xref: /openbmc/linux/fs/dax.c (revision 5927145e)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
48 
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 
51 static int __init init_dax_wait_table(void)
52 {
53 	int i;
54 
55 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 		init_waitqueue_head(wait_table + i);
57 	return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60 
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 
76 static unsigned long dax_radix_sector(void *entry)
77 {
78 	return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80 
81 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
82 {
83 	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 			((unsigned long)sector << RADIX_DAX_SHIFT) |
85 			RADIX_DAX_ENTRY_LOCK);
86 }
87 
88 static unsigned int dax_radix_order(void *entry)
89 {
90 	if ((unsigned long)entry & RADIX_DAX_PMD)
91 		return PMD_SHIFT - PAGE_SHIFT;
92 	return 0;
93 }
94 
95 static int dax_is_pmd_entry(void *entry)
96 {
97 	return (unsigned long)entry & RADIX_DAX_PMD;
98 }
99 
100 static int dax_is_pte_entry(void *entry)
101 {
102 	return !((unsigned long)entry & RADIX_DAX_PMD);
103 }
104 
105 static int dax_is_zero_entry(void *entry)
106 {
107 	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
108 }
109 
110 static int dax_is_empty_entry(void *entry)
111 {
112 	return (unsigned long)entry & RADIX_DAX_EMPTY;
113 }
114 
115 /*
116  * DAX radix tree locking
117  */
118 struct exceptional_entry_key {
119 	struct address_space *mapping;
120 	pgoff_t entry_start;
121 };
122 
123 struct wait_exceptional_entry_queue {
124 	wait_queue_entry_t wait;
125 	struct exceptional_entry_key key;
126 };
127 
128 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
129 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
130 {
131 	unsigned long hash;
132 
133 	/*
134 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
135 	 * queue to the start of that PMD.  This ensures that all offsets in
136 	 * the range covered by the PMD map to the same bit lock.
137 	 */
138 	if (dax_is_pmd_entry(entry))
139 		index &= ~PG_PMD_COLOUR;
140 
141 	key->mapping = mapping;
142 	key->entry_start = index;
143 
144 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
145 	return wait_table + hash;
146 }
147 
148 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
149 				       int sync, void *keyp)
150 {
151 	struct exceptional_entry_key *key = keyp;
152 	struct wait_exceptional_entry_queue *ewait =
153 		container_of(wait, struct wait_exceptional_entry_queue, wait);
154 
155 	if (key->mapping != ewait->key.mapping ||
156 	    key->entry_start != ewait->key.entry_start)
157 		return 0;
158 	return autoremove_wake_function(wait, mode, sync, NULL);
159 }
160 
161 /*
162  * We do not necessarily hold the mapping->tree_lock when we call this
163  * function so it is possible that 'entry' is no longer a valid item in the
164  * radix tree.  This is okay because all we really need to do is to find the
165  * correct waitqueue where tasks might be waiting for that old 'entry' and
166  * wake them.
167  */
168 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
169 		pgoff_t index, void *entry, bool wake_all)
170 {
171 	struct exceptional_entry_key key;
172 	wait_queue_head_t *wq;
173 
174 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
175 
176 	/*
177 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
178 	 * under mapping->tree_lock, ditto for entry handling in our callers.
179 	 * So at this point all tasks that could have seen our entry locked
180 	 * must be in the waitqueue and the following check will see them.
181 	 */
182 	if (waitqueue_active(wq))
183 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
184 }
185 
186 /*
187  * Check whether the given slot is locked. The function must be called with
188  * mapping->tree_lock held
189  */
190 static inline int slot_locked(struct address_space *mapping, void **slot)
191 {
192 	unsigned long entry = (unsigned long)
193 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
194 	return entry & RADIX_DAX_ENTRY_LOCK;
195 }
196 
197 /*
198  * Mark the given slot is locked. The function must be called with
199  * mapping->tree_lock held
200  */
201 static inline void *lock_slot(struct address_space *mapping, void **slot)
202 {
203 	unsigned long entry = (unsigned long)
204 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
205 
206 	entry |= RADIX_DAX_ENTRY_LOCK;
207 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
208 	return (void *)entry;
209 }
210 
211 /*
212  * Mark the given slot is unlocked. The function must be called with
213  * mapping->tree_lock held
214  */
215 static inline void *unlock_slot(struct address_space *mapping, void **slot)
216 {
217 	unsigned long entry = (unsigned long)
218 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
219 
220 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
221 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
222 	return (void *)entry;
223 }
224 
225 /*
226  * Lookup entry in radix tree, wait for it to become unlocked if it is
227  * exceptional entry and return it. The caller must call
228  * put_unlocked_mapping_entry() when he decided not to lock the entry or
229  * put_locked_mapping_entry() when he locked the entry and now wants to
230  * unlock it.
231  *
232  * The function must be called with mapping->tree_lock held.
233  */
234 static void *get_unlocked_mapping_entry(struct address_space *mapping,
235 					pgoff_t index, void ***slotp)
236 {
237 	void *entry, **slot;
238 	struct wait_exceptional_entry_queue ewait;
239 	wait_queue_head_t *wq;
240 
241 	init_wait(&ewait.wait);
242 	ewait.wait.func = wake_exceptional_entry_func;
243 
244 	for (;;) {
245 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
246 					  &slot);
247 		if (!entry ||
248 		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
249 		    !slot_locked(mapping, slot)) {
250 			if (slotp)
251 				*slotp = slot;
252 			return entry;
253 		}
254 
255 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
256 		prepare_to_wait_exclusive(wq, &ewait.wait,
257 					  TASK_UNINTERRUPTIBLE);
258 		spin_unlock_irq(&mapping->tree_lock);
259 		schedule();
260 		finish_wait(wq, &ewait.wait);
261 		spin_lock_irq(&mapping->tree_lock);
262 	}
263 }
264 
265 static void dax_unlock_mapping_entry(struct address_space *mapping,
266 				     pgoff_t index)
267 {
268 	void *entry, **slot;
269 
270 	spin_lock_irq(&mapping->tree_lock);
271 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
272 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
273 			 !slot_locked(mapping, slot))) {
274 		spin_unlock_irq(&mapping->tree_lock);
275 		return;
276 	}
277 	unlock_slot(mapping, slot);
278 	spin_unlock_irq(&mapping->tree_lock);
279 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
280 }
281 
282 static void put_locked_mapping_entry(struct address_space *mapping,
283 		pgoff_t index)
284 {
285 	dax_unlock_mapping_entry(mapping, index);
286 }
287 
288 /*
289  * Called when we are done with radix tree entry we looked up via
290  * get_unlocked_mapping_entry() and which we didn't lock in the end.
