xref: /openbmc/linux/fs/dax.c (revision 645f08975f49441b3e753d8dc5b740cbcb226594)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/dax.c - Direct Access filesystem code
4   * Copyright (c) 2013-2014 Intel Corporation
5   * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6   * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7   */
8  
9  #include <linux/atomic.h>
10  #include <linux/blkdev.h>
11  #include <linux/buffer_head.h>
12  #include <linux/dax.h>
13  #include <linux/fs.h>
14  #include <linux/genhd.h>
15  #include <linux/highmem.h>
16  #include <linux/memcontrol.h>
17  #include <linux/mm.h>
18  #include <linux/mutex.h>
19  #include <linux/pagevec.h>
20  #include <linux/sched.h>
21  #include <linux/sched/signal.h>
22  #include <linux/uio.h>
23  #include <linux/vmstat.h>
24  #include <linux/pfn_t.h>
25  #include <linux/sizes.h>
26  #include <linux/mmu_notifier.h>
27  #include <linux/iomap.h>
28  #include <asm/pgalloc.h>
29  
30  #define CREATE_TRACE_POINTS
31  #include <trace/events/fs_dax.h>
32  
33  static inline unsigned int pe_order(enum page_entry_size pe_size)
34  {
35  	if (pe_size == PE_SIZE_PTE)
36  		return PAGE_SHIFT - PAGE_SHIFT;
37  	if (pe_size == PE_SIZE_PMD)
38  		return PMD_SHIFT - PAGE_SHIFT;
39  	if (pe_size == PE_SIZE_PUD)
40  		return PUD_SHIFT - PAGE_SHIFT;
41  	return ~0;
42  }
43  
44  /* We choose 4096 entries - same as per-zone page wait tables */
45  #define DAX_WAIT_TABLE_BITS 12
46  #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47  
48  /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49  #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50  #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51  
52  /* The order of a PMD entry */
53  #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54  
55  static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56  
57  static int __init init_dax_wait_table(void)
58  {
59  	int i;
60  
61  	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62  		init_waitqueue_head(wait_table + i);
63  	return 0;
64  }
65  fs_initcall(init_dax_wait_table);
66  
67  /*
68   * DAX pagecache entries use XArray value entries so they can't be mistaken
69   * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70   * and two more to tell us if the entry is a zero page or an empty entry that
71   * is just used for locking.  In total four special bits.
72   *
73   * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74   * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75   * block allocation.
76   */
77  #define DAX_SHIFT	(4)
78  #define DAX_LOCKED	(1UL << 0)
79  #define DAX_PMD		(1UL << 1)
80  #define DAX_ZERO_PAGE	(1UL << 2)
81  #define DAX_EMPTY	(1UL << 3)
82  
83  static unsigned long dax_to_pfn(void *entry)
84  {
85  	return xa_to_value(entry) >> DAX_SHIFT;
86  }
87  
88  static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89  {
90  	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91  }
92  
93  static bool dax_is_locked(void *entry)
94  {
95  	return xa_to_value(entry) & DAX_LOCKED;
96  }
97  
98  static unsigned int dax_entry_order(void *entry)
99  {
100  	if (xa_to_value(entry) & DAX_PMD)
101  		return PMD_ORDER;
102  	return 0;
103  }
104  
105  static unsigned long dax_is_pmd_entry(void *entry)
106  {
107  	return xa_to_value(entry) & DAX_PMD;
108  }
109  
110  static bool dax_is_pte_entry(void *entry)
111  {
112  	return !(xa_to_value(entry) & DAX_PMD);
113  }
114  
115  static int dax_is_zero_entry(void *entry)
116  {
117  	return xa_to_value(entry) & DAX_ZERO_PAGE;
118  }
119  
120  static int dax_is_empty_entry(void *entry)
121  {
122  	return xa_to_value(entry) & DAX_EMPTY;
123  }
124  
125  /*
126   * true if the entry that was found is of a smaller order than the entry
127   * we were looking for
128   */
129  static bool dax_is_conflict(void *entry)
130  {
131  	return entry == XA_RETRY_ENTRY;
132  }
133  
134  /*
135   * DAX page cache entry locking
136   */
137  struct exceptional_entry_key {
138  	struct xarray *xa;
139  	pgoff_t entry_start;
140  };
141  
142  struct wait_exceptional_entry_queue {
143  	wait_queue_entry_t wait;
144  	struct exceptional_entry_key key;
145  };
146  
147  static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148  		void *entry, struct exceptional_entry_key *key)
149  {
150  	unsigned long hash;
151  	unsigned long index = xas->xa_index;
152  
153  	/*
154  	 * If 'entry' is a PMD, align the 'index' that we use for the wait
155  	 * queue to the start of that PMD.  This ensures that all offsets in
156  	 * the range covered by the PMD map to the same bit lock.
157  	 */
158  	if (dax_is_pmd_entry(entry))
159  		index &= ~PG_PMD_COLOUR;
160  	key->xa = xas->xa;
161  	key->entry_start = index;
162  
163  	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164  	return wait_table + hash;
165  }
166  
167  static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168  		unsigned int mode, int sync, void *keyp)
169  {
170  	struct exceptional_entry_key *key = keyp;
171  	struct wait_exceptional_entry_queue *ewait =
172  		container_of(wait, struct wait_exceptional_entry_queue, wait);
173  
174  	if (key->xa != ewait->key.xa ||
175  	    key->entry_start != ewait->key.entry_start)
176  		return 0;
177  	return autoremove_wake_function(wait, mode, sync, NULL);
178  }
179  
180  /*
181   * @entry may no longer be the entry at the index in the mapping.
182   * The important information it's conveying is whether the entry at
183   * this index used to be a PMD entry.
184   */
185  static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186  {
187  	struct exceptional_entry_key key;
188  	wait_queue_head_t *wq;
189  
190  	wq = dax_entry_waitqueue(xas, entry, &key);
191  
192  	/*
193  	 * Checking for locked entry and prepare_to_wait_exclusive() happens
194  	 * under the i_pages lock, ditto for entry handling in our callers.
195  	 * So at this point all tasks that could have seen our entry locked
196  	 * must be in the waitqueue and the following check will see them.
197  	 */
198  	if (waitqueue_active(wq))
199  		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200  }
201  
202  /*
203   * Look up entry in page cache, wait for it to become unlocked if it
204   * is a DAX entry and return it.  The caller must subsequently call
205   * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206   * if it did.  The entry returned may have a larger order than @order.
207   * If @order is larger than the order of the entry found in i_pages, this
208   * function returns a dax_is_conflict entry.
209   *
210   * Must be called with the i_pages lock held.
