1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 148 void *entry, struct exceptional_entry_key *key) 149 { 150 unsigned long hash; 151 unsigned long index = xas->xa_index; 152 153 /* 154 * If 'entry' is a PMD, align the 'index' that we use for the wait 155 * queue to the start of that PMD. This ensures that all offsets in 156 * the range covered by the PMD map to the same bit lock. 157 */ 158 if (dax_is_pmd_entry(entry)) 159 index &= ~PG_PMD_COLOUR; 160 key->xa = xas->xa; 161 key->entry_start = index; 162 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 164 return wait_table + hash; 165 } 166 167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 168 unsigned int mode, int sync, void *keyp) 169 { 170 struct exceptional_entry_key *key = keyp; 171 struct wait_exceptional_entry_queue *ewait = 172 container_of(wait, struct wait_exceptional_entry_queue, wait); 173 174 if (key->xa != ewait->key.xa || 175 key->entry_start != ewait->key.entry_start) 176 return 0; 177 return autoremove_wake_function(wait, mode, sync, NULL); 178 } 179 180 /* 181 * @entry may no longer be the entry at the index in the mapping. 182 * The important information it's conveying is whether the entry at 183 * this index used to be a PMD entry. 184 */ 185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 186 { 187 struct exceptional_entry_key key; 188 wait_queue_head_t *wq; 189 190 wq = dax_entry_waitqueue(xas, entry, &key); 191 192 /* 193 * Checking for locked entry and prepare_to_wait_exclusive() happens 194 * under the i_pages lock, ditto for entry handling in our callers. 195 * So at this point all tasks that could have seen our entry locked 196 * must be in the waitqueue and the following check will see them. 197 */ 198 if (waitqueue_active(wq)) 199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 200 } 201 202 /* 203 * Look up entry in page cache, wait for it to become unlocked if it 204 * is a DAX entry and return it. The caller must subsequently call 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 206 * if it did. The entry returned may have a larger order than @order. 207 * If @order is larger than the order of the entry found in i_pages, this 208 * function returns a dax_is_conflict entry. 209 * 210 * Must be called with the i_pages lock held. 211 */ 212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 213 { 214 void *entry; 215 struct wait_exceptional_entry_queue ewait; 216 wait_queue_head_t *wq; 217 218 init_wait(&ewait.wait); 219 ewait.wait.func = wake_exceptional_entry_func; 220 221 for (;;) { 222 entry = xas_find_conflict(xas); 223 if (dax_entry_order(entry) < order) 224 return XA_RETRY_ENTRY; 225 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) || 226 !dax_is_locked(entry)) 227 return entry; 228 229 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 230 prepare_to_wait_exclusive(wq, &ewait.wait, 231 TASK_UNINTERRUPTIBLE); 232 xas_unlock_irq(xas); 233 xas_reset(xas); 234 schedule(); 235 finish_wait(wq, &ewait.wait); 236 xas_lock_irq(xas); 237 } 238 } 239 240 /* 241 * The only thing keeping the address space around is the i_pages lock 242 * (it's cycled in clear_inode() after removing the entries from i_pages) 243 * After we call xas_unlock_irq(), we cannot touch xas->xa. 244 */ 245 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 246 { 247 struct wait_exceptional_entry_queue ewait; 248 wait_queue_head_t *wq; 249 250 init_wait(&ewait.wait); 251 ewait.wait.func = wake_exceptional_entry_func; 252 253 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 254 /* 255 * Unlike get_unlocked_entry() there is no guarantee that this 256 * path ever successfully retrieves an unlocked entry before an 257 * inode dies. Perform a non-exclusive wait in case this path 258 * never successfully performs its own wake up. 259 */ 260 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 261 xas_unlock_irq(xas); 262 schedule(); 263 finish_wait(wq, &ewait.wait); 264 } 265 266 static void put_unlocked_entry(struct xa_state *xas, void *entry) 267 { 268 /* If we were the only waiter woken, wake the next one */ 269 if (entry && dax_is_conflict(entry)) 270 dax_wake_entry(xas, entry, false); 271 } 272 273 /* 274 * We used the xa_state to get the entry, but then we locked the entry and 275 * dropped the xa_lock, so we know the xa_state is stale and must be reset 276 * before use. 277 */ 278 static void dax_unlock_entry(struct xa_state *xas, void *entry) 279 { 280 void *old; 281 282 BUG_ON(dax_is_locked(entry)); 283 xas_reset(xas); 284 xas_lock_irq(xas); 285 old = xas_store(xas, entry); 286 xas_unlock_irq(xas); 287 BUG_ON(!dax_is_locked(old)); 288 dax_wake_entry(xas, entry, false); 289 } 290 291 /* 292 * Return: The entry stored at this location before it was locked. 293 */ 294 static void *dax_lock_entry(struct xa_state *xas, void *entry) 295 { 296 unsigned long v = xa_to_value(entry); 297 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 298 } 299 300 static unsigned long dax_entry_size(void *entry) 301 { 302 if (dax_is_zero_entry(entry)) 303 return 0; 304 else if (dax_is_empty_entry(entry)) 305 return 0; 306 else if (dax_is_pmd_entry(entry)) 307 return PMD_SIZE; 308 else 309 return PAGE_SIZE; 310 } 311 312 static unsigned long dax_end_pfn(void *entry) 313 { 314 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 315 } 316 317 /* 318 * Iterate through all mapped pfns represented by an entry, i.e. skip 319 * 'empty' and 'zero' entries. 320 */ 321 #define for_each_mapped_pfn(entry, pfn) \ 322 for (pfn = dax_to_pfn(entry); \ 323 pfn < dax_end_pfn(entry); pfn++) 324 325 /* 326 * TODO: for reflink+dax we need a way to associate a single page with 327 * multiple address_space instances at different linear_page_index() 328 * offsets. 