291  */
292 static void put_unlocked_mapping_entry(struct address_space *mapping,
293 				       pgoff_t index, void *entry)
294 {
295 	if (!entry)
296 		return;
297 
298 	/* We have to wake up next waiter for the radix tree entry lock */
299 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
300 }
301 
302 /*
303  * Find radix tree entry at given index. If it points to an exceptional entry,
304  * return it with the radix tree entry locked. If the radix tree doesn't
305  * contain given index, create an empty exceptional entry for the index and
306  * return with it locked.
307  *
308  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
309  * either return that locked entry or will return an error.  This error will
310  * happen if there are any 4k entries within the 2MiB range that we are
311  * requesting.
312  *
313  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
314  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
315  * insertion will fail if it finds any 4k entries already in the tree, and a
316  * 4k insertion will cause an existing 2MiB entry to be unmapped and
317  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
318  * well as 2MiB empty entries.
319  *
320  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
321  * real storage backing them.  We will leave these real 2MiB DAX entries in
322  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
323  *
324  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
325  * persistent memory the benefit is doubtful. We can add that later if we can
326  * show it helps.
327  */
328 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
329 		unsigned long size_flag)
330 {
331 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
332 	void *entry, **slot;
333 
334 restart:
335 	spin_lock_irq(&mapping->tree_lock);
336 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
337 
338 	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
339 		entry = ERR_PTR(-EIO);
340 		goto out_unlock;
341 	}
342 
343 	if (entry) {
344 		if (size_flag & RADIX_DAX_PMD) {
345 			if (dax_is_pte_entry(entry)) {
346 				put_unlocked_mapping_entry(mapping, index,
347 						entry);
348 				entry = ERR_PTR(-EEXIST);
349 				goto out_unlock;
350 			}
351 		} else { /* trying to grab a PTE entry */
352 			if (dax_is_pmd_entry(entry) &&
353 			    (dax_is_zero_entry(entry) ||
354 			     dax_is_empty_entry(entry))) {
355 				pmd_downgrade = true;
356 			}
357 		}
358 	}
359 
360 	/* No entry for given index? Make sure radix tree is big enough. */
361 	if (!entry || pmd_downgrade) {
362 		int err;
363 
364 		if (pmd_downgrade) {
365 			/*
366 			 * Make sure 'entry' remains valid while we drop
367 			 * mapping->tree_lock.
368 			 */
369 			entry = lock_slot(mapping, slot);
370 		}
371 
372 		spin_unlock_irq(&mapping->tree_lock);
373 		/*
374 		 * Besides huge zero pages the only other thing that gets
375 		 * downgraded are empty entries which don't need to be
376 		 * unmapped.
377 		 */
378 		if (pmd_downgrade && dax_is_zero_entry(entry))
379 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
380 							PG_PMD_NR, false);
381 
382 		err = radix_tree_preload(
383 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
384 		if (err) {
385 			if (pmd_downgrade)
386 				put_locked_mapping_entry(mapping, index);
387 			return ERR_PTR(err);
388 		}
389 		spin_lock_irq(&mapping->tree_lock);
390 
391 		if (!entry) {
392 			/*
393 			 * We needed to drop the page_tree lock while calling
394 			 * radix_tree_preload() and we didn't have an entry to
395 			 * lock.  See if another thread inserted an entry at
396 			 * our index during this time.
397 			 */
398 			entry = __radix_tree_lookup(&mapping->page_tree, index,
399 					NULL, &slot);
400 			if (entry) {
401 				radix_tree_preload_end();
402 				spin_unlock_irq(&mapping->tree_lock);
403 				goto restart;
404 			}
405 		}
406 
407 		if (pmd_downgrade) {
408 			radix_tree_delete(&mapping->page_tree, index);
409 			mapping->nrexceptional--;
410 			dax_wake_mapping_entry_waiter(mapping, index, entry,
411 					true);
412 		}
413 
414 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
415 
416 		err = __radix_tree_insert(&mapping->page_tree, index,
417 				dax_radix_order(entry), entry);
418 		radix_tree_preload_end();
419 		if (err) {
420 			spin_unlock_irq(&mapping->tree_lock);
421 			/*
422 			 * Our insertion of a DAX entry failed, most likely
423 			 * because we were inserting a PMD entry and it
424 			 * collided with a PTE sized entry at a different
425 			 * index in the PMD range.  We haven't inserted
426 			 * anything into the radix tree and have no waiters to
427 			 * wake.
428 			 */
429 			return ERR_PTR(err);
430 		}
431 		/* Good, we have inserted empty locked entry into the tree. */
432 		mapping->nrexceptional++;
433 		spin_unlock_irq(&mapping->tree_lock);
434 		return entry;
435 	}
436 	entry = lock_slot(mapping, slot);
437  out_unlock:
438 	spin_unlock_irq(&mapping->tree_lock);
439 	return entry;
440 }
441 
442 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
443 					  pgoff_t index, bool trunc)
444 {
445 	int ret = 0;
446 	void *entry;
447 	struct radix_tree_root *page_tree = &mapping->page_tree;
448 
449 	spin_lock_irq(&mapping->tree_lock);
450 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
451 	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
452 		goto out;
453 	if (!trunc &&
454 	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
455 	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
456 		goto out;
457 	radix_tree_delete(page_tree, index);
458 	mapping->nrexceptional--;
459 	ret = 1;
460 out:
461 	put_unlocked_mapping_entry(mapping, index, entry);
462 	spin_unlock_irq(&mapping->tree_lock);
463 	return ret;
464 }
465 /*
466  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
467  * entry to get unlocked before deleting it.