211   */
212  static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213  {
214  	void *entry;
215  	struct wait_exceptional_entry_queue ewait;
216  	wait_queue_head_t *wq;
217  
218  	init_wait(&ewait.wait);
219  	ewait.wait.func = wake_exceptional_entry_func;
220  
221  	for (;;) {
222  		entry = xas_find_conflict(xas);
223  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224  			return entry;
225  		if (dax_entry_order(entry) < order)
226  			return XA_RETRY_ENTRY;
227  		if (!dax_is_locked(entry))
228  			return entry;
229  
230  		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231  		prepare_to_wait_exclusive(wq, &ewait.wait,
232  					  TASK_UNINTERRUPTIBLE);
233  		xas_unlock_irq(xas);
234  		xas_reset(xas);
235  		schedule();
236  		finish_wait(wq, &ewait.wait);
237  		xas_lock_irq(xas);
238  	}
239  }
240  
241  /*
242   * The only thing keeping the address space around is the i_pages lock
243   * (it's cycled in clear_inode() after removing the entries from i_pages)
244   * After we call xas_unlock_irq(), we cannot touch xas->xa.
245   */
246  static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247  {
248  	struct wait_exceptional_entry_queue ewait;
249  	wait_queue_head_t *wq;
250  
251  	init_wait(&ewait.wait);
252  	ewait.wait.func = wake_exceptional_entry_func;
253  
254  	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255  	/*
256  	 * Unlike get_unlocked_entry() there is no guarantee that this
257  	 * path ever successfully retrieves an unlocked entry before an
258  	 * inode dies. Perform a non-exclusive wait in case this path
259  	 * never successfully performs its own wake up.
260  	 */
261  	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262  	xas_unlock_irq(xas);
263  	schedule();
264  	finish_wait(wq, &ewait.wait);
265  }
266  
267  static void put_unlocked_entry(struct xa_state *xas, void *entry)
268  {
269  	/* If we were the only waiter woken, wake the next one */
270  	if (entry && !dax_is_conflict(entry))
271  		dax_wake_entry(xas, entry, false);
272  }
273  
274  /*
275   * We used the xa_state to get the entry, but then we locked the entry and
276   * dropped the xa_lock, so we know the xa_state is stale and must be reset
277   * before use.
278   */
279  static void dax_unlock_entry(struct xa_state *xas, void *entry)
280  {
281  	void *old;
282  
283  	BUG_ON(dax_is_locked(entry));
284  	xas_reset(xas);
285  	xas_lock_irq(xas);
286  	old = xas_store(xas, entry);
287  	xas_unlock_irq(xas);
288  	BUG_ON(!dax_is_locked(old));
289  	dax_wake_entry(xas, entry, false);
290  }
291  
292  /*
293   * Return: The entry stored at this location before it was locked.
294   */
295  static void *dax_lock_entry(struct xa_state *xas, void *entry)
296  {
297  	unsigned long v = xa_to_value(entry);
298  	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299  }
300  
301  static unsigned long dax_entry_size(void *entry)
302  {
303  	if (dax_is_zero_entry(entry))
304  		return 0;
305  	else if (dax_is_empty_entry(entry))
306  		return 0;
307  	else if (dax_is_pmd_entry(entry))
308  		return PMD_SIZE;
309  	else
310  		return PAGE_SIZE;
311  }
312  
313  static unsigned long dax_end_pfn(void *entry)
314  {
315  	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316  }
317  
318  /*
319   * Iterate through all mapped pfns represented by an entry, i.e. skip
320   * 'empty' and 'zero' entries.
321   */
322  #define for_each_mapped_pfn(entry, pfn) \
323  	for (pfn = dax_to_pfn(entry); \
324  			pfn < dax_end_pfn(entry); pfn++)
325  
326  /*
327   * TODO: for reflink+dax we need a way to associate a single page with
328   * multiple address_space instances at different linear_page_index()
329   * offsets.
330   */
331  static void dax_associate_entry(void *entry, struct address_space *mapping,
332  		struct vm_area_struct *vma, unsigned long address)
333  {
334  	unsigned long size = dax_entry_size(entry), pfn, index;
335  	int i = 0;
336  
337  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338  		return;
339  
340  	index = linear_page_index(vma, address & ~(size - 1));
341  	for_each_mapped_pfn(entry, pfn) {
342  		struct page *page = pfn_to_page(pfn);
343  
344  		WARN_ON_ONCE(page->mapping);
345  		page->mapping = mapping;
346  		page->index = index + i++;
347  	}
348  }
349  
350  static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351  		bool trunc)
352  {
353  	unsigned long pfn;
354  
355  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356  		return;
357  
358  	for_each_mapped_pfn(entry, pfn) {
359  		struct page *page = pfn_to_page(pfn);
360  
361  		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362  		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363  		page->mapping = NULL;
364  		page->index = 0;
365  	}
366  }
367  
368  static struct page *dax_busy_page(void *entry)
369  {
370  	unsigned long pfn;
371  
372  	for_each_mapped_pfn(entry, pfn) {
373  		struct page *page = pfn_to_page(pfn);
374  
375  		if (page_ref_count(page) > 1)
376  			return page;
377  	}
378  	return NULL;
379  }
380  
381  /*
382   * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383   * @page: The page whose entry we want to lock
384   *
385   * Context: Process context.
386   * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387   * not be locked.
388   */
389  dax_entry_t dax_lock_page(struct page *page)
390  {
391  	XA_STATE(xas, NULL, 0);
392  	void *entry;
393  
394  	/* Ensure page->mapping isn't freed while we look at it */
395  	rcu_read_lock();
396  	for (;;) {
397  		struct address_space *mapping = READ_ONCE(page->mapping);
398  
399  		entry = NULL;
400  		if (!mapping || !dax_mapping(mapping))
401  			break;
402  
403  		/*
404  		 * In the device-dax case there's no need to lock, a
405  		 * struct dev_pagemap pin is sufficient to keep the
406  		 * inode alive, and we assume we have dev_pagemap pin
407  		 * otherwise we would not have a valid pfn_to_page()
408  		 * translation.
409  		 */
410  		entry = (void *)~0UL;
411  		if (S_ISCHR(mapping->host->i_mode))
412  			break;
413  
414  		xas.xa = &mapping->i_pages;
415  		xas_lock_irq(&xas);
416  		if (mapping != page->mapping) {
417  			xas_unlock_irq(&xas);
418  			continue;
419  		}
420  		xas_set(&xas, page->index);
421  		entry = xas_load(&xas);
422  		if (dax_is_locked(entry)) {
423  			rcu_read_unlock();
424  			wait_entry_unlocked(&xas, entry);
425  			rcu_read_lock();
426  			continue;
427  		}
428  		dax_lock_entry(&xas, entry);
429  		xas_unlock_irq(&xas);
430  		break;
431  	}
432  	rcu_read_unlock();
433  	return (dax_entry_t)entry;
434  }
435  
436  void dax_unlock_page(struct page *page, dax_entry_t cookie)
437  {
438  	struct address_space *mapping = page->mapping;
439  	XA_STATE(xas, &mapping->i_pages, page->index);
440  
441  	if (S_ISCHR(mapping->host->i_mode))
442  		return;
443  
444  	dax_unlock_entry(&xas, (void *)cookie);
445  }
446  
447  /*
448   * Find page cache entry at given index. If it is a DAX entry, return it
449   * with the entry locked. If the page cache doesn't contain an entry at
450   * that index, add a locked empty entry.