329 */ 330 static void dax_associate_entry(void *entry, struct address_space *mapping, 331 struct vm_area_struct *vma, unsigned long address) 332 { 333 unsigned long size = dax_entry_size(entry), pfn, index; 334 int i = 0; 335 336 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 337 return; 338 339 index = linear_page_index(vma, address & ~(size - 1)); 340 for_each_mapped_pfn(entry, pfn) { 341 struct page *page = pfn_to_page(pfn); 342 343 WARN_ON_ONCE(page->mapping); 344 page->mapping = mapping; 345 page->index = index + i++; 346 } 347 } 348 349 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 350 bool trunc) 351 { 352 unsigned long pfn; 353 354 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 355 return; 356 357 for_each_mapped_pfn(entry, pfn) { 358 struct page *page = pfn_to_page(pfn); 359 360 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 361 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 362 page->mapping = NULL; 363 page->index = 0; 364 } 365 } 366 367 static struct page *dax_busy_page(void *entry) 368 { 369 unsigned long pfn; 370 371 for_each_mapped_pfn(entry, pfn) { 372 struct page *page = pfn_to_page(pfn); 373 374 if (page_ref_count(page) > 1) 375 return page; 376 } 377 return NULL; 378 } 379 380 /* 381 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 382 * @page: The page whose entry we want to lock 383 * 384 * Context: Process context. 385 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 386 * not be locked. 387 */ 388 dax_entry_t dax_lock_page(struct page *page) 389 { 390 XA_STATE(xas, NULL, 0); 391 void *entry; 392 393 /* Ensure page->mapping isn't freed while we look at it */ 394 rcu_read_lock(); 395 for (;;) { 396 struct address_space *mapping = READ_ONCE(page->mapping); 397 398 entry = NULL; 399 if (!mapping || !dax_mapping(mapping)) 400 break; 401 402 /* 403 * In the device-dax case there's no need to lock, a 404 * struct dev_pagemap pin is sufficient to keep the 405 * inode alive, and we assume we have dev_pagemap pin 406 * otherwise we would not have a valid pfn_to_page() 407 * translation. 408 */ 409 entry = (void *)~0UL; 410 if (S_ISCHR(mapping->host->i_mode)) 411 break; 412 413 xas.xa = &mapping->i_pages; 414 xas_lock_irq(&xas); 415 if (mapping != page->mapping) { 416 xas_unlock_irq(&xas); 417 continue; 418 } 419 xas_set(&xas, page->index); 420 entry = xas_load(&xas); 421 if (dax_is_locked(entry)) { 422 rcu_read_unlock(); 423 wait_entry_unlocked(&xas, entry); 424 rcu_read_lock(); 425 continue; 426 } 427 dax_lock_entry(&xas, entry); 428 xas_unlock_irq(&xas); 429 break; 430 } 431 rcu_read_unlock(); 432 return (dax_entry_t)entry; 433 } 434 435 void dax_unlock_page(struct page *page, dax_entry_t cookie) 436 { 437 struct address_space *mapping = page->mapping; 438 XA_STATE(xas, &mapping->i_pages, page->index); 439 440 if (S_ISCHR(mapping->host->i_mode)) 441 return; 442 443 dax_unlock_entry(&xas, (void *)cookie); 444 } 445 446 /* 447 * Find page cache entry at given index. If it is a DAX entry, return it 448 * with the entry locked. If the page cache doesn't contain an entry at 449 * that index, add a locked empty entry. 450 * 451 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 452 * either return that locked entry or will return VM_FAULT_FALLBACK. 453 * This will happen if there are any PTE entries within the PMD range 454 * that we are requesting. 455 * 456 * We always favor PTE entries over PMD entries. There isn't a flow where we 457 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 458 * insertion will fail if it finds any PTE entries already in the tree, and a 459 * PTE insertion will cause an existing PMD entry to be unmapped and 460 * downgraded to PTE entries. This happens for both PMD zero pages as 461 * well as PMD empty entries. 462 * 463 * The exception to this downgrade path is for PMD entries that have 464 * real storage backing them. We will leave these real PMD entries in 465 * the tree, and PTE writes will simply dirty the entire PMD entry. 466 * 467 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 468 * persistent memory the benefit is doubtful. We can add that later if we can 469 * show it helps. 470 * 471 * On error, this function does not return an ERR_PTR. Instead it returns 472 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 473 * overlap with xarray value entries. 474 */ 475 static void *grab_mapping_entry(struct xa_state *xas, 476 struct address_space *mapping, unsigned int order) 477 { 478 unsigned long index = xas->xa_index; 479 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 480 void *entry; 481 482 retry: 483 xas_lock_irq(xas); 484 entry = get_unlocked_entry(xas, order); 485 486 if (entry) { 487 if (dax_is_conflict(entry)) 488 goto fallback; 489 if (!xa_is_value(entry)) { 490 xas_set_err(xas, EIO); 491 goto out_unlock; 492 } 493 494 if (order == 0) { 495 if (dax_is_pmd_entry(entry) && 496 (dax_is_zero_entry(entry) || 497 dax_is_empty_entry(entry))) { 498 pmd_downgrade = true; 499 } 500 } 501 } 502 503 if (pmd_downgrade) { 504 /* 505 * Make sure 'entry' remains valid while we drop 506 * the i_pages lock. 507 */ 508 dax_lock_entry(xas, entry); 509 510 /* 511 * Besides huge zero pages the only other thing that gets 512 * downgraded are empty entries which don't need to be 513 * unmapped. 