468  */
469 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
470 {
471 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
472 
473 	/*
474 	 * This gets called from truncate / punch_hole path. As such, the caller
475 	 * must hold locks protecting against concurrent modifications of the
476 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
477 	 * caller has seen exceptional entry for this index, we better find it
478 	 * at that index as well...
479 	 */
480 	WARN_ON_ONCE(!ret);
481 	return ret;
482 }
483 
484 /*
485  * Invalidate exceptional DAX entry if it is clean.
486  */
487 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
488 				      pgoff_t index)
489 {
490 	return __dax_invalidate_mapping_entry(mapping, index, false);
491 }
492 
493 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
494 		sector_t sector, size_t size, struct page *to,
495 		unsigned long vaddr)
496 {
497 	void *vto, *kaddr;
498 	pgoff_t pgoff;
499 	pfn_t pfn;
500 	long rc;
501 	int id;
502 
503 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
504 	if (rc)
505 		return rc;
506 
507 	id = dax_read_lock();
508 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
509 	if (rc < 0) {
510 		dax_read_unlock(id);
511 		return rc;
512 	}
513 	vto = kmap_atomic(to);
514 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
515 	kunmap_atomic(vto);
516 	dax_read_unlock(id);
517 	return 0;
518 }
519 
520 /*
521  * By this point grab_mapping_entry() has ensured that we have a locked entry
522  * of the appropriate size so we don't have to worry about downgrading PMDs to
523  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
524  * already in the tree, we will skip the insertion and just dirty the PMD as
525  * appropriate.
526  */
527 static void *dax_insert_mapping_entry(struct address_space *mapping,
528 				      struct vm_fault *vmf,
529 				      void *entry, sector_t sector,
530 				      unsigned long flags, bool dirty)
531 {
532 	struct radix_tree_root *page_tree = &mapping->page_tree;
533 	void *new_entry;
534 	pgoff_t index = vmf->pgoff;
535 
536 	if (dirty)
537 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
538 
539 	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
540 		/* we are replacing a zero page with block mapping */
541 		if (dax_is_pmd_entry(entry))
542 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
543 							PG_PMD_NR, false);
544 		else /* pte entry */
545 			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
546 	}
547 
548 	spin_lock_irq(&mapping->tree_lock);
549 	new_entry = dax_radix_locked_entry(sector, flags);
550 
551 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
552 		/*
553 		 * Only swap our new entry into the radix tree if the current
554 		 * entry is a zero page or an empty entry.  If a normal PTE or
555 		 * PMD entry is already in the tree, we leave it alone.  This
556 		 * means that if we are trying to insert a PTE and the
557 		 * existing entry is a PMD, we will just leave the PMD in the
558 		 * tree and dirty it if necessary.
559 		 */
560 		struct radix_tree_node *node;
561 		void **slot;
562 		void *ret;
563 
564 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
565 		WARN_ON_ONCE(ret != entry);
566 		__radix_tree_replace(page_tree, node, slot,
567 				     new_entry, NULL);
568 		entry = new_entry;
569 	}
570 
571 	if (dirty)
572 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
573 
574 	spin_unlock_irq(&mapping->tree_lock);
575 	return entry;
576 }
577 
578 static inline unsigned long
579 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
580 {
581 	unsigned long address;
582 
583 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
584 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
585 	return address;
586 }
587 
588 /* Walk all mappings of a given index of a file and writeprotect them */
589 static void dax_mapping_entry_mkclean(struct address_space *mapping,
590 				      pgoff_t index, unsigned long pfn)
591 {
592 	struct vm_area_struct *vma;
593 	pte_t pte, *ptep = NULL;
594 	pmd_t *pmdp = NULL;
595 	spinlock_t *ptl;
596 
597 	i_mmap_lock_read(mapping);
598 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
599 		unsigned long address, start, end;
600 
601 		cond_resched();
602 
603 		if (!(vma->vm_flags & VM_SHARED))
604 			continue;
605 
606 		address = pgoff_address(index, vma);
607 
608 		/*
609 		 * Note because we provide start/end to follow_pte_pmd it will
610 		 * call mmu_notifier_invalidate_range_start() on our behalf
611 		 * before taking any lock.
612 		 */
613 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
614 			continue;
615 
616 		/*
617 		 * No need to call mmu_notifier_invalidate_range() as we are
618 		 * downgrading page table protection not changing it to point
619 		 * to a new page.
620 		 *
621 		 * See Documentation/vm/mmu_notifier.txt
622 		 */
623 		if (pmdp) {
624 #ifdef CONFIG_FS_DAX_PMD
625 			pmd_t pmd;
626 
627 			if (pfn != pmd_pfn(*pmdp))
628 				goto unlock_pmd;
629 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
630 				goto unlock_pmd;
631 
632 			flush_cache_page(vma, address, pfn);
633 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
634 			pmd = pmd_wrprotect(pmd);
635 			pmd = pmd_mkclean(pmd);
636 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
637 unlock_pmd:
638 #endif
639 			spin_unlock(ptl);
640 		} else {
641 			if (pfn != pte_pfn(*ptep))
642 				goto unlock_pte;
643 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
644 				goto unlock_pte;
645 
646 			flush_cache_page(vma, address, pfn);
647 			pte = ptep_clear_flush(vma, address, ptep);
648 			pte = pte_wrprotect(pte);
649 			pte = pte_mkclean(pte);
650 			set_pte_at(vma->vm_mm, address, ptep, pte);
651 unlock_pte:
652 			pte_unmap_unlock(ptep, ptl);
653 		}
654 
655 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
656 	}
657 	i_mmap_unlock_read(mapping);
658 }
659 
660 static int dax_writeback_one(struct block_device *bdev,
661 		struct dax_device *dax_dev, struct address_space *mapping,
662 		pgoff_t index, void *entry)
663 {
664 	struct radix_tree_root *page_tree = &mapping->page_tree;
665 	void *entry2, **slot, *kaddr;
666 	long ret = 0, id;
667 	sector_t sector;
668 	pgoff_t pgoff;
669 	size_t size;
670 	pfn_t pfn;
671 
672 	/*
673 	 * A page got tagged dirty in DAX mapping? Something is seriously
674 	 * wrong.
