xref: /openbmc/linux/fs/dax.c (revision 56bbd862)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 /* We choose 4096 entries - same as per-zone page wait tables */
39 #define DAX_WAIT_TABLE_BITS 12
40 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
41 
42 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
43 
44 static int __init init_dax_wait_table(void)
45 {
46 	int i;
47 
48 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
49 		init_waitqueue_head(wait_table + i);
50 	return 0;
51 }
52 fs_initcall(init_dax_wait_table);
53 
54 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
55 {
56 	struct request_queue *q = bdev->bd_queue;
57 	long rc = -EIO;
58 
59 	dax->addr = ERR_PTR(-EIO);
60 	if (blk_queue_enter(q, true) != 0)
61 		return rc;
62 
63 	rc = bdev_direct_access(bdev, dax);
64 	if (rc < 0) {
65 		dax->addr = ERR_PTR(rc);
66 		blk_queue_exit(q);
67 		return rc;
68 	}
69 	return rc;
70 }
71 
72 static void dax_unmap_atomic(struct block_device *bdev,
73 		const struct blk_dax_ctl *dax)
74 {
75 	if (IS_ERR(dax->addr))
76 		return;
77 	blk_queue_exit(bdev->bd_queue);
78 }
79 
80 static int dax_is_pmd_entry(void *entry)
81 {
82 	return (unsigned long)entry & RADIX_DAX_PMD;
83 }
84 
85 static int dax_is_pte_entry(void *entry)
86 {
87 	return !((unsigned long)entry & RADIX_DAX_PMD);
88 }
89 
90 static int dax_is_zero_entry(void *entry)
91 {
92 	return (unsigned long)entry & RADIX_DAX_HZP;
93 }
94 
95 static int dax_is_empty_entry(void *entry)
96 {
97 	return (unsigned long)entry & RADIX_DAX_EMPTY;
98 }
99 
100 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
101 {
102 	struct page *page = alloc_pages(GFP_KERNEL, 0);
103 	struct blk_dax_ctl dax = {
104 		.size = PAGE_SIZE,
105 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
106 	};
107 	long rc;
108 
109 	if (!page)
110 		return ERR_PTR(-ENOMEM);
111 
112 	rc = dax_map_atomic(bdev, &dax);
113 	if (rc < 0)
114 		return ERR_PTR(rc);
115 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
116 	dax_unmap_atomic(bdev, &dax);
117 	return page;
118 }
119 
120 /*
121  * DAX radix tree locking
122  */
123 struct exceptional_entry_key {
124 	struct address_space *mapping;
125 	pgoff_t entry_start;
126 };
127 
128 struct wait_exceptional_entry_queue {
129 	wait_queue_t wait;
130 	struct exceptional_entry_key key;
131 };
132 
133 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
134 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
135 {
136 	unsigned long hash;
137 
138 	/*
139 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
140 	 * queue to the start of that PMD.  This ensures that all offsets in
141 	 * the range covered by the PMD map to the same bit lock.
142 	 */
143 	if (dax_is_pmd_entry(entry))
144 		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
145 
146 	key->mapping = mapping;
147 	key->entry_start = index;
148 
149 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
150 	return wait_table + hash;
151 }
152 
153 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
154 				       int sync, void *keyp)
155 {
156 	struct exceptional_entry_key *key = keyp;
157 	struct wait_exceptional_entry_queue *ewait =
158 		container_of(wait, struct wait_exceptional_entry_queue, wait);
159 
160 	if (key->mapping != ewait->key.mapping ||
161 	    key->entry_start != ewait->key.entry_start)
162 		return 0;
163 	return autoremove_wake_function(wait, mode, sync, NULL);
164 }
165 
166 /*
167  * Check whether the given slot is locked. The function must be called with
168  * mapping->tree_lock held
169  */
170 static inline int slot_locked(struct address_space *mapping, void **slot)
171 {
172 	unsigned long entry = (unsigned long)
173 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
174 	return entry & RADIX_DAX_ENTRY_LOCK;
175 }
176 
177 /*
178  * Mark the given slot is locked. The function must be called with
179  * mapping->tree_lock held
180  */
181 static inline void *lock_slot(struct address_space *mapping, void **slot)
182 {
183 	unsigned long entry = (unsigned long)
184 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
185 
186 	entry |= RADIX_DAX_ENTRY_LOCK;
187 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
188 	return (void *)entry;
189 }
190 
191 /*
192  * Mark the given slot is unlocked. The function must be called with
193  * mapping->tree_lock held
194  */
195 static inline void *unlock_slot(struct address_space *mapping, void **slot)
196 {
197 	unsigned long entry = (unsigned long)
198 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
199 
200 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
201 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
202 	return (void *)entry;
203 }
204 
205 /*
206  * Lookup entry in radix tree, wait for it to become unlocked if it is
207  * exceptional entry and return it. The caller must call
208  * put_unlocked_mapping_entry() when he decided not to lock the entry or
209  * put_locked_mapping_entry() when he locked the entry and now wants to
210  * unlock it.
211  *
212  * The function must be called with mapping->tree_lock held.
