xref: /openbmc/linux/fs/dax.c (revision 568b9de4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 		void *entry, struct exceptional_entry_key *key)
149 {
150 	unsigned long hash;
151 	unsigned long index = xas->xa_index;
152 
153 	/*
154 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 	 * queue to the start of that PMD.  This ensures that all offsets in
156 	 * the range covered by the PMD map to the same bit lock.
157 	 */
158 	if (dax_is_pmd_entry(entry))
159 		index &= ~PG_PMD_COLOUR;
160 	key->xa = xas->xa;
161 	key->entry_start = index;
162 
163 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 	return wait_table + hash;
165 }
166 
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 		unsigned int mode, int sync, void *keyp)
169 {
170 	struct exceptional_entry_key *key = keyp;
171 	struct wait_exceptional_entry_queue *ewait =
172 		container_of(wait, struct wait_exceptional_entry_queue, wait);
173 
174 	if (key->xa != ewait->key.xa ||
175 	    key->entry_start != ewait->key.entry_start)
176 		return 0;
177 	return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179 
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 	struct exceptional_entry_key key;
188 	wait_queue_head_t *wq;
189 
190 	wq = dax_entry_waitqueue(xas, entry, &key);
191 
192 	/*
193 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 	 * under the i_pages lock, ditto for entry handling in our callers.
195 	 * So at this point all tasks that could have seen our entry locked
196 	 * must be in the waitqueue and the following check will see them.
197 	 */
198 	if (waitqueue_active(wq))
199 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201 
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214 	void *entry;
215 	struct wait_exceptional_entry_queue ewait;
216 	wait_queue_head_t *wq;
217 
218 	init_wait(&ewait.wait);
219 	ewait.wait.func = wake_exceptional_entry_func;
220 
221 	for (;;) {
222 		entry = xas_find_conflict(xas);
223 		if (dax_entry_order(entry) < order)
224 			return XA_RETRY_ENTRY;
225 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
226 				!dax_is_locked(entry))
227 			return entry;
228 
229 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
230 		prepare_to_wait_exclusive(wq, &ewait.wait,
231 					  TASK_UNINTERRUPTIBLE);
232 		xas_unlock_irq(xas);
233 		xas_reset(xas);
234 		schedule();
235 		finish_wait(wq, &ewait.wait);
236 		xas_lock_irq(xas);
237 	}
238 }
239 
240 /*
241  * The only thing keeping the address space around is the i_pages lock
242  * (it's cycled in clear_inode() after removing the entries from i_pages)
243  * After we call xas_unlock_irq(), we cannot touch xas->xa.
244  */
245 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
246 {
247 	struct wait_exceptional_entry_queue ewait;
248 	wait_queue_head_t *wq;
249 
250 	init_wait(&ewait.wait);
251 	ewait.wait.func = wake_exceptional_entry_func;
252 
253 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
254 	/*
255 	 * Unlike get_unlocked_entry() there is no guarantee that this
256 	 * path ever successfully retrieves an unlocked entry before an
257 	 * inode dies. Perform a non-exclusive wait in case this path
258 	 * never successfully performs its own wake up.
259 	 */
260 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
261 	xas_unlock_irq(xas);
262 	schedule();
263 	finish_wait(wq, &ewait.wait);
264 }
265 
266 static void put_unlocked_entry(struct xa_state *xas, void *entry)
267 {
268 	/* If we were the only waiter woken, wake the next one */
269 	if (entry && dax_is_conflict(entry))
270 		dax_wake_entry(xas, entry, false);
271 }
272 
273 /*
274  * We used the xa_state to get the entry, but then we locked the entry and
275  * dropped the xa_lock, so we know the xa_state is stale and must be reset
276  * before use.
277  */
278 static void dax_unlock_entry(struct xa_state *xas, void *entry)
279 {
280 	void *old;
281 
282 	BUG_ON(dax_is_locked(entry));
283 	xas_reset(xas);
284 	xas_lock_irq(xas);
285 	old = xas_store(xas, entry);
286 	xas_unlock_irq(xas);
287 	BUG_ON(!dax_is_locked(old));
288 	dax_wake_entry(xas, entry, false);
289 }
290 
291 /*
292  * Return: The entry stored at this location before it was locked.
293  */
294 static void *dax_lock_entry(struct xa_state *xas, void *entry)
295 {
296 	unsigned long v = xa_to_value(entry);
297 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
298 }
299 
300 static unsigned long dax_entry_size(void *entry)
301 {
302 	if (dax_is_zero_entry(entry))
303 		return 0;
304 	else if (dax_is_empty_entry(entry))
305 		return 0;
306 	else if (dax_is_pmd_entry(entry))
307 		return PMD_SIZE;
308 	else
309 		return PAGE_SIZE;
310 }
311 
312 static unsigned long dax_end_pfn(void *entry)
313 {
314 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
315 }
316 
317 /*
318  * Iterate through all mapped pfns represented by an entry, i.e. skip
319  * 'empty' and 'zero' entries.
320  */
321 #define for_each_mapped_pfn(entry, pfn) \
322 	for (pfn = dax_to_pfn(entry); \
323 			pfn < dax_end_pfn(entry); pfn++)
324 
325 /*
326  * TODO: for reflink+dax we need a way to associate a single page with
327  * multiple address_space instances at different linear_page_index()
328  * offsets.
329  */
330 static void dax_associate_entry(void *entry, struct address_space *mapping,
331 		struct vm_area_struct *vma, unsigned long address)
332 {
333 	unsigned long size = dax_entry_size(entry), pfn, index;
334 	int i = 0;
335 
336 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
337 		return;
338 
339 	index = linear_page_index(vma, address & ~(size - 1));
340 	for_each_mapped_pfn(entry, pfn) {
341 		struct page *page = pfn_to_page(pfn);
342 
343 		WARN_ON_ONCE(page->mapping);
344 		page->mapping = mapping;
345 		page->index = index + i++;
346 	}
347 }
348 
349 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
350 		bool trunc)
351 {
352 	unsigned long pfn;
353 
354 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
355 		return;
356 
357 	for_each_mapped_pfn(entry, pfn) {
358 		struct page *page = pfn_to_page(pfn);
359 
360 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
361 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
362 		page->mapping = NULL;
363 		page->index = 0;
364 	}
365 }
366 
367 static struct page *dax_busy_page(void *entry)
368 {
369 	unsigned long pfn;
370 
371 	for_each_mapped_pfn(entry, pfn) {
372 		struct page *page = pfn_to_page(pfn);
373 
374 		if (page_ref_count(page) > 1)
375 			return page;
376 	}
377 	return NULL;
378 }
379 
380 /*
381  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
382  * @page: The page whose entry we want to lock
383  *
384  * Context: Process context.
