1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/sched.h> 29 #include <linux/sched/signal.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/fs_dax.h> 40 41 /* We choose 4096 entries - same as per-zone page wait tables */ 42 #define DAX_WAIT_TABLE_BITS 12 43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 44 45 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 48 49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 50 51 static int __init init_dax_wait_table(void) 52 { 53 int i; 54 55 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 56 init_waitqueue_head(wait_table + i); 57 return 0; 58 } 59 fs_initcall(init_dax_wait_table); 60 61 /* 62 * We use lowest available bit in exceptional entry for locking, one bit for 63 * the entry size (PMD) and two more to tell us if the entry is a zero page or 64 * an empty entry that is just used for locking. In total four special bits. 65 * 66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 68 * block allocation. 69 */ 70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4) 71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT) 72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) 73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) 74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)) 75 76 static unsigned long dax_radix_pfn(void *entry) 77 { 78 return (unsigned long)entry >> RADIX_DAX_SHIFT; 79 } 80 81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags) 82 { 83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags | 84 (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK); 85 } 86 87 static unsigned int dax_radix_order(void *entry) 88 { 89 if ((unsigned long)entry & RADIX_DAX_PMD) 90 return PMD_SHIFT - PAGE_SHIFT; 91 return 0; 92 } 93 94 static int dax_is_pmd_entry(void *entry) 95 { 96 return (unsigned long)entry & RADIX_DAX_PMD; 97 } 98 99 static int dax_is_pte_entry(void *entry) 100 { 101 return !((unsigned long)entry & RADIX_DAX_PMD); 102 } 103 104 static int dax_is_zero_entry(void *entry) 105 { 106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE; 107 } 108 109 static int dax_is_empty_entry(void *entry) 110 { 111 return (unsigned long)entry & RADIX_DAX_EMPTY; 112 } 113 114 /* 115 * DAX radix tree locking 116 */ 117 struct exceptional_entry_key { 118 struct address_space *mapping; 119 pgoff_t entry_start; 120 }; 121 122 struct wait_exceptional_entry_queue { 123 wait_queue_entry_t wait; 124 struct exceptional_entry_key key; 125 }; 126 127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 128 pgoff_t index, void *entry, struct exceptional_entry_key *key) 129 { 130 unsigned long hash; 131 132 /* 133 * If 'entry' is a PMD, align the 'index' that we use for the wait 134 * queue to the start of that PMD. This ensures that all offsets in 135 * the range covered by the PMD map to the same bit lock. 136 */ 137 if (dax_is_pmd_entry(entry)) 138 index &= ~PG_PMD_COLOUR; 139 140 key->mapping = mapping; 141 key->entry_start = index; 142 143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 144 return wait_table + hash; 145 } 146 147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode, 148 int sync, void *keyp) 149 { 150 struct exceptional_entry_key *key = keyp; 151 struct wait_exceptional_entry_queue *ewait = 152 container_of(wait, struct wait_exceptional_entry_queue, wait); 153 154 if (key->mapping != ewait->key.mapping || 155 key->entry_start != ewait->key.entry_start) 156 return 0; 157 return autoremove_wake_function(wait, mode, sync, NULL); 158 } 159 160 /* 161 * @entry may no longer be the entry at the index in the mapping. 162 * The important information it's conveying is whether the entry at 163 * this index used to be a PMD entry. 164 */ 165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping, 166 pgoff_t index, void *entry, bool wake_all) 167 { 168 struct exceptional_entry_key key; 169 wait_queue_head_t *wq; 170 171 wq = dax_entry_waitqueue(mapping, index, entry, &key); 172 173 /* 174 * Checking for locked entry and prepare_to_wait_exclusive() happens 175 * under the i_pages lock, ditto for entry handling in our callers. 176 * So at this point all tasks that could have seen our entry locked 177 * must be in the waitqueue and the following check will see them. 178 */ 179 if (waitqueue_active(wq)) 180 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 181 } 182 183 /* 184 * Check whether the given slot is locked. Must be called with the i_pages 185 * lock held. 186 */ 187 static inline int slot_locked(struct address_space *mapping, void **slot) 188 { 189 unsigned long entry = (unsigned long) 190 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); 191 return entry & RADIX_DAX_ENTRY_LOCK; 192 } 193 194 /* 195 * Mark the given slot as locked. Must be called with the i_pages lock held. 196 */ 197 static inline void *lock_slot(struct address_space *mapping, void **slot) 198 { 199 unsigned long entry = (unsigned long) 200 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); 201 202 entry |= RADIX_DAX_ENTRY_LOCK; 203 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); 204 return (void *)entry; 205 } 206 207 /* 208 * Mark the given slot as unlocked. Must be called with the i_pages lock held. 209 */ 210 static inline void *unlock_slot(struct address_space *mapping, void **slot) 211 { 212 unsigned long entry = (unsigned long) 213 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock); 214 215 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 216 radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry); 217 return (void *)entry; 218 } 219 220 /* 221 * Lookup entry in radix tree, wait for it to become unlocked if it is 222 * exceptional entry and return it. The caller must call 223 * put_unlocked_mapping_entry() when he decided not to lock the entry or 224 * put_locked_mapping_entry() when he locked the entry and now wants to 225 * unlock it. 226 * 227 * Must be called with the i_pages lock held. 228 */ 229 static void *get_unlocked_mapping_entry(struct address_space *mapping, 230 pgoff_t index, void ***slotp) 231 { 232 void *entry, **slot; 233 struct wait_exceptional_entry_queue ewait; 234 wait_queue_head_t *wq; 235 236 init_wait(&ewait.wait); 237 ewait.wait.func = wake_exceptional_entry_func; 238 239 for (;;) { 240 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, 241 &slot); 242 if (!entry || 243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) || 244 !slot_locked(mapping, slot)) { 245 if (slotp) 246 *slotp = slot; 247 return entry; 248 } 249 250 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 251 prepare_to_wait_exclusive(wq, &ewait.wait, 252 TASK_UNINTERRUPTIBLE); 253 xa_unlock_irq(&mapping->i_pages); 254 schedule(); 255 finish_wait(wq, &ewait.wait); 256 xa_lock_irq(&mapping->i_pages); 257 } 258 } 259 260 static void dax_unlock_mapping_entry(struct address_space *mapping, 261 pgoff_t index) 262 { 263 void *entry, **slot; 264 265 xa_lock_irq(&mapping->i_pages); 266 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot); 267 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 268 !slot_locked(mapping, slot))) { 269 xa_unlock_irq(&mapping->i_pages); 270 return; 271 } 272 unlock_slot(mapping, slot); 273 xa_unlock_irq(&mapping->i_pages); 274 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 275 } 276 277 static void put_locked_mapping_entry(struct address_space *mapping, 278 pgoff_t index) 279 { 280 dax_unlock_mapping_entry(mapping, index); 281 } 282 283 /* 284 * Called when we are done with radix tree entry we looked up via 285 * get_unlocked_mapping_entry() and which we didn't lock in the end. 286 */ 287 static void put_unlocked_mapping_entry(struct address_space *mapping, 288 pgoff_t index, void *entry) 289 { 290 if (!entry) 291 return; 292 293 /* We have to wake up next waiter for the radix tree entry lock */ 294 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 295 } 296 297 static unsigned long dax_entry_size(void *entry) 298 { 299 if (dax_is_zero_entry(entry)) 300 return 0; 301 else if (dax_is_empty_entry(entry)) 302 return 0; 303 else if (dax_is_pmd_entry(entry)) 304 return PMD_SIZE; 305 else 306 return PAGE_SIZE; 307 } 308 309 static unsigned long dax_radix_end_pfn(void *entry) 310 { 311 return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 312 } 313 314 /* 315 * Iterate through all mapped pfns represented by an entry, i.e. skip 316 * 'empty' and 'zero' entries. 317 */ 318 #define for_each_mapped_pfn(entry, pfn) \ 319 for (pfn = dax_radix_pfn(entry); \ 320 pfn < dax_radix_end_pfn(entry); pfn++) 321 322 static void dax_associate_entry(void *entry, struct address_space *mapping) 323 { 324 unsigned long pfn; 325 326 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 327 return; 328 329 for_each_mapped_pfn(entry, pfn) { 330 struct page *page = pfn_to_page(pfn); 331 332 WARN_ON_ONCE(page->mapping); 333 page->mapping = mapping; 334 } 335 } 336 337 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 338 bool trunc) 339 { 340 unsigned long pfn; 341 342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 343 return; 344 345 for_each_mapped_pfn(entry, pfn) { 346 struct page *page = pfn_to_page(pfn); 347 348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 349 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 350 page->mapping = NULL; 351 } 352 } 353 354 /* 355 * Find radix tree entry at given index. If it points to an exceptional entry, 356 * return it with the radix tree entry locked. If the radix tree doesn't 357 * contain given index, create an empty exceptional entry for the index and 358 * return with it locked. 359 * 360 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 361 * either return that locked entry or will return an error. This error will 362 * happen if there are any 4k entries within the 2MiB range that we are 363 * requesting. 364 * 365 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 366 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 367 * insertion will fail if it finds any 4k entries already in the tree, and a 368 * 4k insertion will cause an existing 2MiB entry to be unmapped and 369 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 370 * well as 2MiB empty entries. 371 * 372 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 373 * real storage backing them. We will leave these real 2MiB DAX entries in 374 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 375 * 376 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 377 * persistent memory the benefit is doubtful. We can add that later if we can 378 * show it helps. 379 */ 380 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 381 unsigned long size_flag) 382 { 383 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 384 void *entry, **slot; 385 386 restart: 387 xa_lock_irq(&mapping->i_pages); 388 entry = get_unlocked_mapping_entry(mapping, index, &slot); 389 390 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) { 391 entry = ERR_PTR(-EIO); 392 goto out_unlock; 393 } 394 395 if (entry) { 396 if (size_flag & RADIX_DAX_PMD) { 397 if (dax_is_pte_entry(entry)) { 398 put_unlocked_mapping_entry(mapping, index, 399 entry); 400 entry = ERR_PTR(-EEXIST); 401 goto out_unlock; 402 } 403 } else { /* trying to grab a PTE entry */ 404 if (dax_is_pmd_entry(entry) && 405 (dax_is_zero_entry(entry) || 406 dax_is_empty_entry(entry))) { 407 pmd_downgrade = true; 408 } 409 } 410 } 411 412 /* No entry for given index? Make sure radix tree is big enough. */ 413 if (!entry || pmd_downgrade) { 414 int err; 415 416 if (pmd_downgrade) { 417 /* 418 * Make sure 'entry' remains valid while we drop 419 * the i_pages lock. 420 */ 421 entry = lock_slot(mapping, slot); 422 } 423 424 xa_unlock_irq(&mapping->i_pages); 425 /* 426 * Besides huge zero pages the only other thing that gets 427 * downgraded are empty entries which don't need to be 428 * unmapped. 