451   *
452   * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453   * either return that locked entry or will return VM_FAULT_FALLBACK.
454   * This will happen if there are any PTE entries within the PMD range
455   * that we are requesting.
456   *
457   * We always favor PTE entries over PMD entries. There isn't a flow where we
458   * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459   * insertion will fail if it finds any PTE entries already in the tree, and a
460   * PTE insertion will cause an existing PMD entry to be unmapped and
461   * downgraded to PTE entries.  This happens for both PMD zero pages as
462   * well as PMD empty entries.
463   *
464   * The exception to this downgrade path is for PMD entries that have
465   * real storage backing them.  We will leave these real PMD entries in
466   * the tree, and PTE writes will simply dirty the entire PMD entry.
467   *
468   * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469   * persistent memory the benefit is doubtful. We can add that later if we can
470   * show it helps.
471   *
472   * On error, this function does not return an ERR_PTR.  Instead it returns
473   * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474   * overlap with xarray value entries.
475   */
476  static void *grab_mapping_entry(struct xa_state *xas,
477  		struct address_space *mapping, unsigned int order)
478  {
479  	unsigned long index = xas->xa_index;
480  	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481  	void *entry;
482  
483  retry:
484  	xas_lock_irq(xas);
485  	entry = get_unlocked_entry(xas, order);
486  
487  	if (entry) {
488  		if (dax_is_conflict(entry))
489  			goto fallback;
490  		if (!xa_is_value(entry)) {
491  			xas_set_err(xas, -EIO);
492  			goto out_unlock;
493  		}
494  
495  		if (order == 0) {
496  			if (dax_is_pmd_entry(entry) &&
497  			    (dax_is_zero_entry(entry) ||
498  			     dax_is_empty_entry(entry))) {
499  				pmd_downgrade = true;
500  			}
501  		}
502  	}
503  
504  	if (pmd_downgrade) {
505  		/*
506  		 * Make sure 'entry' remains valid while we drop
507  		 * the i_pages lock.
508  		 */
509  		dax_lock_entry(xas, entry);
510  
511  		/*
512  		 * Besides huge zero pages the only other thing that gets
513  		 * downgraded are empty entries which don't need to be
514  		 * unmapped.
515  		 */
516  		if (dax_is_zero_entry(entry)) {
517  			xas_unlock_irq(xas);
518  			unmap_mapping_pages(mapping,
519  					xas->xa_index & ~PG_PMD_COLOUR,
520  					PG_PMD_NR, false);
521  			xas_reset(xas);
522  			xas_lock_irq(xas);
523  		}
524  
525  		dax_disassociate_entry(entry, mapping, false);
526  		xas_store(xas, NULL);	/* undo the PMD join */
527  		dax_wake_entry(xas, entry, true);
528  		mapping->nrexceptional--;
529  		entry = NULL;
530  		xas_set(xas, index);
531  	}
532  
533  	if (entry) {
534  		dax_lock_entry(xas, entry);
535  	} else {
536  		unsigned long flags = DAX_EMPTY;
537  
538  		if (order > 0)
539  			flags |= DAX_PMD;
540  		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541  		dax_lock_entry(xas, entry);
542  		if (xas_error(xas))
543  			goto out_unlock;
544  		mapping->nrexceptional++;
545  	}
546  
547  out_unlock:
548  	xas_unlock_irq(xas);
549  	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550  		goto retry;
551  	if (xas->xa_node == XA_ERROR(-ENOMEM))
552  		return xa_mk_internal(VM_FAULT_OOM);
553  	if (xas_error(xas))
554  		return xa_mk_internal(VM_FAULT_SIGBUS);
555  	return entry;
556  fallback:
557  	xas_unlock_irq(xas);
558  	return xa_mk_internal(VM_FAULT_FALLBACK);
559  }
560  
561  /**
562   * dax_layout_busy_page - find first pinned page in @mapping
563   * @mapping: address space to scan for a page with ref count > 1
564   *
565   * DAX requires ZONE_DEVICE mapped pages. These pages are never
566   * 'onlined' to the page allocator so they are considered idle when
567   * page->count == 1. A filesystem uses this interface to determine if
568   * any page in the mapping is busy, i.e. for DMA, or other
569   * get_user_pages() usages.
570   *
571   * It is expected that the filesystem is holding locks to block the
572   * establishment of new mappings in this address_space. I.e. it expects
573   * to be able to run unmap_mapping_range() and subsequently not race
574   * mapping_mapped() becoming true.
575   */
576  struct page *dax_layout_busy_page(struct address_space *mapping)
577  {
578  	XA_STATE(xas, &mapping->i_pages, 0);
579  	void *entry;
580  	unsigned int scanned = 0;
581  	struct page *page = NULL;
582  
583  	/*
584  	 * In the 'limited' case get_user_pages() for dax is disabled.
585  	 */
586  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587  		return NULL;
588  
589  	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590  		return NULL;
591  
592  	/*
593  	 * If we race get_user_pages_fast() here either we'll see the
594  	 * elevated page count in the iteration and wait, or
595  	 * get_user_pages_fast() will see that the page it took a reference
596  	 * against is no longer mapped in the page tables and bail to the
597  	 * get_user_pages() slow path.  The slow path is protected by
598  	 * pte_lock() and pmd_lock(). New references are not taken without
599  	 * holding those locks, and unmap_mapping_range() will not zero the
600  	 * pte or pmd without holding the respective lock, so we are
601  	 * guaranteed to either see new references or prevent new
602  	 * references from being established.
603  	 */
604  	unmap_mapping_range(mapping, 0, 0, 0);
605  
606  	xas_lock_irq(&xas);
607  	xas_for_each(&xas, entry, ULONG_MAX) {
608  		if (WARN_ON_ONCE(!xa_is_value(entry)))
609  			continue;
610  		if (unlikely(dax_is_locked(entry)))
611  			entry = get_unlocked_entry(&xas, 0);
612  		if (entry)
613  			page = dax_busy_page(entry);
614  		put_unlocked_entry(&xas, entry);
615  		if (page)
616  			break;
617  		if (++scanned % XA_CHECK_SCHED)
618  			continue;
619  
620  		xas_pause(&xas);
621  		xas_unlock_irq(&xas);
622  		cond_resched();
623  		xas_lock_irq(&xas);
624  	}
625  	xas_unlock_irq(&xas);
626  	return page;
627  }
628  EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629  
630  static int __dax_invalidate_entry(struct address_space *mapping,
631  					  pgoff_t index, bool trunc)
632  {
633  	XA_STATE(xas, &mapping->i_pages, index);
634  	int ret = 0;
635  	void *entry;
636  
637  	xas_lock_irq(&xas);
638  	entry = get_unlocked_entry(&xas, 0);
639  	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
640  		goto out;
641  	if (!trunc &&
642  	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643  	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
644  		goto out;
645  	dax_disassociate_entry(entry, mapping, trunc);
646  	xas_store(&xas, NULL);
647  	mapping->nrexceptional--;
648  	ret = 1;
649  out:
650  	put_unlocked_entry(&xas, entry);
651  	xas_unlock_irq(&xas);
652  	return ret;
653  }
654  
655  /*
656   * Delete DAX entry at @index from @mapping.  Wait for it
657   * to be unlocked before deleting it.