385  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
386  * not be locked.
387  */
388 dax_entry_t dax_lock_page(struct page *page)
389 {
390 	XA_STATE(xas, NULL, 0);
391 	void *entry;
392 
393 	/* Ensure page->mapping isn't freed while we look at it */
394 	rcu_read_lock();
395 	for (;;) {
396 		struct address_space *mapping = READ_ONCE(page->mapping);
397 
398 		entry = NULL;
399 		if (!mapping || !dax_mapping(mapping))
400 			break;
401 
402 		/*
403 		 * In the device-dax case there's no need to lock, a
404 		 * struct dev_pagemap pin is sufficient to keep the
405 		 * inode alive, and we assume we have dev_pagemap pin
406 		 * otherwise we would not have a valid pfn_to_page()
407 		 * translation.
408 		 */
409 		entry = (void *)~0UL;
410 		if (S_ISCHR(mapping->host->i_mode))
411 			break;
412 
413 		xas.xa = &mapping->i_pages;
414 		xas_lock_irq(&xas);
415 		if (mapping != page->mapping) {
416 			xas_unlock_irq(&xas);
417 			continue;
418 		}
419 		xas_set(&xas, page->index);
420 		entry = xas_load(&xas);
421 		if (dax_is_locked(entry)) {
422 			rcu_read_unlock();
423 			wait_entry_unlocked(&xas, entry);
424 			rcu_read_lock();
425 			continue;
426 		}
427 		dax_lock_entry(&xas, entry);
428 		xas_unlock_irq(&xas);
429 		break;
430 	}
431 	rcu_read_unlock();
432 	return (dax_entry_t)entry;
433 }
434 
435 void dax_unlock_page(struct page *page, dax_entry_t cookie)
436 {
437 	struct address_space *mapping = page->mapping;
438 	XA_STATE(xas, &mapping->i_pages, page->index);
439 
440 	if (S_ISCHR(mapping->host->i_mode))
441 		return;
442 
443 	dax_unlock_entry(&xas, (void *)cookie);
444 }
445 
446 /*
447  * Find page cache entry at given index. If it is a DAX entry, return it
448  * with the entry locked. If the page cache doesn't contain an entry at
449  * that index, add a locked empty entry.
450  *
451  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
452  * either return that locked entry or will return VM_FAULT_FALLBACK.
453  * This will happen if there are any PTE entries within the PMD range
454  * that we are requesting.
455  *
456  * We always favor PTE entries over PMD entries. There isn't a flow where we
457  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
458  * insertion will fail if it finds any PTE entries already in the tree, and a
459  * PTE insertion will cause an existing PMD entry to be unmapped and
460  * downgraded to PTE entries.  This happens for both PMD zero pages as
461  * well as PMD empty entries.
462  *
463  * The exception to this downgrade path is for PMD entries that have
464  * real storage backing them.  We will leave these real PMD entries in
465  * the tree, and PTE writes will simply dirty the entire PMD entry.
466  *
467  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
468  * persistent memory the benefit is doubtful. We can add that later if we can
469  * show it helps.
470  *
471  * On error, this function does not return an ERR_PTR.  Instead it returns
472  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
473  * overlap with xarray value entries.
474  */
475 static void *grab_mapping_entry(struct xa_state *xas,
476 		struct address_space *mapping, unsigned int order)
477 {
478 	unsigned long index = xas->xa_index;
479 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
480 	void *entry;
481 
482 retry:
483 	xas_lock_irq(xas);
484 	entry = get_unlocked_entry(xas, order);
485 
486 	if (entry) {
487 		if (dax_is_conflict(entry))
488 			goto fallback;
489 		if (!xa_is_value(entry)) {
490 			xas_set_err(xas, EIO);
491 			goto out_unlock;
492 		}
493 
494 		if (order == 0) {
495 			if (dax_is_pmd_entry(entry) &&
496 			    (dax_is_zero_entry(entry) ||
497 			     dax_is_empty_entry(entry))) {
498 				pmd_downgrade = true;
499 			}
500 		}
501 	}
502 
503 	if (pmd_downgrade) {
504 		/*
505 		 * Make sure 'entry' remains valid while we drop
506 		 * the i_pages lock.
507 		 */
508 		dax_lock_entry(xas, entry);
509 
510 		/*
511 		 * Besides huge zero pages the only other thing that gets
512 		 * downgraded are empty entries which don't need to be
513 		 * unmapped.
514 		 */
515 		if (dax_is_zero_entry(entry)) {
516 			xas_unlock_irq(xas);
517 			unmap_mapping_pages(mapping,
518 					xas->xa_index & ~PG_PMD_COLOUR,
519 					PG_PMD_NR, false);
520 			xas_reset(xas);
521 			xas_lock_irq(xas);
522 		}
523 
524 		dax_disassociate_entry(entry, mapping, false);
525 		xas_store(xas, NULL);	/* undo the PMD join */
526 		dax_wake_entry(xas, entry, true);
527 		mapping->nrexceptional--;
528 		entry = NULL;
529 		xas_set(xas, index);
530 	}
531 
532 	if (entry) {
533 		dax_lock_entry(xas, entry);
534 	} else {
535 		unsigned long flags = DAX_EMPTY;
536 
537 		if (order > 0)
538 			flags |= DAX_PMD;
539 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
540 		dax_lock_entry(xas, entry);
541 		if (xas_error(xas))
542 			goto out_unlock;
543 		mapping->nrexceptional++;
544 	}
545 
546 out_unlock:
547 	xas_unlock_irq(xas);
548 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
549 		goto retry;
550 	if (xas->xa_node == XA_ERROR(-ENOMEM))
551 		return xa_mk_internal(VM_FAULT_OOM);
552 	if (xas_error(xas))
553 		return xa_mk_internal(VM_FAULT_SIGBUS);
554 	return entry;
555 fallback:
556 	xas_unlock_irq(xas);
557 	return xa_mk_internal(VM_FAULT_FALLBACK);
558 }
559 
560 /**
561  * dax_layout_busy_page - find first pinned page in @mapping
562  * @mapping: address space to scan for a page with ref count > 1
563  *
564  * DAX requires ZONE_DEVICE mapped pages. These pages are never
565  * 'onlined' to the page allocator so they are considered idle when
566  * page->count == 1. A filesystem uses this interface to determine if
567  * any page in the mapping is busy, i.e. for DMA, or other
568  * get_user_pages() usages.