429 */ 430 if (pmd_downgrade && dax_is_zero_entry(entry)) 431 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 432 PG_PMD_NR, false); 433 434 err = radix_tree_preload( 435 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 436 if (err) { 437 if (pmd_downgrade) 438 put_locked_mapping_entry(mapping, index); 439 return ERR_PTR(err); 440 } 441 xa_lock_irq(&mapping->i_pages); 442 443 if (!entry) { 444 /* 445 * We needed to drop the i_pages lock while calling 446 * radix_tree_preload() and we didn't have an entry to 447 * lock. See if another thread inserted an entry at 448 * our index during this time. 449 */ 450 entry = __radix_tree_lookup(&mapping->i_pages, index, 451 NULL, &slot); 452 if (entry) { 453 radix_tree_preload_end(); 454 xa_unlock_irq(&mapping->i_pages); 455 goto restart; 456 } 457 } 458 459 if (pmd_downgrade) { 460 dax_disassociate_entry(entry, mapping, false); 461 radix_tree_delete(&mapping->i_pages, index); 462 mapping->nrexceptional--; 463 dax_wake_mapping_entry_waiter(mapping, index, entry, 464 true); 465 } 466 467 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 468 469 err = __radix_tree_insert(&mapping->i_pages, index, 470 dax_radix_order(entry), entry); 471 radix_tree_preload_end(); 472 if (err) { 473 xa_unlock_irq(&mapping->i_pages); 474 /* 475 * Our insertion of a DAX entry failed, most likely 476 * because we were inserting a PMD entry and it 477 * collided with a PTE sized entry at a different 478 * index in the PMD range. We haven't inserted 479 * anything into the radix tree and have no waiters to 480 * wake. 481 */ 482 return ERR_PTR(err); 483 } 484 /* Good, we have inserted empty locked entry into the tree. */ 485 mapping->nrexceptional++; 486 xa_unlock_irq(&mapping->i_pages); 487 return entry; 488 } 489 entry = lock_slot(mapping, slot); 490 out_unlock: 491 xa_unlock_irq(&mapping->i_pages); 492 return entry; 493 } 494 495 static int __dax_invalidate_mapping_entry(struct address_space *mapping, 496 pgoff_t index, bool trunc) 497 { 498 int ret = 0; 499 void *entry; 500 struct radix_tree_root *pages = &mapping->i_pages; 501 502 xa_lock_irq(pages); 503 entry = get_unlocked_mapping_entry(mapping, index, NULL); 504 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry))) 505 goto out; 506 if (!trunc && 507 (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) || 508 radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))) 509 goto out; 510 dax_disassociate_entry(entry, mapping, trunc); 511 radix_tree_delete(pages, index); 512 mapping->nrexceptional--; 513 ret = 1; 514 out: 515 put_unlocked_mapping_entry(mapping, index, entry); 516 xa_unlock_irq(pages); 517 return ret; 518 } 519 /* 520 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 521 * entry to get unlocked before deleting it. 522 */ 523 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 524 { 525 int ret = __dax_invalidate_mapping_entry(mapping, index, true); 526 527 /* 528 * This gets called from truncate / punch_hole path. As such, the caller 529 * must hold locks protecting against concurrent modifications of the 530 * radix tree (usually fs-private i_mmap_sem for writing). Since the 531 * caller has seen exceptional entry for this index, we better find it 532 * at that index as well... 533 */ 534 WARN_ON_ONCE(!ret); 535 return ret; 536 } 537 538 /* 539 * Invalidate exceptional DAX entry if it is clean. 540 */ 541 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 542 pgoff_t index) 543 { 544 return __dax_invalidate_mapping_entry(mapping, index, false); 545 } 546 547 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 548 sector_t sector, size_t size, struct page *to, 549 unsigned long vaddr) 550 { 551 void *vto, *kaddr; 552 pgoff_t pgoff; 553 pfn_t pfn; 554 long rc; 555 int id; 556 557 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 558 if (rc) 559 return rc; 560 561 id = dax_read_lock(); 562 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn); 563 if (rc < 0) { 564 dax_read_unlock(id); 565 return rc; 566 } 567 vto = kmap_atomic(to); 568 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 569 kunmap_atomic(vto); 570 dax_read_unlock(id); 571 return 0; 572 } 573 574 /* 575 * By this point grab_mapping_entry() has ensured that we have a locked entry 576 * of the appropriate size so we don't have to worry about downgrading PMDs to 577 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 578 * already in the tree, we will skip the insertion and just dirty the PMD as 579 * appropriate. 580 */ 581 static void *dax_insert_mapping_entry(struct address_space *mapping, 582 struct vm_fault *vmf, 583 void *entry, pfn_t pfn_t, 584 unsigned long flags, bool dirty) 585 { 586 struct radix_tree_root *pages = &mapping->i_pages; 587 unsigned long pfn = pfn_t_to_pfn(pfn_t); 588 pgoff_t index = vmf->pgoff; 589 void *new_entry; 590 591 if (dirty) 592 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 593 594 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) { 595 /* we are replacing a zero page with block mapping */ 596 if (dax_is_pmd_entry(entry)) 597 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 598 PG_PMD_NR, false); 599 else /* pte entry */ 600 unmap_mapping_pages(mapping, vmf->pgoff, 1, false); 601 } 602 603 xa_lock_irq(pages); 604 new_entry = dax_radix_locked_entry(pfn, flags); 605 if (dax_entry_size(entry) != dax_entry_size(new_entry)) { 606 dax_disassociate_entry(entry, mapping, false); 607 dax_associate_entry(new_entry, mapping); 608 } 609 610 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 611 /* 612 * Only swap our new entry into the radix tree if the current 613 * entry is a zero page or an empty entry. If a normal PTE or 614 * PMD entry is already in the tree, we leave it alone. This 615 * means that if we are trying to insert a PTE and the 616 * existing entry is a PMD, we will just leave the PMD in the 617 * tree and dirty it if necessary. 