514 */ 515 if (dax_is_zero_entry(entry)) { 516 xas_unlock_irq(xas); 517 unmap_mapping_pages(mapping, 518 xas->xa_index & ~PG_PMD_COLOUR, 519 PG_PMD_NR, false); 520 xas_reset(xas); 521 xas_lock_irq(xas); 522 } 523 524 dax_disassociate_entry(entry, mapping, false); 525 xas_store(xas, NULL); /* undo the PMD join */ 526 dax_wake_entry(xas, entry, true); 527 mapping->nrexceptional--; 528 entry = NULL; 529 xas_set(xas, index); 530 } 531 532 if (entry) { 533 dax_lock_entry(xas, entry); 534 } else { 535 unsigned long flags = DAX_EMPTY; 536 537 if (order > 0) 538 flags |= DAX_PMD; 539 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 540 dax_lock_entry(xas, entry); 541 if (xas_error(xas)) 542 goto out_unlock; 543 mapping->nrexceptional++; 544 } 545 546 out_unlock: 547 xas_unlock_irq(xas); 548 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 549 goto retry; 550 if (xas->xa_node == XA_ERROR(-ENOMEM)) 551 return xa_mk_internal(VM_FAULT_OOM); 552 if (xas_error(xas)) 553 return xa_mk_internal(VM_FAULT_SIGBUS); 554 return entry; 555 fallback: 556 xas_unlock_irq(xas); 557 return xa_mk_internal(VM_FAULT_FALLBACK); 558 } 559 560 /** 561 * dax_layout_busy_page - find first pinned page in @mapping 562 * @mapping: address space to scan for a page with ref count > 1 563 * 564 * DAX requires ZONE_DEVICE mapped pages. These pages are never 565 * 'onlined' to the page allocator so they are considered idle when 566 * page->count == 1. A filesystem uses this interface to determine if 567 * any page in the mapping is busy, i.e. for DMA, or other 568 * get_user_pages() usages. 569 * 570 * It is expected that the filesystem is holding locks to block the 571 * establishment of new mappings in this address_space. I.e. it expects 572 * to be able to run unmap_mapping_range() and subsequently not race 573 * mapping_mapped() becoming true. 574 */ 575 struct page *dax_layout_busy_page(struct address_space *mapping) 576 { 577 XA_STATE(xas, &mapping->i_pages, 0); 578 void *entry; 579 unsigned int scanned = 0; 580 struct page *page = NULL; 581 582 /* 583 * In the 'limited' case get_user_pages() for dax is disabled. 584 */ 585 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 586 return NULL; 587 588 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 589 return NULL; 590 591 /* 592 * If we race get_user_pages_fast() here either we'll see the 593 * elevated page count in the iteration and wait, or 594 * get_user_pages_fast() will see that the page it took a reference 595 * against is no longer mapped in the page tables and bail to the 596 * get_user_pages() slow path. The slow path is protected by 597 * pte_lock() and pmd_lock(). New references are not taken without 598 * holding those locks, and unmap_mapping_range() will not zero the 599 * pte or pmd without holding the respective lock, so we are 600 * guaranteed to either see new references or prevent new 601 * references from being established. 602 */ 603 unmap_mapping_range(mapping, 0, 0, 1); 604 605 xas_lock_irq(&xas); 606 xas_for_each(&xas, entry, ULONG_MAX) { 607 if (WARN_ON_ONCE(!xa_is_value(entry))) 608 continue; 609 if (unlikely(dax_is_locked(entry))) 610 entry = get_unlocked_entry(&xas, 0); 611 if (entry) 612 page = dax_busy_page(entry); 613 put_unlocked_entry(&xas, entry); 614 if (page) 615 break; 616 if (++scanned % XA_CHECK_SCHED) 617 continue; 618 619 xas_pause(&xas); 620 xas_unlock_irq(&xas); 621 cond_resched(); 622 xas_lock_irq(&xas); 623 } 624 xas_unlock_irq(&xas); 625 return page; 626 } 627 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 628 629 static int __dax_invalidate_entry(struct address_space *mapping, 630 pgoff_t index, bool trunc) 631 { 632 XA_STATE(xas, &mapping->i_pages, index); 633 int ret = 0; 634 void *entry; 635 636 xas_lock_irq(&xas); 637 entry = get_unlocked_entry(&xas, 0); 638 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 639 goto out; 640 if (!trunc && 641 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 642 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 643 goto out; 644 dax_disassociate_entry(entry, mapping, trunc); 645 xas_store(&xas, NULL); 646 mapping->nrexceptional--; 647 ret = 1; 648 out: 649 put_unlocked_entry(&xas, entry); 650 xas_unlock_irq(&xas); 651 return ret; 652 } 653 654 /* 655 * Delete DAX entry at @index from @mapping. Wait for it 656 * to be unlocked before deleting it. 657 */ 658 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 659 { 660 int ret = __dax_invalidate_entry(mapping, index, true); 661 662 /* 663 * This gets called from truncate / punch_hole path. As such, the caller 664 * must hold locks protecting against concurrent modifications of the 665 * page cache (usually fs-private i_mmap_sem for writing). Since the 666 * caller has seen a DAX entry for this index, we better find it 667 * at that index as well... 668 */ 669 WARN_ON_ONCE(!ret); 670 return ret; 671 } 672 673 /* 674 * Invalidate DAX entry if it is clean. 675 */ 676 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 677 pgoff_t index) 678 { 679 return __dax_invalidate_entry(mapping, index, false); 680 } 681 682 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 683 sector_t sector, size_t size, struct page *to, 684 unsigned long vaddr) 685 { 686 void *vto, *kaddr; 687 pgoff_t pgoff; 688 long rc; 689 int id; 690 691 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 692 if (rc) 693 return rc; 694 695 id = dax_read_lock(); 696 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 697 if (rc < 0) { 698 dax_read_unlock(id); 699 return rc; 700 } 701 vto = kmap_atomic(to); 702 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 703 kunmap_atomic(vto); 704 dax_read_unlock(id); 705 return 0; 706 } 707 708 /* 709 * By this point grab_mapping_entry() has ensured that we have a locked entry 710 * of the appropriate size so we don't have to worry about downgrading PMDs to 711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 712 * already in the tree, we will skip the insertion and just dirty the PMD as 713 * appropriate. 714 */ 715 static void *dax_insert_entry(struct xa_state *xas, 716 struct address_space *mapping, struct vm_fault *vmf, 717 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 718 { 719 void *new_entry = dax_make_entry(pfn, flags); 720 721 if (dirty) 722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 723 724 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 725 unsigned long index = xas->xa_index; 726 /* we are replacing a zero page with block mapping */ 727 if (dax_is_pmd_entry(entry)) 728 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 729 PG_PMD_NR, false); 730 else /* pte entry */ 731 unmap_mapping_pages(mapping, index, 1, false); 732 } 733 734 xas_reset(xas); 735 xas_lock_irq(xas); 736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 737 void *old; 738 739 dax_disassociate_entry(entry, mapping, false); 740 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 741 /* 742 * Only swap our new entry into the page cache if the current 743 * entry is a zero page or an empty entry. If a normal PTE or 744 * PMD entry is already in the cache, we leave it alone. This 745 * means that if we are trying to insert a PTE and the 746 * existing entry is a PMD, we will just leave the PMD in the 747 * tree and dirty it if necessary. 