1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/pmem.h> 29 #include <linux/sched.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/fs_dax.h> 40 41 /* We choose 4096 entries - same as per-zone page wait tables */ 42 #define DAX_WAIT_TABLE_BITS 12 43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 44 45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 46 47 static int __init init_dax_wait_table(void) 48 { 49 int i; 50 51 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 52 init_waitqueue_head(wait_table + i); 53 return 0; 54 } 55 fs_initcall(init_dax_wait_table); 56 57 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) 58 { 59 struct request_queue *q = bdev->bd_queue; 60 long rc = -EIO; 61 62 dax->addr = ERR_PTR(-EIO); 63 if (blk_queue_enter(q, true) != 0) 64 return rc; 65 66 rc = bdev_direct_access(bdev, dax); 67 if (rc < 0) { 68 dax->addr = ERR_PTR(rc); 69 blk_queue_exit(q); 70 return rc; 71 } 72 return rc; 73 } 74 75 static void dax_unmap_atomic(struct block_device *bdev, 76 const struct blk_dax_ctl *dax) 77 { 78 if (IS_ERR(dax->addr)) 79 return; 80 blk_queue_exit(bdev->bd_queue); 81 } 82 83 static int dax_is_pmd_entry(void *entry) 84 { 85 return (unsigned long)entry & RADIX_DAX_PMD; 86 } 87 88 static int dax_is_pte_entry(void *entry) 89 { 90 return !((unsigned long)entry & RADIX_DAX_PMD); 91 } 92 93 static int dax_is_zero_entry(void *entry) 94 { 95 return (unsigned long)entry & RADIX_DAX_HZP; 96 } 97 98 static int dax_is_empty_entry(void *entry) 99 { 100 return (unsigned long)entry & RADIX_DAX_EMPTY; 101 } 102 103 struct page *read_dax_sector(struct block_device *bdev, sector_t n) 104 { 105 struct page *page = alloc_pages(GFP_KERNEL, 0); 106 struct blk_dax_ctl dax = { 107 .size = PAGE_SIZE, 108 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), 109 }; 110 long rc; 111 112 if (!page) 113 return ERR_PTR(-ENOMEM); 114 115 rc = dax_map_atomic(bdev, &dax); 116 if (rc < 0) 117 return ERR_PTR(rc); 118 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); 119 dax_unmap_atomic(bdev, &dax); 120 return page; 121 } 122 123 /* 124 * DAX radix tree locking 125 */ 126 struct exceptional_entry_key { 127 struct address_space *mapping; 128 pgoff_t entry_start; 129 }; 130 131 struct wait_exceptional_entry_queue { 132 wait_queue_t wait; 133 struct exceptional_entry_key key; 134 }; 135 136 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 137 pgoff_t index, void *entry, struct exceptional_entry_key *key) 138 { 139 unsigned long hash; 140 141 /* 142 * If 'entry' is a PMD, align the 'index' that we use for the wait 143 * queue to the start of that PMD. This ensures that all offsets in 144 * the range covered by the PMD map to the same bit lock. 145 */ 146 if (dax_is_pmd_entry(entry)) 147 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1); 148 149 key->mapping = mapping; 150 key->entry_start = index; 151 152 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 153 return wait_table + hash; 154 } 155 156 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, 157 int sync, void *keyp) 158 { 159 struct exceptional_entry_key *key = keyp; 160 struct wait_exceptional_entry_queue *ewait = 161 container_of(wait, struct wait_exceptional_entry_queue, wait); 162 163 if (key->mapping != ewait->key.mapping || 164 key->entry_start != ewait->key.entry_start) 165 return 0; 166 return autoremove_wake_function(wait, mode, sync, NULL); 167 } 168 169 /* 170 * Check whether the given slot is locked. The function must be called with 171 * mapping->tree_lock held 172 */ 173 static inline int slot_locked(struct address_space *mapping, void **slot) 174 { 175 unsigned long entry = (unsigned long) 176 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 177 return entry & RADIX_DAX_ENTRY_LOCK; 178 } 179 180 /* 181 * Mark the given slot is locked. The function must be called with 182 * mapping->tree_lock held 183 */ 184 static inline void *lock_slot(struct address_space *mapping, void **slot) 185 { 186 unsigned long entry = (unsigned long) 187 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 188 189 entry |= RADIX_DAX_ENTRY_LOCK; 190 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 191 return (void *)entry; 192 } 193 194 /* 195 * Mark the given slot is unlocked. The function must be called with 196 * mapping->tree_lock held 197 */ 198 static inline void *unlock_slot(struct address_space *mapping, void **slot) 199 { 200 unsigned long entry = (unsigned long) 201 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 202 203 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 204 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 205 return (void *)entry; 206 } 207 208 /* 209 * Lookup entry in radix tree, wait for it to become unlocked if it is 210 * exceptional entry and return it. The caller must call 211 * put_unlocked_mapping_entry() when he decided not to lock the entry or 212 * put_locked_mapping_entry() when he locked the entry and now wants to 213 * unlock it. 214 * 215 * The function must be called with mapping->tree_lock held. 216 */ 217 static void *get_unlocked_mapping_entry(struct address_space *mapping, 218 pgoff_t index, void ***slotp) 219 { 220 void *entry, **slot; 221 struct wait_exceptional_entry_queue ewait; 222 wait_queue_head_t *wq; 223 224 init_wait(&ewait.wait); 225 ewait.wait.func = wake_exceptional_entry_func; 226 227 for (;;) { 228 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, 