618 */ 619 struct radix_tree_node *node; 620 void **slot; 621 void *ret; 622 623 ret = __radix_tree_lookup(pages, index, &node, &slot); 624 WARN_ON_ONCE(ret != entry); 625 __radix_tree_replace(pages, node, slot, 626 new_entry, NULL); 627 entry = new_entry; 628 } 629 630 if (dirty) 631 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY); 632 633 xa_unlock_irq(pages); 634 return entry; 635 } 636 637 static inline unsigned long 638 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 639 { 640 unsigned long address; 641 642 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 643 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 644 return address; 645 } 646 647 /* Walk all mappings of a given index of a file and writeprotect them */ 648 static void dax_mapping_entry_mkclean(struct address_space *mapping, 649 pgoff_t index, unsigned long pfn) 650 { 651 struct vm_area_struct *vma; 652 pte_t pte, *ptep = NULL; 653 pmd_t *pmdp = NULL; 654 spinlock_t *ptl; 655 656 i_mmap_lock_read(mapping); 657 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 658 unsigned long address, start, end; 659 660 cond_resched(); 661 662 if (!(vma->vm_flags & VM_SHARED)) 663 continue; 664 665 address = pgoff_address(index, vma); 666 667 /* 668 * Note because we provide start/end to follow_pte_pmd it will 669 * call mmu_notifier_invalidate_range_start() on our behalf 670 * before taking any lock. 671 */ 672 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) 673 continue; 674 675 /* 676 * No need to call mmu_notifier_invalidate_range() as we are 677 * downgrading page table protection not changing it to point 678 * to a new page. 679 * 680 * See Documentation/vm/mmu_notifier.txt 681 */ 682 if (pmdp) { 683 #ifdef CONFIG_FS_DAX_PMD 684 pmd_t pmd; 685 686 if (pfn != pmd_pfn(*pmdp)) 687 goto unlock_pmd; 688 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 689 goto unlock_pmd; 690 691 flush_cache_page(vma, address, pfn); 692 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 693 pmd = pmd_wrprotect(pmd); 694 pmd = pmd_mkclean(pmd); 695 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 696 unlock_pmd: 697 #endif 698 spin_unlock(ptl); 699 } else { 700 if (pfn != pte_pfn(*ptep)) 701 goto unlock_pte; 702 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 703 goto unlock_pte; 704 705 flush_cache_page(vma, address, pfn); 706 pte = ptep_clear_flush(vma, address, ptep); 707 pte = pte_wrprotect(pte); 708 pte = pte_mkclean(pte); 709 set_pte_at(vma->vm_mm, address, ptep, pte); 710 unlock_pte: 711 pte_unmap_unlock(ptep, ptl); 712 } 713 714 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 715 } 716 i_mmap_unlock_read(mapping); 717 } 718 719 static int dax_writeback_one(struct dax_device *dax_dev, 720 struct address_space *mapping, pgoff_t index, void *entry) 721 { 722 struct radix_tree_root *pages = &mapping->i_pages; 723 void *entry2, **slot; 724 unsigned long pfn; 725 long ret = 0; 726 size_t size; 727 728 /* 729 * A page got tagged dirty in DAX mapping? Something is seriously 730 * wrong. 731 */ 732 if (WARN_ON(!radix_tree_exceptional_entry(entry))) 733 return -EIO; 734 735 xa_lock_irq(pages); 736 entry2 = get_unlocked_mapping_entry(mapping, index, &slot); 737 /* Entry got punched out / reallocated? */ 738 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2))) 739 goto put_unlocked; 740 /* 741 * Entry got reallocated elsewhere? No need to writeback. We have to 742 * compare pfns as we must not bail out due to difference in lockbit 743 * or entry type. 744 */ 745 if (dax_radix_pfn(entry2) != dax_radix_pfn(entry)) 746 goto put_unlocked; 747 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 748 dax_is_zero_entry(entry))) { 749 ret = -EIO; 750 goto put_unlocked; 751 } 752 753 /* Another fsync thread may have already written back this entry */ 754 if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)) 755 goto put_unlocked; 756 /* Lock the entry to serialize with page faults */ 757 entry = lock_slot(mapping, slot); 758 /* 759 * We can clear the tag now but we have to be careful so that concurrent 760 * dax_writeback_one() calls for the same index cannot finish before we 761 * actually flush the caches. This is achieved as the calls will look 762 * at the entry only under the i_pages lock and once they do that 763 * they will see the entry locked and wait for it to unlock. 764 */ 765 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE); 766 xa_unlock_irq(pages); 767 768 /* 769 * Even if dax_writeback_mapping_range() was given a wbc->range_start 770 * in the middle of a PMD, the 'index' we are given will be aligned to 771 * the start index of the PMD, as will the pfn we pull from 'entry'. 772 * This allows us to flush for PMD_SIZE and not have to worry about 773 * partial PMD writebacks. 774 */ 775 pfn = dax_radix_pfn(entry); 776 size = PAGE_SIZE << dax_radix_order(entry); 777 778 dax_mapping_entry_mkclean(mapping, index, pfn); 779 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size); 780 /* 781 * After we have flushed the cache, we can clear the dirty tag. There 782 * cannot be new dirty data in the pfn after the flush has completed as 783 * the pfn mappings are writeprotected and fault waits for mapping 784 * entry lock. 785 */ 786 xa_lock_irq(pages); 787 radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY); 788 xa_unlock_irq(pages); 789 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT); 790 put_locked_mapping_entry(mapping, index); 791 return ret; 792 793 put_unlocked: 794 put_unlocked_mapping_entry(mapping, index, entry2); 795 xa_unlock_irq(pages); 796 return ret; 797 } 798 799 /* 800 * Flush the mapping to the persistent domain within the byte range of [start, 801 * end]. This is required by data integrity operations to ensure file data is 802 * on persistent storage prior to completion of the operation. 