213  */
214 static void *get_unlocked_mapping_entry(struct address_space *mapping,
215 					pgoff_t index, void ***slotp)
216 {
217 	void *entry, **slot;
218 	struct wait_exceptional_entry_queue ewait;
219 	wait_queue_head_t *wq;
220 
221 	init_wait(&ewait.wait);
222 	ewait.wait.func = wake_exceptional_entry_func;
223 
224 	for (;;) {
225 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
226 					  &slot);
227 		if (!entry || !radix_tree_exceptional_entry(entry) ||
228 		    !slot_locked(mapping, slot)) {
229 			if (slotp)
230 				*slotp = slot;
231 			return entry;
232 		}
233 
234 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
235 		prepare_to_wait_exclusive(wq, &ewait.wait,
236 					  TASK_UNINTERRUPTIBLE);
237 		spin_unlock_irq(&mapping->tree_lock);
238 		schedule();
239 		finish_wait(wq, &ewait.wait);
240 		spin_lock_irq(&mapping->tree_lock);
241 	}
242 }
243 
244 static void dax_unlock_mapping_entry(struct address_space *mapping,
245 				     pgoff_t index)
246 {
247 	void *entry, **slot;
248 
249 	spin_lock_irq(&mapping->tree_lock);
250 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
251 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
252 			 !slot_locked(mapping, slot))) {
253 		spin_unlock_irq(&mapping->tree_lock);
254 		return;
255 	}
256 	unlock_slot(mapping, slot);
257 	spin_unlock_irq(&mapping->tree_lock);
258 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
259 }
260 
261 static void put_locked_mapping_entry(struct address_space *mapping,
262 				     pgoff_t index, void *entry)
263 {
264 	if (!radix_tree_exceptional_entry(entry)) {
265 		unlock_page(entry);
266 		put_page(entry);
267 	} else {
268 		dax_unlock_mapping_entry(mapping, index);
269 	}
270 }
271 
272 /*
273  * Called when we are done with radix tree entry we looked up via
274  * get_unlocked_mapping_entry() and which we didn't lock in the end.
275  */
276 static void put_unlocked_mapping_entry(struct address_space *mapping,
277 				       pgoff_t index, void *entry)
278 {
279 	if (!radix_tree_exceptional_entry(entry))
280 		return;
281 
282 	/* We have to wake up next waiter for the radix tree entry lock */
283 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
284 }
285 
286 /*
287  * Find radix tree entry at given index. If it points to a page, return with
288  * the page locked. If it points to the exceptional entry, return with the
289  * radix tree entry locked. If the radix tree doesn't contain given index,
290  * create empty exceptional entry for the index and return with it locked.
291  *
292  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
293  * either return that locked entry or will return an error.  This error will
294  * happen if there are any 4k entries (either zero pages or DAX entries)
295  * within the 2MiB range that we are requesting.
296  *
297  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
298  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
299  * insertion will fail if it finds any 4k entries already in the tree, and a
300  * 4k insertion will cause an existing 2MiB entry to be unmapped and
301  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
302  * well as 2MiB empty entries.
303  *
304  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
305  * real storage backing them.  We will leave these real 2MiB DAX entries in
306  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
307  *
308  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
309  * persistent memory the benefit is doubtful. We can add that later if we can
310  * show it helps.
311  */
312 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
313 		unsigned long size_flag)
314 {
315 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
316 	void *entry, **slot;
317 
318 restart:
319 	spin_lock_irq(&mapping->tree_lock);
320 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
321 
322 	if (entry) {
323 		if (size_flag & RADIX_DAX_PMD) {
324 			if (!radix_tree_exceptional_entry(entry) ||
325 			    dax_is_pte_entry(entry)) {
326 				put_unlocked_mapping_entry(mapping, index,
327 						entry);
328 				entry = ERR_PTR(-EEXIST);
329 				goto out_unlock;
330 			}
331 		} else { /* trying to grab a PTE entry */
332 			if (radix_tree_exceptional_entry(entry) &&
333 			    dax_is_pmd_entry(entry) &&
334 			    (dax_is_zero_entry(entry) ||
335 			     dax_is_empty_entry(entry))) {
336 				pmd_downgrade = true;
337 			}
338 		}
339 	}
340 
341 	/* No entry for given index? Make sure radix tree is big enough. */
342 	if (!entry || pmd_downgrade) {
343 		int err;
344 
345 		if (pmd_downgrade) {
346 			/*
347 			 * Make sure 'entry' remains valid while we drop
348 			 * mapping->tree_lock.
349 			 */
350 			entry = lock_slot(mapping, slot);
351 		}
352 
353 		spin_unlock_irq(&mapping->tree_lock);
354 		/*
355 		 * Besides huge zero pages the only other thing that gets
356 		 * downgraded are empty entries which don't need to be
357 		 * unmapped.
358 		 */
359 		if (pmd_downgrade && dax_is_zero_entry(entry))
360 			unmap_mapping_range(mapping,
361 				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
362 
363 		err = radix_tree_preload(
364 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
365 		if (err) {
366 			if (pmd_downgrade)
367 				put_locked_mapping_entry(mapping, index, entry);
368 			return ERR_PTR(err);
369 		}
370 		spin_lock_irq(&mapping->tree_lock);
371 
372 		if (pmd_downgrade) {
373 			radix_tree_delete(&mapping->page_tree, index);
374 			mapping->nrexceptional--;
375 			dax_wake_mapping_entry_waiter(mapping, index, entry,
376 					true);
377 		}
378 
379 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
380 
381 		err = __radix_tree_insert(&mapping->page_tree, index,
382 				dax_radix_order(entry), entry);
383 		radix_tree_preload_end();
384 		if (err) {
385 			spin_unlock_irq(&mapping->tree_lock);
386 			/*
387 			 * Someone already created the entry?  This is a
388 			 * normal failure when inserting PMDs in a range
389 			 * that already contains PTEs.  In that case we want
390 			 * to return -EEXIST immediately.
