		xas_lock_irq(&xas);
952  	}
953  	xas_unlock_irq(&xas);
954  	put_dax(dax_dev);
955  	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
956  	return ret;
957  }
958  EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959  
960  static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
961  {
962  	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
963  }
964  
965  static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966  			 pfn_t *pfnp)
967  {
968  	const sector_t sector = dax_iomap_sector(iomap, pos);
969  	pgoff_t pgoff;
970  	int id, rc;
971  	long length;
972  
973  	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
974  	if (rc)
975  		return rc;
976  	id = dax_read_lock();
977  	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
978  				   NULL, pfnp);
979  	if (length < 0) {
980  		rc = length;
981  		goto out;
982  	}
983  	rc = -EINVAL;
984  	if (PFN_PHYS(length) < size)
985  		goto out;
986  	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
987  		goto out;
988  	/* For larger pages we need devmap */
989  	if (length > 1 && !pfn_t_devmap(*pfnp))
990  		goto out;
991  	rc = 0;
992  out:
993  	dax_read_unlock(id);
994  	return rc;
995  }
996  
997  /*
998   * The user has performed a load from a hole in the file.  Allocating a new
999   * page in the file would cause excessive storage usage for workloads with
1000   * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1001   * If this page is ever written to we will re-fault and change the mapping to
1002   * point to real DAX storage instead.
1003   */
1004  static vm_fault_t dax_load_hole(struct xa_state *xas,
1005  		struct address_space *mapping, void **entry,
1006  		struct vm_fault *vmf)
1007  {
1008  	struct inode *inode = mapping->host;
1009  	unsigned long vaddr = vmf->address;
1010  	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1011  	vm_fault_t ret;
1012  
1013  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1014  			DAX_ZERO_PAGE, false);
1015  
1016  	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1017  	trace_dax_load_hole(inode, vmf, ret);
1018  	return ret;
1019  }
1020  
1021  static bool dax_range_is_aligned(struct block_device *bdev,
1022  				 unsigned int offset, unsigned int length)
1023  {
1024  	unsigned short sector_size = bdev_logical_block_size(bdev);
1025  
1026  	if (!IS_ALIGNED(offset, sector_size))
1027  		return false;
1028  	if (!IS_ALIGNED(length, sector_size))
1029  		return false;
1030  
1031  	return true;
1032  }
1033  
1034  int __dax_zero_page_range(struct block_device *bdev,
1035  		struct dax_device *dax_dev, sector_t sector,
1036  		unsigned int offset, unsigned int size)
1037  {
1038  	if (dax_range_is_aligned(bdev, offset, size)) {
1039  		sector_t start_sector = sector + (offset >> 9);
1040  
1041  		return blkdev_issue_zeroout(bdev, start_sector,
1042  				size >> 9, GFP_NOFS, 0);
1043  	} else {
1044  		pgoff_t pgoff;
1045  		long rc, id;
1046  		void *kaddr;
1047  
1048  		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1049  		if (rc)
1050  			return rc;
1051  
1052  		id = dax_read_lock();
1053  		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1054  		if (rc < 0) {
1055  			dax_read_unlock(id);
1056  			return rc;
1057  		}
1058  		memset(kaddr + offset, 0, size);
1059  		dax_flush(dax_dev, kaddr + offset, size);
1060  		dax_read_unlock(id);
1061  	}
1062  	return 0;
1063  }
1064  EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1065  
1066  static loff_t
1067  dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1068  		struct iomap *iomap)
1069  {
1070  	struct block_device *bdev = iomap->bdev;
1071  	struct dax_device *dax_dev = iomap->dax_dev;
1072  	struct iov_iter *iter = data;
1073  	loff_t end = pos + length, done = 0;
1074  	ssize_t ret = 0;
1075  	size_t xfer;
1076  	int id;
1077  
1078  	if (iov_iter_rw(iter) == READ) {
1079  		end = min(end, i_size_read(inode));
1080  		if (pos >= end)
1081  			return 0;
1082  
1083  		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1084  			return iov_iter_zero(min(length, end - pos), iter);
1085  	}
1086  
1087  	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1088  		return -EIO;
1089  
1090  	/*
1091  	 * Write can allocate block for an area which has a hole page mapped
1092  	 * into page tables. We have to tear down these mappings so that data
1093  	 * written by write(2) is visible in mmap.