803 */ 804 int dax_writeback_mapping_range(struct address_space *mapping, 805 struct block_device *bdev, struct writeback_control *wbc) 806 { 807 struct inode *inode = mapping->host; 808 pgoff_t start_index, end_index; 809 pgoff_t indices[PAGEVEC_SIZE]; 810 struct dax_device *dax_dev; 811 struct pagevec pvec; 812 bool done = false; 813 int i, ret = 0; 814 815 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 816 return -EIO; 817 818 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 819 return 0; 820 821 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 822 if (!dax_dev) 823 return -EIO; 824 825 start_index = wbc->range_start >> PAGE_SHIFT; 826 end_index = wbc->range_end >> PAGE_SHIFT; 827 828 trace_dax_writeback_range(inode, start_index, end_index); 829 830 tag_pages_for_writeback(mapping, start_index, end_index); 831 832 pagevec_init(&pvec); 833 while (!done) { 834 pvec.nr = find_get_entries_tag(mapping, start_index, 835 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 836 pvec.pages, indices); 837 838 if (pvec.nr == 0) 839 break; 840 841 for (i = 0; i < pvec.nr; i++) { 842 if (indices[i] > end_index) { 843 done = true; 844 break; 845 } 846 847 ret = dax_writeback_one(dax_dev, mapping, indices[i], 848 pvec.pages[i]); 849 if (ret < 0) { 850 mapping_set_error(mapping, ret); 851 goto out; 852 } 853 } 854 start_index = indices[pvec.nr - 1] + 1; 855 } 856 out: 857 put_dax(dax_dev); 858 trace_dax_writeback_range_done(inode, start_index, end_index); 859 return (ret < 0 ? ret : 0); 860 } 861 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 862 863 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 864 { 865 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 866 } 867 868 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 869 pfn_t *pfnp) 870 { 871 const sector_t sector = dax_iomap_sector(iomap, pos); 872 pgoff_t pgoff; 873 void *kaddr; 874 int id, rc; 875 long length; 876 877 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 878 if (rc) 879 return rc; 880 id = dax_read_lock(); 881 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 882 &kaddr, pfnp); 883 if (length < 0) { 884 rc = length; 885 goto out; 886 } 887 rc = -EINVAL; 888 if (PFN_PHYS(length) < size) 889 goto out; 890 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 891 goto out; 892 /* For larger pages we need devmap */ 893 if (length > 1 && !pfn_t_devmap(*pfnp)) 894 goto out; 895 rc = 0; 896 out: 897 dax_read_unlock(id); 898 return rc; 899 } 900 901 /* 902 * The user has performed a load from a hole in the file. Allocating a new 903 * page in the file would cause excessive storage usage for workloads with 904 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 905 * If this page is ever written to we will re-fault and change the mapping to 906 * point to real DAX storage instead. 907 */ 908 static int dax_load_hole(struct address_space *mapping, void *entry, 909 struct vm_fault *vmf) 910 { 911 struct inode *inode = mapping->host; 912 unsigned long vaddr = vmf->address; 913 int ret = VM_FAULT_NOPAGE; 914 struct page *zero_page; 915 void *entry2; 916 pfn_t pfn; 917 918 zero_page = ZERO_PAGE(0); 919 if (unlikely(!zero_page)) { 920 ret = VM_FAULT_OOM; 921 goto out; 922 } 923 924 pfn = page_to_pfn_t(zero_page); 925 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, pfn, 926 RADIX_DAX_ZERO_PAGE, false); 927 if (IS_ERR(entry2)) { 928 ret = VM_FAULT_SIGBUS; 929 goto out; 930 } 931 932 vm_insert_mixed(vmf->vma, vaddr, pfn); 933 out: 934 trace_dax_load_hole(inode, vmf, ret); 935 return ret; 936 } 937 938 static bool dax_range_is_aligned(struct block_device *bdev, 939 unsigned int offset, unsigned int length) 940 { 941 unsigned short sector_size = bdev_logical_block_size(bdev); 942 943 if (!IS_ALIGNED(offset, sector_size)) 944 return false; 945 if (!IS_ALIGNED(length, sector_size)) 946 return false; 947 948 return true; 949 } 950 951 int __dax_zero_page_range(struct block_device *bdev, 952 struct dax_device *dax_dev, sector_t sector, 953 unsigned int offset, unsigned int size) 954 { 955 if (dax_range_is_aligned(bdev, offset, size)) { 956 sector_t start_sector = sector + (offset >> 9); 957 958 return blkdev_issue_zeroout(bdev, start_sector, 959 size >> 9, GFP_NOFS, 0); 960 } else { 961 pgoff_t pgoff; 962 long rc, id; 963 void *kaddr; 964 pfn_t pfn; 965 966 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 967 if (rc) 968 return rc; 969 970 id = dax_read_lock(); 971 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, 972 &pfn); 973 if (rc < 0) { 974 dax_read_unlock(id); 975 return rc; 976 } 977 memset(kaddr + offset, 0, size); 978 dax_flush(dax_dev, kaddr + offset, size); 979 dax_read_unlock(id); 980 } 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 984 985 static loff_t 986 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 987 struct iomap *iomap) 988 { 989 struct block_device *bdev = iomap->bdev; 990 struct dax_device *dax_dev = iomap->dax_dev; 991 struct iov_iter *iter = data; 992 loff_t end = pos + length, done = 0; 993 ssize_t ret = 0; 994 int id; 995 996 if (iov_iter_rw(iter) == READ) { 997 end = min(end, i_size_read(inode)); 998 if (pos >= end) 999 return 0; 1000 1001 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1002 return iov_iter_zero(min(length, end - pos), iter); 1003 } 1004 1005 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1006 return -EIO; 1007 1008 /* 1009 * Write can allocate block for an area which has a hole page mapped 1010 * into page tables. We have to tear down these mappings so that data 1011 * written by write(2) is visible in mmap. 1012 */ 1013 if (iomap->flags & IOMAP_F_NEW) { 1014 invalidate_inode_pages2_range(inode->i_mapping, 1015 pos >> PAGE_SHIFT, 1016 (end - 1) >> PAGE_SHIFT); 1017 } 1018 1019 id = dax_read_lock(); 1020 while (pos < end) { 1021 unsigned offset = pos & (PAGE_SIZE - 1); 1022 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1023 const sector_t sector = dax_iomap_sector(iomap, pos); 1024 ssize_t map_len; 1025 pgoff_t pgoff; 1026 void *kaddr; 1027 pfn_t pfn; 1028 1029 if (fatal_signal_pending(current)) { 1030 ret = -EINTR; 1031 break; 1032 } 1033 1034 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1035 if (ret) 1036 break; 1037 1038 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1039 &kaddr, &pfn); 1040 if (map_len < 0) { 1041 ret = map_len; 1042 break; 1043 } 1044 1045 map_len = PFN_PHYS(map_len); 1046 kaddr += offset; 1047 map_len -= offset; 1048 if (map_len > end - pos) 1049 map_len = end - pos; 1050 1051 /* 1052 * The userspace address for the memory copy has already been 1053 * validated via access_ok() in either vfs_read() or 1054 * vfs_write(), depending on which operation we are doing. 