xref: /openbmc/linux/fs/dax.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 /*
338  * TODO: for reflink+dax we need a way to associate a single page with
339  * multiple address_space instances at different linear_page_index()
340  * offsets.
341  */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 		struct vm_area_struct *vma, unsigned long address)
344 {
345 	unsigned long size = dax_entry_size(entry), pfn, index;
346 	int i = 0;
347 
348 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 		return;
350 
351 	index = linear_page_index(vma, address & ~(size - 1));
352 	for_each_mapped_pfn(entry, pfn) {
353 		struct page *page = pfn_to_page(pfn);
354 
355 		WARN_ON_ONCE(page->mapping);
356 		page->mapping = mapping;
357 		page->index = index + i++;
358 	}
359 }
360 
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 		bool trunc)
363 {
364 	unsigned long pfn;
365 
366 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 		return;
368 
369 	for_each_mapped_pfn(entry, pfn) {
370 		struct page *page = pfn_to_page(pfn);
371 
372 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 		page->mapping = NULL;
375 		page->index = 0;
376 	}
377 }
378 
379 static struct page *dax_busy_page(void *entry)
380 {
381 	unsigned long pfn;
382 
383 	for_each_mapped_pfn(entry, pfn) {
384 		struct page *page = pfn_to_page(pfn);
385 
386 		if (page_ref_count(page) > 1)
387 			return page;
388 	}
389 	return NULL;
390 }
391 
392 /*
393  * dax_lock_page - Lock the DAX entry corresponding to a page
394  * @page: The page whose entry we want to lock
395  *
396  * Context: Process context.
397  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398  * not be locked.
399  */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 	XA_STATE(xas, NULL, 0);
403 	void *entry;
404 
405 	/* Ensure page->mapping isn't freed while we look at it */
406 	rcu_read_lock();
407 	for (;;) {
408 		struct address_space *mapping = READ_ONCE(page->mapping);
409 
410 		entry = NULL;
411 		if (!mapping || !dax_mapping(mapping))
412 			break;
413 
414 		/*
415 		 * In the device-dax case there's no need to lock, a
416 		 * struct dev_pagemap pin is sufficient to keep the
417 		 * inode alive, and we assume we have dev_pagemap pin
418 		 * otherwise we would not have a valid pfn_to_page()
419 		 * translation.
420 		 */
421 		entry = (void *)~0UL;
422 		if (S_ISCHR(mapping->host->i_mode))
423 			break;
424 
425 		xas.xa = &mapping->i_pages;
426 		xas_lock_irq(&xas);
427 		if (mapping != page->mapping) {
428 			xas_unlock_irq(&xas);
429 			continue;
430 		}
431 		xas_set(&xas, page->index);
432 		entry = xas_load(&xas);
433 		if (dax_is_locked(entry)) {
434 			rcu_read_unlock();
435 			wait_entry_unlocked(&xas, entry);
436 			rcu_read_lock();
437 			continue;
438 		}
439 		dax_lock_entry(&xas, entry);
440 		xas_unlock_irq(&xas);
441 		break;
442 	}
443 	rcu_read_unlock();
444 	return (dax_entry_t)entry;
445 }
446 
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 	struct address_space *mapping = page->mapping;
450 	XA_STATE(xas, &mapping->i_pages, page->index);
451 
452 	if (S_ISCHR(mapping->host->i_mode))
453 		return;
454 
455 	dax_unlock_entry(&xas, (void *)cookie);
456 }
457 
458 /*
459  * Find page cache entry at given index. If it is a DAX entry, return it
460  * with the entry locked. If the page cache doesn't contain an entry at
461  * that index, add a locked empty entry.
462  *
463  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464  * either return that locked entry or will return VM_FAULT_FALLBACK.
465  * This will happen if there are any PTE entries within the PMD range
466  * that we are requesting.
467  *
468  * We always favor PTE entries over PMD entries. There isn't a flow where we
469  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
470  * insertion will fail if it finds any PTE entries already in the tree, and a
471  * PTE insertion will cause an existing PMD entry to be unmapped and
472  * downgraded to PTE entries.  This happens for both PMD zero pages as
473  * well as PMD empty entries.