569  *
570  * It is expected that the filesystem is holding locks to block the
571  * establishment of new mappings in this address_space. I.e. it expects
572  * to be able to run unmap_mapping_range() and subsequently not race
573  * mapping_mapped() becoming true.
574  */
575 struct page *dax_layout_busy_page(struct address_space *mapping)
576 {
577 	XA_STATE(xas, &mapping->i_pages, 0);
578 	void *entry;
579 	unsigned int scanned = 0;
580 	struct page *page = NULL;
581 
582 	/*
583 	 * In the 'limited' case get_user_pages() for dax is disabled.
584 	 */
585 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
586 		return NULL;
587 
588 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
589 		return NULL;
590 
591 	/*
592 	 * If we race get_user_pages_fast() here either we'll see the
593 	 * elevated page count in the iteration and wait, or
594 	 * get_user_pages_fast() will see that the page it took a reference
595 	 * against is no longer mapped in the page tables and bail to the
596 	 * get_user_pages() slow path.  The slow path is protected by
597 	 * pte_lock() and pmd_lock(). New references are not taken without
598 	 * holding those locks, and unmap_mapping_range() will not zero the
599 	 * pte or pmd without holding the respective lock, so we are
600 	 * guaranteed to either see new references or prevent new
601 	 * references from being established.
602 	 */
603 	unmap_mapping_range(mapping, 0, 0, 1);
604 
605 	xas_lock_irq(&xas);
606 	xas_for_each(&xas, entry, ULONG_MAX) {
607 		if (WARN_ON_ONCE(!xa_is_value(entry)))
608 			continue;
609 		if (unlikely(dax_is_locked(entry)))
610 			entry = get_unlocked_entry(&xas, 0);
611 		if (entry)
612 			page = dax_busy_page(entry);
613 		put_unlocked_entry(&xas, entry);
614 		if (page)
615 			break;
616 		if (++scanned % XA_CHECK_SCHED)
617 			continue;
618 
619 		xas_pause(&xas);
620 		xas_unlock_irq(&xas);
621 		cond_resched();
622 		xas_lock_irq(&xas);
623 	}
624 	xas_unlock_irq(&xas);
625 	return page;
626 }
627 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
628 
629 static int __dax_invalidate_entry(struct address_space *mapping,
630 					  pgoff_t index, bool trunc)
631 {
632 	XA_STATE(xas, &mapping->i_pages, index);
633 	int ret = 0;
634 	void *entry;
635 
636 	xas_lock_irq(&xas);
637 	entry = get_unlocked_entry(&xas, 0);
638 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
639 		goto out;
640 	if (!trunc &&
641 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
642 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
643 		goto out;
644 	dax_disassociate_entry(entry, mapping, trunc);
645 	xas_store(&xas, NULL);
646 	mapping->nrexceptional--;
647 	ret = 1;
648 out:
649 	put_unlocked_entry(&xas, entry);
650 	xas_unlock_irq(&xas);
651 	return ret;
652 }
653 
654 /*
655  * Delete DAX entry at @index from @mapping.  Wait for it
656  * to be unlocked before deleting it.
657  */
658 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
659 {
660 	int ret = __dax_invalidate_entry(mapping, index, true);
661 
662 	/*
663 	 * This gets called from truncate / punch_hole path. As such, the caller
664 	 * must hold locks protecting against concurrent modifications of the
665 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
666 	 * caller has seen a DAX entry for this index, we better find it
667 	 * at that index as well...
668 	 */
669 	WARN_ON_ONCE(!ret);
670 	return ret;
671 }
672 
673 /*
674  * Invalidate DAX entry if it is clean.
675  */
676 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
677 				      pgoff_t index)
678 {
679 	return __dax_invalidate_entry(mapping, index, false);
680 }
681 
682 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
683 		sector_t sector, size_t size, struct page *to,
684 		unsigned long vaddr)
685 {
686 	void *vto, *kaddr;
687 	pgoff_t pgoff;
688 	long rc;
689 	int id;
690 
691 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
692 	if (rc)
693 		return rc;
694 
695 	id = dax_read_lock();
696 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
697 	if (rc < 0) {
698 		dax_read_unlock(id);
699 		return rc;
700 	}
701 	vto = kmap_atomic(to);
702 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
703 	kunmap_atomic(vto);
704 	dax_read_unlock(id);
705 	return 0;
706 }
707 
708 /*
709  * By this point grab_mapping_entry() has ensured that we have a locked entry
710  * of the appropriate size so we don't have to worry about downgrading PMDs to
711  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
712  * already in the tree, we will skip the insertion and just dirty the PMD as
713  * appropriate.
714  */
715 static void *dax_insert_entry(struct xa_state *xas,
716 		struct address_space *mapping, struct vm_fault *vmf,
717 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
718 {
719 	void *new_entry = dax_make_entry(pfn, flags);
720 
721 	if (dirty)
722 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723 
724 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
725 		unsigned long index = xas->xa_index;
726 		/* we are replacing a zero page with block mapping */
727 		if (dax_is_pmd_entry(entry))
728 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
729 					PG_PMD_NR, false);
730 		else /* pte entry */
731 			unmap_mapping_pages(mapping, index, 1, false);
732 	}
733 
734 	xas_reset(xas);
735 	xas_lock_irq(xas);
736 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737 		void *old;
738 
739 		dax_disassociate_entry(entry, mapping, false);
740 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
741 		/*
742 		 * Only swap our new entry into the page cache if the current
743 		 * entry is a zero page or an empty entry.  If a normal PTE or
744 		 * PMD entry is already in the cache, we leave it alone.  This
745 		 * means that if we are trying to insert a PTE and the
746 		 * existing entry is a PMD, we will just leave the PMD in the
747 		 * tree and dirty it if necessary.