658   */
659  int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660  {
661  	int ret = __dax_invalidate_entry(mapping, index, true);
662  
663  	/*
664  	 * This gets called from truncate / punch_hole path. As such, the caller
665  	 * must hold locks protecting against concurrent modifications of the
666  	 * page cache (usually fs-private i_mmap_sem for writing). Since the
667  	 * caller has seen a DAX entry for this index, we better find it
668  	 * at that index as well...
669  	 */
670  	WARN_ON_ONCE(!ret);
671  	return ret;
672  }
673  
674  /*
675   * Invalidate DAX entry if it is clean.
676   */
677  int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678  				      pgoff_t index)
679  {
680  	return __dax_invalidate_entry(mapping, index, false);
681  }
682  
683  static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
684  			     sector_t sector, struct page *to, unsigned long vaddr)
685  {
686  	void *vto, *kaddr;
687  	pgoff_t pgoff;
688  	long rc;
689  	int id;
690  
691  	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
692  	if (rc)
693  		return rc;
694  
695  	id = dax_read_lock();
696  	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
697  	if (rc < 0) {
698  		dax_read_unlock(id);
699  		return rc;
700  	}
701  	vto = kmap_atomic(to);
702  	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
703  	kunmap_atomic(vto);
704  	dax_read_unlock(id);
705  	return 0;
706  }
707  
708  /*
709   * By this point grab_mapping_entry() has ensured that we have a locked entry
710   * of the appropriate size so we don't have to worry about downgrading PMDs to
711   * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
712   * already in the tree, we will skip the insertion and just dirty the PMD as
713   * appropriate.
714   */
715  static void *dax_insert_entry(struct xa_state *xas,
716  		struct address_space *mapping, struct vm_fault *vmf,
717  		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
718  {
719  	void *new_entry = dax_make_entry(pfn, flags);
720  
721  	if (dirty)
722  		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723  
724  	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
725  		unsigned long index = xas->xa_index;
726  		/* we are replacing a zero page with block mapping */
727  		if (dax_is_pmd_entry(entry))
728  			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
729  					PG_PMD_NR, false);
730  		else /* pte entry */
731  			unmap_mapping_pages(mapping, index, 1, false);
732  	}
733  
734  	xas_reset(xas);
735  	xas_lock_irq(xas);
736  	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737  		void *old;
738  
739  		dax_disassociate_entry(entry, mapping, false);
740  		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
741  		/*
742  		 * Only swap our new entry into the page cache if the current
743  		 * entry is a zero page or an empty entry.  If a normal PTE or
744  		 * PMD entry is already in the cache, we leave it alone.  This
745  		 * means that if we are trying to insert a PTE and the
746  		 * existing entry is a PMD, we will just leave the PMD in the
747  		 * tree and dirty it if necessary.
748  		 */
749  		old = dax_lock_entry(xas, new_entry);
750  		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751  					DAX_LOCKED));
752  		entry = new_entry;
753  	} else {
754  		xas_load(xas);	/* Walk the xa_state */
755  	}
756  
757  	if (dirty)
758  		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
759  
760  	xas_unlock_irq(xas);
761  	return entry;
762  }
763  
764  static inline
765  unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
766  {
767  	unsigned long address;
768  
769  	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770  	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771  	return address;
772  }
773  
774  /* Walk all mappings of a given index of a file and writeprotect them */
775  static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776  		unsigned long pfn)
777  {
778  	struct vm_area_struct *vma;
779  	pte_t pte, *ptep = NULL;
780  	pmd_t *pmdp = NULL;
781  	spinlock_t *ptl;
782  
783  	i_mmap_lock_read(mapping);
784  	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
785  		struct mmu_notifier_range range;
786  		unsigned long address;
787  
788  		cond_resched();
789  
790  		if (!(vma->vm_flags & VM_SHARED))
791  			continue;
792  
793  		address = pgoff_address(index, vma);
794  
795  		/*
796  		 * Note because we provide range to follow_pte_pmd it will
797  		 * call mmu_notifier_invalidate_range_start() on our behalf
798  		 * before taking any lock.
799  		 */
800  		if (follow_pte_pmd(vma->vm_mm, address, &range,
801  				   &ptep, &pmdp, &ptl))
802  			continue;
803  
804  		/*
805  		 * No need to call mmu_notifier_invalidate_range() as we are
806  		 * downgrading page table protection not changing it to point
807  		 * to a new page.
808  		 *
809  		 * See Documentation/vm/mmu_notifier.rst
810  		 */
811  		if (pmdp) {
812  #ifdef CONFIG_FS_DAX_PMD
813  			pmd_t pmd;
814  
815  			if (pfn != pmd_pfn(*pmdp))
816  				goto unlock_pmd;
817  			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
818  				goto unlock_pmd;
819  
820  			flush_cache_page(vma, address, pfn);
821  			pmd = pmdp_invalidate(vma, address, pmdp);
822  			pmd = pmd_wrprotect(pmd);
823  			pmd = pmd_mkclean(pmd);
824  			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825  unlock_pmd:
826  #endif
827  			spin_unlock(ptl);
828  		} else {
829  			if (pfn != pte_pfn(*ptep))
830  				goto unlock_pte;
831  			if (!pte_dirty(*ptep) && !pte_write(*ptep))
832  				goto unlock_pte;
833  
834  			flush_cache_page(vma, address, pfn);
835  			pte = ptep_clear_flush(vma, address, ptep);
836  			pte = pte_wrprotect(pte);
837  			pte = pte_mkclean(pte);
838  			set_pte_at(vma->vm_mm, address, ptep, pte);
839  unlock_pte:
840  			pte_unmap_unlock(ptep, ptl);
841  		}
842  
843  		mmu_notifier_invalidate_range_end(&range);
844  	}
845  	i_mmap_unlock_read(mapping);
846  }
847  
848  static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849  		struct address_space *mapping, void *entry)
850  {
851  	unsigned long pfn, index, count;
852  	long ret = 0;
853  
854  	/*
855  	 * A page got tagged dirty in DAX mapping? Something is seriously
856  	 * wrong.