1055 */ 1056 if (iov_iter_rw(iter) == WRITE) 1057 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1058 map_len, iter); 1059 else 1060 map_len = copy_to_iter(kaddr, map_len, iter); 1061 if (map_len <= 0) { 1062 ret = map_len ? map_len : -EFAULT; 1063 break; 1064 } 1065 1066 pos += map_len; 1067 length -= map_len; 1068 done += map_len; 1069 } 1070 dax_read_unlock(id); 1071 1072 return done ? done : ret; 1073 } 1074 1075 /** 1076 * dax_iomap_rw - Perform I/O to a DAX file 1077 * @iocb: The control block for this I/O 1078 * @iter: The addresses to do I/O from or to 1079 * @ops: iomap ops passed from the file system 1080 * 1081 * This function performs read and write operations to directly mapped 1082 * persistent memory. The callers needs to take care of read/write exclusion 1083 * and evicting any page cache pages in the region under I/O. 1084 */ 1085 ssize_t 1086 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1087 const struct iomap_ops *ops) 1088 { 1089 struct address_space *mapping = iocb->ki_filp->f_mapping; 1090 struct inode *inode = mapping->host; 1091 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1092 unsigned flags = 0; 1093 1094 if (iov_iter_rw(iter) == WRITE) { 1095 lockdep_assert_held_exclusive(&inode->i_rwsem); 1096 flags |= IOMAP_WRITE; 1097 } else { 1098 lockdep_assert_held(&inode->i_rwsem); 1099 } 1100 1101 while (iov_iter_count(iter)) { 1102 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1103 iter, dax_iomap_actor); 1104 if (ret <= 0) 1105 break; 1106 pos += ret; 1107 done += ret; 1108 } 1109 1110 iocb->ki_pos += done; 1111 return done ? done : ret; 1112 } 1113 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1114 1115 static int dax_fault_return(int error) 1116 { 1117 if (error == 0) 1118 return VM_FAULT_NOPAGE; 1119 if (error == -ENOMEM) 1120 return VM_FAULT_OOM; 1121 return VM_FAULT_SIGBUS; 1122 } 1123 1124 /* 1125 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1126 * flushed on write-faults (non-cow), but not read-faults. 1127 */ 1128 static bool dax_fault_is_synchronous(unsigned long flags, 1129 struct vm_area_struct *vma, struct iomap *iomap) 1130 { 1131 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1132 && (iomap->flags & IOMAP_F_DIRTY); 1133 } 1134 1135 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1136 int *iomap_errp, const struct iomap_ops *ops) 1137 { 1138 struct vm_area_struct *vma = vmf->vma; 1139 struct address_space *mapping = vma->vm_file->f_mapping; 1140 struct inode *inode = mapping->host; 1141 unsigned long vaddr = vmf->address; 1142 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1143 struct iomap iomap = { 0 }; 1144 unsigned flags = IOMAP_FAULT; 1145 int error, major = 0; 1146 bool write = vmf->flags & FAULT_FLAG_WRITE; 1147 bool sync; 1148 int vmf_ret = 0; 1149 void *entry; 1150 pfn_t pfn; 1151 1152 trace_dax_pte_fault(inode, vmf, vmf_ret); 1153 /* 1154 * Check whether offset isn't beyond end of file now. Caller is supposed 1155 * to hold locks serializing us with truncate / punch hole so this is 1156 * a reliable test. 1157 */ 1158 if (pos >= i_size_read(inode)) { 1159 vmf_ret = VM_FAULT_SIGBUS; 1160 goto out; 1161 } 1162 1163 if (write && !vmf->cow_page) 1164 flags |= IOMAP_WRITE; 1165 1166 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 1167 if (IS_ERR(entry)) { 1168 vmf_ret = dax_fault_return(PTR_ERR(entry)); 1169 goto out; 1170 } 1171 1172 /* 1173 * It is possible, particularly with mixed reads & writes to private 1174 * mappings, that we have raced with a PMD fault that overlaps with 1175 * the PTE we need to set up. If so just return and the fault will be 1176 * retried. 1177 */ 1178 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1179 vmf_ret = VM_FAULT_NOPAGE; 1180 goto unlock_entry; 1181 } 1182 1183 /* 1184 * Note that we don't bother to use iomap_apply here: DAX required 1185 * the file system block size to be equal the page size, which means 1186 * that we never have to deal with more than a single extent here. 1187 */ 1188 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1189 if (iomap_errp) 1190 *iomap_errp = error; 1191 if (error) { 1192 vmf_ret = dax_fault_return(error); 1193 goto unlock_entry; 1194 } 1195 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1196 error = -EIO; /* fs corruption? */ 1197 goto error_finish_iomap; 1198 } 1199 1200 if (vmf->cow_page) { 1201 sector_t sector = dax_iomap_sector(&iomap, pos); 1202 1203 switch (iomap.type) { 1204 case IOMAP_HOLE: 1205 case IOMAP_UNWRITTEN: 1206 clear_user_highpage(vmf->cow_page, vaddr); 1207 break; 1208 case IOMAP_MAPPED: 1209 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1210 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1211 break; 1212 default: 1213 WARN_ON_ONCE(1); 1214 error = -EIO; 1215 break; 1216 } 1217 1218 if (error) 1219 goto error_finish_iomap; 1220 1221 __SetPageUptodate(vmf->cow_page); 1222 vmf_ret = finish_fault(vmf); 1223 if (!vmf_ret) 1224 vmf_ret = VM_FAULT_DONE_COW; 1225 goto finish_iomap; 1226 } 1227 1228 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1229 1230 switch (iomap.type) { 1231 case IOMAP_MAPPED: 1232 if (iomap.flags & IOMAP_F_NEW) { 1233 count_vm_event(PGMAJFAULT); 1234 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1235 major = VM_FAULT_MAJOR; 1236 } 1237 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1238 if (error < 0) 1239 goto error_finish_iomap; 1240 1241 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, 1242 0, write && !sync); 1243 if (IS_ERR(entry)) { 1244 error = PTR_ERR(entry); 1245 goto error_finish_iomap; 1246 } 1247 1248 /* 1249 * If we are doing synchronous page fault and inode needs fsync, 1250 * we can insert PTE into page tables only after that happens. 