748 		 */
749 		old = dax_lock_entry(xas, new_entry);
750 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751 					DAX_LOCKED));
752 		entry = new_entry;
753 	} else {
754 		xas_load(xas);	/* Walk the xa_state */
755 	}
756 
757 	if (dirty)
758 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
759 
760 	xas_unlock_irq(xas);
761 	return entry;
762 }
763 
764 static inline
765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
766 {
767 	unsigned long address;
768 
769 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771 	return address;
772 }
773 
774 /* Walk all mappings of a given index of a file and writeprotect them */
775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776 		unsigned long pfn)
777 {
778 	struct vm_area_struct *vma;
779 	pte_t pte, *ptep = NULL;
780 	pmd_t *pmdp = NULL;
781 	spinlock_t *ptl;
782 
783 	i_mmap_lock_read(mapping);
784 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
785 		struct mmu_notifier_range range;
786 		unsigned long address;
787 
788 		cond_resched();
789 
790 		if (!(vma->vm_flags & VM_SHARED))
791 			continue;
792 
793 		address = pgoff_address(index, vma);
794 
795 		/*
796 		 * Note because we provide range to follow_pte_pmd it will
797 		 * call mmu_notifier_invalidate_range_start() on our behalf
798 		 * before taking any lock.
799 		 */
800 		if (follow_pte_pmd(vma->vm_mm, address, &range,
801 				   &ptep, &pmdp, &ptl))
802 			continue;
803 
804 		/*
805 		 * No need to call mmu_notifier_invalidate_range() as we are
806 		 * downgrading page table protection not changing it to point
807 		 * to a new page.
808 		 *
809 		 * See Documentation/vm/mmu_notifier.rst
810 		 */
811 		if (pmdp) {
812 #ifdef CONFIG_FS_DAX_PMD
813 			pmd_t pmd;
814 
815 			if (pfn != pmd_pfn(*pmdp))
816 				goto unlock_pmd;
817 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
818 				goto unlock_pmd;
819 
820 			flush_cache_page(vma, address, pfn);
821 			pmd = pmdp_invalidate(vma, address, pmdp);
822 			pmd = pmd_wrprotect(pmd);
823 			pmd = pmd_mkclean(pmd);
824 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825 unlock_pmd:
826 #endif
827 			spin_unlock(ptl);
828 		} else {
829 			if (pfn != pte_pfn(*ptep))
830 				goto unlock_pte;
831 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
832 				goto unlock_pte;
833 
834 			flush_cache_page(vma, address, pfn);
835 			pte = ptep_clear_flush(vma, address, ptep);
836 			pte = pte_wrprotect(pte);
837 			pte = pte_mkclean(pte);
838 			set_pte_at(vma->vm_mm, address, ptep, pte);
839 unlock_pte:
840 			pte_unmap_unlock(ptep, ptl);
841 		}
842 
843 		mmu_notifier_invalidate_range_end(&range);
844 	}
845 	i_mmap_unlock_read(mapping);
846 }
847 
848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849 		struct address_space *mapping, void *entry)
850 {
851 	unsigned long pfn, index, count;
852 	long ret = 0;
853 
854 	/*
855 	 * A page got tagged dirty in DAX mapping? Something is seriously
856 	 * wrong.
857 	 */
858 	if (WARN_ON(!xa_is_value(entry)))
859 		return -EIO;
860 
861 	if (unlikely(dax_is_locked(entry))) {
862 		void *old_entry = entry;
863 
864 		entry = get_unlocked_entry(xas, 0);
865 
866 		/* Entry got punched out / reallocated? */
867 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868 			goto put_unlocked;
869 		/*
870 		 * Entry got reallocated elsewhere? No need to writeback.
871 		 * We have to compare pfns as we must not bail out due to
872 		 * difference in lockbit or entry type.
873 		 */
874 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875 			goto put_unlocked;
876 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877 					dax_is_zero_entry(entry))) {
878 			ret = -EIO;
879 			goto put_unlocked;
880 		}
881 
882 		/* Another fsync thread may have already done this entry */
883 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884 			goto put_unlocked;
885 	}
886 
887 	/* Lock the entry to serialize with page faults */
888 	dax_lock_entry(xas, entry);
889 
890 	/*
891 	 * We can clear the tag now but we have to be careful so that concurrent
892 	 * dax_writeback_one() calls for the same index cannot finish before we
893 	 * actually flush the caches. This is achieved as the calls will look
894 	 * at the entry only under the i_pages lock and once they do that
895 	 * they will see the entry locked and wait for it to unlock.
896 	 */
897 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898 	xas_unlock_irq(xas);
899 
900 	/*
901 	 * If dax_writeback_mapping_range() was given a wbc->range_start
902 	 * in the middle of a PMD, the 'index' we use needs to be
903 	 * aligned to the start of the PMD.
904 	 * This allows us to flush for PMD_SIZE and not have to worry about
905 	 * partial PMD writebacks.
906 	 */
907 	pfn = dax_to_pfn(entry);
908 	count = 1UL << dax_entry_order(entry);
909 	index = xas->xa_index & ~(count - 1);
910 
911 	dax_entry_mkclean(mapping, index, pfn);
912 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
913 	/*
914 	 * After we have flushed the cache, we can clear the dirty tag. There
915 	 * cannot be new dirty data in the pfn after the flush has completed as
916 	 * the pfn mappings are writeprotected and fault waits for mapping
917 	 * entry lock.