857  	 */
858  	if (WARN_ON(!xa_is_value(entry)))
859  		return -EIO;
860  
861  	if (unlikely(dax_is_locked(entry))) {
862  		void *old_entry = entry;
863  
864  		entry = get_unlocked_entry(xas, 0);
865  
866  		/* Entry got punched out / reallocated? */
867  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868  			goto put_unlocked;
869  		/*
870  		 * Entry got reallocated elsewhere? No need to writeback.
871  		 * We have to compare pfns as we must not bail out due to
872  		 * difference in lockbit or entry type.
873  		 */
874  		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875  			goto put_unlocked;
876  		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877  					dax_is_zero_entry(entry))) {
878  			ret = -EIO;
879  			goto put_unlocked;
880  		}
881  
882  		/* Another fsync thread may have already done this entry */
883  		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884  			goto put_unlocked;
885  	}
886  
887  	/* Lock the entry to serialize with page faults */
888  	dax_lock_entry(xas, entry);
889  
890  	/*
891  	 * We can clear the tag now but we have to be careful so that concurrent
892  	 * dax_writeback_one() calls for the same index cannot finish before we
893  	 * actually flush the caches. This is achieved as the calls will look
894  	 * at the entry only under the i_pages lock and once they do that
895  	 * they will see the entry locked and wait for it to unlock.
896  	 */
897  	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898  	xas_unlock_irq(xas);
899  
900  	/*
901  	 * If dax_writeback_mapping_range() was given a wbc->range_start
902  	 * in the middle of a PMD, the 'index' we use needs to be
903  	 * aligned to the start of the PMD.
904  	 * This allows us to flush for PMD_SIZE and not have to worry about
905  	 * partial PMD writebacks.
906  	 */
907  	pfn = dax_to_pfn(entry);
908  	count = 1UL << dax_entry_order(entry);
909  	index = xas->xa_index & ~(count - 1);
910  
911  	dax_entry_mkclean(mapping, index, pfn);
912  	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
913  	/*
914  	 * After we have flushed the cache, we can clear the dirty tag. There
915  	 * cannot be new dirty data in the pfn after the flush has completed as
916  	 * the pfn mappings are writeprotected and fault waits for mapping
917  	 * entry lock.
918  	 */
919  	xas_reset(xas);
920  	xas_lock_irq(xas);
921  	xas_store(xas, entry);
922  	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923  	dax_wake_entry(xas, entry, false);
924  
925  	trace_dax_writeback_one(mapping->host, index, count);
926  	return ret;
927  
928   put_unlocked:
929  	put_unlocked_entry(xas, entry);
930  	return ret;
931  }
932  
933  /*
934   * Flush the mapping to the persistent domain within the byte range of [start,
935   * end]. This is required by data integrity operations to ensure file data is
936   * on persistent storage prior to completion of the operation.
937   */
938  int dax_writeback_mapping_range(struct address_space *mapping,
939  		struct dax_device *dax_dev, struct writeback_control *wbc)
940  {
941  	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
942  	struct inode *inode = mapping->host;
943  	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
944  	void *entry;
945  	int ret = 0;
946  	unsigned int scanned = 0;
947  
948  	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
949  		return -EIO;
950  
951  	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
952  		return 0;
953  
954  	trace_dax_writeback_range(inode, xas.xa_index, end_index);
955  
956  	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
957  
958  	xas_lock_irq(&xas);
959  	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
960  		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
961  		if (ret < 0) {
962  			mapping_set_error(mapping, ret);
963  			break;
964  		}
965  		if (++scanned % XA_CHECK_SCHED)
966  			continue;
967  
968  		xas_pause(&xas);
969  		xas_unlock_irq(&xas);
970  		cond_resched();
971  		xas_lock_irq(&xas);
972  	}
973  	xas_unlock_irq(&xas);
974  	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
975  	return ret;
976  }
977  EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
978  
979  static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
980  {
981  	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
982  }
983  
984  static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
985  			 pfn_t *pfnp)
986  {
987  	const sector_t sector = dax_iomap_sector(iomap, pos);
988  	pgoff_t pgoff;
989  	int id, rc;
990  	long length;
991  
992  	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
993  	if (rc)
994  		return rc;
995  	id = dax_read_lock();
996  	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
997  				   NULL, pfnp);
998  	if (length < 0) {
999  		rc = length;
1000  		goto out;
1001  	}
1002  	rc = -EINVAL;
1003  	if (PFN_PHYS(length) < size)
1004  		goto out;
1005  	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1006  		goto out;
1007  	/* For larger pages we need devmap */
1008  	if (length > 1 && !pfn_t_devmap(*pfnp))
1009  		goto out;
1010  	rc = 0;
1011  out:
1012  	dax_read_unlock(id);
1013  	return rc;
1014  }
1015  
1016  /*
1017   * The user has performed a load from a hole in the file.  Allocating a new
1018   * page in the file would cause excessive storage usage for workloads with
1019   * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1020   * If this page is ever written to we will re-fault and change the mapping to
1021   * point to real DAX storage instead.
1022   */
1023  static vm_fault_t dax_load_hole(struct xa_state *xas,
1024  		struct address_space *mapping, void **entry,
1025  		struct vm_fault *vmf)
1026  {
1027  	struct inode *inode = mapping->host;
1028  	unsigned long vaddr = vmf->address;
1029  	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1030  	vm_fault_t ret;
1031  
1032  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1033  			DAX_ZERO_PAGE, false);
1034  
1035  	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1036  	trace_dax_load_hole(inode, vmf, ret);
1037  	return ret;
1038  }
1039  
1040  int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
1041  		   struct iomap *iomap)
1042  {
1043  	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1044  	pgoff_t pgoff;
1045  	long rc, id;
1046  	void *kaddr;
1047  	bool page_aligned = false;
1048  
1049  
1050  	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1051  	    IS_ALIGNED(size, PAGE_SIZE))
1052  		page_aligned = true;
1053  
1054  	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1055  	if (rc)
1056  		return rc;
1057  
1058  	id = dax_read_lock();
1059  
1060  	if (page_aligned)
1061  		rc = dax_zero_page_range(iomap->dax_dev, pgoff,
1062  					 size >> PAGE_SHIFT);
1063  	else
1064  		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1065  	if (rc < 0) {
1066  		dax_read_unlock(id);
1067  		return rc;
1068  	}
1069  
1070  	if (!page_aligned) {
1071  		memset(kaddr + offset, 0, size);
1072  		dax_flush(iomap->dax_dev, kaddr + offset, size);
1073  	}
1074  	dax_read_unlock(id);
1075  	return 0;
1076  }
1077  
1078  static loff_t
1079  dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1080  		struct iomap *iomap, struct iomap *srcmap)
1081  {
1082  	struct block_device *bdev = iomap->bdev;
1083  	struct dax_device *dax_dev = iomap->dax_dev;
1084  	struct iov_iter *iter = data;
1085  	loff_t end = pos + length, done = 0;
1086  	ssize_t ret = 0;
1087  	size_t xfer;
1088  	int id;
1089  
1090  	if (iov_iter_rw(iter) == READ) {
1091  		end = min(end, i_size_read(inode));
1092  		if (pos >= end)
1093  			return 0;
1094  
1095  		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096  			return iov_iter_zero(min(length, end - pos), iter);
1097  	}
1098  
1099  	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1100  		return -EIO;
1101  
1102  	/*
1103  	 * Write can allocate block for an area which has a hole page mapped
1104  	 * into page tables. We have to tear down these mappings so that data
1105  	 * written by write(2) is visible in mmap.