1094  	 */
1095  	if (iomap->flags & IOMAP_F_NEW) {
1096  		invalidate_inode_pages2_range(inode->i_mapping,
1097  					      pos >> PAGE_SHIFT,
1098  					      (end - 1) >> PAGE_SHIFT);
1099  	}
1100  
1101  	id = dax_read_lock();
1102  	while (pos < end) {
1103  		unsigned offset = pos & (PAGE_SIZE - 1);
1104  		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1105  		const sector_t sector = dax_iomap_sector(iomap, pos);
1106  		ssize_t map_len;
1107  		pgoff_t pgoff;
1108  		void *kaddr;
1109  
1110  		if (fatal_signal_pending(current)) {
1111  			ret = -EINTR;
1112  			break;
1113  		}
1114  
1115  		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1116  		if (ret)
1117  			break;
1118  
1119  		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1120  				&kaddr, NULL);
1121  		if (map_len < 0) {
1122  			ret = map_len;
1123  			break;
1124  		}
1125  
1126  		map_len = PFN_PHYS(map_len);
1127  		kaddr += offset;
1128  		map_len -= offset;
1129  		if (map_len > end - pos)
1130  			map_len = end - pos;
1131  
1132  		/*
1133  		 * The userspace address for the memory copy has already been
1134  		 * validated via access_ok() in either vfs_read() or
1135  		 * vfs_write(), depending on which operation we are doing.
1136  		 */
1137  		if (iov_iter_rw(iter) == WRITE)
1138  			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1139  					map_len, iter);
1140  		else
1141  			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1142  					map_len, iter);
1143  
1144  		pos += xfer;
1145  		length -= xfer;
1146  		done += xfer;
1147  
1148  		if (xfer == 0)
1149  			ret = -EFAULT;
1150  		if (xfer < map_len)
1151  			break;
1152  	}
1153  	dax_read_unlock(id);
1154  
1155  	return done ? done : ret;
1156  }
1157  
1158  /**
1159   * dax_iomap_rw - Perform I/O to a DAX file
1160   * @iocb:	The control block for this I/O
1161   * @iter:	The addresses to do I/O from or to
1162   * @ops:	iomap ops passed from the file system
1163   *
1164   * This function performs read and write operations to directly mapped
1165   * persistent memory.  The callers needs to take care of read/write exclusion
1166   * and evicting any page cache pages in the region under I/O.
1167   */
1168  ssize_t
1169  dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1170  		const struct iomap_ops *ops)
1171  {
1172  	struct address_space *mapping = iocb->ki_filp->f_mapping;
1173  	struct inode *inode = mapping->host;
1174  	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1175  	unsigned flags = 0;
1176  
1177  	if (iov_iter_rw(iter) == WRITE) {
1178  		lockdep_assert_held_exclusive(&inode->i_rwsem);
1179  		flags |= IOMAP_WRITE;
1180  	} else {
1181  		lockdep_assert_held(&inode->i_rwsem);
1182  	}
1183  
1184  	while (iov_iter_count(iter)) {
1185  		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1186  				iter, dax_iomap_actor);
1187  		if (ret <= 0)
1188  			break;
1189  		pos += ret;
1190  		done += ret;
1191  	}
1192  
1193  	iocb->ki_pos += done;
1194  	return done ? done : ret;
1195  }
1196  EXPORT_SYMBOL_GPL(dax_iomap_rw);
1197  
1198  static vm_fault_t dax_fault_return(int error)
1199  {
1200  	if (error == 0)
1201  		return VM_FAULT_NOPAGE;
1202  	if (error == -ENOMEM)
1203  		return VM_FAULT_OOM;
1204  	return VM_FAULT_SIGBUS;
1205  }
1206  
1207  /*
1208   * MAP_SYNC on a dax mapping guarantees dirty metadata is
1209   * flushed on write-faults (non-cow), but not read-faults.