391 			 */
392 			if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
393 				goto restart;
394 			/*
395 			 * Our insertion of a DAX PMD entry failed, most
396 			 * likely because it collided with a PTE sized entry
397 			 * at a different index in the PMD range.  We haven't
398 			 * inserted anything into the radix tree and have no
399 			 * waiters to wake.
400 			 */
401 			return ERR_PTR(err);
402 		}
403 		/* Good, we have inserted empty locked entry into the tree. */
404 		mapping->nrexceptional++;
405 		spin_unlock_irq(&mapping->tree_lock);
406 		return entry;
407 	}
408 	/* Normal page in radix tree? */
409 	if (!radix_tree_exceptional_entry(entry)) {
410 		struct page *page = entry;
411 
412 		get_page(page);
413 		spin_unlock_irq(&mapping->tree_lock);
414 		lock_page(page);
415 		/* Page got truncated? Retry... */
416 		if (unlikely(page->mapping != mapping)) {
417 			unlock_page(page);
418 			put_page(page);
419 			goto restart;
420 		}
421 		return page;
422 	}
423 	entry = lock_slot(mapping, slot);
424  out_unlock:
425 	spin_unlock_irq(&mapping->tree_lock);
426 	return entry;
427 }
428 
429 /*
430  * We do not necessarily hold the mapping->tree_lock when we call this
431  * function so it is possible that 'entry' is no longer a valid item in the
432  * radix tree.  This is okay because all we really need to do is to find the
433  * correct waitqueue where tasks might be waiting for that old 'entry' and
434  * wake them.
435  */
436 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
437 		pgoff_t index, void *entry, bool wake_all)
438 {
439 	struct exceptional_entry_key key;
440 	wait_queue_head_t *wq;
441 
442 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
443 
444 	/*
445 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
446 	 * under mapping->tree_lock, ditto for entry handling in our callers.
447 	 * So at this point all tasks that could have seen our entry locked
448 	 * must be in the waitqueue and the following check will see them.
449 	 */
450 	if (waitqueue_active(wq))
451 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
452 }
453 
454 /*
455  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
456  * entry to get unlocked before deleting it.
457  */
458 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
459 {
460 	void *entry;
461 
462 	spin_lock_irq(&mapping->tree_lock);
463 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
464 	/*
465 	 * This gets called from truncate / punch_hole path. As such, the caller
466 	 * must hold locks protecting against concurrent modifications of the
467 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
468 	 * caller has seen exceptional entry for this index, we better find it
469 	 * at that index as well...
470 	 */
471 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
472 		spin_unlock_irq(&mapping->tree_lock);
473 		return 0;
474 	}
475 	radix_tree_delete(&mapping->page_tree, index);
476 	mapping->nrexceptional--;
477 	spin_unlock_irq(&mapping->tree_lock);
478 	dax_wake_mapping_entry_waiter(mapping, index, entry, true);
479 
480 	return 1;
481 }
482 
483 /*
484  * The user has performed a load from a hole in the file.  Allocating
485  * a new page in the file would cause excessive storage usage for
486  * workloads with sparse files.  We allocate a page cache page instead.
487  * We'll kick it out of the page cache if it's ever written to,
488  * otherwise it will simply fall out of the page cache under memory
489  * pressure without ever having been dirtied.
490  */
491 static int dax_load_hole(struct address_space *mapping, void *entry,
492 			 struct vm_fault *vmf)
493 {
494 	struct page *page;
495 
496 	/* Hole page already exists? Return it...  */
497 	if (!radix_tree_exceptional_entry(entry)) {
498 		vmf->page = entry;
499 		return VM_FAULT_LOCKED;
500 	}
501 
502 	/* This will replace locked radix tree entry with a hole page */
503 	page = find_or_create_page(mapping, vmf->pgoff,
504 				   vmf->gfp_mask | __GFP_ZERO);
505 	if (!page)
506 		return VM_FAULT_OOM;
507 	vmf->page = page;
508 	return VM_FAULT_LOCKED;
509 }
510 
511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
512 		struct page *to, unsigned long vaddr)
513 {
514 	struct blk_dax_ctl dax = {
515 		.sector = sector,
516 		.size = size,
517 	};
518 	void *vto;
519 
520 	if (dax_map_atomic(bdev, &dax) < 0)
521 		return PTR_ERR(dax.addr);
522 	vto = kmap_atomic(to);
523 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
524 	kunmap_atomic(vto);
525 	dax_unmap_atomic(bdev, &dax);
526 	return 0;
527 }
528 
529 /*
530  * By this point grab_mapping_entry() has ensured that we have a locked entry
531  * of the appropriate size so we don't have to worry about downgrading PMDs to
532  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
533  * already in the tree, we will skip the insertion and just dirty the PMD as
534  * appropriate.