918 	 */
919 	xas_reset(xas);
920 	xas_lock_irq(xas);
921 	xas_store(xas, entry);
922 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923 	dax_wake_entry(xas, entry, false);
924 
925 	trace_dax_writeback_one(mapping->host, index, count);
926 	return ret;
927 
928  put_unlocked:
929 	put_unlocked_entry(xas, entry);
930 	return ret;
931 }
932 
933 /*
934  * Flush the mapping to the persistent domain within the byte range of [start,
935  * end]. This is required by data integrity operations to ensure file data is
936  * on persistent storage prior to completion of the operation.
937  */
938 int dax_writeback_mapping_range(struct address_space *mapping,
939 		struct block_device *bdev, struct writeback_control *wbc)
940 {
941 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
942 	struct inode *inode = mapping->host;
943 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
944 	struct dax_device *dax_dev;
945 	void *entry;
946 	int ret = 0;
947 	unsigned int scanned = 0;
948 
949 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
950 		return -EIO;
951 
952 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
953 		return 0;
954 
955 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
956 	if (!dax_dev)
957 		return -EIO;
958 
959 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
960 
961 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
962 
963 	xas_lock_irq(&xas);
964 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
965 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
966 		if (ret < 0) {
967 			mapping_set_error(mapping, ret);
968 			break;
969 		}
970 		if (++scanned % XA_CHECK_SCHED)
971 			continue;
972 
973 		xas_pause(&xas);
974 		xas_unlock_irq(&xas);
975 		cond_resched();
976 		xas_lock_irq(&xas);
977 	}
978 	xas_unlock_irq(&xas);
979 	put_dax(dax_dev);
980 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
981 	return ret;
982 }
983 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
984 
985 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
986 {
987 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
988 }
989 
990 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
991 			 pfn_t *pfnp)
992 {
993 	const sector_t sector = dax_iomap_sector(iomap, pos);
994 	pgoff_t pgoff;
995 	int id, rc;
996 	long length;
997 
998 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
999 	if (rc)
1000 		return rc;
1001 	id = dax_read_lock();
1002 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1003 				   NULL, pfnp);
1004 	if (length < 0) {
1005 		rc = length;
1006 		goto out;
1007 	}
1008 	rc = -EINVAL;
1009 	if (PFN_PHYS(length) < size)
1010 		goto out;
1011 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1012 		goto out;
1013 	/* For larger pages we need devmap */
1014 	if (length > 1 && !pfn_t_devmap(*pfnp))
1015 		goto out;
1016 	rc = 0;
1017 out:
1018 	dax_read_unlock(id);
1019 	return rc;
1020 }
1021 
1022 /*
1023  * The user has performed a load from a hole in the file.  Allocating a new
1024  * page in the file would cause excessive storage usage for workloads with
1025  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1026  * If this page is ever written to we will re-fault and change the mapping to
1027  * point to real DAX storage instead.
1028  */
1029 static vm_fault_t dax_load_hole(struct xa_state *xas,
1030 		struct address_space *mapping, void **entry,
1031 		struct vm_fault *vmf)
1032 {
1033 	struct inode *inode = mapping->host;
1034 	unsigned long vaddr = vmf->address;
1035 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1036 	vm_fault_t ret;
1037 
1038 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1039 			DAX_ZERO_PAGE, false);
1040 
1041 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1042 	trace_dax_load_hole(inode, vmf, ret);
1043 	return ret;
1044 }
1045 
1046 static bool dax_range_is_aligned(struct block_device *bdev,
1047 				 unsigned int offset, unsigned int length)
1048 {
1049 	unsigned short sector_size = bdev_logical_block_size(bdev);
1050 
1051 	if (!IS_ALIGNED(offset, sector_size))
1052 		return false;
1053 	if (!IS_ALIGNED(length, sector_size))
1054 		return false;
1055 
1056 	return true;
1057 }
1058 
1059 int __dax_zero_page_range(struct block_device *bdev,
1060 		struct dax_device *dax_dev, sector_t sector,
1061 		unsigned int offset, unsigned int size)
1062 {
1063 	if (dax_range_is_aligned(bdev, offset, size)) {
1064 		sector_t start_sector = sector + (offset >> 9);
1065 
1066 		return blkdev_issue_zeroout(bdev, start_sector,
1067 				size >> 9, GFP_NOFS, 0);
1068 	} else {
1069 		pgoff_t pgoff;
1070 		long rc, id;
1071 		void *kaddr;
1072 
1073 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1074 		if (rc)
1075 			return rc;
1076 
1077 		id = dax_read_lock();
1078 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1079 		if (rc < 0) {
1080 			dax_read_unlock(id);
1081 			return rc;
1082 		}
1083 		memset(kaddr + offset, 0, size);
1084 		dax_flush(dax_dev, kaddr + offset, size);
1085 		dax_read_unlock(id);
1086 	}
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1090 
1091 static loff_t
1092 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1093 		struct iomap *iomap)
1094 {
1095 	struct block_device *bdev = iomap->bdev;
1096 	struct dax_device *dax_dev = iomap->dax_dev;
1097 	struct iov_iter *iter = data;
1098 	loff_t end = pos + length, done = 0;
1099 	ssize_t ret = 0;
1100 	size_t xfer;
1101 	int id;
1102 
1103 	if (iov_iter_rw(iter) == READ) {
1104 		end = min(end, i_size_read(inode));
1105 		if (pos >= end)
1106 			return 0;
1107 
1108 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1109 			return iov_iter_zero(min(length, end - pos), iter);
1110 	}
1111 
1112 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1113 		return -EIO;
1114 
1115 	/*
1116 	 * Write can allocate block for an area which has a hole page mapped
1117 	 * into page tables. We have to tear down these mappings so that data
1118 	 * written by write(2) is visible in mmap.