1210   */
1211  static bool dax_fault_is_synchronous(unsigned long flags,
1212  		struct vm_area_struct *vma, struct iomap *iomap)
1213  {
1214  	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1215  		&& (iomap->flags & IOMAP_F_DIRTY);
1216  }
1217  
1218  static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1219  			       int *iomap_errp, const struct iomap_ops *ops)
1220  {
1221  	struct vm_area_struct *vma = vmf->vma;
1222  	struct address_space *mapping = vma->vm_file->f_mapping;
1223  	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1224  	struct inode *inode = mapping->host;
1225  	unsigned long vaddr = vmf->address;
1226  	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1227  	struct iomap iomap = { 0 };
1228  	unsigned flags = IOMAP_FAULT;
1229  	int error, major = 0;
1230  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1231  	bool sync;
1232  	vm_fault_t ret = 0;
1233  	void *entry;
1234  	pfn_t pfn;
1235  
1236  	trace_dax_pte_fault(inode, vmf, ret);
1237  	/*
1238  	 * Check whether offset isn't beyond end of file now. Caller is supposed
1239  	 * to hold locks serializing us with truncate / punch hole so this is
1240  	 * a reliable test.
1241  	 */
1242  	if (pos >= i_size_read(inode)) {
1243  		ret = VM_FAULT_SIGBUS;
1244  		goto out;
1245  	}
1246  
1247  	if (write && !vmf->cow_page)
1248  		flags |= IOMAP_WRITE;
1249  
1250  	entry = grab_mapping_entry(&xas, mapping, 0);
1251  	if (xa_is_internal(entry)) {
1252  		ret = xa_to_internal(entry);
1253  		goto out;
1254  	}
1255  
1256  	/*
1257  	 * It is possible, particularly with mixed reads & writes to private
1258  	 * mappings, that we have raced with a PMD fault that overlaps with
1259  	 * the PTE we need to set up.  If so just return and the fault will be
1260  	 * retried.
1261  	 */
1262  	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1263  		ret = VM_FAULT_NOPAGE;
1264  		goto unlock_entry;
1265  	}
1266  
1267  	/*
1268  	 * Note that we don't bother to use iomap_apply here: DAX required
1269  	 * the file system block size to be equal the page size, which means
1270  	 * that we never have to deal with more than a single extent here.
1271  	 */
1272  	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1273  	if (iomap_errp)
1274  		*iomap_errp = error;
1275  	if (error) {
1276  		ret = dax_fault_return(error);
1277  		goto unlock_entry;
1278  	}
1279  	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1280  		error = -EIO;	/* fs corruption? */
1281  		goto error_finish_iomap;
1282  	}
1283  
1284  	if (vmf->cow_page) {
1285  		sector_t sector = dax_iomap_sector(&iomap, pos);
1286  
1287  		switch (iomap.type) {
1288  		case IOMAP_HOLE:
1289  		case IOMAP_UNWRITTEN:
1290  			clear_user_highpage(vmf->cow_page, vaddr);
1291  			break;
1292  		case IOMAP_MAPPED:
1293  			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1294  					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1295  			break;
1296  		default:
1297  			WARN_ON_ONCE(1);
1298  			error = -EIO;
1299  			break;
1300  		}
1301  
1302  		if (error)
1303  			goto error_finish_iomap;
1304  
1305  		__SetPageUptodate(vmf->cow_page);
1306  		ret = finish_fault(vmf);
1307  		if (!ret)
1308  			ret = VM_FAULT_DONE_COW;
1309  		goto finish_iomap;
1310  	}
1311  
1312  	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1313  
1314  	switch (iomap.type) {
1315  	case IOMAP_MAPPED:
1316  		if (iomap.flags & IOMAP_F_NEW) {
1317  			count_vm_event(PGMAJFAULT);
1318  			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1319  			major = VM_FAULT_MAJOR;
1320  		}
1321  		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1322  		if (error < 0)
1323  			goto error_finish_iomap;
1324  
1325  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1326  						 0, write && !sync);
1327  
1328  		/*
1329  		 * If we are doing synchronous page fault and inode needs fsync,
1330  		 * we can insert PTE into page tables only after that happens.