474  *
475  * The exception to this downgrade path is for PMD entries that have
476  * real storage backing them.  We will leave these real PMD entries in
477  * the tree, and PTE writes will simply dirty the entire PMD entry.
478  *
479  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480  * persistent memory the benefit is doubtful. We can add that later if we can
481  * show it helps.
482  *
483  * On error, this function does not return an ERR_PTR.  Instead it returns
484  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
485  * overlap with xarray value entries.
486  */
487 static void *grab_mapping_entry(struct xa_state *xas,
488 		struct address_space *mapping, unsigned int order)
489 {
490 	unsigned long index = xas->xa_index;
491 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
492 	void *entry;
493 
494 retry:
495 	pmd_downgrade = false;
496 	xas_lock_irq(xas);
497 	entry = get_unlocked_entry(xas, order);
498 
499 	if (entry) {
500 		if (dax_is_conflict(entry))
501 			goto fallback;
502 		if (!xa_is_value(entry)) {
503 			xas_set_err(xas, -EIO);
504 			goto out_unlock;
505 		}
506 
507 		if (order == 0) {
508 			if (dax_is_pmd_entry(entry) &&
509 			    (dax_is_zero_entry(entry) ||
510 			     dax_is_empty_entry(entry))) {
511 				pmd_downgrade = true;
512 			}
513 		}
514 	}
515 
516 	if (pmd_downgrade) {
517 		/*
518 		 * Make sure 'entry' remains valid while we drop
519 		 * the i_pages lock.
520 		 */
521 		dax_lock_entry(xas, entry);
522 
523 		/*
524 		 * Besides huge zero pages the only other thing that gets
525 		 * downgraded are empty entries which don't need to be
526 		 * unmapped.
527 		 */
528 		if (dax_is_zero_entry(entry)) {
529 			xas_unlock_irq(xas);
530 			unmap_mapping_pages(mapping,
531 					xas->xa_index & ~PG_PMD_COLOUR,
532 					PG_PMD_NR, false);
533 			xas_reset(xas);
534 			xas_lock_irq(xas);
535 		}
536 
537 		dax_disassociate_entry(entry, mapping, false);
538 		xas_store(xas, NULL);	/* undo the PMD join */
539 		dax_wake_entry(xas, entry, WAKE_ALL);
540 		mapping->nrpages -= PG_PMD_NR;
541 		entry = NULL;
542 		xas_set(xas, index);
543 	}
544 
545 	if (entry) {
546 		dax_lock_entry(xas, entry);
547 	} else {
548 		unsigned long flags = DAX_EMPTY;
549 
550 		if (order > 0)
551 			flags |= DAX_PMD;
552 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 		dax_lock_entry(xas, entry);
554 		if (xas_error(xas))
555 			goto out_unlock;
556 		mapping->nrpages += 1UL << order;
557 	}
558 
559 out_unlock:
560 	xas_unlock_irq(xas);
561 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 		goto retry;
563 	if (xas->xa_node == XA_ERROR(-ENOMEM))
564 		return xa_mk_internal(VM_FAULT_OOM);
565 	if (xas_error(xas))
566 		return xa_mk_internal(VM_FAULT_SIGBUS);
567 	return entry;
568 fallback:
569 	xas_unlock_irq(xas);
570 	return xa_mk_internal(VM_FAULT_FALLBACK);
571 }
572 
573 /**
574  * dax_layout_busy_page_range - find first pinned page in @mapping
575  * @mapping: address space to scan for a page with ref count > 1
576  * @start: Starting offset. Page containing 'start' is included.
577  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578  *       pages from 'start' till the end of file are included.
579  *
580  * DAX requires ZONE_DEVICE mapped pages. These pages are never
581  * 'onlined' to the page allocator so they are considered idle when
582  * page->count == 1. A filesystem uses this interface to determine if
583  * any page in the mapping is busy, i.e. for DMA, or other
584  * get_user_pages() usages.
585  *
586  * It is expected that the filesystem is holding locks to block the
587  * establishment of new mappings in this address_space. I.e. it expects
588  * to be able to run unmap_mapping_range() and subsequently not race
589  * mapping_mapped() becoming true.