675 	 */
676 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
677 		return -EIO;
678 
679 	spin_lock_irq(&mapping->tree_lock);
680 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
681 	/* Entry got punched out / reallocated? */
682 	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
683 		goto put_unlocked;
684 	/*
685 	 * Entry got reallocated elsewhere? No need to writeback. We have to
686 	 * compare sectors as we must not bail out due to difference in lockbit
687 	 * or entry type.
688 	 */
689 	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
690 		goto put_unlocked;
691 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
692 				dax_is_zero_entry(entry))) {
693 		ret = -EIO;
694 		goto put_unlocked;
695 	}
696 
697 	/* Another fsync thread may have already written back this entry */
698 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
699 		goto put_unlocked;
700 	/* Lock the entry to serialize with page faults */
701 	entry = lock_slot(mapping, slot);
702 	/*
703 	 * We can clear the tag now but we have to be careful so that concurrent
704 	 * dax_writeback_one() calls for the same index cannot finish before we
705 	 * actually flush the caches. This is achieved as the calls will look
706 	 * at the entry only under tree_lock and once they do that they will
707 	 * see the entry locked and wait for it to unlock.
708 	 */
709 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
710 	spin_unlock_irq(&mapping->tree_lock);
711 
712 	/*
713 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
714 	 * in the middle of a PMD, the 'index' we are given will be aligned to
715 	 * the start index of the PMD, as will the sector we pull from
716 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
717 	 * worry about partial PMD writebacks.
718 	 */
719 	sector = dax_radix_sector(entry);
720 	size = PAGE_SIZE << dax_radix_order(entry);
721 
722 	id = dax_read_lock();
723 	ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
724 	if (ret)
725 		goto dax_unlock;
726 
727 	/*
728 	 * dax_direct_access() may sleep, so cannot hold tree_lock over
729 	 * its invocation.
730 	 */
731 	ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
732 	if (ret < 0)
733 		goto dax_unlock;
734 
735 	if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
736 		ret = -EIO;
737 		goto dax_unlock;
738 	}
739 
740 	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
741 	dax_flush(dax_dev, kaddr, size);
742 	/*
743 	 * After we have flushed the cache, we can clear the dirty tag. There
744 	 * cannot be new dirty data in the pfn after the flush has completed as
745 	 * the pfn mappings are writeprotected and fault waits for mapping
746 	 * entry lock.
747 	 */
748 	spin_lock_irq(&mapping->tree_lock);
749 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
750 	spin_unlock_irq(&mapping->tree_lock);
751 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
752  dax_unlock:
753 	dax_read_unlock(id);
754 	put_locked_mapping_entry(mapping, index);
755 	return ret;
756 
757  put_unlocked:
758 	put_unlocked_mapping_entry(mapping, index, entry2);
759 	spin_unlock_irq(&mapping->tree_lock);
760 	return ret;
761 }
762 
763 /*
764  * Flush the mapping to the persistent domain within the byte range of [start,
765  * end]. This is required by data integrity operations to ensure file data is
766  * on persistent storage prior to completion of the operation.
767  */
768 int dax_writeback_mapping_range(struct address_space *mapping,
769 		struct block_device *bdev, struct writeback_control *wbc)
770 {
771 	struct inode *inode = mapping->host;
772 	pgoff_t start_index, end_index;
773 	pgoff_t indices[PAGEVEC_SIZE];
774 	struct dax_device *dax_dev;
775 	struct pagevec pvec;
776 	bool done = false;
777 	int i, ret = 0;
778 
779 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
780 		return -EIO;
781 
782 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
783 		return 0;
784 
785 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
786 	if (!dax_dev)
787 		return -EIO;
788 
789 	start_index = wbc->range_start >> PAGE_SHIFT;
790 	end_index = wbc->range_end >> PAGE_SHIFT;
791 
792 	trace_dax_writeback_range(inode, start_index, end_index);
793 
794 	tag_pages_for_writeback(mapping, start_index, end_index);
795 
796 	pagevec_init(&pvec);
797 	while (!done) {
798 		pvec.nr = find_get_entries_tag(mapping, start_index,
799 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
800 				pvec.pages, indices);
801 
802 		if (pvec.nr == 0)
803 			break;
804 
805 		for (i = 0; i < pvec.nr; i++) {
806 			if (indices[i] > end_index) {
807 				done = true;
808 				break;
809 			}
810 
811 			ret = dax_writeback_one(bdev, dax_dev, mapping,
812 					indices[i], pvec.pages[i]);
813 			if (ret < 0) {
814 				mapping_set_error(mapping, ret);
815 				goto out;
816 			}
817 		}
818 		start_index = indices[pvec.nr - 1] + 1;
819 	}
820 out:
821 	put_dax(dax_dev);
822 	trace_dax_writeback_range_done(inode, start_index, end_index);
823 	return (ret < 0 ? ret : 0);
824 }
825 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
826 
827 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
828 {
829 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
830 }
831 
832 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
833 			 pfn_t *pfnp)
834 {
835 	const sector_t sector = dax_iomap_sector(iomap, pos);
836 	pgoff_t pgoff;
837 	void *kaddr;
838 	int id, rc;
839 	long length;
840 
841 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
842 	if (rc)
843 		return rc;
844 	id = dax_read_lock();
845 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
846 				   &kaddr, pfnp);
847 	if (length < 0) {
848 		rc = length;
849 		goto out;
850 	}
851 	rc = -EINVAL;
852 	if (PFN_PHYS(length) < size)
853 		goto out;
854 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
855 		goto out;
856 	/* For larger pages we need devmap */
857 	if (length > 1 && !pfn_t_devmap(*pfnp))
858 		goto out;
859 	rc = 0;
860 out:
861 	dax_read_unlock(id);
862 	return rc;
863 }
864 
865 /*
866  * The user has performed a load from a hole in the file.  Allocating a new
867  * page in the file would cause excessive storage usage for workloads with
868  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
869  * If this page is ever written to we will re-fault and change the mapping to
870  * point to real DAX storage instead.