1331  		 * Skip insertion for now and return the pfn so that caller can
1332  		 * insert it after fsync is done.
1333  		 */
1334  		if (sync) {
1335  			if (WARN_ON_ONCE(!pfnp)) {
1336  				error = -EIO;
1337  				goto error_finish_iomap;
1338  			}
1339  			*pfnp = pfn;
1340  			ret = VM_FAULT_NEEDDSYNC | major;
1341  			goto finish_iomap;
1342  		}
1343  		trace_dax_insert_mapping(inode, vmf, entry);
1344  		if (write)
1345  			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1346  		else
1347  			ret = vmf_insert_mixed(vma, vaddr, pfn);
1348  
1349  		goto finish_iomap;
1350  	case IOMAP_UNWRITTEN:
1351  	case IOMAP_HOLE:
1352  		if (!write) {
1353  			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1354  			goto finish_iomap;
1355  		}
1356  		/*FALLTHRU*/
1357  	default:
1358  		WARN_ON_ONCE(1);
1359  		error = -EIO;
1360  		break;
1361  	}
1362  
1363   error_finish_iomap:
1364  	ret = dax_fault_return(error);
1365   finish_iomap:
1366  	if (ops->iomap_end) {
1367  		int copied = PAGE_SIZE;
1368  
1369  		if (ret & VM_FAULT_ERROR)
1370  			copied = 0;
1371  		/*
1372  		 * The fault is done by now and there's no way back (other
1373  		 * thread may be already happily using PTE we have installed).
1374  		 * Just ignore error from ->iomap_end since we cannot do much
1375  		 * with it.
1376  		 */
1377  		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1378  	}
1379   unlock_entry:
1380  	dax_unlock_entry(&xas, entry);
1381   out:
1382  	trace_dax_pte_fault_done(inode, vmf, ret);
1383  	return ret | major;
1384  }
1385  
1386  #ifdef CONFIG_FS_DAX_PMD
1387  static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1388  		struct iomap *iomap, void **entry)
1389  {
1390  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1391  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1392  	struct inode *inode = mapping->host;
1393  	struct page *zero_page;
1394  	spinlock_t *ptl;
1395  	pmd_t pmd_entry;
1396  	pfn_t pfn;
1397  
1398  	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1399  
1400  	if (unlikely(!zero_page))
1401  		goto fallback;
1402  
1403  	pfn = page_to_pfn_t(zero_page);
1404  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1405  			DAX_PMD | DAX_ZERO_PAGE, false);
1406  
1407  	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1408  	if (!pmd_none(*(vmf->pmd))) {
1409  		spin_unlock(ptl);
1410  		goto fallback;
1411  	}
1412  
1413  	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1414  	pmd_entry = pmd_mkhuge(pmd_entry);
1415  	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1416  	spin_unlock(ptl);
1417  	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1418  	return VM_FAULT_NOPAGE;
1419  
1420  fallback:
1421  	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1422  	return VM_FAULT_FALLBACK;
1423  }
1424  
1425  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1426  			       const struct iomap_ops *ops)
1427  {
1428  	struct vm_area_struct *vma = vmf->vma;
1429  	struct address_space *mapping = vma->vm_file->f_mapping;
1430  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1431  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1432  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1433  	bool sync;
1434  	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1435  	struct inode *inode = mapping->host;
1436  	vm_fault_t result = VM_FAULT_FALLBACK;
1437  	struct iomap iomap = { 0 };
1438  	pgoff_t max_pgoff;
1439  	void *entry;
1440  	loff_t pos;
1441  	int error;
1442  	pfn_t pfn;
1443  
1444  	/*
1445  	 * Check whether offset isn't beyond end of file now. Caller is
1446  	 * supposed to hold locks serializing us with truncate / punch hole so
1447  	 * this is a reliable test.