748 */ 749 old = dax_lock_entry(xas, new_entry); 750 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 751 DAX_LOCKED)); 752 entry = new_entry; 753 } else { 754 xas_load(xas); /* Walk the xa_state */ 755 } 756 757 if (dirty) 758 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 759 760 xas_unlock_irq(xas); 761 return entry; 762 } 763 764 static inline 765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 766 { 767 unsigned long address; 768 769 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 770 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 771 return address; 772 } 773 774 /* Walk all mappings of a given index of a file and writeprotect them */ 775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 776 unsigned long pfn) 777 { 778 struct vm_area_struct *vma; 779 pte_t pte, *ptep = NULL; 780 pmd_t *pmdp = NULL; 781 spinlock_t *ptl; 782 783 i_mmap_lock_read(mapping); 784 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 785 struct mmu_notifier_range range; 786 unsigned long address; 787 788 cond_resched(); 789 790 if (!(vma->vm_flags & VM_SHARED)) 791 continue; 792 793 address = pgoff_address(index, vma); 794 795 /* 796 * Note because we provide range to follow_pte_pmd it will 797 * call mmu_notifier_invalidate_range_start() on our behalf 798 * before taking any lock. 799 */ 800 if (follow_pte_pmd(vma->vm_mm, address, &range, 801 &ptep, &pmdp, &ptl)) 802 continue; 803 804 /* 805 * No need to call mmu_notifier_invalidate_range() as we are 806 * downgrading page table protection not changing it to point 807 * to a new page. 808 * 809 * See Documentation/vm/mmu_notifier.rst 810 */ 811 if (pmdp) { 812 #ifdef CONFIG_FS_DAX_PMD 813 pmd_t pmd; 814 815 if (pfn != pmd_pfn(*pmdp)) 816 goto unlock_pmd; 817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 818 goto unlock_pmd; 819 820 flush_cache_page(vma, address, pfn); 821 pmd = pmdp_invalidate(vma, address, pmdp); 822 pmd = pmd_wrprotect(pmd); 823 pmd = pmd_mkclean(pmd); 824 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 825 unlock_pmd: 826 #endif 827 spin_unlock(ptl); 828 } else { 829 if (pfn != pte_pfn(*ptep)) 830 goto unlock_pte; 831 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 832 goto unlock_pte; 833 834 flush_cache_page(vma, address, pfn); 835 pte = ptep_clear_flush(vma, address, ptep); 836 pte = pte_wrprotect(pte); 837 pte = pte_mkclean(pte); 838 set_pte_at(vma->vm_mm, address, ptep, pte); 839 unlock_pte: 840 pte_unmap_unlock(ptep, ptl); 841 } 842 843 mmu_notifier_invalidate_range_end(&range); 844 } 845 i_mmap_unlock_read(mapping); 846 } 847 848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 849 struct address_space *mapping, void *entry) 850 { 851 unsigned long pfn, index, count; 852 long ret = 0; 853 854 /* 855 * A page got tagged dirty in DAX mapping? Something is seriously 856 * wrong. 857 */ 858 if (WARN_ON(!xa_is_value(entry))) 859 return -EIO; 860 861 if (unlikely(dax_is_locked(entry))) { 862 void *old_entry = entry; 863 864 entry = get_unlocked_entry(xas, 0); 865 866 /* Entry got punched out / reallocated? */ 867 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 868 goto put_unlocked; 869 /* 870 * Entry got reallocated elsewhere? No need to writeback. 871 * We have to compare pfns as we must not bail out due to 872 * difference in lockbit or entry type. 873 */ 874 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 875 goto put_unlocked; 876 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 877 dax_is_zero_entry(entry))) { 878 ret = -EIO; 879 goto put_unlocked; 880 } 881 882 /* Another fsync thread may have already done this entry */ 883 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 884 goto put_unlocked; 885 } 886 887 /* Lock the entry to serialize with page faults */ 888 dax_lock_entry(xas, entry); 889 890 /* 891 * We can clear the tag now but we have to be careful so that concurrent 892 * dax_writeback_one() calls for the same index cannot finish before we 893 * actually flush the caches. This is achieved as the calls will look 894 * at the entry only under the i_pages lock and once they do that 895 * they will see the entry locked and wait for it to unlock. 896 */ 897 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 898 xas_unlock_irq(xas); 899 900 /* 901 * If dax_writeback_mapping_range() was given a wbc->range_start 902 * in the middle of a PMD, the 'index' we use needs to be 903 * aligned to the start of the PMD. 904 * This allows us to flush for PMD_SIZE and not have to worry about 905 * partial PMD writebacks. 906 */ 907 pfn = dax_to_pfn(entry); 908 count = 1UL << dax_entry_order(entry); 909 index = xas->xa_index & ~(count - 1); 910 911 dax_entry_mkclean(mapping, index, pfn); 912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 913 /* 914 * After we have flushed the cache, we can clear the dirty tag. There 915 * cannot be new dirty data in the pfn after the flush has completed as 916 * the pfn mappings are writeprotected and fault waits for mapping 917 * entry lock. 918 */ 919 xas_reset(xas); 920 xas_lock_irq(xas); 921 xas_store(xas, entry); 922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 923 dax_wake_entry(xas, entry, false); 924 925 trace_dax_writeback_one(mapping->host, index, count); 926 return ret; 927 928 put_unlocked: 929 put_unlocked_entry(xas, entry); 930 return ret; 931 } 932 933 /* 934 * Flush the mapping to the persistent domain within the byte range of [start, 935 * end]. This is required by data integrity operations to ensure file data is 936 * on persistent storage prior to completion of the operation. 