1119 	 */
1120 	if (iomap->flags & IOMAP_F_NEW) {
1121 		invalidate_inode_pages2_range(inode->i_mapping,
1122 					      pos >> PAGE_SHIFT,
1123 					      (end - 1) >> PAGE_SHIFT);
1124 	}
1125 
1126 	id = dax_read_lock();
1127 	while (pos < end) {
1128 		unsigned offset = pos & (PAGE_SIZE - 1);
1129 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1130 		const sector_t sector = dax_iomap_sector(iomap, pos);
1131 		ssize_t map_len;
1132 		pgoff_t pgoff;
1133 		void *kaddr;
1134 
1135 		if (fatal_signal_pending(current)) {
1136 			ret = -EINTR;
1137 			break;
1138 		}
1139 
1140 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1141 		if (ret)
1142 			break;
1143 
1144 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1145 				&kaddr, NULL);
1146 		if (map_len < 0) {
1147 			ret = map_len;
1148 			break;
1149 		}
1150 
1151 		map_len = PFN_PHYS(map_len);
1152 		kaddr += offset;
1153 		map_len -= offset;
1154 		if (map_len > end - pos)
1155 			map_len = end - pos;
1156 
1157 		/*
1158 		 * The userspace address for the memory copy has already been
1159 		 * validated via access_ok() in either vfs_read() or
1160 		 * vfs_write(), depending on which operation we are doing.
1161 		 */
1162 		if (iov_iter_rw(iter) == WRITE)
1163 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1164 					map_len, iter);
1165 		else
1166 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1167 					map_len, iter);
1168 
1169 		pos += xfer;
1170 		length -= xfer;
1171 		done += xfer;
1172 
1173 		if (xfer == 0)
1174 			ret = -EFAULT;
1175 		if (xfer < map_len)
1176 			break;
1177 	}
1178 	dax_read_unlock(id);
1179 
1180 	return done ? done : ret;
1181 }
1182 
1183 /**
1184  * dax_iomap_rw - Perform I/O to a DAX file
1185  * @iocb:	The control block for this I/O
1186  * @iter:	The addresses to do I/O from or to
1187  * @ops:	iomap ops passed from the file system
1188  *
1189  * This function performs read and write operations to directly mapped
1190  * persistent memory.  The callers needs to take care of read/write exclusion
1191  * and evicting any page cache pages in the region under I/O.
1192  */
1193 ssize_t
1194 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1195 		const struct iomap_ops *ops)
1196 {
1197 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1198 	struct inode *inode = mapping->host;
1199 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1200 	unsigned flags = 0;
1201 
1202 	if (iov_iter_rw(iter) == WRITE) {
1203 		lockdep_assert_held_write(&inode->i_rwsem);
1204 		flags |= IOMAP_WRITE;
1205 	} else {
1206 		lockdep_assert_held(&inode->i_rwsem);
1207 	}
1208 
1209 	while (iov_iter_count(iter)) {
1210 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1211 				iter, dax_iomap_actor);
1212 		if (ret <= 0)
1213 			break;
1214 		pos += ret;
1215 		done += ret;
1216 	}
1217 
1218 	iocb->ki_pos += done;
1219 	return done ? done : ret;
1220 }
1221 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1222 
1223 static vm_fault_t dax_fault_return(int error)
1224 {
1225 	if (error == 0)
1226 		return VM_FAULT_NOPAGE;
1227 	return vmf_error(error);
1228 }
1229 
1230 /*
1231  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232  * flushed on write-faults (non-cow), but not read-faults.
1233  */
1234 static bool dax_fault_is_synchronous(unsigned long flags,
1235 		struct vm_area_struct *vma, struct iomap *iomap)
1236 {
1237 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238 		&& (iomap->flags & IOMAP_F_DIRTY);
1239 }
1240 
1241 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1242 			       int *iomap_errp, const struct iomap_ops *ops)
1243 {
1244 	struct vm_area_struct *vma = vmf->vma;
1245 	struct address_space *mapping = vma->vm_file->f_mapping;
1246 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1247 	struct inode *inode = mapping->host;
1248 	unsigned long vaddr = vmf->address;
1249 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1250 	struct iomap iomap = { 0 };
1251 	unsigned flags = IOMAP_FAULT;
1252 	int error, major = 0;
1253 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1254 	bool sync;
1255 	vm_fault_t ret = 0;
1256 	void *entry;
1257 	pfn_t pfn;
1258 
1259 	trace_dax_pte_fault(inode, vmf, ret);
1260 	/*
1261 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1262 	 * to hold locks serializing us with truncate / punch hole so this is
1263 	 * a reliable test.
1264 	 */
1265 	if (pos >= i_size_read(inode)) {
1266 		ret = VM_FAULT_SIGBUS;
1267 		goto out;
1268 	}
1269 
1270 	if (write && !vmf->cow_page)
1271 		flags |= IOMAP_WRITE;
1272 
1273 	entry = grab_mapping_entry(&xas, mapping, 0);
1274 	if (xa_is_internal(entry)) {
1275 		ret = xa_to_internal(entry);
1276 		goto out;
1277 	}
1278 
1279 	/*
1280 	 * It is possible, particularly with mixed reads & writes to private
1281 	 * mappings, that we have raced with a PMD fault that overlaps with
1282 	 * the PTE we need to set up.  If so just return and the fault will be
1283 	 * retried.
1284 	 */
1285 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1286 		ret = VM_FAULT_NOPAGE;
1287 		goto unlock_entry;
1288 	}
1289 
1290 	/*
1291 	 * Note that we don't bother to use iomap_apply here: DAX required
1292 	 * the file system block size to be equal the page size, which means
1293 	 * that we never have to deal with more than a single extent here.
1294 	 */
1295 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1296 	if (iomap_errp)
1297 		*iomap_errp = error;
1298 	if (error) {
1299 		ret = dax_fault_return(error);
1300 		goto unlock_entry;
1301 	}
1302 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1303 		error = -EIO;	/* fs corruption? */
1304 		goto error_finish_iomap;
1305 	}
1306 
1307 	if (vmf->cow_page) {
1308 		sector_t sector = dax_iomap_sector(&iomap, pos);
1309 
1310 		switch (iomap.type) {
1311 		case IOMAP_HOLE:
1312 		case IOMAP_UNWRITTEN:
1313 			clear_user_highpage(vmf->cow_page, vaddr);
1314 			break;
1315 		case IOMAP_MAPPED:
1316 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1318 			break;
1319 		default:
1320 			WARN_ON_ONCE(1);
1321 			error = -EIO;
1322 			break;
1323 		}
1324 
1325 		if (error)
1326 			goto error_finish_iomap;
1327 
1328 		__SetPageUptodate(vmf->cow_page);
1329 		ret = finish_fault(vmf);
1330 		if (!ret)
1331 			ret = VM_FAULT_DONE_COW;
1332 		goto finish_iomap;
1333 	}
1334 
1335 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1336 
1337 	switch (iomap.type) {
1338 	case IOMAP_MAPPED:
1339 		if (iomap.flags & IOMAP_F_NEW) {
1340 			count_vm_event(PGMAJFAULT);
1341 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1342 			major = VM_FAULT_MAJOR;
1343 		}
1344 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345 		if (error < 0)
1346 			goto error_finish_iomap;
1347 
1348 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1349 						 0, write && !sync);
1350 
1351 		/*
1352 		 * If we are doing synchronous page fault and inode needs fsync,
1353 		 * we can insert PTE into page tables only after that happens.