535  */
536 static void *dax_insert_mapping_entry(struct address_space *mapping,
537 				      struct vm_fault *vmf,
538 				      void *entry, sector_t sector,
539 				      unsigned long flags)
540 {
541 	struct radix_tree_root *page_tree = &mapping->page_tree;
542 	int error = 0;
543 	bool hole_fill = false;
544 	void *new_entry;
545 	pgoff_t index = vmf->pgoff;
546 
547 	if (vmf->flags & FAULT_FLAG_WRITE)
548 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
549 
550 	/* Replacing hole page with block mapping? */
551 	if (!radix_tree_exceptional_entry(entry)) {
552 		hole_fill = true;
553 		/*
554 		 * Unmap the page now before we remove it from page cache below.
555 		 * The page is locked so it cannot be faulted in again.
556 		 */
557 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
558 				    PAGE_SIZE, 0);
559 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
560 		if (error)
561 			return ERR_PTR(error);
562 	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
563 		/* replacing huge zero page with PMD block mapping */
564 		unmap_mapping_range(mapping,
565 			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
566 	}
567 
568 	spin_lock_irq(&mapping->tree_lock);
569 	new_entry = dax_radix_locked_entry(sector, flags);
570 
571 	if (hole_fill) {
572 		__delete_from_page_cache(entry, NULL);
573 		/* Drop pagecache reference */
574 		put_page(entry);
575 		error = __radix_tree_insert(page_tree, index,
576 				dax_radix_order(new_entry), new_entry);
577 		if (error) {
578 			new_entry = ERR_PTR(error);
579 			goto unlock;
580 		}
581 		mapping->nrexceptional++;
582 	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
583 		/*
584 		 * Only swap our new entry into the radix tree if the current
585 		 * entry is a zero page or an empty entry.  If a normal PTE or
586 		 * PMD entry is already in the tree, we leave it alone.  This
587 		 * means that if we are trying to insert a PTE and the
588 		 * existing entry is a PMD, we will just leave the PMD in the
589 		 * tree and dirty it if necessary.
590 		 */
591 		struct radix_tree_node *node;
592 		void **slot;
593 		void *ret;
594 
595 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
596 		WARN_ON_ONCE(ret != entry);
597 		__radix_tree_replace(page_tree, node, slot,
598 				     new_entry, NULL, NULL);
599 	}
600 	if (vmf->flags & FAULT_FLAG_WRITE)
601 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
602  unlock:
603 	spin_unlock_irq(&mapping->tree_lock);
604 	if (hole_fill) {
605 		radix_tree_preload_end();
606 		/*
607 		 * We don't need hole page anymore, it has been replaced with
608 		 * locked radix tree entry now.
609 		 */
610 		if (mapping->a_ops->freepage)
611 			mapping->a_ops->freepage(entry);
612 		unlock_page(entry);
613 		put_page(entry);
614 	}
615 	return new_entry;
616 }
617 
618 static inline unsigned long
619 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
620 {
621 	unsigned long address;
622 
623 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
624 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
625 	return address;
626 }
627 
628 /* Walk all mappings of a given index of a file and writeprotect them */
629 static void dax_mapping_entry_mkclean(struct address_space *mapping,
630 				      pgoff_t index, unsigned long pfn)
631 {
632 	struct vm_area_struct *vma;
633 	pte_t *ptep;
634 	pte_t pte;
635 	spinlock_t *ptl;
636 	bool changed;
637 
638 	i_mmap_lock_read(mapping);
639 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
640 		unsigned long address;
641 
642 		cond_resched();
643 
644 		if (!(vma->vm_flags & VM_SHARED))
645 			continue;
646 
647 		address = pgoff_address(index, vma);
648 		changed = false;
649 		if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
650 			continue;
651 		if (pfn != pte_pfn(*ptep))
652 			goto unlock;
653 		if (!pte_dirty(*ptep) && !pte_write(*ptep))
654 			goto unlock;
655 
656 		flush_cache_page(vma, address, pfn);
657 		pte = ptep_clear_flush(vma, address, ptep);
658 		pte = pte_wrprotect(pte);
659 		pte = pte_mkclean(pte);
660 		set_pte_at(vma->vm_mm, address, ptep, pte);
661 		changed = true;
662 unlock:
663 		pte_unmap_unlock(ptep, ptl);
664 
665 		if (changed)
666 			mmu_notifier_invalidate_page(vma->vm_mm, address);
667 	}
668 	i_mmap_unlock_read(mapping);
669 }
670 
671 static int dax_writeback_one(struct block_device *bdev,
672 		struct address_space *mapping, pgoff_t index, void *entry)
673 {
674 	struct radix_tree_root *page_tree = &mapping->page_tree;
675 	struct blk_dax_ctl dax;
676 	void *entry2, **slot;
677 	int ret = 0;
678 
679 	/*
680 	 * A page got tagged dirty in DAX mapping? Something is seriously
681 	 * wrong.
682 	 */
683 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
684 		return -EIO;
685 
686 	spin_lock_irq(&mapping->tree_lock);
687 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
688 	/* Entry got punched out / reallocated? */
689 	if (!entry2 || !radix_tree_exceptional_entry(entry2))
690 		goto put_unlocked;
691 	/*
692 	 * Entry got reallocated elsewhere? No need to writeback. We have to
693 	 * compare sectors as we must not bail out due to difference in lockbit
694 	 * or entry type.