937 */ 938 int dax_writeback_mapping_range(struct address_space *mapping, 939 struct block_device *bdev, struct writeback_control *wbc) 940 { 941 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 942 struct inode *inode = mapping->host; 943 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 944 struct dax_device *dax_dev; 945 void *entry; 946 int ret = 0; 947 unsigned int scanned = 0; 948 949 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 950 return -EIO; 951 952 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 953 return 0; 954 955 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 956 if (!dax_dev) 957 return -EIO; 958 959 trace_dax_writeback_range(inode, xas.xa_index, end_index); 960 961 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 962 963 xas_lock_irq(&xas); 964 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 965 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 966 if (ret < 0) { 967 mapping_set_error(mapping, ret); 968 break; 969 } 970 if (++scanned % XA_CHECK_SCHED) 971 continue; 972 973 xas_pause(&xas); 974 xas_unlock_irq(&xas); 975 cond_resched(); 976 xas_lock_irq(&xas); 977 } 978 xas_unlock_irq(&xas); 979 put_dax(dax_dev); 980 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 981 return ret; 982 } 983 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 984 985 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 986 { 987 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 988 } 989 990 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 991 pfn_t *pfnp) 992 { 993 const sector_t sector = dax_iomap_sector(iomap, pos); 994 pgoff_t pgoff; 995 int id, rc; 996 long length; 997 998 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 999 if (rc) 1000 return rc; 1001 id = dax_read_lock(); 1002 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1003 NULL, pfnp); 1004 if (length < 0) { 1005 rc = length; 1006 goto out; 1007 } 1008 rc = -EINVAL; 1009 if (PFN_PHYS(length) < size) 1010 goto out; 1011 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1012 goto out; 1013 /* For larger pages we need devmap */ 1014 if (length > 1 && !pfn_t_devmap(*pfnp)) 1015 goto out; 1016 rc = 0; 1017 out: 1018 dax_read_unlock(id); 1019 return rc; 1020 } 1021 1022 /* 1023 * The user has performed a load from a hole in the file. Allocating a new 1024 * page in the file would cause excessive storage usage for workloads with 1025 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1026 * If this page is ever written to we will re-fault and change the mapping to 1027 * point to real DAX storage instead. 1028 */ 1029 static vm_fault_t dax_load_hole(struct xa_state *xas, 1030 struct address_space *mapping, void **entry, 1031 struct vm_fault *vmf) 1032 { 1033 struct inode *inode = mapping->host; 1034 unsigned long vaddr = vmf->address; 1035 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1036 vm_fault_t ret; 1037 1038 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1039 DAX_ZERO_PAGE, false); 1040 1041 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1042 trace_dax_load_hole(inode, vmf, ret); 1043 return ret; 1044 } 1045 1046 static bool dax_range_is_aligned(struct block_device *bdev, 1047 unsigned int offset, unsigned int length) 1048 { 1049 unsigned short sector_size = bdev_logical_block_size(bdev); 1050 1051 if (!IS_ALIGNED(offset, sector_size)) 1052 return false; 1053 if (!IS_ALIGNED(length, sector_size)) 1054 return false; 1055 1056 return true; 1057 } 1058 1059 int __dax_zero_page_range(struct block_device *bdev, 1060 struct dax_device *dax_dev, sector_t sector, 1061 unsigned int offset, unsigned int size) 1062 { 1063 if (dax_range_is_aligned(bdev, offset, size)) { 1064 sector_t start_sector = sector + (offset >> 9); 1065 1066 return blkdev_issue_zeroout(bdev, start_sector, 1067 size >> 9, GFP_NOFS, 0); 1068 } else { 1069 pgoff_t pgoff; 1070 long rc, id; 1071 void *kaddr; 1072 1073 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1074 if (rc) 1075 return rc; 1076 1077 id = dax_read_lock(); 1078 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1079 if (rc < 0) { 1080 dax_read_unlock(id); 1081 return rc; 1082 } 1083 memset(kaddr + offset, 0, size); 1084 dax_flush(dax_dev, kaddr + offset, size); 1085 dax_read_unlock(id); 1086 } 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1090 1091 static loff_t 1092 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1093 struct iomap *iomap) 1094 { 1095 struct block_device *bdev = iomap->bdev; 1096 struct dax_device *dax_dev = iomap->dax_dev; 1097 struct iov_iter *iter = data; 1098 loff_t end = pos + length, done = 0; 1099 ssize_t ret = 0; 1100 size_t xfer; 1101 int id; 1102 1103 if (iov_iter_rw(iter) == READ) { 1104 end = min(end, i_size_read(inode)); 1105 if (pos >= end) 1106 return 0; 1107 1108 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1109 return iov_iter_zero(min(length, end - pos), iter); 1110 } 1111 1112 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1113 return -EIO; 1114 1115 /* 1116 * Write can allocate block for an area which has a hole page mapped 1117 * into page tables. We have to tear down these mappings so that data 1118 * written by write(2) is visible in mmap. 1119 */ 1120 if (iomap->flags & IOMAP_F_NEW) { 1121 invalidate_inode_pages2_range(inode->i_mapping, 1122 pos >> PAGE_SHIFT, 1123 (end - 1) >> PAGE_SHIFT); 1124 } 1125 1126 id = dax_read_lock(); 1127 while (pos < end) { 1128 unsigned offset = pos & (PAGE_SIZE - 1); 1129 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1130 const sector_t sector = dax_iomap_sector(iomap, pos); 1131 ssize_t map_len; 1132 pgoff_t pgoff; 1133 void *kaddr; 1134 1135 if (fatal_signal_pending(current)) { 1136 ret = -EINTR; 1137 break; 1138 } 1139 1140 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1141 if (ret) 1142 break; 1143 1144 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1145 &kaddr, NULL); 1146 if (map_len < 0) { 1147 ret = map_len; 1148 break; 1149 } 1150 1151 map_len = PFN_PHYS(map_len); 1152 kaddr += offset; 1153 map_len -= offset; 1154 if (map_len > end - pos) 1155 map_len = end - pos; 1156 1157 /* 1158 * The userspace address for the memory copy has already been 1159 * validated via access_ok() in either vfs_read() or 1160 * vfs_write(), depending on which operation we are doing. 