1106  	 */
1107  	if (iomap->flags & IOMAP_F_NEW) {
1108  		invalidate_inode_pages2_range(inode->i_mapping,
1109  					      pos >> PAGE_SHIFT,
1110  					      (end - 1) >> PAGE_SHIFT);
1111  	}
1112  
1113  	id = dax_read_lock();
1114  	while (pos < end) {
1115  		unsigned offset = pos & (PAGE_SIZE - 1);
1116  		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117  		const sector_t sector = dax_iomap_sector(iomap, pos);
1118  		ssize_t map_len;
1119  		pgoff_t pgoff;
1120  		void *kaddr;
1121  
1122  		if (fatal_signal_pending(current)) {
1123  			ret = -EINTR;
1124  			break;
1125  		}
1126  
1127  		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1128  		if (ret)
1129  			break;
1130  
1131  		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1132  				&kaddr, NULL);
1133  		if (map_len < 0) {
1134  			ret = map_len;
1135  			break;
1136  		}
1137  
1138  		map_len = PFN_PHYS(map_len);
1139  		kaddr += offset;
1140  		map_len -= offset;
1141  		if (map_len > end - pos)
1142  			map_len = end - pos;
1143  
1144  		/*
1145  		 * The userspace address for the memory copy has already been
1146  		 * validated via access_ok() in either vfs_read() or
1147  		 * vfs_write(), depending on which operation we are doing.
1148  		 */
1149  		if (iov_iter_rw(iter) == WRITE)
1150  			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1151  					map_len, iter);
1152  		else
1153  			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1154  					map_len, iter);
1155  
1156  		pos += xfer;
1157  		length -= xfer;
1158  		done += xfer;
1159  
1160  		if (xfer == 0)
1161  			ret = -EFAULT;
1162  		if (xfer < map_len)
1163  			break;
1164  	}
1165  	dax_read_unlock(id);
1166  
1167  	return done ? done : ret;
1168  }
1169  
1170  /**
1171   * dax_iomap_rw - Perform I/O to a DAX file
1172   * @iocb:	The control block for this I/O
1173   * @iter:	The addresses to do I/O from or to
1174   * @ops:	iomap ops passed from the file system
1175   *
1176   * This function performs read and write operations to directly mapped
1177   * persistent memory.  The callers needs to take care of read/write exclusion
1178   * and evicting any page cache pages in the region under I/O.
1179   */
1180  ssize_t
1181  dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1182  		const struct iomap_ops *ops)
1183  {
1184  	struct address_space *mapping = iocb->ki_filp->f_mapping;
1185  	struct inode *inode = mapping->host;
1186  	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1187  	unsigned flags = 0;
1188  
1189  	if (iov_iter_rw(iter) == WRITE) {
1190  		lockdep_assert_held_write(&inode->i_rwsem);
1191  		flags |= IOMAP_WRITE;
1192  	} else {
1193  		lockdep_assert_held(&inode->i_rwsem);
1194  	}
1195  
1196  	if (iocb->ki_flags & IOCB_NOWAIT)
1197  		flags |= IOMAP_NOWAIT;
1198  
1199  	while (iov_iter_count(iter)) {
1200  		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1201  				iter, dax_iomap_actor);
1202  		if (ret <= 0)
1203  			break;
1204  		pos += ret;
1205  		done += ret;
1206  	}
1207  
1208  	iocb->ki_pos += done;
1209  	return done ? done : ret;
1210  }
1211  EXPORT_SYMBOL_GPL(dax_iomap_rw);
1212  
1213  static vm_fault_t dax_fault_return(int error)
1214  {
1215  	if (error == 0)
1216  		return VM_FAULT_NOPAGE;
1217  	return vmf_error(error);
1218  }
1219  
1220  /*
1221   * MAP_SYNC on a dax mapping guarantees dirty metadata is
1222   * flushed on write-faults (non-cow), but not read-faults.
1223   */
1224  static bool dax_fault_is_synchronous(unsigned long flags,
1225  		struct vm_area_struct *vma, struct iomap *iomap)
1226  {
1227  	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1228  		&& (iomap->flags & IOMAP_F_DIRTY);
1229  }
1230  
1231  static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1232  			       int *iomap_errp, const struct iomap_ops *ops)
1233  {
1234  	struct vm_area_struct *vma = vmf->vma;
1235  	struct address_space *mapping = vma->vm_file->f_mapping;
1236  	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1237  	struct inode *inode = mapping->host;
1238  	unsigned long vaddr = vmf->address;
1239  	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1240  	struct iomap iomap = { .type = IOMAP_HOLE };
1241  	struct iomap srcmap = { .type = IOMAP_HOLE };
1242  	unsigned flags = IOMAP_FAULT;
1243  	int error, major = 0;
1244  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1245  	bool sync;
1246  	vm_fault_t ret = 0;
1247  	void *entry;
1248  	pfn_t pfn;
1249  
1250  	trace_dax_pte_fault(inode, vmf, ret);
1251  	/*
1252  	 * Check whether offset isn't beyond end of file now. Caller is supposed
1253  	 * to hold locks serializing us with truncate / punch hole so this is
1254  	 * a reliable test.
1255  	 */
1256  	if (pos >= i_size_read(inode)) {
1257  		ret = VM_FAULT_SIGBUS;
1258  		goto out;
1259  	}
1260  
1261  	if (write && !vmf->cow_page)
1262  		flags |= IOMAP_WRITE;
1263  
1264  	entry = grab_mapping_entry(&xas, mapping, 0);
1265  	if (xa_is_internal(entry)) {
1266  		ret = xa_to_internal(entry);
1267  		goto out;
1268  	}
1269  
1270  	/*
1271  	 * It is possible, particularly with mixed reads & writes to private
1272  	 * mappings, that we have raced with a PMD fault that overlaps with
1273  	 * the PTE we need to set up.  If so just return and the fault will be
1274  	 * retried.
1275  	 */
1276  	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1277  		ret = VM_FAULT_NOPAGE;
1278  		goto unlock_entry;
1279  	}
1280  
1281  	/*
1282  	 * Note that we don't bother to use iomap_apply here: DAX required
1283  	 * the file system block size to be equal the page size, which means
1284  	 * that we never have to deal with more than a single extent here.