871  */
872 static int dax_load_hole(struct address_space *mapping, void *entry,
873 			 struct vm_fault *vmf)
874 {
875 	struct inode *inode = mapping->host;
876 	unsigned long vaddr = vmf->address;
877 	int ret = VM_FAULT_NOPAGE;
878 	struct page *zero_page;
879 	void *entry2;
880 
881 	zero_page = ZERO_PAGE(0);
882 	if (unlikely(!zero_page)) {
883 		ret = VM_FAULT_OOM;
884 		goto out;
885 	}
886 
887 	entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
888 			RADIX_DAX_ZERO_PAGE, false);
889 	if (IS_ERR(entry2)) {
890 		ret = VM_FAULT_SIGBUS;
891 		goto out;
892 	}
893 
894 	vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
895 out:
896 	trace_dax_load_hole(inode, vmf, ret);
897 	return ret;
898 }
899 
900 static bool dax_range_is_aligned(struct block_device *bdev,
901 				 unsigned int offset, unsigned int length)
902 {
903 	unsigned short sector_size = bdev_logical_block_size(bdev);
904 
905 	if (!IS_ALIGNED(offset, sector_size))
906 		return false;
907 	if (!IS_ALIGNED(length, sector_size))
908 		return false;
909 
910 	return true;
911 }
912 
913 int __dax_zero_page_range(struct block_device *bdev,
914 		struct dax_device *dax_dev, sector_t sector,
915 		unsigned int offset, unsigned int size)
916 {
917 	if (dax_range_is_aligned(bdev, offset, size)) {
918 		sector_t start_sector = sector + (offset >> 9);
919 
920 		return blkdev_issue_zeroout(bdev, start_sector,
921 				size >> 9, GFP_NOFS, 0);
922 	} else {
923 		pgoff_t pgoff;
924 		long rc, id;
925 		void *kaddr;
926 		pfn_t pfn;
927 
928 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
929 		if (rc)
930 			return rc;
931 
932 		id = dax_read_lock();
933 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
934 				&pfn);
935 		if (rc < 0) {
936 			dax_read_unlock(id);
937 			return rc;
938 		}
939 		memset(kaddr + offset, 0, size);
940 		dax_flush(dax_dev, kaddr + offset, size);
941 		dax_read_unlock(id);
942 	}
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
946 
947 static loff_t
948 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
949 		struct iomap *iomap)
950 {
951 	struct block_device *bdev = iomap->bdev;
952 	struct dax_device *dax_dev = iomap->dax_dev;
953 	struct iov_iter *iter = data;
954 	loff_t end = pos + length, done = 0;
955 	ssize_t ret = 0;
956 	int id;
957 
958 	if (iov_iter_rw(iter) == READ) {
959 		end = min(end, i_size_read(inode));
960 		if (pos >= end)
961 			return 0;
962 
963 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
964 			return iov_iter_zero(min(length, end - pos), iter);
965 	}
966 
967 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
968 		return -EIO;
969 
970 	/*
971 	 * Write can allocate block for an area which has a hole page mapped
972 	 * into page tables. We have to tear down these mappings so that data
973 	 * written by write(2) is visible in mmap.
974 	 */
975 	if (iomap->flags & IOMAP_F_NEW) {
976 		invalidate_inode_pages2_range(inode->i_mapping,
977 					      pos >> PAGE_SHIFT,
978 					      (end - 1) >> PAGE_SHIFT);
979 	}
980 
981 	id = dax_read_lock();
982 	while (pos < end) {
983 		unsigned offset = pos & (PAGE_SIZE - 1);
984 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
985 		const sector_t sector = dax_iomap_sector(iomap, pos);
986 		ssize_t map_len;
987 		pgoff_t pgoff;
988 		void *kaddr;
989 		pfn_t pfn;
990 
991 		if (fatal_signal_pending(current)) {
992 			ret = -EINTR;
993 			break;
994 		}
995 
996 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
997 		if (ret)
998 			break;
999 
1000 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1001 				&kaddr, &pfn);
1002 		if (map_len < 0) {
1003 			ret = map_len;
1004 			break;
1005 		}
1006 
1007 		map_len = PFN_PHYS(map_len);
1008 		kaddr += offset;
1009 		map_len -= offset;
1010 		if (map_len > end - pos)
1011 			map_len = end - pos;
1012 
1013 		/*
1014 		 * The userspace address for the memory copy has already been
1015 		 * validated via access_ok() in either vfs_read() or
1016 		 * vfs_write(), depending on which operation we are doing.
1017 		 */
1018 		if (iov_iter_rw(iter) == WRITE)
1019 			map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1020 					map_len, iter);
1021 		else
1022 			map_len = copy_to_iter(kaddr, map_len, iter);
1023 		if (map_len <= 0) {
1024 			ret = map_len ? map_len : -EFAULT;
1025 			break;
1026 		}
1027 
1028 		pos += map_len;
1029 		length -= map_len;
1030 		done += map_len;
1031 	}
1032 	dax_read_unlock(id);
1033 
1034 	return done ? done : ret;
1035 }
1036 
1037 /**
1038  * dax_iomap_rw - Perform I/O to a DAX file
1039  * @iocb:	The control block for this I/O
1040  * @iter:	The addresses to do I/O from or to
1041  * @ops:	iomap ops passed from the file system
1042  *
1043  * This function performs read and write operations to directly mapped
1044  * persistent memory.  The callers needs to take care of read/write exclusion
1045  * and evicting any page cache pages in the region under I/O.