1161 */ 1162 if (iov_iter_rw(iter) == WRITE) 1163 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1164 map_len, iter); 1165 else 1166 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1167 map_len, iter); 1168 1169 pos += xfer; 1170 length -= xfer; 1171 done += xfer; 1172 1173 if (xfer == 0) 1174 ret = -EFAULT; 1175 if (xfer < map_len) 1176 break; 1177 } 1178 dax_read_unlock(id); 1179 1180 return done ? done : ret; 1181 } 1182 1183 /** 1184 * dax_iomap_rw - Perform I/O to a DAX file 1185 * @iocb: The control block for this I/O 1186 * @iter: The addresses to do I/O from or to 1187 * @ops: iomap ops passed from the file system 1188 * 1189 * This function performs read and write operations to directly mapped 1190 * persistent memory. The callers needs to take care of read/write exclusion 1191 * and evicting any page cache pages in the region under I/O. 1192 */ 1193 ssize_t 1194 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1195 const struct iomap_ops *ops) 1196 { 1197 struct address_space *mapping = iocb->ki_filp->f_mapping; 1198 struct inode *inode = mapping->host; 1199 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1200 unsigned flags = 0; 1201 1202 if (iov_iter_rw(iter) == WRITE) { 1203 lockdep_assert_held_write(&inode->i_rwsem); 1204 flags |= IOMAP_WRITE; 1205 } else { 1206 lockdep_assert_held(&inode->i_rwsem); 1207 } 1208 1209 while (iov_iter_count(iter)) { 1210 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1211 iter, dax_iomap_actor); 1212 if (ret <= 0) 1213 break; 1214 pos += ret; 1215 done += ret; 1216 } 1217 1218 iocb->ki_pos += done; 1219 return done ? done : ret; 1220 } 1221 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1222 1223 static vm_fault_t dax_fault_return(int error) 1224 { 1225 if (error == 0) 1226 return VM_FAULT_NOPAGE; 1227 return vmf_error(error); 1228 } 1229 1230 /* 1231 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1232 * flushed on write-faults (non-cow), but not read-faults. 1233 */ 1234 static bool dax_fault_is_synchronous(unsigned long flags, 1235 struct vm_area_struct *vma, struct iomap *iomap) 1236 { 1237 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1238 && (iomap->flags & IOMAP_F_DIRTY); 1239 } 1240 1241 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1242 int *iomap_errp, const struct iomap_ops *ops) 1243 { 1244 struct vm_area_struct *vma = vmf->vma; 1245 struct address_space *mapping = vma->vm_file->f_mapping; 1246 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1247 struct inode *inode = mapping->host; 1248 unsigned long vaddr = vmf->address; 1249 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1250 struct iomap iomap = { 0 }; 1251 unsigned flags = IOMAP_FAULT; 1252 int error, major = 0; 1253 bool write = vmf->flags & FAULT_FLAG_WRITE; 1254 bool sync; 1255 vm_fault_t ret = 0; 1256 void *entry; 1257 pfn_t pfn; 1258 1259 trace_dax_pte_fault(inode, vmf, ret); 1260 /* 1261 * Check whether offset isn't beyond end of file now. Caller is supposed 1262 * to hold locks serializing us with truncate / punch hole so this is 1263 * a reliable test. 1264 */ 1265 if (pos >= i_size_read(inode)) { 1266 ret = VM_FAULT_SIGBUS; 1267 goto out; 1268 } 1269 1270 if (write && !vmf->cow_page) 1271 flags |= IOMAP_WRITE; 1272 1273 entry = grab_mapping_entry(&xas, mapping, 0); 1274 if (xa_is_internal(entry)) { 1275 ret = xa_to_internal(entry); 1276 goto out; 1277 } 1278 1279 /* 1280 * It is possible, particularly with mixed reads & writes to private 1281 * mappings, that we have raced with a PMD fault that overlaps with 1282 * the PTE we need to set up. If so just return and the fault will be 1283 * retried. 1284 */ 1285 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1286 ret = VM_FAULT_NOPAGE; 1287 goto unlock_entry; 1288 } 1289 1290 /* 1291 * Note that we don't bother to use iomap_apply here: DAX required 1292 * the file system block size to be equal the page size, which means 1293 * that we never have to deal with more than a single extent here. 1294 */ 1295 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1296 if (iomap_errp) 1297 *iomap_errp = error; 1298 if (error) { 1299 ret = dax_fault_return(error); 1300 goto unlock_entry; 1301 } 1302 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1303 error = -EIO; /* fs corruption? */ 1304 goto error_finish_iomap; 1305 } 1306 1307 if (vmf->cow_page) { 1308 sector_t sector = dax_iomap_sector(&iomap, pos); 1309 1310 switch (iomap.type) { 1311 case IOMAP_HOLE: 1312 case IOMAP_UNWRITTEN: 1313 clear_user_highpage(vmf->cow_page, vaddr); 1314 break; 1315 case IOMAP_MAPPED: 1316 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1317 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1318 break; 1319 default: 1320 WARN_ON_ONCE(1); 1321 error = -EIO; 1322 break; 1323 } 1324 1325 if (error) 1326 goto error_finish_iomap; 1327 1328 __SetPageUptodate(vmf->cow_page); 1329 ret = finish_fault(vmf); 1330 if (!ret) 1331 ret = VM_FAULT_DONE_COW; 1332 goto finish_iomap; 1333 } 1334 1335 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1336 1337 switch (iomap.type) { 1338 case IOMAP_MAPPED: 1339 if (iomap.flags & IOMAP_F_NEW) { 1340 count_vm_event(PGMAJFAULT); 1341 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1342 major = VM_FAULT_MAJOR; 1343 } 1344 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1345 if (error < 0) 1346 goto error_finish_iomap; 1347 1348 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1349 0, write && !sync); 1350 1351 /* 1352 * If we are doing synchronous page fault and inode needs fsync, 1353 * we can insert PTE into page tables only after that happens. 