1285  	 */
1286  	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1287  	if (iomap_errp)
1288  		*iomap_errp = error;
1289  	if (error) {
1290  		ret = dax_fault_return(error);
1291  		goto unlock_entry;
1292  	}
1293  	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1294  		error = -EIO;	/* fs corruption? */
1295  		goto error_finish_iomap;
1296  	}
1297  
1298  	if (vmf->cow_page) {
1299  		sector_t sector = dax_iomap_sector(&iomap, pos);
1300  
1301  		switch (iomap.type) {
1302  		case IOMAP_HOLE:
1303  		case IOMAP_UNWRITTEN:
1304  			clear_user_highpage(vmf->cow_page, vaddr);
1305  			break;
1306  		case IOMAP_MAPPED:
1307  			error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1308  						  sector, vmf->cow_page, vaddr);
1309  			break;
1310  		default:
1311  			WARN_ON_ONCE(1);
1312  			error = -EIO;
1313  			break;
1314  		}
1315  
1316  		if (error)
1317  			goto error_finish_iomap;
1318  
1319  		__SetPageUptodate(vmf->cow_page);
1320  		ret = finish_fault(vmf);
1321  		if (!ret)
1322  			ret = VM_FAULT_DONE_COW;
1323  		goto finish_iomap;
1324  	}
1325  
1326  	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1327  
1328  	switch (iomap.type) {
1329  	case IOMAP_MAPPED:
1330  		if (iomap.flags & IOMAP_F_NEW) {
1331  			count_vm_event(PGMAJFAULT);
1332  			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1333  			major = VM_FAULT_MAJOR;
1334  		}
1335  		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1336  		if (error < 0)
1337  			goto error_finish_iomap;
1338  
1339  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1340  						 0, write && !sync);
1341  
1342  		/*
1343  		 * If we are doing synchronous page fault and inode needs fsync,
1344  		 * we can insert PTE into page tables only after that happens.
1345  		 * Skip insertion for now and return the pfn so that caller can
1346  		 * insert it after fsync is done.
1347  		 */
1348  		if (sync) {
1349  			if (WARN_ON_ONCE(!pfnp)) {
1350  				error = -EIO;
1351  				goto error_finish_iomap;
1352  			}
1353  			*pfnp = pfn;
1354  			ret = VM_FAULT_NEEDDSYNC | major;
1355  			goto finish_iomap;
1356  		}
1357  		trace_dax_insert_mapping(inode, vmf, entry);
1358  		if (write)
1359  			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1360  		else
1361  			ret = vmf_insert_mixed(vma, vaddr, pfn);
1362  
1363  		goto finish_iomap;
1364  	case IOMAP_UNWRITTEN:
1365  	case IOMAP_HOLE:
1366  		if (!write) {
1367  			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1368  			goto finish_iomap;
1369  		}
1370  		/*FALLTHRU*/
1371  	default:
1372  		WARN_ON_ONCE(1);
1373  		error = -EIO;
1374  		break;
1375  	}
1376  
1377   error_finish_iomap:
1378  	ret = dax_fault_return(error);
1379   finish_iomap:
1380  	if (ops->iomap_end) {
1381  		int copied = PAGE_SIZE;
1382  
1383  		if (ret & VM_FAULT_ERROR)
1384  			copied = 0;
1385  		/*
1386  		 * The fault is done by now and there's no way back (other
1387  		 * thread may be already happily using PTE we have installed).
1388  		 * Just ignore error from ->iomap_end since we cannot do much
1389  		 * with it.
1390  		 */
1391  		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1392  	}
1393   unlock_entry:
1394  	dax_unlock_entry(&xas, entry);
1395   out:
1396  	trace_dax_pte_fault_done(inode, vmf, ret);
1397  	return ret | major;
1398  }
1399  
1400  #ifdef CONFIG_FS_DAX_PMD
1401  static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1402  		struct iomap *iomap, void **entry)
1403  {
1404  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1405  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1406  	struct vm_area_struct *vma = vmf->vma;
1407  	struct inode *inode = mapping->host;
1408  	pgtable_t pgtable = NULL;
1409  	struct page *zero_page;
1410  	spinlock_t *ptl;
1411  	pmd_t pmd_entry;
1412  	pfn_t pfn;
1413  
1414  	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1415  
1416  	if (unlikely(!zero_page))
1417  		goto fallback;
1418  
1419  	pfn = page_to_pfn_t(zero_page);
1420  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1421  			DAX_PMD | DAX_ZERO_PAGE, false);
1422  
1423  	if (arch_needs_pgtable_deposit()) {
1424  		pgtable = pte_alloc_one(vma->vm_mm);
1425  		if (!pgtable)
1426  			return VM_FAULT_OOM;
1427  	}
1428  
1429  	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1430  	if (!pmd_none(*(vmf->pmd))) {
1431  		spin_unlock(ptl);
1432  		goto fallback;
1433  	}
1434  
1435  	if (pgtable) {
1436  		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1437  		mm_inc_nr_ptes(vma->vm_mm);
1438  	}
1439  	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1440  	pmd_entry = pmd_mkhuge(pmd_entry);
1441  	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1442  	spin_unlock(ptl);
1443  	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1444  	return VM_FAULT_NOPAGE;
1445  
1446  fallback:
1447  	if (pgtable)
1448  		pte_free(vma->vm_mm, pgtable);
1449  	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1450  	return VM_FAULT_FALLBACK;
1451  }
1452  
1453  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1454  			       const struct iomap_ops *ops)
1455  {
1456  	struct vm_area_struct *vma = vmf->vma;
1457  	struct address_space *mapping = vma->vm_file->f_mapping;
1458  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1459  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1460  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1461  	bool sync;
1462  	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1463  	struct inode *inode = mapping->host;
1464  	vm_fault_t result = VM_FAULT_FALLBACK;
1465  	struct iomap iomap = { .type = IOMAP_HOLE };
1466  	struct iomap srcmap = { .type = IOMAP_HOLE };
1467  	pgoff_t max_pgoff;
1468  	void *entry;
1469  	loff_t pos;
1470  	int error;
1471  	pfn_t pfn;
1472  
1473  	/*
1474  	 * Check whether offset isn't beyond end of file now. Caller is
1475  	 * supposed to hold locks serializing us with truncate / punch hole so
1476  	 * this is a reliable test.
1477  	 */
1478  	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1479  
1480  	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1481  
1482  	/*
1483  	 * Make sure that the faulting address's PMD offset (color) matches
1484  	 * the PMD offset from the start of the file.  This is necessary so
1485  	 * that a PMD range in the page table overlaps exactly with a PMD
1486  	 * range in the page cache.