695 	 */
696 	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
697 		goto put_unlocked;
698 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
699 				dax_is_zero_entry(entry))) {
700 		ret = -EIO;
701 		goto put_unlocked;
702 	}
703 
704 	/* Another fsync thread may have already written back this entry */
705 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
706 		goto put_unlocked;
707 	/* Lock the entry to serialize with page faults */
708 	entry = lock_slot(mapping, slot);
709 	/*
710 	 * We can clear the tag now but we have to be careful so that concurrent
711 	 * dax_writeback_one() calls for the same index cannot finish before we
712 	 * actually flush the caches. This is achieved as the calls will look
713 	 * at the entry only under tree_lock and once they do that they will
714 	 * see the entry locked and wait for it to unlock.
715 	 */
716 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
717 	spin_unlock_irq(&mapping->tree_lock);
718 
719 	/*
720 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
721 	 * in the middle of a PMD, the 'index' we are given will be aligned to
722 	 * the start index of the PMD, as will the sector we pull from
723 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
724 	 * worry about partial PMD writebacks.
725 	 */
726 	dax.sector = dax_radix_sector(entry);
727 	dax.size = PAGE_SIZE << dax_radix_order(entry);
728 
729 	/*
730 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
731 	 * eventually calls cond_resched().
732 	 */
733 	ret = dax_map_atomic(bdev, &dax);
734 	if (ret < 0) {
735 		put_locked_mapping_entry(mapping, index, entry);
736 		return ret;
737 	}
738 
739 	if (WARN_ON_ONCE(ret < dax.size)) {
740 		ret = -EIO;
741 		goto unmap;
742 	}
743 
744 	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
745 	wb_cache_pmem(dax.addr, dax.size);
746 	/*
747 	 * After we have flushed the cache, we can clear the dirty tag. There
748 	 * cannot be new dirty data in the pfn after the flush has completed as
749 	 * the pfn mappings are writeprotected and fault waits for mapping
750 	 * entry lock.
751 	 */
752 	spin_lock_irq(&mapping->tree_lock);
753 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
754 	spin_unlock_irq(&mapping->tree_lock);
755  unmap:
756 	dax_unmap_atomic(bdev, &dax);
757 	put_locked_mapping_entry(mapping, index, entry);
758 	return ret;
759 
760  put_unlocked:
761 	put_unlocked_mapping_entry(mapping, index, entry2);
762 	spin_unlock_irq(&mapping->tree_lock);
763 	return ret;
764 }
765 
766 /*
767  * Flush the mapping to the persistent domain within the byte range of [start,
768  * end]. This is required by data integrity operations to ensure file data is
769  * on persistent storage prior to completion of the operation.
770  */
771 int dax_writeback_mapping_range(struct address_space *mapping,
772 		struct block_device *bdev, struct writeback_control *wbc)
773 {
774 	struct inode *inode = mapping->host;
775 	pgoff_t start_index, end_index;
776 	pgoff_t indices[PAGEVEC_SIZE];
777 	struct pagevec pvec;
778 	bool done = false;
779 	int i, ret = 0;
780 
781 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
782 		return -EIO;
783 
784 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
785 		return 0;
786 
787 	start_index = wbc->range_start >> PAGE_SHIFT;
788 	end_index = wbc->range_end >> PAGE_SHIFT;
789 
790 	tag_pages_for_writeback(mapping, start_index, end_index);
791 
792 	pagevec_init(&pvec, 0);
793 	while (!done) {
794 		pvec.nr = find_get_entries_tag(mapping, start_index,
795 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
796 				pvec.pages, indices);
797 
798 		if (pvec.nr == 0)
799 			break;
800 
801 		for (i = 0; i < pvec.nr; i++) {
802 			if (indices[i] > end_index) {
803 				done = true;
804 				break;
805 			}
806 
807 			ret = dax_writeback_one(bdev, mapping, indices[i],
808 					pvec.pages[i]);
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
816 
817 static int dax_insert_mapping(struct address_space *mapping,
818 		struct block_device *bdev, sector_t sector, size_t size,
819 		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
820 {
821 	unsigned long vaddr = vmf->address;
822 	struct blk_dax_ctl dax = {
823 		.sector = sector,
824 		.size = size,
825 	};
826 	void *ret;
827 	void *entry = *entryp;
828 
829 	if (dax_map_atomic(bdev, &dax) < 0)
830 		return PTR_ERR(dax.addr);
831 	dax_unmap_atomic(bdev, &dax);
832 
833 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
834 	if (IS_ERR(ret))
835 		return PTR_ERR(ret);
836 	*entryp = ret;
837 
838 	return vm_insert_mixed(vma, vaddr, dax.pfn);
839 }
840 
841 /**
842  * dax_pfn_mkwrite - handle first write to DAX page
843  * @vma: The virtual memory area where the fault occurred
844  * @vmf: The description of the fault
845  */
846 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
847 {
848 	struct file *file = vma->vm_file;
849 	struct address_space *mapping = file->f_mapping;
850 	void *entry, **slot;
851 	pgoff_t index = vmf->pgoff;
852 
853 	spin_lock_irq(&mapping->tree_lock);
854 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
855 	if (!entry || !radix_tree_exceptional_entry(entry)) {
856 		if (entry)
857 			put_unlocked_mapping_entry(mapping, index, entry);
858 		spin_unlock_irq(&mapping->tree_lock);
859 		return VM_FAULT_NOPAGE;
860 	}
861 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
862 	entry = lock_slot(mapping, slot);
863 	spin_unlock_irq(&mapping->tree_lock);
864 	/*
865 	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
866 	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
867 	 * the fault in either case.