1354 		 * Skip insertion for now and return the pfn so that caller can
1355 		 * insert it after fsync is done.
1356 		 */
1357 		if (sync) {
1358 			if (WARN_ON_ONCE(!pfnp)) {
1359 				error = -EIO;
1360 				goto error_finish_iomap;
1361 			}
1362 			*pfnp = pfn;
1363 			ret = VM_FAULT_NEEDDSYNC | major;
1364 			goto finish_iomap;
1365 		}
1366 		trace_dax_insert_mapping(inode, vmf, entry);
1367 		if (write)
1368 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1369 		else
1370 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1371 
1372 		goto finish_iomap;
1373 	case IOMAP_UNWRITTEN:
1374 	case IOMAP_HOLE:
1375 		if (!write) {
1376 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1377 			goto finish_iomap;
1378 		}
1379 		/*FALLTHRU*/
1380 	default:
1381 		WARN_ON_ONCE(1);
1382 		error = -EIO;
1383 		break;
1384 	}
1385 
1386  error_finish_iomap:
1387 	ret = dax_fault_return(error);
1388  finish_iomap:
1389 	if (ops->iomap_end) {
1390 		int copied = PAGE_SIZE;
1391 
1392 		if (ret & VM_FAULT_ERROR)
1393 			copied = 0;
1394 		/*
1395 		 * The fault is done by now and there's no way back (other
1396 		 * thread may be already happily using PTE we have installed).
1397 		 * Just ignore error from ->iomap_end since we cannot do much
1398 		 * with it.
1399 		 */
1400 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1401 	}
1402  unlock_entry:
1403 	dax_unlock_entry(&xas, entry);
1404  out:
1405 	trace_dax_pte_fault_done(inode, vmf, ret);
1406 	return ret | major;
1407 }
1408 
1409 #ifdef CONFIG_FS_DAX_PMD
1410 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411 		struct iomap *iomap, void **entry)
1412 {
1413 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1415 	struct vm_area_struct *vma = vmf->vma;
1416 	struct inode *inode = mapping->host;
1417 	pgtable_t pgtable = NULL;
1418 	struct page *zero_page;
1419 	spinlock_t *ptl;
1420 	pmd_t pmd_entry;
1421 	pfn_t pfn;
1422 
1423 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1424 
1425 	if (unlikely(!zero_page))
1426 		goto fallback;
1427 
1428 	pfn = page_to_pfn_t(zero_page);
1429 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1430 			DAX_PMD | DAX_ZERO_PAGE, false);
1431 
1432 	if (arch_needs_pgtable_deposit()) {
1433 		pgtable = pte_alloc_one(vma->vm_mm);
1434 		if (!pgtable)
1435 			return VM_FAULT_OOM;
1436 	}
1437 
1438 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1439 	if (!pmd_none(*(vmf->pmd))) {
1440 		spin_unlock(ptl);
1441 		goto fallback;
1442 	}
1443 
1444 	if (pgtable) {
1445 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1446 		mm_inc_nr_ptes(vma->vm_mm);
1447 	}
1448 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1449 	pmd_entry = pmd_mkhuge(pmd_entry);
1450 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1451 	spin_unlock(ptl);
1452 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1453 	return VM_FAULT_NOPAGE;
1454 
1455 fallback:
1456 	if (pgtable)
1457 		pte_free(vma->vm_mm, pgtable);
1458 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1459 	return VM_FAULT_FALLBACK;
1460 }
1461 
1462 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1463 			       const struct iomap_ops *ops)
1464 {
1465 	struct vm_area_struct *vma = vmf->vma;
1466 	struct address_space *mapping = vma->vm_file->f_mapping;
1467 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1468 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1469 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1470 	bool sync;
1471 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1472 	struct inode *inode = mapping->host;
1473 	vm_fault_t result = VM_FAULT_FALLBACK;
1474 	struct iomap iomap = { 0 };
1475 	pgoff_t max_pgoff;
1476 	void *entry;
1477 	loff_t pos;
1478 	int error;
1479 	pfn_t pfn;
1480 
1481 	/*
1482 	 * Check whether offset isn't beyond end of file now. Caller is
1483 	 * supposed to hold locks serializing us with truncate / punch hole so
1484 	 * this is a reliable test.
1485 	 */
1486 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1487 
1488 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1489 
1490 	/*
1491 	 * Make sure that the faulting address's PMD offset (color) matches
1492 	 * the PMD offset from the start of the file.  This is necessary so
1493 	 * that a PMD range in the page table overlaps exactly with a PMD
1494 	 * range in the page cache.
1495 	 */
1496 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1497 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1498 		goto fallback;
1499 
1500 	/* Fall back to PTEs if we're going to COW */
1501 	if (write && !(vma->vm_flags & VM_SHARED))
1502 		goto fallback;
1503 
1504 	/* If the PMD would extend outside the VMA */
1505 	if (pmd_addr < vma->vm_start)
1506 		goto fallback;
1507 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1508 		goto fallback;
1509 
1510 	if (xas.xa_index >= max_pgoff) {
1511 		result = VM_FAULT_SIGBUS;
1512 		goto out;
1513 	}
1514 
1515 	/* If the PMD would extend beyond the file size */
1516 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1517 		goto fallback;
1518 
1519 	/*
1520 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1521 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1522 	 * entry is already in the array, for instance), it will return
1523 	 * VM_FAULT_FALLBACK.