1448  	 */
1449  	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1450  
1451  	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1452  
1453  	/*
1454  	 * Make sure that the faulting address's PMD offset (color) matches
1455  	 * the PMD offset from the start of the file.  This is necessary so
1456  	 * that a PMD range in the page table overlaps exactly with a PMD
1457  	 * range in the page cache.
1458  	 */
1459  	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1460  	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1461  		goto fallback;
1462  
1463  	/* Fall back to PTEs if we're going to COW */
1464  	if (write && !(vma->vm_flags & VM_SHARED))
1465  		goto fallback;
1466  
1467  	/* If the PMD would extend outside the VMA */
1468  	if (pmd_addr < vma->vm_start)
1469  		goto fallback;
1470  	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1471  		goto fallback;
1472  
1473  	if (xas.xa_index >= max_pgoff) {
1474  		result = VM_FAULT_SIGBUS;
1475  		goto out;
1476  	}
1477  
1478  	/* If the PMD would extend beyond the file size */
1479  	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1480  		goto fallback;
1481  
1482  	/*
1483  	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1484  	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1485  	 * entry is already in the array, for instance), it will return
1486  	 * VM_FAULT_FALLBACK.
1487  	 */
1488  	entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1489  	if (xa_is_internal(entry)) {
1490  		result = xa_to_internal(entry);
1491  		goto fallback;
1492  	}
1493  
1494  	/*
1495  	 * It is possible, particularly with mixed reads & writes to private
1496  	 * mappings, that we have raced with a PTE fault that overlaps with
1497  	 * the PMD we need to set up.  If so just return and the fault will be
1498  	 * retried.
1499  	 */
1500  	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1501  			!pmd_devmap(*vmf->pmd)) {
1502  		result = 0;
1503  		goto unlock_entry;
1504  	}
1505  
1506  	/*
1507  	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1508  	 * setting up a mapping, so really we're using iomap_begin() as a way
1509  	 * to look up our filesystem block.
1510  	 */
1511  	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1512  	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1513  	if (error)
1514  		goto unlock_entry;
1515  
1516  	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1517  		goto finish_iomap;
1518  
1519  	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1520  
1521  	switch (iomap.type) {
1522  	case IOMAP_MAPPED:
1523  		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1524  		if (error < 0)
1525  			goto finish_iomap;
1526  
1527  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1528  						DAX_PMD, write && !sync);
1529  
1530  		/*
1531  		 * If we are doing synchronous page fault and inode needs fsync,
1532  		 * we can insert PMD into page tables only after that happens.
1533  		 * Skip insertion for now and return the pfn so that caller can
1534  		 * insert it after fsync is done.
1535  		 */
1536  		if (sync) {
1537  			if (WARN_ON_ONCE(!pfnp))
1538  				goto finish_iomap;
1539  			*pfnp = pfn;
1540  			result = VM_FAULT_NEEDDSYNC;
1541  			goto finish_iomap;
1542  		}
1543  
1544  		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1545  		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1546  					    write);
1547  		break;
1548  	case IOMAP_UNWRITTEN:
1549  	case IOMAP_HOLE:
1550  		if (WARN_ON_ONCE(write))
1551  			break;
1552  		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1553  		break;
1554  	default:
1555  		WARN_ON_ONCE(1);
1556  		break;
1557  	}
1558  
1559   finish_iomap:
1560  	if (ops->iomap_end) {
1561  		int copied = PMD_SIZE;
1562  
1563  		if (result == VM_FAULT_FALLBACK)
1564  			copied = 0;
1565  		/*
1566  		 * The fault is done by now and there's no way back (other
1567  		 * thread may be already happily using PMD we have installed).