1487  	 */
1488  	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1489  	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1490  		goto fallback;
1491  
1492  	/* Fall back to PTEs if we're going to COW */
1493  	if (write && !(vma->vm_flags & VM_SHARED))
1494  		goto fallback;
1495  
1496  	/* If the PMD would extend outside the VMA */
1497  	if (pmd_addr < vma->vm_start)
1498  		goto fallback;
1499  	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1500  		goto fallback;
1501  
1502  	if (xas.xa_index >= max_pgoff) {
1503  		result = VM_FAULT_SIGBUS;
1504  		goto out;
1505  	}
1506  
1507  	/* If the PMD would extend beyond the file size */
1508  	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1509  		goto fallback;
1510  
1511  	/*
1512  	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1513  	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1514  	 * entry is already in the array, for instance), it will return
1515  	 * VM_FAULT_FALLBACK.
1516  	 */
1517  	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1518  	if (xa_is_internal(entry)) {
1519  		result = xa_to_internal(entry);
1520  		goto fallback;
1521  	}
1522  
1523  	/*
1524  	 * It is possible, particularly with mixed reads & writes to private
1525  	 * mappings, that we have raced with a PTE fault that overlaps with
1526  	 * the PMD we need to set up.  If so just return and the fault will be
1527  	 * retried.
1528  	 */
1529  	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1530  			!pmd_devmap(*vmf->pmd)) {
1531  		result = 0;
1532  		goto unlock_entry;
1533  	}
1534  
1535  	/*
1536  	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1537  	 * setting up a mapping, so really we're using iomap_begin() as a way
1538  	 * to look up our filesystem block.
1539  	 */
1540  	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1541  	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1542  			&srcmap);
1543  	if (error)
1544  		goto unlock_entry;
1545  
1546  	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1547  		goto finish_iomap;
1548  
1549  	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1550  
1551  	switch (iomap.type) {
1552  	case IOMAP_MAPPED:
1553  		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1554  		if (error < 0)
1555  			goto finish_iomap;
1556  
1557  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1558  						DAX_PMD, write && !sync);
1559  
1560  		/*
1561  		 * If we are doing synchronous page fault and inode needs fsync,
1562  		 * we can insert PMD into page tables only after that happens.
1563  		 * Skip insertion for now and return the pfn so that caller can
1564  		 * insert it after fsync is done.
1565  		 */
1566  		if (sync) {
1567  			if (WARN_ON_ONCE(!pfnp))
1568  				goto finish_iomap;
1569  			*pfnp = pfn;
1570  			result = VM_FAULT_NEEDDSYNC;
1571  			goto finish_iomap;
1572  		}
1573  
1574  		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1575  		result = vmf_insert_pfn_pmd(vmf, pfn, write);
1576  		break;
1577  	case IOMAP_UNWRITTEN:
1578  	case IOMAP_HOLE:
1579  		if (WARN_ON_ONCE(write))
1580  			break;
1581  		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1582  		break;
1583  	default:
1584  		WARN_ON_ONCE(1);
1585  		break;
1586  	}
1587  
1588   finish_iomap:
1589  	if (ops->iomap_end) {
1590  		int copied = PMD_SIZE;
1591  
1592  		if (result == VM_FAULT_FALLBACK)
1593  			copied = 0;
1594  		/*
1595  		 * The fault is done by now and there's no way back (other
1596  		 * thread may be already happily using PMD we have installed).
1597  		 * Just ignore error from ->iomap_end since we cannot do much
1598  		 * with it.
1599  		 */
1600  		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1601  				&iomap);
1602  	}
1603   unlock_entry:
1604  	dax_unlock_entry(&xas, entry);
1605   fallback:
1606  	if (result == VM_FAULT_FALLBACK) {
1607  		split_huge_pmd(vma, vmf->pmd, vmf->address);
1608  		count_vm_event(THP_FAULT_FALLBACK);
1609  	}
1610  out:
1611  	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1612  	return result;
1613  }
1614  #else
1615  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1616  			       const struct iomap_ops *ops)
1617  {
1618  	return VM_FAULT_FALLBACK;
1619  }
1620  #endif /* CONFIG_FS_DAX_PMD */
1621  
1622  /**
1623   * dax_iomap_fault - handle a page fault on a DAX file
1624   * @vmf: The description of the fault
1625   * @pe_size: Size of the page to fault in
1626   * @pfnp: PFN to insert for synchronous faults if fsync is required
1627   * @iomap_errp: Storage for detailed error code in case of error
1628   * @ops: Iomap ops passed from the file system
1629   *
1630   * When a page fault occurs, filesystems may call this helper in
1631   * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1632   * has done all the necessary locking for page fault to proceed
1633   * successfully.
1634   */
1635  vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1636  		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1637  {
1638  	switch (pe_size) {
1639  	case PE_SIZE_PTE:
1640  		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1641  	case PE_SIZE_PMD:
1642  		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1643  	default:
1644  		return VM_FAULT_FALLBACK;
1645  	}
1646  }
1647  EXPORT_SYMBOL_GPL(dax_iomap_fault);
1648  
1649  /*
1650   * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1651   * @vmf: The description of the fault
1652   * @pfn: PFN to insert
1653   * @order: Order of entry to insert.
1654   *
1655   * This function inserts a writeable PTE or PMD entry into the page tables
1656   * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1657   */
1658  static vm_fault_t
1659  dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1660  {
1661  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1662  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1663  	void *entry;
1664  	vm_fault_t ret;
1665  
1666  	xas_lock_irq(&xas);
1667  	entry = get_unlocked_entry(&xas, order);
1668  	/* Did we race with someone splitting entry or so? */
1669  	if (!entry || dax_is_conflict(entry) ||
1670  	    (order == 0 && !dax_is_pte_entry(entry))) {
1671  		put_unlocked_entry(&xas, entry);
1672  		xas_unlock_irq(&xas);
1673  		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1674  						      VM_FAULT_NOPAGE);
1675  		return VM_FAULT_NOPAGE;
1676  	}
1677  	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1678  	dax_lock_entry(&xas, entry);
1679  	xas_unlock_irq(&xas);
1680  	if (order == 0)
1681  		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1682  #ifdef CONFIG_FS_DAX_PMD
1683  	else if (order == PMD_ORDER)
1684  		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1685  #endif
1686  	else
1687  		ret = VM_FAULT_FALLBACK;
1688  	dax_unlock_entry(&xas, entry);
1689  	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690  	return ret;
1691  }
1692  
1693  /**
1694   * dax_finish_sync_fault - finish synchronous page fault
1695   * @vmf: The description of the fault
1696   * @pe_size: Size of entry to be inserted
1697   * @pfn: PFN to insert
1698   *
1699   * This function ensures that the file range touched by the page fault is
1700   * stored persistently on the media and handles inserting of appropriate page
1701   * table entry.
1702   */
1703  vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1704  		enum page_entry_size pe_size, pfn_t pfn)
1705  {
1706  	int err;
1707  	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1708  	unsigned int order = pe_order(pe_size);
1709  	size_t len = PAGE_SIZE << order;
1710  
1711  	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1712  	if (err)
1713  		return VM_FAULT_SIGBUS;
1714  	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1715  }
1716  EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1717