1354 * Skip insertion for now and return the pfn so that caller can 1355 * insert it after fsync is done. 1356 */ 1357 if (sync) { 1358 if (WARN_ON_ONCE(!pfnp)) { 1359 error = -EIO; 1360 goto error_finish_iomap; 1361 } 1362 *pfnp = pfn; 1363 ret = VM_FAULT_NEEDDSYNC | major; 1364 goto finish_iomap; 1365 } 1366 trace_dax_insert_mapping(inode, vmf, entry); 1367 if (write) 1368 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1369 else 1370 ret = vmf_insert_mixed(vma, vaddr, pfn); 1371 1372 goto finish_iomap; 1373 case IOMAP_UNWRITTEN: 1374 case IOMAP_HOLE: 1375 if (!write) { 1376 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1377 goto finish_iomap; 1378 } 1379 /*FALLTHRU*/ 1380 default: 1381 WARN_ON_ONCE(1); 1382 error = -EIO; 1383 break; 1384 } 1385 1386 error_finish_iomap: 1387 ret = dax_fault_return(error); 1388 finish_iomap: 1389 if (ops->iomap_end) { 1390 int copied = PAGE_SIZE; 1391 1392 if (ret & VM_FAULT_ERROR) 1393 copied = 0; 1394 /* 1395 * The fault is done by now and there's no way back (other 1396 * thread may be already happily using PTE we have installed). 1397 * Just ignore error from ->iomap_end since we cannot do much 1398 * with it. 1399 */ 1400 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1401 } 1402 unlock_entry: 1403 dax_unlock_entry(&xas, entry); 1404 out: 1405 trace_dax_pte_fault_done(inode, vmf, ret); 1406 return ret | major; 1407 } 1408 1409 #ifdef CONFIG_FS_DAX_PMD 1410 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1411 struct iomap *iomap, void **entry) 1412 { 1413 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1414 unsigned long pmd_addr = vmf->address & PMD_MASK; 1415 struct vm_area_struct *vma = vmf->vma; 1416 struct inode *inode = mapping->host; 1417 pgtable_t pgtable = NULL; 1418 struct page *zero_page; 1419 spinlock_t *ptl; 1420 pmd_t pmd_entry; 1421 pfn_t pfn; 1422 1423 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1424 1425 if (unlikely(!zero_page)) 1426 goto fallback; 1427 1428 pfn = page_to_pfn_t(zero_page); 1429 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1430 DAX_PMD | DAX_ZERO_PAGE, false); 1431 1432 if (arch_needs_pgtable_deposit()) { 1433 pgtable = pte_alloc_one(vma->vm_mm); 1434 if (!pgtable) 1435 return VM_FAULT_OOM; 1436 } 1437 1438 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1439 if (!pmd_none(*(vmf->pmd))) { 1440 spin_unlock(ptl); 1441 goto fallback; 1442 } 1443 1444 if (pgtable) { 1445 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1446 mm_inc_nr_ptes(vma->vm_mm); 1447 } 1448 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1449 pmd_entry = pmd_mkhuge(pmd_entry); 1450 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1451 spin_unlock(ptl); 1452 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1453 return VM_FAULT_NOPAGE; 1454 1455 fallback: 1456 if (pgtable) 1457 pte_free(vma->vm_mm, pgtable); 1458 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1459 return VM_FAULT_FALLBACK; 1460 } 1461 1462 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1463 const struct iomap_ops *ops) 1464 { 1465 struct vm_area_struct *vma = vmf->vma; 1466 struct address_space *mapping = vma->vm_file->f_mapping; 1467 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1468 unsigned long pmd_addr = vmf->address & PMD_MASK; 1469 bool write = vmf->flags & FAULT_FLAG_WRITE; 1470 bool sync; 1471 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1472 struct inode *inode = mapping->host; 1473 vm_fault_t result = VM_FAULT_FALLBACK; 1474 struct iomap iomap = { 0 }; 1475 pgoff_t max_pgoff; 1476 void *entry; 1477 loff_t pos; 1478 int error; 1479 pfn_t pfn; 1480 1481 /* 1482 * Check whether offset isn't beyond end of file now. Caller is 1483 * supposed to hold locks serializing us with truncate / punch hole so 1484 * this is a reliable test. 1485 */ 1486 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1487 1488 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1489 1490 /* 1491 * Make sure that the faulting address's PMD offset (color) matches 1492 * the PMD offset from the start of the file. This is necessary so 1493 * that a PMD range in the page table overlaps exactly with a PMD 1494 * range in the page cache. 1495 */ 1496 if ((vmf->pgoff & PG_PMD_COLOUR) != 1497 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1498 goto fallback; 1499 1500 /* Fall back to PTEs if we're going to COW */ 1501 if (write && !(vma->vm_flags & VM_SHARED)) 1502 goto fallback; 1503 1504 /* If the PMD would extend outside the VMA */ 1505 if (pmd_addr < vma->vm_start) 1506 goto fallback; 1507 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1508 goto fallback; 1509 1510 if (xas.xa_index >= max_pgoff) { 1511 result = VM_FAULT_SIGBUS; 1512 goto out; 1513 } 1514 1515 /* If the PMD would extend beyond the file size */ 1516 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1517 goto fallback; 1518 1519 /* 1520 * grab_mapping_entry() will make sure we get an empty PMD entry, 1521 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1522 * entry is already in the array, for instance), it will return 1523 * VM_FAULT_FALLBACK. 1524 */ 1525 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1526 if (xa_is_internal(entry)) { 1527 result = xa_to_internal(entry); 1528 goto fallback; 1529 } 1530 1531 /* 1532 * It is possible, particularly with mixed reads & writes to private 1533 * mappings, that we have raced with a PTE fault that overlaps with 1534 * the PMD we need to set up. If so just return and the fault will be 1535 * retried. 