229 &slot); 230 if (!entry || !radix_tree_exceptional_entry(entry) || 231 !slot_locked(mapping, slot)) { 232 if (slotp) 233 *slotp = slot; 234 return entry; 235 } 236 237 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 238 prepare_to_wait_exclusive(wq, &ewait.wait, 239 TASK_UNINTERRUPTIBLE); 240 spin_unlock_irq(&mapping->tree_lock); 241 schedule(); 242 finish_wait(wq, &ewait.wait); 243 spin_lock_irq(&mapping->tree_lock); 244 } 245 } 246 247 static void dax_unlock_mapping_entry(struct address_space *mapping, 248 pgoff_t index) 249 { 250 void *entry, **slot; 251 252 spin_lock_irq(&mapping->tree_lock); 253 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 254 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 255 !slot_locked(mapping, slot))) { 256 spin_unlock_irq(&mapping->tree_lock); 257 return; 258 } 259 unlock_slot(mapping, slot); 260 spin_unlock_irq(&mapping->tree_lock); 261 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 262 } 263 264 static void put_locked_mapping_entry(struct address_space *mapping, 265 pgoff_t index, void *entry) 266 { 267 if (!radix_tree_exceptional_entry(entry)) { 268 unlock_page(entry); 269 put_page(entry); 270 } else { 271 dax_unlock_mapping_entry(mapping, index); 272 } 273 } 274 275 /* 276 * Called when we are done with radix tree entry we looked up via 277 * get_unlocked_mapping_entry() and which we didn't lock in the end. 278 */ 279 static void put_unlocked_mapping_entry(struct address_space *mapping, 280 pgoff_t index, void *entry) 281 { 282 if (!radix_tree_exceptional_entry(entry)) 283 return; 284 285 /* We have to wake up next waiter for the radix tree entry lock */ 286 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 287 } 288 289 /* 290 * Find radix tree entry at given index. If it points to a page, return with 291 * the page locked. If it points to the exceptional entry, return with the 292 * radix tree entry locked. If the radix tree doesn't contain given index, 293 * create empty exceptional entry for the index and return with it locked. 294 * 295 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 296 * either return that locked entry or will return an error. This error will 297 * happen if there are any 4k entries (either zero pages or DAX entries) 298 * within the 2MiB range that we are requesting. 299 * 300 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 301 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 302 * insertion will fail if it finds any 4k entries already in the tree, and a 303 * 4k insertion will cause an existing 2MiB entry to be unmapped and 304 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 305 * well as 2MiB empty entries. 306 * 307 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 308 * real storage backing them. We will leave these real 2MiB DAX entries in 309 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 310 * 311 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 312 * persistent memory the benefit is doubtful. We can add that later if we can 313 * show it helps. 314 */ 315 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 316 unsigned long size_flag) 317 { 318 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 319 void *entry, **slot; 320 321 restart: 322 spin_lock_irq(&mapping->tree_lock); 323 entry = get_unlocked_mapping_entry(mapping, index, &slot); 324 325 if (entry) { 326 if (size_flag & RADIX_DAX_PMD) { 327 if (!radix_tree_exceptional_entry(entry) || 328 dax_is_pte_entry(entry)) { 329 put_unlocked_mapping_entry(mapping, index, 330 entry); 331 entry = ERR_PTR(-EEXIST); 332 goto out_unlock; 333 } 334 } else { /* trying to grab a PTE entry */ 335 if (radix_tree_exceptional_entry(entry) && 336 dax_is_pmd_entry(entry) && 337 (dax_is_zero_entry(entry) || 338 dax_is_empty_entry(entry))) { 339 pmd_downgrade = true; 340 } 341 } 342 } 343 344 /* No entry for given index? Make sure radix tree is big enough. */ 345 if (!entry || pmd_downgrade) { 346 int err; 347 348 if (pmd_downgrade) { 349 /* 350 * Make sure 'entry' remains valid while we drop 351 * mapping->tree_lock. 352 */ 353 entry = lock_slot(mapping, slot); 354 } 355 356 spin_unlock_irq(&mapping->tree_lock); 357 /* 358 * Besides huge zero pages the only other thing that gets 359 * downgraded are empty entries which don't need to be 360 * unmapped. 361 */ 362 if (pmd_downgrade && dax_is_zero_entry(entry)) 363 unmap_mapping_range(mapping, 364 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 365 366 err = radix_tree_preload( 367 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 368 if (err) { 369 if (pmd_downgrade) 370 put_locked_mapping_entry(mapping, index, entry); 371 return ERR_PTR(err); 372 } 373 spin_lock_irq(&mapping->tree_lock); 374 375 if (pmd_downgrade) { 376 radix_tree_delete(&mapping->page_tree, index); 377 mapping->nrexceptional--; 378 dax_wake_mapping_entry_waiter(mapping, index, entry, 379 true); 380 } 381 382 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 383 384 err = __radix_tree_insert(&mapping->page_tree, index, 385 dax_radix_order(entry), entry); 386 radix_tree_preload_end(); 387 if (err) { 388 spin_unlock_irq(&mapping->tree_lock); 389 /* 390 * Someone already created the entry? This is a 391 * normal failure when inserting PMDs in a range 392 * that already contains PTEs. In that case we want 393 * to return -EEXIST immediately. 