1251 * Skip insertion for now and return the pfn so that caller can 1252 * insert it after fsync is done. 1253 */ 1254 if (sync) { 1255 if (WARN_ON_ONCE(!pfnp)) { 1256 error = -EIO; 1257 goto error_finish_iomap; 1258 } 1259 *pfnp = pfn; 1260 vmf_ret = VM_FAULT_NEEDDSYNC | major; 1261 goto finish_iomap; 1262 } 1263 trace_dax_insert_mapping(inode, vmf, entry); 1264 if (write) 1265 error = vm_insert_mixed_mkwrite(vma, vaddr, pfn); 1266 else 1267 error = vm_insert_mixed(vma, vaddr, pfn); 1268 1269 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1270 if (error == -EBUSY) 1271 error = 0; 1272 break; 1273 case IOMAP_UNWRITTEN: 1274 case IOMAP_HOLE: 1275 if (!write) { 1276 vmf_ret = dax_load_hole(mapping, entry, vmf); 1277 goto finish_iomap; 1278 } 1279 /*FALLTHRU*/ 1280 default: 1281 WARN_ON_ONCE(1); 1282 error = -EIO; 1283 break; 1284 } 1285 1286 error_finish_iomap: 1287 vmf_ret = dax_fault_return(error) | major; 1288 finish_iomap: 1289 if (ops->iomap_end) { 1290 int copied = PAGE_SIZE; 1291 1292 if (vmf_ret & VM_FAULT_ERROR) 1293 copied = 0; 1294 /* 1295 * The fault is done by now and there's no way back (other 1296 * thread may be already happily using PTE we have installed). 1297 * Just ignore error from ->iomap_end since we cannot do much 1298 * with it. 1299 */ 1300 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1301 } 1302 unlock_entry: 1303 put_locked_mapping_entry(mapping, vmf->pgoff); 1304 out: 1305 trace_dax_pte_fault_done(inode, vmf, vmf_ret); 1306 return vmf_ret; 1307 } 1308 1309 #ifdef CONFIG_FS_DAX_PMD 1310 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, 1311 void *entry) 1312 { 1313 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1314 unsigned long pmd_addr = vmf->address & PMD_MASK; 1315 struct inode *inode = mapping->host; 1316 struct page *zero_page; 1317 void *ret = NULL; 1318 spinlock_t *ptl; 1319 pmd_t pmd_entry; 1320 pfn_t pfn; 1321 1322 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1323 1324 if (unlikely(!zero_page)) 1325 goto fallback; 1326 1327 pfn = page_to_pfn_t(zero_page); 1328 ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn, 1329 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false); 1330 if (IS_ERR(ret)) 1331 goto fallback; 1332 1333 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1334 if (!pmd_none(*(vmf->pmd))) { 1335 spin_unlock(ptl); 1336 goto fallback; 1337 } 1338 1339 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1340 pmd_entry = pmd_mkhuge(pmd_entry); 1341 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1342 spin_unlock(ptl); 1343 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); 1344 return VM_FAULT_NOPAGE; 1345 1346 fallback: 1347 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); 1348 return VM_FAULT_FALLBACK; 1349 } 1350 1351 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1352 const struct iomap_ops *ops) 1353 { 1354 struct vm_area_struct *vma = vmf->vma; 1355 struct address_space *mapping = vma->vm_file->f_mapping; 1356 unsigned long pmd_addr = vmf->address & PMD_MASK; 1357 bool write = vmf->flags & FAULT_FLAG_WRITE; 1358 bool sync; 1359 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1360 struct inode *inode = mapping->host; 1361 int result = VM_FAULT_FALLBACK; 1362 struct iomap iomap = { 0 }; 1363 pgoff_t max_pgoff, pgoff; 1364 void *entry; 1365 loff_t pos; 1366 int error; 1367 pfn_t pfn; 1368 1369 /* 1370 * Check whether offset isn't beyond end of file now. Caller is 1371 * supposed to hold locks serializing us with truncate / punch hole so 1372 * this is a reliable test. 1373 */ 1374 pgoff = linear_page_index(vma, pmd_addr); 1375 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1376 1377 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1378 1379 /* 1380 * Make sure that the faulting address's PMD offset (color) matches 1381 * the PMD offset from the start of the file. This is necessary so 1382 * that a PMD range in the page table overlaps exactly with a PMD 1383 * range in the radix tree. 1384 */ 1385 if ((vmf->pgoff & PG_PMD_COLOUR) != 1386 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1387 goto fallback; 1388 1389 /* Fall back to PTEs if we're going to COW */ 1390 if (write && !(vma->vm_flags & VM_SHARED)) 1391 goto fallback; 1392 1393 /* If the PMD would extend outside the VMA */ 1394 if (pmd_addr < vma->vm_start) 1395 goto fallback; 1396 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1397 goto fallback; 1398 1399 if (pgoff >= max_pgoff) { 1400 result = VM_FAULT_SIGBUS; 1401 goto out; 1402 } 1403 1404 /* If the PMD would extend beyond the file size */ 1405 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff) 1406 goto fallback; 1407 1408 /* 1409 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a 1410 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page 1411 * is already in the tree, for instance), it will return -EEXIST and 1412 * we just fall back to 4k entries. 1413 */ 1414 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1415 if (IS_ERR(entry)) 1416 goto fallback; 1417 1418 /* 1419 * It is possible, particularly with mixed reads & writes to private 1420 * mappings, that we have raced with a PTE fault that overlaps with 1421 * the PMD we need to set up. If so just return and the fault will be 1422 * retried. 1423 */ 1424 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1425 !pmd_devmap(*vmf->pmd)) { 1426 result = 0; 1427 goto unlock_entry; 1428 } 1429 1430 /* 1431 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1432 * setting up a mapping, so really we're using iomap_begin() as a way 1433 * to look up our filesystem block. 