1568  		 * Just ignore error from ->iomap_end since we cannot do much
1569  		 * with it.
1570  		 */
1571  		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1572  				&iomap);
1573  	}
1574   unlock_entry:
1575  	dax_unlock_entry(&xas, entry);
1576   fallback:
1577  	if (result == VM_FAULT_FALLBACK) {
1578  		split_huge_pmd(vma, vmf->pmd, vmf->address);
1579  		count_vm_event(THP_FAULT_FALLBACK);
1580  	}
1581  out:
1582  	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1583  	return result;
1584  }
1585  #else
1586  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1587  			       const struct iomap_ops *ops)
1588  {
1589  	return VM_FAULT_FALLBACK;
1590  }
1591  #endif /* CONFIG_FS_DAX_PMD */
1592  
1593  /**
1594   * dax_iomap_fault - handle a page fault on a DAX file
1595   * @vmf: The description of the fault
1596   * @pe_size: Size of the page to fault in
1597   * @pfnp: PFN to insert for synchronous faults if fsync is required
1598   * @iomap_errp: Storage for detailed error code in case of error
1599   * @ops: Iomap ops passed from the file system
1600   *
1601   * When a page fault occurs, filesystems may call this helper in
1602   * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1603   * has done all the necessary locking for page fault to proceed
1604   * successfully.
1605   */
1606  vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1607  		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1608  {
1609  	switch (pe_size) {
1610  	case PE_SIZE_PTE:
1611  		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1612  	case PE_SIZE_PMD:
1613  		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1614  	default:
1615  		return VM_FAULT_FALLBACK;
1616  	}
1617  }
1618  EXPORT_SYMBOL_GPL(dax_iomap_fault);
1619  
1620  /*
1621   * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1622   * @vmf: The description of the fault
1623   * @pfn: PFN to insert
1624   * @order: Order of entry to insert.
1625   *
1626   * This function inserts a writeable PTE or PMD entry into the page tables
1627   * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1628   */
1629  static vm_fault_t
1630  dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1631  {
1632  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1633  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1634  	void *entry;
1635  	vm_fault_t ret;
1636  
1637  	xas_lock_irq(&xas);
1638  	entry = get_unlocked_entry(&xas);
1639  	/* Did we race with someone splitting entry or so? */
1640  	if (!entry ||
1641  	    (order == 0 && !dax_is_pte_entry(entry)) ||
1642  	    (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1643  		put_unlocked_entry(&xas, entry);
1644  		xas_unlock_irq(&xas);
1645  		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1646  						      VM_FAULT_NOPAGE);
1647  		return VM_FAULT_NOPAGE;
1648  	}
1649  	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1650  	dax_lock_entry(&xas, entry);
1651  	xas_unlock_irq(&xas);
1652  	if (order == 0)
1653  		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1654  #ifdef CONFIG_FS_DAX_PMD
1655  	else if (order == PMD_ORDER)
1656  		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1657  			pfn, true);
1658  #endif
1659  	else
1660  		ret = VM_FAULT_FALLBACK;
1661  	dax_unlock_entry(&xas, entry);
1662  	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1663  	return ret;
1664  }
1665  
1666  /**
1667   * dax_finish_sync_fault - finish synchronous page fault
1668   * @vmf: The description of the fault
1669   * @pe_size: Size of entry to be inserted
1670   * @pfn: PFN to insert
1671   *
1672   * This function ensures that the file range touched by the page fault is
1673   * stored persistently on the media and handles inserting of appropriate page
1674   * table entry.
1675   */
1676  vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1677  		enum page_entry_size pe_size, pfn_t pfn)
1678  {
1679  	int err;
1680  	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1681  	unsigned int order = pe_order(pe_size);
1682  	size_t len = PAGE_SIZE << order;
1683  
1684  	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1685  	if (err)
1686  		return VM_FAULT_SIGBUS;
1687  	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1688  }
1689  EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1690