394 */ 395 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD)) 396 goto restart; 397 /* 398 * Our insertion of a DAX PMD entry failed, most 399 * likely because it collided with a PTE sized entry 400 * at a different index in the PMD range. We haven't 401 * inserted anything into the radix tree and have no 402 * waiters to wake. 403 */ 404 return ERR_PTR(err); 405 } 406 /* Good, we have inserted empty locked entry into the tree. */ 407 mapping->nrexceptional++; 408 spin_unlock_irq(&mapping->tree_lock); 409 return entry; 410 } 411 /* Normal page in radix tree? */ 412 if (!radix_tree_exceptional_entry(entry)) { 413 struct page *page = entry; 414 415 get_page(page); 416 spin_unlock_irq(&mapping->tree_lock); 417 lock_page(page); 418 /* Page got truncated? Retry... */ 419 if (unlikely(page->mapping != mapping)) { 420 unlock_page(page); 421 put_page(page); 422 goto restart; 423 } 424 return page; 425 } 426 entry = lock_slot(mapping, slot); 427 out_unlock: 428 spin_unlock_irq(&mapping->tree_lock); 429 return entry; 430 } 431 432 /* 433 * We do not necessarily hold the mapping->tree_lock when we call this 434 * function so it is possible that 'entry' is no longer a valid item in the 435 * radix tree. This is okay because all we really need to do is to find the 436 * correct waitqueue where tasks might be waiting for that old 'entry' and 437 * wake them. 438 */ 439 void dax_wake_mapping_entry_waiter(struct address_space *mapping, 440 pgoff_t index, void *entry, bool wake_all) 441 { 442 struct exceptional_entry_key key; 443 wait_queue_head_t *wq; 444 445 wq = dax_entry_waitqueue(mapping, index, entry, &key); 446 447 /* 448 * Checking for locked entry and prepare_to_wait_exclusive() happens 449 * under mapping->tree_lock, ditto for entry handling in our callers. 450 * So at this point all tasks that could have seen our entry locked 451 * must be in the waitqueue and the following check will see them. 452 */ 453 if (waitqueue_active(wq)) 454 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 455 } 456 457 static int __dax_invalidate_mapping_entry(struct address_space *mapping, 458 pgoff_t index, bool trunc) 459 { 460 int ret = 0; 461 void *entry; 462 struct radix_tree_root *page_tree = &mapping->page_tree; 463 464 spin_lock_irq(&mapping->tree_lock); 465 entry = get_unlocked_mapping_entry(mapping, index, NULL); 466 if (!entry || !radix_tree_exceptional_entry(entry)) 467 goto out; 468 if (!trunc && 469 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || 470 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))) 471 goto out; 472 radix_tree_delete(page_tree, index); 473 mapping->nrexceptional--; 474 ret = 1; 475 out: 476 put_unlocked_mapping_entry(mapping, index, entry); 477 spin_unlock_irq(&mapping->tree_lock); 478 return ret; 479 } 480 /* 481 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 482 * entry to get unlocked before deleting it. 483 */ 484 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 485 { 486 int ret = __dax_invalidate_mapping_entry(mapping, index, true); 487 488 /* 489 * This gets called from truncate / punch_hole path. As such, the caller 490 * must hold locks protecting against concurrent modifications of the 491 * radix tree (usually fs-private i_mmap_sem for writing). Since the 492 * caller has seen exceptional entry for this index, we better find it 493 * at that index as well... 494 */ 495 WARN_ON_ONCE(!ret); 496 return ret; 497 } 498 499 /* 500 * Invalidate exceptional DAX entry if easily possible. This handles DAX 501 * entries for invalidate_inode_pages() so we evict the entry only if we can 502 * do so without blocking. 503 */ 504 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index) 505 { 506 int ret = 0; 507 void *entry, **slot; 508 struct radix_tree_root *page_tree = &mapping->page_tree; 509 510 spin_lock_irq(&mapping->tree_lock); 511 entry = __radix_tree_lookup(page_tree, index, NULL, &slot); 512 if (!entry || !radix_tree_exceptional_entry(entry) || 513 slot_locked(mapping, slot)) 514 goto out; 515 if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || 516 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 517 goto out; 518 radix_tree_delete(page_tree, index); 519 mapping->nrexceptional--; 520 ret = 1; 521 out: 522 spin_unlock_irq(&mapping->tree_lock); 523 if (ret) 524 dax_wake_mapping_entry_waiter(mapping, index, entry, true); 525 return ret; 526 } 527 528 /* 529 * Invalidate exceptional DAX entry if it is clean. 530 */ 531 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 532 pgoff_t index) 533 { 534 return __dax_invalidate_mapping_entry(mapping, index, false); 535 } 536 537 /* 538 * The user has performed a load from a hole in the file. Allocating 539 * a new page in the file would cause excessive storage usage for 540 * workloads with sparse files. We allocate a page cache page instead. 541 * We'll kick it out of the page cache if it's ever written to, 542 * otherwise it will simply fall out of the page cache under memory 543 * pressure without ever having been dirtied. 