1434 */ 1435 pos = (loff_t)pgoff << PAGE_SHIFT; 1436 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1437 if (error) 1438 goto unlock_entry; 1439 1440 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1441 goto finish_iomap; 1442 1443 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1444 1445 switch (iomap.type) { 1446 case IOMAP_MAPPED: 1447 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1448 if (error < 0) 1449 goto finish_iomap; 1450 1451 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn, 1452 RADIX_DAX_PMD, write && !sync); 1453 if (IS_ERR(entry)) 1454 goto finish_iomap; 1455 1456 /* 1457 * If we are doing synchronous page fault and inode needs fsync, 1458 * we can insert PMD into page tables only after that happens. 1459 * Skip insertion for now and return the pfn so that caller can 1460 * insert it after fsync is done. 1461 */ 1462 if (sync) { 1463 if (WARN_ON_ONCE(!pfnp)) 1464 goto finish_iomap; 1465 *pfnp = pfn; 1466 result = VM_FAULT_NEEDDSYNC; 1467 goto finish_iomap; 1468 } 1469 1470 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1471 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, 1472 write); 1473 break; 1474 case IOMAP_UNWRITTEN: 1475 case IOMAP_HOLE: 1476 if (WARN_ON_ONCE(write)) 1477 break; 1478 result = dax_pmd_load_hole(vmf, &iomap, entry); 1479 break; 1480 default: 1481 WARN_ON_ONCE(1); 1482 break; 1483 } 1484 1485 finish_iomap: 1486 if (ops->iomap_end) { 1487 int copied = PMD_SIZE; 1488 1489 if (result == VM_FAULT_FALLBACK) 1490 copied = 0; 1491 /* 1492 * The fault is done by now and there's no way back (other 1493 * thread may be already happily using PMD we have installed). 1494 * Just ignore error from ->iomap_end since we cannot do much 1495 * with it. 1496 */ 1497 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1498 &iomap); 1499 } 1500 unlock_entry: 1501 put_locked_mapping_entry(mapping, pgoff); 1502 fallback: 1503 if (result == VM_FAULT_FALLBACK) { 1504 split_huge_pmd(vma, vmf->pmd, vmf->address); 1505 count_vm_event(THP_FAULT_FALLBACK); 1506 } 1507 out: 1508 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1509 return result; 1510 } 1511 #else 1512 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1513 const struct iomap_ops *ops) 1514 { 1515 return VM_FAULT_FALLBACK; 1516 } 1517 #endif /* CONFIG_FS_DAX_PMD */ 1518 1519 /** 1520 * dax_iomap_fault - handle a page fault on a DAX file 1521 * @vmf: The description of the fault 1522 * @pe_size: Size of the page to fault in 1523 * @pfnp: PFN to insert for synchronous faults if fsync is required 1524 * @iomap_errp: Storage for detailed error code in case of error 1525 * @ops: Iomap ops passed from the file system 1526 * 1527 * When a page fault occurs, filesystems may call this helper in 1528 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1529 * has done all the necessary locking for page fault to proceed 1530 * successfully. 1531 */ 1532 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1533 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1534 { 1535 switch (pe_size) { 1536 case PE_SIZE_PTE: 1537 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1538 case PE_SIZE_PMD: 1539 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1540 default: 1541 return VM_FAULT_FALLBACK; 1542 } 1543 } 1544 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1545 1546 /** 1547 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1548 * @vmf: The description of the fault 1549 * @pe_size: Size of entry to be inserted 1550 * @pfn: PFN to insert 1551 * 1552 * This function inserts writeable PTE or PMD entry into page tables for mmaped 1553 * DAX file. It takes care of marking corresponding radix tree entry as dirty 1554 * as well. 1555 */ 1556 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf, 1557 enum page_entry_size pe_size, 1558 pfn_t pfn) 1559 { 1560 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1561 void *entry, **slot; 1562 pgoff_t index = vmf->pgoff; 1563 int vmf_ret, error; 1564 1565 xa_lock_irq(&mapping->i_pages); 1566 entry = get_unlocked_mapping_entry(mapping, index, &slot); 1567 /* Did we race with someone splitting entry or so? */ 1568 if (!entry || 1569 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) || 1570 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) { 1571 put_unlocked_mapping_entry(mapping, index, entry); 1572 xa_unlock_irq(&mapping->i_pages); 1573 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1574 VM_FAULT_NOPAGE); 1575 return VM_FAULT_NOPAGE; 1576 } 1577 radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY); 1578 entry = lock_slot(mapping, slot); 1579 xa_unlock_irq(&mapping->i_pages); 1580 switch (pe_size) { 1581 case PE_SIZE_PTE: 1582 error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1583 vmf_ret = dax_fault_return(error); 1584 break; 1585 #ifdef CONFIG_FS_DAX_PMD 1586 case PE_SIZE_PMD: 1587 vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1588 pfn, true); 1589 break; 1590 #endif 1591 default: 1592 vmf_ret = VM_FAULT_FALLBACK; 1593 } 1594 put_locked_mapping_entry(mapping, index); 1595 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret); 1596 return vmf_ret; 1597 } 1598 1599 /** 1600 * dax_finish_sync_fault - finish synchronous page fault 1601 * @vmf: The description of the fault 1602 * @pe_size: Size of entry to be inserted 1603 * @pfn: PFN to insert 1604 * 1605 * This function ensures that the file range touched by the page fault is 1606 * stored persistently on the media and handles inserting of appropriate page 1607 * table entry. 1608 */ 1609 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1610 pfn_t pfn) 1611 { 1612 int err; 1613 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1614 size_t len = 0; 1615 1616 if (pe_size == PE_SIZE_PTE) 1617 len = PAGE_SIZE; 1618 else if (pe_size == PE_SIZE_PMD) 1619 len = PMD_SIZE; 1620 else 1621 WARN_ON_ONCE(1); 1622 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1623 if (err) 1624 return VM_FAULT_SIGBUS; 1625 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn); 1626 } 1627 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1628