1536 */ 1537 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1538 !pmd_devmap(*vmf->pmd)) { 1539 result = 0; 1540 goto unlock_entry; 1541 } 1542 1543 /* 1544 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1545 * setting up a mapping, so really we're using iomap_begin() as a way 1546 * to look up our filesystem block. 1547 */ 1548 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1549 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1550 if (error) 1551 goto unlock_entry; 1552 1553 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1554 goto finish_iomap; 1555 1556 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1557 1558 switch (iomap.type) { 1559 case IOMAP_MAPPED: 1560 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1561 if (error < 0) 1562 goto finish_iomap; 1563 1564 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1565 DAX_PMD, write && !sync); 1566 1567 /* 1568 * If we are doing synchronous page fault and inode needs fsync, 1569 * we can insert PMD into page tables only after that happens. 1570 * Skip insertion for now and return the pfn so that caller can 1571 * insert it after fsync is done. 1572 */ 1573 if (sync) { 1574 if (WARN_ON_ONCE(!pfnp)) 1575 goto finish_iomap; 1576 *pfnp = pfn; 1577 result = VM_FAULT_NEEDDSYNC; 1578 goto finish_iomap; 1579 } 1580 1581 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1582 result = vmf_insert_pfn_pmd(vmf, pfn, write); 1583 break; 1584 case IOMAP_UNWRITTEN: 1585 case IOMAP_HOLE: 1586 if (WARN_ON_ONCE(write)) 1587 break; 1588 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1589 break; 1590 default: 1591 WARN_ON_ONCE(1); 1592 break; 1593 } 1594 1595 finish_iomap: 1596 if (ops->iomap_end) { 1597 int copied = PMD_SIZE; 1598 1599 if (result == VM_FAULT_FALLBACK) 1600 copied = 0; 1601 /* 1602 * The fault is done by now and there's no way back (other 1603 * thread may be already happily using PMD we have installed). 1604 * Just ignore error from ->iomap_end since we cannot do much 1605 * with it. 1606 */ 1607 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1608 &iomap); 1609 } 1610 unlock_entry: 1611 dax_unlock_entry(&xas, entry); 1612 fallback: 1613 if (result == VM_FAULT_FALLBACK) { 1614 split_huge_pmd(vma, vmf->pmd, vmf->address); 1615 count_vm_event(THP_FAULT_FALLBACK); 1616 } 1617 out: 1618 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1619 return result; 1620 } 1621 #else 1622 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1623 const struct iomap_ops *ops) 1624 { 1625 return VM_FAULT_FALLBACK; 1626 } 1627 #endif /* CONFIG_FS_DAX_PMD */ 1628 1629 /** 1630 * dax_iomap_fault - handle a page fault on a DAX file 1631 * @vmf: The description of the fault 1632 * @pe_size: Size of the page to fault in 1633 * @pfnp: PFN to insert for synchronous faults if fsync is required 1634 * @iomap_errp: Storage for detailed error code in case of error 1635 * @ops: Iomap ops passed from the file system 1636 * 1637 * When a page fault occurs, filesystems may call this helper in 1638 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1639 * has done all the necessary locking for page fault to proceed 1640 * successfully. 1641 */ 1642 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1643 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1644 { 1645 switch (pe_size) { 1646 case PE_SIZE_PTE: 1647 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1648 case PE_SIZE_PMD: 1649 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1650 default: 1651 return VM_FAULT_FALLBACK; 1652 } 1653 } 1654 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1655 1656 /* 1657 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1658 * @vmf: The description of the fault 1659 * @pfn: PFN to insert 1660 * @order: Order of entry to insert. 1661 * 1662 * This function inserts a writeable PTE or PMD entry into the page tables 1663 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1664 */ 1665 static vm_fault_t 1666 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1667 { 1668 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1669 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1670 void *entry; 1671 vm_fault_t ret; 1672 1673 xas_lock_irq(&xas); 1674 entry = get_unlocked_entry(&xas, order); 1675 /* Did we race with someone splitting entry or so? */ 1676 if (!entry || dax_is_conflict(entry) || 1677 (order == 0 && !dax_is_pte_entry(entry))) { 1678 put_unlocked_entry(&xas, entry); 1679 xas_unlock_irq(&xas); 1680 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1681 VM_FAULT_NOPAGE); 1682 return VM_FAULT_NOPAGE; 1683 } 1684 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1685 dax_lock_entry(&xas, entry); 1686 xas_unlock_irq(&xas); 1687 if (order == 0) 1688 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1689 #ifdef CONFIG_FS_DAX_PMD 1690 else if (order == PMD_ORDER) 1691 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1692 #endif 1693 else 1694 ret = VM_FAULT_FALLBACK; 1695 dax_unlock_entry(&xas, entry); 1696 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1697 return ret; 1698 } 1699 1700 /** 1701 * dax_finish_sync_fault - finish synchronous page fault 1702 * @vmf: The description of the fault 1703 * @pe_size: Size of entry to be inserted 1704 * @pfn: PFN to insert 1705 * 1706 * This function ensures that the file range touched by the page fault is 1707 * stored persistently on the media and handles inserting of appropriate page 1708 * table entry. 1709 */ 1710 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1711 enum page_entry_size pe_size, pfn_t pfn) 1712 { 1713 int err; 1714 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1715 unsigned int order = pe_order(pe_size); 1716 size_t len = PAGE_SIZE << order; 1717 1718 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1719 if (err) 1720 return VM_FAULT_SIGBUS; 1721 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1722 } 1723 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1724