1524 	 */
1525 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1526 	if (xa_is_internal(entry)) {
1527 		result = xa_to_internal(entry);
1528 		goto fallback;
1529 	}
1530 
1531 	/*
1532 	 * It is possible, particularly with mixed reads & writes to private
1533 	 * mappings, that we have raced with a PTE fault that overlaps with
1534 	 * the PMD we need to set up.  If so just return and the fault will be
1535 	 * retried.
1536 	 */
1537 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1538 			!pmd_devmap(*vmf->pmd)) {
1539 		result = 0;
1540 		goto unlock_entry;
1541 	}
1542 
1543 	/*
1544 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1545 	 * setting up a mapping, so really we're using iomap_begin() as a way
1546 	 * to look up our filesystem block.
1547 	 */
1548 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1549 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1550 	if (error)
1551 		goto unlock_entry;
1552 
1553 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1554 		goto finish_iomap;
1555 
1556 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1557 
1558 	switch (iomap.type) {
1559 	case IOMAP_MAPPED:
1560 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1561 		if (error < 0)
1562 			goto finish_iomap;
1563 
1564 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1565 						DAX_PMD, write && !sync);
1566 
1567 		/*
1568 		 * If we are doing synchronous page fault and inode needs fsync,
1569 		 * we can insert PMD into page tables only after that happens.
1570 		 * Skip insertion for now and return the pfn so that caller can
1571 		 * insert it after fsync is done.
1572 		 */
1573 		if (sync) {
1574 			if (WARN_ON_ONCE(!pfnp))
1575 				goto finish_iomap;
1576 			*pfnp = pfn;
1577 			result = VM_FAULT_NEEDDSYNC;
1578 			goto finish_iomap;
1579 		}
1580 
1581 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1582 		result = vmf_insert_pfn_pmd(vmf, pfn, write);
1583 		break;
1584 	case IOMAP_UNWRITTEN:
1585 	case IOMAP_HOLE:
1586 		if (WARN_ON_ONCE(write))
1587 			break;
1588 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1589 		break;
1590 	default:
1591 		WARN_ON_ONCE(1);
1592 		break;
1593 	}
1594 
1595  finish_iomap:
1596 	if (ops->iomap_end) {
1597 		int copied = PMD_SIZE;
1598 
1599 		if (result == VM_FAULT_FALLBACK)
1600 			copied = 0;
1601 		/*
1602 		 * The fault is done by now and there's no way back (other
1603 		 * thread may be already happily using PMD we have installed).
1604 		 * Just ignore error from ->iomap_end since we cannot do much
1605 		 * with it.
1606 		 */
1607 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1608 				&iomap);
1609 	}
1610  unlock_entry:
1611 	dax_unlock_entry(&xas, entry);
1612  fallback:
1613 	if (result == VM_FAULT_FALLBACK) {
1614 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1615 		count_vm_event(THP_FAULT_FALLBACK);
1616 	}
1617 out:
1618 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1619 	return result;
1620 }
1621 #else
1622 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1623 			       const struct iomap_ops *ops)
1624 {
1625 	return VM_FAULT_FALLBACK;
1626 }
1627 #endif /* CONFIG_FS_DAX_PMD */
1628 
1629 /**
1630  * dax_iomap_fault - handle a page fault on a DAX file
1631  * @vmf: The description of the fault
1632  * @pe_size: Size of the page to fault in
1633  * @pfnp: PFN to insert for synchronous faults if fsync is required
1634  * @iomap_errp: Storage for detailed error code in case of error
1635  * @ops: Iomap ops passed from the file system
1636  *
1637  * When a page fault occurs, filesystems may call this helper in
1638  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639  * has done all the necessary locking for page fault to proceed
1640  * successfully.
1641  */
1642 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1643 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1644 {
1645 	switch (pe_size) {
1646 	case PE_SIZE_PTE:
1647 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1648 	case PE_SIZE_PMD:
1649 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1650 	default:
1651 		return VM_FAULT_FALLBACK;
1652 	}
1653 }
1654 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1655 
1656 /*
1657  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658  * @vmf: The description of the fault
1659  * @pfn: PFN to insert
1660  * @order: Order of entry to insert.
1661  *
1662  * This function inserts a writeable PTE or PMD entry into the page tables
1663  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1664  */
1665 static vm_fault_t
1666 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1667 {
1668 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1669 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670 	void *entry;
1671 	vm_fault_t ret;
1672 
1673 	xas_lock_irq(&xas);
1674 	entry = get_unlocked_entry(&xas, order);
1675 	/* Did we race with someone splitting entry or so? */
1676 	if (!entry || dax_is_conflict(entry) ||
1677 	    (order == 0 && !dax_is_pte_entry(entry))) {
1678 		put_unlocked_entry(&xas, entry);
1679 		xas_unlock_irq(&xas);
1680 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1681 						      VM_FAULT_NOPAGE);
1682 		return VM_FAULT_NOPAGE;
1683 	}
1684 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1685 	dax_lock_entry(&xas, entry);
1686 	xas_unlock_irq(&xas);
1687 	if (order == 0)
1688 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1689 #ifdef CONFIG_FS_DAX_PMD
1690 	else if (order == PMD_ORDER)
1691 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1692 #endif
1693 	else
1694 		ret = VM_FAULT_FALLBACK;
1695 	dax_unlock_entry(&xas, entry);
1696 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1697 	return ret;
1698 }
1699 
1700 /**
1701  * dax_finish_sync_fault - finish synchronous page fault
1702  * @vmf: The description of the fault
1703  * @pe_size: Size of entry to be inserted
1704  * @pfn: PFN to insert
1705  *
1706  * This function ensures that the file range touched by the page fault is
1707  * stored persistently on the media and handles inserting of appropriate page
1708  * table entry.
1709  */
1710 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1711 		enum page_entry_size pe_size, pfn_t pfn)
1712 {
1713 	int err;
1714 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1715 	unsigned int order = pe_order(pe_size);
1716 	size_t len = PAGE_SIZE << order;
1717 
1718 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1719 	if (err)
1720 		return VM_FAULT_SIGBUS;
1721 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1722 }
1723 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1724