868 	 */
869 	finish_mkwrite_fault(vmf);
870 	put_locked_mapping_entry(mapping, index, entry);
871 	return VM_FAULT_NOPAGE;
872 }
873 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
874 
875 static bool dax_range_is_aligned(struct block_device *bdev,
876 				 unsigned int offset, unsigned int length)
877 {
878 	unsigned short sector_size = bdev_logical_block_size(bdev);
879 
880 	if (!IS_ALIGNED(offset, sector_size))
881 		return false;
882 	if (!IS_ALIGNED(length, sector_size))
883 		return false;
884 
885 	return true;
886 }
887 
888 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
889 		unsigned int offset, unsigned int length)
890 {
891 	struct blk_dax_ctl dax = {
892 		.sector		= sector,
893 		.size		= PAGE_SIZE,
894 	};
895 
896 	if (dax_range_is_aligned(bdev, offset, length)) {
897 		sector_t start_sector = dax.sector + (offset >> 9);
898 
899 		return blkdev_issue_zeroout(bdev, start_sector,
900 				length >> 9, GFP_NOFS, true);
901 	} else {
902 		if (dax_map_atomic(bdev, &dax) < 0)
903 			return PTR_ERR(dax.addr);
904 		clear_pmem(dax.addr + offset, length);
905 		dax_unmap_atomic(bdev, &dax);
906 	}
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
910 
911 #ifdef CONFIG_FS_IOMAP
912 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
913 {
914 	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
915 }
916 
917 static loff_t
918 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
919 		struct iomap *iomap)
920 {
921 	struct iov_iter *iter = data;
922 	loff_t end = pos + length, done = 0;
923 	ssize_t ret = 0;
924 
925 	if (iov_iter_rw(iter) == READ) {
926 		end = min(end, i_size_read(inode));
927 		if (pos >= end)
928 			return 0;
929 
930 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
931 			return iov_iter_zero(min(length, end - pos), iter);
932 	}
933 
934 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
935 		return -EIO;
936 
937 	while (pos < end) {
938 		unsigned offset = pos & (PAGE_SIZE - 1);
939 		struct blk_dax_ctl dax = { 0 };
940 		ssize_t map_len;
941 
942 		dax.sector = dax_iomap_sector(iomap, pos);
943 		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
944 		map_len = dax_map_atomic(iomap->bdev, &dax);
945 		if (map_len < 0) {
946 			ret = map_len;
947 			break;
948 		}
949 
950 		dax.addr += offset;
951 		map_len -= offset;
952 		if (map_len > end - pos)
953 			map_len = end - pos;
954 
955 		if (iov_iter_rw(iter) == WRITE)
956 			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
957 		else
958 			map_len = copy_to_iter(dax.addr, map_len, iter);
959 		dax_unmap_atomic(iomap->bdev, &dax);
960 		if (map_len <= 0) {
961 			ret = map_len ? map_len : -EFAULT;
962 			break;
963 		}
964 
965 		pos += map_len;
966 		length -= map_len;
967 		done += map_len;
968 	}
969 
970 	return done ? done : ret;
971 }
972 
973 /**
974  * dax_iomap_rw - Perform I/O to a DAX file
975  * @iocb:	The control block for this I/O
976  * @iter:	The addresses to do I/O from or to
977  * @ops:	iomap ops passed from the file system
978  *
979  * This function performs read and write operations to directly mapped
980  * persistent memory.  The callers needs to take care of read/write exclusion
981  * and evicting any page cache pages in the region under I/O.
982  */
983 ssize_t
984 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
985 		struct iomap_ops *ops)
986 {
987 	struct address_space *mapping = iocb->ki_filp->f_mapping;
988 	struct inode *inode = mapping->host;
989 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
990 	unsigned flags = 0;
991 
992 	if (iov_iter_rw(iter) == WRITE)
993 		flags |= IOMAP_WRITE;
994 
995 	/*
996 	 * Yes, even DAX files can have page cache attached to them:  A zeroed
997 	 * page is inserted into the pagecache when we have to serve a write
998 	 * fault on a hole.  It should never be dirtied and can simply be
999 	 * dropped from the pagecache once we get real data for the page.
1000 	 *
1001 	 * XXX: This is racy against mmap, and there's nothing we can do about
1002 	 * it. We'll eventually need to shift this down even further so that
1003 	 * we can check if we allocated blocks over a hole first.
1004 	 */
1005 	if (mapping->nrpages) {
1006 		ret = invalidate_inode_pages2_range(mapping,
1007 				pos >> PAGE_SHIFT,
1008 				(pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
1009 		WARN_ON_ONCE(ret);
1010 	}
1011 
1012 	while (iov_iter_count(iter)) {
1013 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1014 				iter, dax_iomap_actor);
1015 		if (ret <= 0)
1016 			break;
1017 		pos += ret;
1018 		done += ret;
1019 	}
1020 
1021 	iocb->ki_pos += done;
1022 	return done ? done : ret;
1023 }
1024 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1025 
1026 /**
1027  * dax_iomap_fault - handle a page fault on a DAX file
1028  * @vma: The virtual memory area where the fault occurred
1029  * @vmf: The description of the fault
1030  * @ops: iomap ops passed from the file system
1031  *
1032  * When a page fault occurs, filesystems may call this helper in their fault
1033  * or mkwrite handler for DAX files. Assumes the caller has done all the
1034  * necessary locking for the page fault to proceed successfully.