1046  */
1047 ssize_t
1048 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1049 		const struct iomap_ops *ops)
1050 {
1051 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1052 	struct inode *inode = mapping->host;
1053 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1054 	unsigned flags = 0;
1055 
1056 	if (iov_iter_rw(iter) == WRITE) {
1057 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1058 		flags |= IOMAP_WRITE;
1059 	} else {
1060 		lockdep_assert_held(&inode->i_rwsem);
1061 	}
1062 
1063 	while (iov_iter_count(iter)) {
1064 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1065 				iter, dax_iomap_actor);
1066 		if (ret <= 0)
1067 			break;
1068 		pos += ret;
1069 		done += ret;
1070 	}
1071 
1072 	iocb->ki_pos += done;
1073 	return done ? done : ret;
1074 }
1075 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1076 
1077 static int dax_fault_return(int error)
1078 {
1079 	if (error == 0)
1080 		return VM_FAULT_NOPAGE;
1081 	if (error == -ENOMEM)
1082 		return VM_FAULT_OOM;
1083 	return VM_FAULT_SIGBUS;
1084 }
1085 
1086 /*
1087  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1088  * flushed on write-faults (non-cow), but not read-faults.
1089  */
1090 static bool dax_fault_is_synchronous(unsigned long flags,
1091 		struct vm_area_struct *vma, struct iomap *iomap)
1092 {
1093 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1094 		&& (iomap->flags & IOMAP_F_DIRTY);
1095 }
1096 
1097 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1098 			       int *iomap_errp, const struct iomap_ops *ops)
1099 {
1100 	struct vm_area_struct *vma = vmf->vma;
1101 	struct address_space *mapping = vma->vm_file->f_mapping;
1102 	struct inode *inode = mapping->host;
1103 	unsigned long vaddr = vmf->address;
1104 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1105 	struct iomap iomap = { 0 };
1106 	unsigned flags = IOMAP_FAULT;
1107 	int error, major = 0;
1108 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1109 	bool sync;
1110 	int vmf_ret = 0;
1111 	void *entry;
1112 	pfn_t pfn;
1113 
1114 	trace_dax_pte_fault(inode, vmf, vmf_ret);
1115 	/*
1116 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1117 	 * to hold locks serializing us with truncate / punch hole so this is
1118 	 * a reliable test.
1119 	 */
1120 	if (pos >= i_size_read(inode)) {
1121 		vmf_ret = VM_FAULT_SIGBUS;
1122 		goto out;
1123 	}
1124 
1125 	if (write && !vmf->cow_page)
1126 		flags |= IOMAP_WRITE;
1127 
1128 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1129 	if (IS_ERR(entry)) {
1130 		vmf_ret = dax_fault_return(PTR_ERR(entry));
1131 		goto out;
1132 	}
1133 
1134 	/*
1135 	 * It is possible, particularly with mixed reads & writes to private
1136 	 * mappings, that we have raced with a PMD fault that overlaps with
1137 	 * the PTE we need to set up.  If so just return and the fault will be
1138 	 * retried.
1139 	 */
1140 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1141 		vmf_ret = VM_FAULT_NOPAGE;
1142 		goto unlock_entry;
1143 	}
1144 
1145 	/*
1146 	 * Note that we don't bother to use iomap_apply here: DAX required
1147 	 * the file system block size to be equal the page size, which means
1148 	 * that we never have to deal with more than a single extent here.
1149 	 */
1150 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1151 	if (iomap_errp)
1152 		*iomap_errp = error;
1153 	if (error) {
1154 		vmf_ret = dax_fault_return(error);
1155 		goto unlock_entry;
1156 	}
1157 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1158 		error = -EIO;	/* fs corruption? */
1159 		goto error_finish_iomap;
1160 	}
1161 
1162 	if (vmf->cow_page) {
1163 		sector_t sector = dax_iomap_sector(&iomap, pos);
1164 
1165 		switch (iomap.type) {
1166 		case IOMAP_HOLE:
1167 		case IOMAP_UNWRITTEN:
1168 			clear_user_highpage(vmf->cow_page, vaddr);
1169 			break;
1170 		case IOMAP_MAPPED:
1171 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1172 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1173 			break;
1174 		default:
1175 			WARN_ON_ONCE(1);
1176 			error = -EIO;
1177 			break;
1178 		}
1179 
1180 		if (error)
1181 			goto error_finish_iomap;
1182 
1183 		__SetPageUptodate(vmf->cow_page);
1184 		vmf_ret = finish_fault(vmf);
1185 		if (!vmf_ret)
1186 			vmf_ret = VM_FAULT_DONE_COW;
1187 		goto finish_iomap;
1188 	}
1189 
1190 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1191 
1192 	switch (iomap.type) {
1193 	case IOMAP_MAPPED:
1194 		if (iomap.flags & IOMAP_F_NEW) {
1195 			count_vm_event(PGMAJFAULT);
1196 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1197 			major = VM_FAULT_MAJOR;
1198 		}
1199 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1200 		if (error < 0)
1201 			goto error_finish_iomap;
1202 
1203 		entry = dax_insert_mapping_entry(mapping, vmf, entry,
1204 						 dax_iomap_sector(&iomap, pos),
1205 						 0, write && !sync);
1206 		if (IS_ERR(entry)) {
1207 			error = PTR_ERR(entry);
1208 			goto error_finish_iomap;
1209 		}
1210 
1211 		/*
1212 		 * If we are doing synchronous page fault and inode needs fsync,
1213 		 * we can insert PTE into page tables only after that happens.