544 */ 545 static int dax_load_hole(struct address_space *mapping, void **entry, 546 struct vm_fault *vmf) 547 { 548 struct page *page; 549 int ret; 550 551 /* Hole page already exists? Return it... */ 552 if (!radix_tree_exceptional_entry(*entry)) { 553 page = *entry; 554 goto out; 555 } 556 557 /* This will replace locked radix tree entry with a hole page */ 558 page = find_or_create_page(mapping, vmf->pgoff, 559 vmf->gfp_mask | __GFP_ZERO); 560 if (!page) 561 return VM_FAULT_OOM; 562 out: 563 vmf->page = page; 564 ret = finish_fault(vmf); 565 vmf->page = NULL; 566 *entry = page; 567 if (!ret) { 568 /* Grab reference for PTE that is now referencing the page */ 569 get_page(page); 570 return VM_FAULT_NOPAGE; 571 } 572 return ret; 573 } 574 575 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, 576 struct page *to, unsigned long vaddr) 577 { 578 struct blk_dax_ctl dax = { 579 .sector = sector, 580 .size = size, 581 }; 582 void *vto; 583 584 if (dax_map_atomic(bdev, &dax) < 0) 585 return PTR_ERR(dax.addr); 586 vto = kmap_atomic(to); 587 copy_user_page(vto, (void __force *)dax.addr, vaddr, to); 588 kunmap_atomic(vto); 589 dax_unmap_atomic(bdev, &dax); 590 return 0; 591 } 592 593 /* 594 * By this point grab_mapping_entry() has ensured that we have a locked entry 595 * of the appropriate size so we don't have to worry about downgrading PMDs to 596 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 597 * already in the tree, we will skip the insertion and just dirty the PMD as 598 * appropriate. 599 */ 600 static void *dax_insert_mapping_entry(struct address_space *mapping, 601 struct vm_fault *vmf, 602 void *entry, sector_t sector, 603 unsigned long flags) 604 { 605 struct radix_tree_root *page_tree = &mapping->page_tree; 606 int error = 0; 607 bool hole_fill = false; 608 void *new_entry; 609 pgoff_t index = vmf->pgoff; 610 611 if (vmf->flags & FAULT_FLAG_WRITE) 612 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 613 614 /* Replacing hole page with block mapping? */ 615 if (!radix_tree_exceptional_entry(entry)) { 616 hole_fill = true; 617 /* 618 * Unmap the page now before we remove it from page cache below. 619 * The page is locked so it cannot be faulted in again. 620 */ 621 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 622 PAGE_SIZE, 0); 623 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); 624 if (error) 625 return ERR_PTR(error); 626 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) { 627 /* replacing huge zero page with PMD block mapping */ 628 unmap_mapping_range(mapping, 629 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 630 } 631 632 spin_lock_irq(&mapping->tree_lock); 633 new_entry = dax_radix_locked_entry(sector, flags); 634 635 if (hole_fill) { 636 __delete_from_page_cache(entry, NULL); 637 /* Drop pagecache reference */ 638 put_page(entry); 639 error = __radix_tree_insert(page_tree, index, 640 dax_radix_order(new_entry), new_entry); 641 if (error) { 642 new_entry = ERR_PTR(error); 643 goto unlock; 644 } 645 mapping->nrexceptional++; 646 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 647 /* 648 * Only swap our new entry into the radix tree if the current 649 * entry is a zero page or an empty entry. If a normal PTE or 650 * PMD entry is already in the tree, we leave it alone. This 651 * means that if we are trying to insert a PTE and the 652 * existing entry is a PMD, we will just leave the PMD in the 653 * tree and dirty it if necessary. 654 */ 655 struct radix_tree_node *node; 656 void **slot; 657 void *ret; 658 659 ret = __radix_tree_lookup(page_tree, index, &node, &slot); 660 WARN_ON_ONCE(ret != entry); 661 __radix_tree_replace(page_tree, node, slot, 662 new_entry, NULL, NULL); 663 } 664 if (vmf->flags & FAULT_FLAG_WRITE) 665 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 666 unlock: 667 spin_unlock_irq(&mapping->tree_lock); 668 if (hole_fill) { 669 radix_tree_preload_end(); 670 /* 671 * We don't need hole page anymore, it has been replaced with 672 * locked radix tree entry now. 673 */ 674 if (mapping->a_ops->freepage) 675 mapping->a_ops->freepage(entry); 676 unlock_page(entry); 677 put_page(entry); 678 } 679 return new_entry; 680 } 681 682 static inline unsigned long 683 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 684 { 685 unsigned long address; 686 687 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 688 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 689 return address; 690 } 691 692 /* Walk all mappings of a given index of a file and writeprotect them */ 693 static void dax_mapping_entry_mkclean(struct address_space *mapping, 694 pgoff_t index, unsigned long pfn) 695 { 696 struct vm_area_struct *vma; 697 pte_t pte, *ptep = NULL; 698 pmd_t *pmdp = NULL; 699 spinlock_t *ptl; 700 bool changed; 701 702 i_mmap_lock_read(mapping); 703 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 704 unsigned long address; 705 706 cond_resched(); 707 708 if (!(vma->vm_flags & VM_SHARED)) 709 continue; 710 711 address = pgoff_address(index, vma); 712 changed = false; 713 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl)) 714 continue; 715 716 if (pmdp) { 717 #ifdef CONFIG_FS_DAX_PMD 718 pmd_t pmd; 719 720 if (pfn != pmd_pfn(*pmdp)) 721 goto unlock_pmd; 722 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 723 goto unlock_pmd; 724 725 flush_cache_page(vma, address, pfn); 726 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 727 pmd = pmd_wrprotect(pmd); 728 pmd = pmd_mkclean(pmd); 729 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 730 changed = true; 731 unlock_pmd: 732 spin_unlock(ptl); 733 #endif 734 } else { 735 if (pfn != pte_pfn(*ptep)) 736 goto unlock_pte; 737 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 738 goto unlock_pte; 739 740 flush_cache_page(vma, address, pfn); 741 pte = ptep_clear_flush(vma, address, ptep); 742 pte = pte_wrprotect(pte); 743 pte = pte_mkclean(pte); 744 set_pte_at(vma->vm_mm, address, ptep, pte); 745 changed = true; 746 unlock_pte: 747 pte_unmap_unlock(ptep, ptl); 748 } 749 750 if (changed) 751 mmu_notifier_invalidate_page(vma->vm_mm, address); 752 } 753 i_mmap_unlock_read(mapping); 754 } 755 756 static int dax_writeback_one(struct block_device *bdev, 757 struct address_space *mapping, pgoff_t index, void *entry) 758 { 759 struct radix_tree_root *page_tree = &mapping->page_tree; 760 struct blk_dax_ctl dax; 761 void *entry2, **slot; 762 int ret = 0; 763 764 /* 765 * A page got tagged dirty in DAX mapping? Something is seriously 766 * wrong. 