1035  */
1036 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1037 			struct iomap_ops *ops)
1038 {
1039 	struct address_space *mapping = vma->vm_file->f_mapping;
1040 	struct inode *inode = mapping->host;
1041 	unsigned long vaddr = vmf->address;
1042 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1043 	sector_t sector;
1044 	struct iomap iomap = { 0 };
1045 	unsigned flags = IOMAP_FAULT;
1046 	int error, major = 0;
1047 	int vmf_ret = 0;
1048 	void *entry;
1049 
1050 	/*
1051 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1052 	 * to hold locks serializing us with truncate / punch hole so this is
1053 	 * a reliable test.
1054 	 */
1055 	if (pos >= i_size_read(inode))
1056 		return VM_FAULT_SIGBUS;
1057 
1058 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1059 	if (IS_ERR(entry)) {
1060 		error = PTR_ERR(entry);
1061 		goto out;
1062 	}
1063 
1064 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1065 		flags |= IOMAP_WRITE;
1066 
1067 	/*
1068 	 * Note that we don't bother to use iomap_apply here: DAX required
1069 	 * the file system block size to be equal the page size, which means
1070 	 * that we never have to deal with more than a single extent here.
1071 	 */
1072 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1073 	if (error)
1074 		goto unlock_entry;
1075 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1076 		error = -EIO;		/* fs corruption? */
1077 		goto finish_iomap;
1078 	}
1079 
1080 	sector = dax_iomap_sector(&iomap, pos);
1081 
1082 	if (vmf->cow_page) {
1083 		switch (iomap.type) {
1084 		case IOMAP_HOLE:
1085 		case IOMAP_UNWRITTEN:
1086 			clear_user_highpage(vmf->cow_page, vaddr);
1087 			break;
1088 		case IOMAP_MAPPED:
1089 			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1090 					vmf->cow_page, vaddr);
1091 			break;
1092 		default:
1093 			WARN_ON_ONCE(1);
1094 			error = -EIO;
1095 			break;
1096 		}
1097 
1098 		if (error)
1099 			goto finish_iomap;
1100 
1101 		__SetPageUptodate(vmf->cow_page);
1102 		vmf_ret = finish_fault(vmf);
1103 		if (!vmf_ret)
1104 			vmf_ret = VM_FAULT_DONE_COW;
1105 		goto finish_iomap;
1106 	}
1107 
1108 	switch (iomap.type) {
1109 	case IOMAP_MAPPED:
1110 		if (iomap.flags & IOMAP_F_NEW) {
1111 			count_vm_event(PGMAJFAULT);
1112 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1113 			major = VM_FAULT_MAJOR;
1114 		}
1115 		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1116 				PAGE_SIZE, &entry, vma, vmf);
1117 		break;
1118 	case IOMAP_UNWRITTEN:
1119 	case IOMAP_HOLE:
1120 		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1121 			vmf_ret = dax_load_hole(mapping, entry, vmf);
1122 			break;
1123 		}
1124 		/*FALLTHRU*/
1125 	default:
1126 		WARN_ON_ONCE(1);
1127 		error = -EIO;
1128 		break;
1129 	}
1130 
1131  finish_iomap:
1132 	if (ops->iomap_end) {
1133 		if (error || (vmf_ret & VM_FAULT_ERROR)) {
1134 			/* keep previous error */
1135 			ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1136 					&iomap);
1137 		} else {
1138 			error = ops->iomap_end(inode, pos, PAGE_SIZE,
1139 					PAGE_SIZE, flags, &iomap);
1140 		}
1141 	}
1142  unlock_entry:
1143 	if (vmf_ret != VM_FAULT_LOCKED || error)
1144 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1145  out:
1146 	if (error == -ENOMEM)
1147 		return VM_FAULT_OOM | major;
1148 	/* -EBUSY is fine, somebody else faulted on the same PTE */
1149 	if (error < 0 && error != -EBUSY)
1150 		return VM_FAULT_SIGBUS | major;
1151 	if (vmf_ret) {
1152 		WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1153 		return vmf_ret;
1154 	}
1155 	return VM_FAULT_NOPAGE | major;
1156 }
1157 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1158 
1159 #ifdef CONFIG_FS_DAX_PMD
1160 /*
1161  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1162  * more often than one might expect in the below functions.