1214 		 * Skip insertion for now and return the pfn so that caller can
1215 		 * insert it after fsync is done.
1216 		 */
1217 		if (sync) {
1218 			if (WARN_ON_ONCE(!pfnp)) {
1219 				error = -EIO;
1220 				goto error_finish_iomap;
1221 			}
1222 			*pfnp = pfn;
1223 			vmf_ret = VM_FAULT_NEEDDSYNC | major;
1224 			goto finish_iomap;
1225 		}
1226 		trace_dax_insert_mapping(inode, vmf, entry);
1227 		if (write)
1228 			error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
1229 		else
1230 			error = vm_insert_mixed(vma, vaddr, pfn);
1231 
1232 		/* -EBUSY is fine, somebody else faulted on the same PTE */
1233 		if (error == -EBUSY)
1234 			error = 0;
1235 		break;
1236 	case IOMAP_UNWRITTEN:
1237 	case IOMAP_HOLE:
1238 		if (!write) {
1239 			vmf_ret = dax_load_hole(mapping, entry, vmf);
1240 			goto finish_iomap;
1241 		}
1242 		/*FALLTHRU*/
1243 	default:
1244 		WARN_ON_ONCE(1);
1245 		error = -EIO;
1246 		break;
1247 	}
1248 
1249  error_finish_iomap:
1250 	vmf_ret = dax_fault_return(error) | major;
1251  finish_iomap:
1252 	if (ops->iomap_end) {
1253 		int copied = PAGE_SIZE;
1254 
1255 		if (vmf_ret & VM_FAULT_ERROR)
1256 			copied = 0;
1257 		/*
1258 		 * The fault is done by now and there's no way back (other
1259 		 * thread may be already happily using PTE we have installed).
1260 		 * Just ignore error from ->iomap_end since we cannot do much
1261 		 * with it.
1262 		 */
1263 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1264 	}
1265  unlock_entry:
1266 	put_locked_mapping_entry(mapping, vmf->pgoff);
1267  out:
1268 	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1269 	return vmf_ret;
1270 }
1271 
1272 #ifdef CONFIG_FS_DAX_PMD
1273 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1274 		void *entry)
1275 {
1276 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1277 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1278 	struct inode *inode = mapping->host;
1279 	struct page *zero_page;
1280 	void *ret = NULL;
1281 	spinlock_t *ptl;
1282 	pmd_t pmd_entry;
1283 
1284 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1285 
1286 	if (unlikely(!zero_page))
1287 		goto fallback;
1288 
1289 	ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1290 			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1291 	if (IS_ERR(ret))
1292 		goto fallback;
1293 
1294 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1295 	if (!pmd_none(*(vmf->pmd))) {
1296 		spin_unlock(ptl);
1297 		goto fallback;
1298 	}
1299 
1300 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1301 	pmd_entry = pmd_mkhuge(pmd_entry);
1302 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1303 	spin_unlock(ptl);
1304 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1305 	return VM_FAULT_NOPAGE;
1306 
1307 fallback:
1308 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1309 	return VM_FAULT_FALLBACK;
1310 }
1311 
1312 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1313 			       const struct iomap_ops *ops)
1314 {
1315 	struct vm_area_struct *vma = vmf->vma;
1316 	struct address_space *mapping = vma->vm_file->f_mapping;
1317 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1318 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1319 	bool sync;
1320 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1321 	struct inode *inode = mapping->host;
1322 	int result = VM_FAULT_FALLBACK;
1323 	struct iomap iomap = { 0 };
1324 	pgoff_t max_pgoff, pgoff;
1325 	void *entry;
1326 	loff_t pos;
1327 	int error;
1328 	pfn_t pfn;
1329 
1330 	/*
1331 	 * Check whether offset isn't beyond end of file now. Caller is
1332 	 * supposed to hold locks serializing us with truncate / punch hole so
1333 	 * this is a reliable test.
1334 	 */
1335 	pgoff = linear_page_index(vma, pmd_addr);
1336 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1337 
1338 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1339 
1340 	/*
1341 	 * Make sure that the faulting address's PMD offset (color) matches
1342 	 * the PMD offset from the start of the file.  This is necessary so
1343 	 * that a PMD range in the page table overlaps exactly with a PMD
1344 	 * range in the radix tree.
1345 	 */
1346 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1347 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1348 		goto fallback;
1349 
1350 	/* Fall back to PTEs if we're going to COW */
1351 	if (write && !(vma->vm_flags & VM_SHARED))
1352 		goto fallback;
1353 
1354 	/* If the PMD would extend outside the VMA */
1355 	if (pmd_addr < vma->vm_start)
1356 		goto fallback;
1357 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1358 		goto fallback;
1359 
1360 	if (pgoff >= max_pgoff) {
1361 		result = VM_FAULT_SIGBUS;
1362 		goto out;
1363 	}
1364 
1365 	/* If the PMD would extend beyond the file size */
1366 	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1367 		goto fallback;
1368 
1369 	/*
1370 	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1371 	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1372 	 * is already in the tree, for instance), it will return -EEXIST and
1373 	 * we just fall back to 4k entries.
1374 	 */
1375 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1376 	if (IS_ERR(entry))
1377 		goto fallback;
1378 
1379 	/*
1380 	 * It is possible, particularly with mixed reads & writes to private
1381 	 * mappings, that we have raced with a PTE fault that overlaps with
1382 	 * the PMD we need to set up.  If so just return and the fault will be
1383 	 * retried.
1384 	 */
1385 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1386 			!pmd_devmap(*vmf->pmd)) {
1387 		result = 0;
1388 		goto unlock_entry;
1389 	}
1390 
1391 	/*
1392 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1393 	 * setting up a mapping, so really we're using iomap_begin() as a way
1394 	 * to look up our filesystem block.