767 */ 768 if (WARN_ON(!radix_tree_exceptional_entry(entry))) 769 return -EIO; 770 771 spin_lock_irq(&mapping->tree_lock); 772 entry2 = get_unlocked_mapping_entry(mapping, index, &slot); 773 /* Entry got punched out / reallocated? */ 774 if (!entry2 || !radix_tree_exceptional_entry(entry2)) 775 goto put_unlocked; 776 /* 777 * Entry got reallocated elsewhere? No need to writeback. We have to 778 * compare sectors as we must not bail out due to difference in lockbit 779 * or entry type. 780 */ 781 if (dax_radix_sector(entry2) != dax_radix_sector(entry)) 782 goto put_unlocked; 783 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 784 dax_is_zero_entry(entry))) { 785 ret = -EIO; 786 goto put_unlocked; 787 } 788 789 /* Another fsync thread may have already written back this entry */ 790 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 791 goto put_unlocked; 792 /* Lock the entry to serialize with page faults */ 793 entry = lock_slot(mapping, slot); 794 /* 795 * We can clear the tag now but we have to be careful so that concurrent 796 * dax_writeback_one() calls for the same index cannot finish before we 797 * actually flush the caches. This is achieved as the calls will look 798 * at the entry only under tree_lock and once they do that they will 799 * see the entry locked and wait for it to unlock. 800 */ 801 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 802 spin_unlock_irq(&mapping->tree_lock); 803 804 /* 805 * Even if dax_writeback_mapping_range() was given a wbc->range_start 806 * in the middle of a PMD, the 'index' we are given will be aligned to 807 * the start index of the PMD, as will the sector we pull from 808 * 'entry'. This allows us to flush for PMD_SIZE and not have to 809 * worry about partial PMD writebacks. 810 */ 811 dax.sector = dax_radix_sector(entry); 812 dax.size = PAGE_SIZE << dax_radix_order(entry); 813 814 /* 815 * We cannot hold tree_lock while calling dax_map_atomic() because it 816 * eventually calls cond_resched(). 817 */ 818 ret = dax_map_atomic(bdev, &dax); 819 if (ret < 0) { 820 put_locked_mapping_entry(mapping, index, entry); 821 return ret; 822 } 823 824 if (WARN_ON_ONCE(ret < dax.size)) { 825 ret = -EIO; 826 goto unmap; 827 } 828 829 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn)); 830 wb_cache_pmem(dax.addr, dax.size); 831 /* 832 * After we have flushed the cache, we can clear the dirty tag. There 833 * cannot be new dirty data in the pfn after the flush has completed as 834 * the pfn mappings are writeprotected and fault waits for mapping 835 * entry lock. 836 */ 837 spin_lock_irq(&mapping->tree_lock); 838 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); 839 spin_unlock_irq(&mapping->tree_lock); 840 unmap: 841 dax_unmap_atomic(bdev, &dax); 842 put_locked_mapping_entry(mapping, index, entry); 843 return ret; 844 845 put_unlocked: 846 put_unlocked_mapping_entry(mapping, index, entry2); 847 spin_unlock_irq(&mapping->tree_lock); 848 return ret; 849 } 850 851 /* 852 * Flush the mapping to the persistent domain within the byte range of [start, 853 * end]. This is required by data integrity operations to ensure file data is 854 * on persistent storage prior to completion of the operation. 855 */ 856 int dax_writeback_mapping_range(struct address_space *mapping, 857 struct block_device *bdev, struct writeback_control *wbc) 858 { 859 struct inode *inode = mapping->host; 860 pgoff_t start_index, end_index; 861 pgoff_t indices[PAGEVEC_SIZE]; 862 struct pagevec pvec; 863 bool done = false; 864 int i, ret = 0; 865 866 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 867 return -EIO; 868 869 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 870 return 0; 871 872 start_index = wbc->range_start >> PAGE_SHIFT; 873 end_index = wbc->range_end >> PAGE_SHIFT; 874 875 tag_pages_for_writeback(mapping, start_index, end_index); 876 877 pagevec_init(&pvec, 0); 878 while (!done) { 879 pvec.nr = find_get_entries_tag(mapping, start_index, 880 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 881 pvec.pages, indices); 882 883 if (pvec.nr == 0) 884 break; 885 886 for (i = 0; i < pvec.nr; i++) { 887 if (indices[i] > end_index) { 888 done = true; 889 break; 890 } 891 892 ret = dax_writeback_one(bdev, mapping, indices[i], 893 pvec.pages[i]); 894 if (ret < 0) 895 return ret; 896 } 897 } 898 return 0; 899 } 900 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 901 902 static int dax_insert_mapping(struct address_space *mapping, 903 struct block_device *bdev, sector_t sector, size_t size, 904 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) 905 { 906 unsigned long vaddr = vmf->address; 907 struct blk_dax_ctl dax = { 908 .sector = sector, 909 .size = size, 910 }; 911 void *ret; 912 void *entry = *entryp; 913 914 if (dax_map_atomic(bdev, &dax) < 0) 915 return