1163  */
1164 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1165 
1166 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1167 		struct vm_fault *vmf, unsigned long address,
1168 		struct iomap *iomap, loff_t pos, bool write, void **entryp)
1169 {
1170 	struct address_space *mapping = vma->vm_file->f_mapping;
1171 	struct block_device *bdev = iomap->bdev;
1172 	struct blk_dax_ctl dax = {
1173 		.sector = dax_iomap_sector(iomap, pos),
1174 		.size = PMD_SIZE,
1175 	};
1176 	long length = dax_map_atomic(bdev, &dax);
1177 	void *ret;
1178 
1179 	if (length < 0) /* dax_map_atomic() failed */
1180 		return VM_FAULT_FALLBACK;
1181 	if (length < PMD_SIZE)
1182 		goto unmap_fallback;
1183 	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1184 		goto unmap_fallback;
1185 	if (!pfn_t_devmap(dax.pfn))
1186 		goto unmap_fallback;
1187 
1188 	dax_unmap_atomic(bdev, &dax);
1189 
1190 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1191 			RADIX_DAX_PMD);
1192 	if (IS_ERR(ret))
1193 		return VM_FAULT_FALLBACK;
1194 	*entryp = ret;
1195 
1196 	return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1197 
1198  unmap_fallback:
1199 	dax_unmap_atomic(bdev, &dax);
1200 	return VM_FAULT_FALLBACK;
1201 }
1202 
1203 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1204 		struct vm_fault *vmf, unsigned long address,
1205 		struct iomap *iomap, void **entryp)
1206 {
1207 	struct address_space *mapping = vma->vm_file->f_mapping;
1208 	unsigned long pmd_addr = address & PMD_MASK;
1209 	struct page *zero_page;
1210 	spinlock_t *ptl;
1211 	pmd_t pmd_entry;
1212 	void *ret;
1213 
1214 	zero_page = mm_get_huge_zero_page(vma->vm_mm);
1215 
1216 	if (unlikely(!zero_page))
1217 		return VM_FAULT_FALLBACK;
1218 
1219 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1220 			RADIX_DAX_PMD | RADIX_DAX_HZP);
1221 	if (IS_ERR(ret))
1222 		return VM_FAULT_FALLBACK;
1223 	*entryp = ret;
1224 
1225 	ptl = pmd_lock(vma->vm_mm, pmd);
1226 	if (!pmd_none(*pmd)) {
1227 		spin_unlock(ptl);
1228 		return VM_FAULT_FALLBACK;
1229 	}
1230 
1231 	pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1232 	pmd_entry = pmd_mkhuge(pmd_entry);
1233 	set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1234 	spin_unlock(ptl);
1235 	return VM_FAULT_NOPAGE;
1236 }
1237 
1238 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1239 		pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1240 {
1241 	struct address_space *mapping = vma->vm_file->f_mapping;
1242 	unsigned long pmd_addr = address & PMD_MASK;
1243 	bool write = flags & FAULT_FLAG_WRITE;
1244 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1245 	struct inode *inode = mapping->host;
1246 	int result = VM_FAULT_FALLBACK;
1247 	struct iomap iomap = { 0 };
1248 	pgoff_t max_pgoff, pgoff;
1249 	struct vm_fault vmf;
1250 	void *entry;
1251 	loff_t pos;
1252 	int error;
1253 
1254 	/* Fall back to PTEs if we're going to COW */
1255 	if (write && !(vma->vm_flags & VM_SHARED))
1256 		goto fallback;
1257 
1258 	/* If the PMD would extend outside the VMA */
1259 	if (pmd_addr < vma->vm_start)
1260 		goto fallback;
1261 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1262 		goto fallback;
1263 
1264 	/*
1265 	 * Check whether offset isn't beyond end of file now. Caller is
1266 	 * supposed to hold locks serializing us with truncate / punch hole so
1267 	 * this is a reliable test.
1268 	 */
1269 	pgoff = linear_page_index(vma, pmd_addr);
1270 	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1271 
1272 	if (pgoff > max_pgoff)
1273 		return VM_FAULT_SIGBUS;
1274 
1275 	/* If the PMD would extend beyond the file size */
1276 	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1277 		goto fallback;
1278 
1279 	/*
1280 	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1281 	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1282 	 * the tree, for instance), it will return -EEXIST and we just fall
1283 	 * back to 4k entries.
1284 	 */
1285 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1286 	if (IS_ERR(entry))
1287 		goto fallback;
1288 
1289 	/*
1290 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1291 	 * setting up a mapping, so really we're using iomap_begin() as a way
1292 	 * to look up our filesystem block.
1293 	 */
1294 	pos = (loff_t)pgoff << PAGE_SHIFT;
1295 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1296 	if (error)
1297 		goto unlock_entry;
1298 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1299 		goto finish_iomap;
1300 
1301 	vmf.pgoff = pgoff;
1302 	vmf.flags = flags;
1303 	vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1304 
1305 	switch (iomap.type) {
1306 	case IOMAP_MAPPED:
1307 		result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1308 				&iomap, pos, write, &entry);
1309 		break;
1310 	case IOMAP_UNWRITTEN:
1311 	case IOMAP_HOLE:
1312 		if (WARN_ON_ONCE(write))
1313 			goto finish_iomap;
1314 		result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1315 				&entry);
1316 		break;
1317 	default:
1318 		WARN_ON_ONCE(1);
1319 		break;
1320 	}
1321 
1322  finish_iomap:
1323 	if (ops->iomap_end) {
1324 		if (result == VM_FAULT_FALLBACK) {
1325 			ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1326 					&iomap);
1327 		} else {
1328 			error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1329 					iomap_flags, &iomap);
1330 			if (error)
1331 				result = VM_FAULT_FALLBACK;
1332 		}
1333 	}
1334  unlock_entry:
1335 	put_locked_mapping_entry(mapping, pgoff, entry);
1336  fallback:
1337 	if (result == VM_FAULT_FALLBACK) {
1338 		split_huge_pmd(vma, pmd, address);
1339 		count_vm_event(THP_FAULT_FALLBACK);
1340 	}
1341 	return result;
1342 }
1343 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1344 #endif /* CONFIG_FS_DAX_PMD */
1345 #endif /* CONFIG_FS_IOMAP */
1346