1395 	 */
1396 	pos = (loff_t)pgoff << PAGE_SHIFT;
1397 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1398 	if (error)
1399 		goto unlock_entry;
1400 
1401 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1402 		goto finish_iomap;
1403 
1404 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1405 
1406 	switch (iomap.type) {
1407 	case IOMAP_MAPPED:
1408 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1409 		if (error < 0)
1410 			goto finish_iomap;
1411 
1412 		entry = dax_insert_mapping_entry(mapping, vmf, entry,
1413 						dax_iomap_sector(&iomap, pos),
1414 						RADIX_DAX_PMD, write && !sync);
1415 		if (IS_ERR(entry))
1416 			goto finish_iomap;
1417 
1418 		/*
1419 		 * If we are doing synchronous page fault and inode needs fsync,
1420 		 * we can insert PMD into page tables only after that happens.
1421 		 * Skip insertion for now and return the pfn so that caller can
1422 		 * insert it after fsync is done.
1423 		 */
1424 		if (sync) {
1425 			if (WARN_ON_ONCE(!pfnp))
1426 				goto finish_iomap;
1427 			*pfnp = pfn;
1428 			result = VM_FAULT_NEEDDSYNC;
1429 			goto finish_iomap;
1430 		}
1431 
1432 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1433 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1434 					    write);
1435 		break;
1436 	case IOMAP_UNWRITTEN:
1437 	case IOMAP_HOLE:
1438 		if (WARN_ON_ONCE(write))
1439 			break;
1440 		result = dax_pmd_load_hole(vmf, &iomap, entry);
1441 		break;
1442 	default:
1443 		WARN_ON_ONCE(1);
1444 		break;
1445 	}
1446 
1447  finish_iomap:
1448 	if (ops->iomap_end) {
1449 		int copied = PMD_SIZE;
1450 
1451 		if (result == VM_FAULT_FALLBACK)
1452 			copied = 0;
1453 		/*
1454 		 * The fault is done by now and there's no way back (other
1455 		 * thread may be already happily using PMD we have installed).
1456 		 * Just ignore error from ->iomap_end since we cannot do much
1457 		 * with it.
1458 		 */
1459 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1460 				&iomap);
1461 	}
1462  unlock_entry:
1463 	put_locked_mapping_entry(mapping, pgoff);
1464  fallback:
1465 	if (result == VM_FAULT_FALLBACK) {
1466 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1467 		count_vm_event(THP_FAULT_FALLBACK);
1468 	}
1469 out:
1470 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1471 	return result;
1472 }
1473 #else
1474 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1475 			       const struct iomap_ops *ops)
1476 {
1477 	return VM_FAULT_FALLBACK;
1478 }
1479 #endif /* CONFIG_FS_DAX_PMD */
1480 
1481 /**
1482  * dax_iomap_fault - handle a page fault on a DAX file
1483  * @vmf: The description of the fault
1484  * @pe_size: Size of the page to fault in
1485  * @pfnp: PFN to insert for synchronous faults if fsync is required
1486  * @iomap_errp: Storage for detailed error code in case of error
1487  * @ops: Iomap ops passed from the file system
1488  *
1489  * When a page fault occurs, filesystems may call this helper in
1490  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1491  * has done all the necessary locking for page fault to proceed
1492  * successfully.
1493  */
1494 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1495 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1496 {
1497 	switch (pe_size) {
1498 	case PE_SIZE_PTE:
1499 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1500 	case PE_SIZE_PMD:
1501 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1502 	default:
1503 		return VM_FAULT_FALLBACK;
1504 	}
1505 }
1506 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1507 
1508 /**
1509  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1510  * @vmf: The description of the fault
1511  * @pe_size: Size of entry to be inserted
1512  * @pfn: PFN to insert
1513  *
1514  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1515  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1516  * as well.
1517  */
1518 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1519 				  enum page_entry_size pe_size,
1520 				  pfn_t pfn)
1521 {
1522 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1523 	void *entry, **slot;
1524 	pgoff_t index = vmf->pgoff;
1525 	int vmf_ret, error;
1526 
1527 	spin_lock_irq(&mapping->tree_lock);
1528 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
1529 	/* Did we race with someone splitting entry or so? */
1530 	if (!entry ||
1531 	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1532 	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1533 		put_unlocked_mapping_entry(mapping, index, entry);
1534 		spin_unlock_irq(&mapping->tree_lock);
1535 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1536 						      VM_FAULT_NOPAGE);
1537 		return VM_FAULT_NOPAGE;
1538 	}
1539 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1540 	entry = lock_slot(mapping, slot);
1541 	spin_unlock_irq(&mapping->tree_lock);
1542 	switch (pe_size) {
1543 	case PE_SIZE_PTE:
1544 		error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1545 		vmf_ret = dax_fault_return(error);
1546 		break;
1547 #ifdef CONFIG_FS_DAX_PMD
1548 	case PE_SIZE_PMD:
1549 		vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1550 			pfn, true);
1551 		break;
1552 #endif
1553 	default:
1554 		vmf_ret = VM_FAULT_FALLBACK;
1555 	}
1556 	put_locked_mapping_entry(mapping, index);
1557 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
1558 	return vmf_ret;
1559 }
1560 
1561 /**
1562  * dax_finish_sync_fault - finish synchronous page fault
1563  * @vmf: The description of the fault
1564  * @pe_size: Size of entry to be inserted
1565  * @pfn: PFN to insert
1566  *
1567  * This function ensures that the file range touched by the page fault is
1568  * stored persistently on the media and handles inserting of appropriate page
1569  * table entry.
1570  */
1571 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1572 			  pfn_t pfn)
1573 {
1574 	int err;
1575 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1576 	size_t len = 0;
1577 
1578 	if (pe_size == PE_SIZE_PTE)
1579 		len = PAGE_SIZE;
1580 	else if (pe_size == PE_SIZE_PMD)
1581 		len = PMD_SIZE;
1582 	else
1583 		WARN_ON_ONCE(1);
1584 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1585 	if (err)
1586 		return VM_FAULT_SIGBUS;
1587 	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1588 }
1589 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1590