PTR_ERR(dax.addr); 916 dax_unmap_atomic(bdev, &dax); 917 918 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0); 919 if (IS_ERR(ret)) 920 return PTR_ERR(ret); 921 *entryp = ret; 922 923 return vm_insert_mixed(vma, vaddr, dax.pfn); 924 } 925 926 /** 927 * dax_pfn_mkwrite - handle first write to DAX page 928 * @vmf: The description of the fault 929 */ 930 int dax_pfn_mkwrite(struct vm_fault *vmf) 931 { 932 struct file *file = vmf->vma->vm_file; 933 struct address_space *mapping = file->f_mapping; 934 void *entry, **slot; 935 pgoff_t index = vmf->pgoff; 936 937 spin_lock_irq(&mapping->tree_lock); 938 entry = get_unlocked_mapping_entry(mapping, index, &slot); 939 if (!entry || !radix_tree_exceptional_entry(entry)) { 940 if (entry) 941 put_unlocked_mapping_entry(mapping, index, entry); 942 spin_unlock_irq(&mapping->tree_lock); 943 return VM_FAULT_NOPAGE; 944 } 945 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 946 entry = lock_slot(mapping, slot); 947 spin_unlock_irq(&mapping->tree_lock); 948 /* 949 * If we race with somebody updating the PTE and finish_mkwrite_fault() 950 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry 951 * the fault in either case. 952 */ 953 finish_mkwrite_fault(vmf); 954 put_locked_mapping_entry(mapping, index, entry); 955 return VM_FAULT_NOPAGE; 956 } 957 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 958 959 static bool dax_range_is_aligned(struct block_device *bdev, 960 unsigned int offset, unsigned int length) 961 { 962 unsigned short sector_size = bdev_logical_block_size(bdev); 963 964 if (!IS_ALIGNED(offset, sector_size)) 965 return false; 966 if (!IS_ALIGNED(length, sector_size)) 967 return false; 968 969 return true; 970 } 971 972 int __dax_zero_page_range(struct block_device *bdev, sector_t sector, 973 unsigned int offset, unsigned int length) 974 { 975 struct blk_dax_ctl dax = { 976 .sector = sector, 977 .size = PAGE_SIZE, 978 }; 979 980 if (dax_range_is_aligned(bdev, offset, length)) { 981 sector_t start_sector = dax.sector + (offset >> 9); 982 983 return blkdev_issue_zeroout(bdev, start_sector, 984 length >> 9, GFP_NOFS, true); 985 } else { 986 if (dax_map_atomic(bdev, &dax) < 0) 987 return PTR_ERR(dax.addr); 988 clear_pmem(dax.addr + offset, length); 989 dax_unmap_atomic(bdev, &dax); 990 } 991 return 0; 992 } 993 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 994 995 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 996 { 997 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9); 998 } 999 1000 static loff_t 1001 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1002 struct iomap *iomap) 1003 { 1004 struct iov_iter *iter = data; 1005 loff_t end = pos + length, done = 0; 1006 ssize_t ret = 0; 1007 1008 if (iov_iter_rw(iter) == READ) { 1009 end = min(end, i_size_read(inode)); 1010 if (pos >= end) 1011 return 0; 1012 1013 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1014 return iov_iter_zero(min(length, end - pos), iter); 1015 } 1016 1017 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1018 return -EIO; 1019 1020 /* 1021 * Write can allocate block for an area which has a hole page mapped 1022 * into page tables. We have to tear down these mappings so that data 1023 * written by write(2) is visible in mmap. 1024 */ 1025 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) { 1026 invalidate_inode_pages2_range(inode->i_mapping, 1027 pos >> PAGE_SHIFT, 1028 (end - 1) >> PAGE_SHIFT); 1029 } 1030 1031 while (pos < end) { 1032 unsigned offset = pos & (PAGE_SIZE - 1); 1033 struct blk_dax_ctl dax = { 0 }; 1034 ssize_t map_len; 1035 1036 if (fatal_signal_pending(current)) { 1037 ret = -EINTR; 1038 break; 1039 } 1040 1041 dax.sector = dax_iomap_sector(iomap, pos); 1042 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; 1043 map_len = dax_map_atomic(iomap->bdev, &dax); 1044 if (map_len < 0) { 1045 ret = map_len; 1046 break; 1047 } 1048 1049 dax.addr += offset; 1050 map_len -= offset; 1051 if (map_len > end - pos) 1052 map_len = end - pos; 1053 1054 if (iov_iter_rw(iter) == WRITE) 1055 map_len = copy_from_iter_pmem(dax.addr, map_len, iter); 1056 else 1057 map_len = copy_to_iter(dax.addr, map_len, iter); 1058 dax_unmap_atomic(iomap->bdev, &dax); 1059 if (map_len <= 0) { 1060 ret = map_len ? map_len : -EFAULT; 1061 break; 1062 } 1063 1064 pos += map_len; 1065 length -= map_len; 1066 done += map_len; 1067 } 1068 1069 return done ? done : ret; 1070 } 1071 1072 /** 1073 * dax_iomap_rw - Perform I/O to a DAX file 1074 * @iocb: The control block for this I/O 1075 * @iter: The addresses to do I/O from or to 1076 * @ops: iomap ops passed from the file system 1077 * 1078 * This function performs read and write operations to directly mapped 1079 * persistent memory. The callers needs to take care of read/write exclusion 1080 * and evicting any page cache pages in the region under I/O. 1081 */ 1082 ssize_t 1083 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1084 const struct iomap_ops *ops) 1085 { 1086 struct address_space *mapping = iocb->ki_filp->f_mapping; 1087 struct inode *inode = mapping->host; 1088 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1089 unsigned flags = 0; 1090 1091 if (iov_iter_rw(iter) == WRITE) { 1092 lockdep_assert_held_exclusive(&inode->i_rwsem); 1093 flags |= IOMAP_WRITE; 1094 } else { 1095 lockdep_assert_held(&inode->i_rwsem); 1096 } 1097 1098 while (iov_iter_count(iter)) { 1099 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1100 iter, dax_iomap_actor); 1101 if (ret <= 0) 1102 break; 1103 pos += ret; 1104 done += ret; 1105 } 1106 1107 iocb->ki_pos += done; 1108 return done ? done : ret; 1109 } 1110 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1111 1112 static int dax_fault_return(int error) 1113 { 1114 if (error == 0) 1115 return VM_FAULT_NOPAGE; 1116 if (error == -ENOMEM) 1117 return VM_FAULT_OOM; 1118 return VM_FAULT_SIGBUS; 1119 } 1120 1121 static int dax_iomap_pte_fault(struct vm_fault *vmf, 1122 const struct iomap_ops *ops) 1123 { 1124 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1125 struct inode *inode = mapping->host; 1126 unsigned long vaddr = vmf->address; 1127 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1128 sector_t sector; 1129 struct iomap iomap = { 0 }; 1130 unsigned flags = IOMAP_FAULT; 1131 int error, major = 0; 1132 int vmf_ret = 0; 1133 void *entry; 1134 1135 /* 1136 * Check whether offset isn't beyond end of file now. Caller is supposed 1137 * to hold locks serializing us with truncate / punch hole so this is 1138 * a reliable test. 1139 */ 1140 if (pos >= i_size_read(inode)) 1141 return VM_FAULT_SIGBUS; 1142 1143 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1144 flags |= IOMAP_WRITE; 1145 1146 /* 1147 * Note that we don't bother to use iomap_apply here: DAX required 1148 * the file system block size to be equal the page size, which means 1149 * that we never have to deal with more than a single extent here. 1150 */ 1151 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1152 if (error) 1153 return dax_fault_return(error); 1154 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1155 vmf_ret = dax_fault_return(-EIO); /* fs corruption? */ 1156 goto finish_iomap; 1157 } 1158 1159 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 1160 if (IS_ERR(entry)) { 1161 vmf_ret = dax_fault_return(PTR_ERR(entry)); 1162 goto finish_iomap; 1163 } 1164 1165 sector = dax_iomap_sector(&iomap, pos); 1166 1167 if (vmf->cow_page) { 1168 switch (iomap.type) { 1169 case IOMAP_HOLE: 1170 case IOMAP_UNWRITTEN: 1171 clear_user_highpage(vmf->cow_page, vaddr); 1172 break; 1173 case IOMAP_MAPPED: 1174 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, 1175 vmf->cow_page, vaddr); 1176 break; 1177 default: 1178 WARN_ON_ONCE(1); 1179 error = -EIO; 1180 break; 1181 } 1182 1183 if (error) 1184 goto error_unlock_entry; 1185 1186 __SetPageUptodate(vmf->cow_page); 1187 vmf_ret = finish_fault(vmf); 1188 if (!vmf_ret) 1189 vmf_ret = VM_FAULT_DONE_COW; 1190 goto unlock_entry; 1191 } 1192 1193 switch (iomap.type) { 1194 case IOMAP_MAPPED: 1195 if (iomap.flags & IOMAP_F_NEW) { 1196 count_vm_event(PGMAJFAULT); 1197 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); 1198 major = VM_FAULT_MAJOR; 1199 } 1200 error = dax_insert_mapping(mapping, iomap.bdev, sector, 1201 PAGE_SIZE, &entry, vmf->vma, vmf); 1202 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1203 if (error == -EBUSY) 1204 error = 0; 1205 break; 1206 case IOMAP_UNWRITTEN: 1207 case IOMAP_HOLE: 1208 if (!(vmf->flags & FAULT_FLAG_WRITE)) { 1209 vmf_ret = dax_load_hole(mapping, &entry, vmf); 1210 goto unlock_entry; 1211 } 1212 /*FALLTHRU*/ 1213 default: 1214 WARN_ON_ONCE(1); 1215 error = -EIO; 1216 break; 1217 } 1218 1219 error_unlock_entry: 1220 vmf_ret = dax_fault_return(error) | major; 1221 unlock_entry: 1222 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 1223 finish_iomap: 1224 if (ops->iomap_end) { 1225 int copied = PAGE_SIZE; 1226 1227 if (vmf_ret & VM_FAULT_ERROR) 1228 copied = 0; 1229 /* 1230 * The fault is done by now and there's no way back (other 1231 * thread may be already happily using PTE we have installed). 1232 * Just ignore error from ->iomap_end since we cannot do much 1233 * with it. 1234 */ 1235 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1236 } 1237 return vmf_ret; 1238 } 1239 1240 #ifdef CONFIG_FS_DAX_PMD 1241 /* 1242 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 1243 * more often than one might expect in the below functions. 1244 */ 1245 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 1246 1247 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap, 1248 loff_t pos, void **entryp) 1249 { 1250 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1251 struct block_device *bdev = iomap->bdev; 1252 struct inode *inode = mapping->host; 1253 struct blk_dax_ctl dax = { 1254 .sector = dax_iomap_sector(iomap, pos), 1255 .size = PMD_SIZE, 1256 }; 1257 long length = dax_map_atomic(bdev, &dax); 1258 void *ret = NULL; 1259 1260 if (length < 0) /* dax_map_atomic() failed */ 1261 goto fallback; 1262 if (length < PMD_SIZE) 1263 goto unmap_fallback; 1264 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) 1265 goto unmap_fallback; 1266 if (!pfn_t_devmap(dax.pfn)) 1267 goto unmap_fallback; 1268 1269 dax_unmap_atomic(bdev, &dax); 1270 1271 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector, 1272 RADIX_DAX_PMD); 1273 if (IS_ERR(ret)) 1274 goto fallback; 1275 *entryp = ret; 1276 1277 trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret); 1278 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1279 dax.pfn, vmf->flags & FAULT_FLAG_WRITE); 1280 1281 unmap_fallback: 1282 dax_unmap_atomic(bdev, &dax); 1283 fallback: 1284 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, 1285 dax.pfn, ret); 1286 return VM_FAULT_FALLBACK; 1287 } 1288 1289 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, 1290 void **entryp) 1291 { 1292 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1293 unsigned long pmd_addr = vmf->address & PMD_MASK; 1294 struct inode *inode = mapping->host; 1295 struct page *zero_page; 1296 void *ret = NULL; 1297 spinlock_t *ptl; 1298 pmd_t pmd_entry; 1299 1300 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1301 1302 if (unlikely(!zero_page)) 1303 goto fallback; 1304 1305 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0, 1306 RADIX_DAX_PMD | RADIX_DAX_HZP); 1307 if (IS_ERR(ret)) 1308 goto fallback; 1309 *entryp = ret; 1310 1311 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1312 if (!pmd_none(*(vmf->pmd))) { 1313 spin_unlock(ptl); 1314 goto fallback; 1315 } 1316 1317 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1318 pmd_entry = pmd_mkhuge(pmd_entry); 1319 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1320 spin_unlock(ptl); 1321 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); 1322 return VM_FAULT_NOPAGE; 1323 1324 fallback: 1325 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); 1326 return VM_FAULT_FALLBACK; 1327 } 1328 1329 static int dax_iomap_pmd_fault(struct vm_fault *vmf, 1330 const struct iomap_ops *ops) 1331 { 1332 struct vm_area_struct *vma = vmf->vma; 1333 struct address_space *mapping = vma->vm_file->f_mapping; 1334 unsigned long pmd_addr = vmf->address & PMD_MASK; 1335 bool write = vmf->flags & FAULT_FLAG_WRITE; 1336 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1337 struct inode *inode = mapping->host; 1338 int result = VM_FAULT_FALLBACK; 1339 struct iomap iomap = { 0 }; 1340 pgoff_t max_pgoff, pgoff; 1341 void *entry; 1342 loff_t pos; 1343 int error; 1344 1345 /* 1346 * Check whether offset isn't beyond end of file now. Caller is 1347 * supposed to hold locks serializing us with truncate / punch hole so 1348 * this is a reliable test. 1349 */ 1350 pgoff = linear_page_index(vma, pmd_addr); 1351 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT; 1352 1353 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1354 1355 /* Fall back to PTEs if we're going to COW */ 1356 if (write && !(vma->vm_flags & VM_SHARED)) 1357 goto fallback; 1358 1359 /* If the PMD would extend outside the VMA */ 1360 if (pmd_addr < vma->vm_start) 1361 goto fallback; 1362 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1363 goto fallback; 1364 1365 if (pgoff > max_pgoff) { 1366 result = VM_FAULT_SIGBUS; 1367 goto out; 1368 } 1369 1370 /* If the PMD would extend beyond the file size */ 1371 if ((pgoff | PG_PMD_COLOUR) > max_pgoff) 1372 goto fallback; 1373 1374 /* 1375 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1376 * setting up a mapping, so really we're using iomap_begin() as a way 1377 * to look up our filesystem block. 1378 */ 1379 pos = (loff_t)pgoff << PAGE_SHIFT; 1380 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1381 if (error) 1382 goto fallback; 1383 1384 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1385 goto finish_iomap; 1386 1387 /* 1388 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX 1389 * PMD or a HZP entry. If it can't (because a 4k page is already in 1390 * the tree, for instance), it will return -EEXIST and we just fall 1391 * back to 4k entries. 1392 */ 1393 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1394 if (IS_ERR(entry)) 1395 goto finish_iomap; 1396 1397 switch (iomap.type) { 1398 case IOMAP_MAPPED: 1399 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry); 1400 break; 1401 case IOMAP_UNWRITTEN: 1402 case IOMAP_HOLE: 1403 if (WARN_ON_ONCE(write)) 1404 goto unlock_entry; 1405 result = dax_pmd_load_hole(vmf, &iomap, &entry); 1406 break; 1407 default: 1408 WARN_ON_ONCE(1); 1409 break; 1410 } 1411 1412 unlock_entry: 1413 put_locked_mapping_entry(mapping, pgoff, entry); 1414 finish_iomap: 1415 if (ops->iomap_end) { 1416 int copied = PMD_SIZE; 1417 1418 if (result == VM_FAULT_FALLBACK) 1419 copied = 0; 1420 /* 1421 * The fault is done by now and there's no way back (other 1422 * thread may be already happily using PMD we have installed). 1423 * Just ignore error from ->iomap_end since we cannot do much 1424 * with it. 1425 */ 1426 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1427 &iomap); 1428 } 1429 fallback: 1430 if (result == VM_FAULT_FALLBACK) { 1431 split_huge_pmd(vma, vmf->pmd, vmf->address); 1432 count_vm_event(THP_FAULT_FALLBACK); 1433 } 1434 out: 1435 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1436 return result; 1437 } 1438 #else 1439 static int dax_iomap_pmd_fault(struct vm_fault *vmf, struct iomap_ops *ops) 1440 { 1441 return VM_FAULT_FALLBACK; 1442 } 1443 #endif /* CONFIG_FS_DAX_PMD */ 1444 1445 /** 1446 * dax_iomap_fault - handle a page fault on a DAX file 1447 * @vmf: The description of the fault 1448 * @ops: iomap ops passed from the file system 1449 * 1450 * When a page fault occurs, filesystems may call this helper in 1451 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1452 * has done all the necessary locking for page fault to proceed 1453 * successfully. 1454 */ 1455 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1456 const struct iomap_ops *ops) 1457 { 1458 switch (pe_size) { 1459 case PE_SIZE_PTE: 1460 return dax_iomap_pte_fault(vmf, ops); 1461 case PE_SIZE_PMD: 1462 return dax_iomap_pmd_fault(vmf, ops); 1463 default: 1464 return VM_FAULT_FALLBACK; 1465 } 1466 } 1467 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1468