590  */
591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 					loff_t start, loff_t end)
593 {
594 	void *entry;
595 	unsigned int scanned = 0;
596 	struct page *page = NULL;
597 	pgoff_t start_idx = start >> PAGE_SHIFT;
598 	pgoff_t end_idx;
599 	XA_STATE(xas, &mapping->i_pages, start_idx);
600 
601 	/*
602 	 * In the 'limited' case get_user_pages() for dax is disabled.
603 	 */
604 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605 		return NULL;
606 
607 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608 		return NULL;
609 
610 	/* If end == LLONG_MAX, all pages from start to till end of file */
611 	if (end == LLONG_MAX)
612 		end_idx = ULONG_MAX;
613 	else
614 		end_idx = end >> PAGE_SHIFT;
615 	/*
616 	 * If we race get_user_pages_fast() here either we'll see the
617 	 * elevated page count in the iteration and wait, or
618 	 * get_user_pages_fast() will see that the page it took a reference
619 	 * against is no longer mapped in the page tables and bail to the
620 	 * get_user_pages() slow path.  The slow path is protected by
621 	 * pte_lock() and pmd_lock(). New references are not taken without
622 	 * holding those locks, and unmap_mapping_pages() will not zero the
623 	 * pte or pmd without holding the respective lock, so we are
624 	 * guaranteed to either see new references or prevent new
625 	 * references from being established.
626 	 */
627 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628 
629 	xas_lock_irq(&xas);
630 	xas_for_each(&xas, entry, end_idx) {
631 		if (WARN_ON_ONCE(!xa_is_value(entry)))
632 			continue;
633 		if (unlikely(dax_is_locked(entry)))
634 			entry = get_unlocked_entry(&xas, 0);
635 		if (entry)
636 			page = dax_busy_page(entry);
637 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
638 		if (page)
639 			break;
640 		if (++scanned % XA_CHECK_SCHED)
641 			continue;
642 
643 		xas_pause(&xas);
644 		xas_unlock_irq(&xas);
645 		cond_resched();
646 		xas_lock_irq(&xas);
647 	}
648 	xas_unlock_irq(&xas);
649 	return page;
650 }
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652 
653 struct page *dax_layout_busy_page(struct address_space *mapping)
654 {
655 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 }
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658 
659 static int __dax_invalidate_entry(struct address_space *mapping,
660 					  pgoff_t index, bool trunc)
661 {
662 	XA_STATE(xas, &mapping->i_pages, index);
663 	int ret = 0;
664 	void *entry;
665 
666 	xas_lock_irq(&xas);
667 	entry = get_unlocked_entry(&xas, 0);
668 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669 		goto out;
670 	if (!trunc &&
671 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 		goto out;
674 	dax_disassociate_entry(entry, mapping, trunc);
675 	xas_store(&xas, NULL);
676 	mapping->nrpages -= 1UL << dax_entry_order(entry);
677 	ret = 1;
678 out:
679 	put_unlocked_entry(&xas, entry, WAKE_ALL);
680 	xas_unlock_irq(&xas);
681 	return ret;
682 }
683 
684 /*
685  * Delete DAX entry at @index from @mapping.  Wait for it
686  * to be unlocked before deleting it.
687  */
688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 {
690 	int ret = __dax_invalidate_entry(mapping, index, true);
691 
692 	/*
693 	 * This gets called from truncate / punch_hole path. As such, the caller
694 	 * must hold locks protecting against concurrent modifications of the
695 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 	 * caller has seen a DAX entry for this index, we better find it
697 	 * at that index as well...
698 	 */
699 	WARN_ON_ONCE(!ret);
700 	return ret;
701 }
702 
703 /*
704  * Invalidate DAX entry if it is clean.
705  */
706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707 				      pgoff_t index)
708 {
709 	return __dax_invalidate_entry(mapping, index, false);
710 }
711 
712 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
713 {
714 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
715 }
716 
717 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
718 {
719 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
720 	void *vto, *kaddr;
721 	long rc;
722 	int id;
723 
724 	id = dax_read_lock();
725 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL);
726 	if (rc < 0) {
727 		dax_read_unlock(id);
728 		return rc;
729 	}
730 	vto = kmap_atomic(vmf->cow_page);
731 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
732 	kunmap_atomic(vto);
733 	dax_read_unlock(id);
734 	return 0;
735 }
736 
737 /*
738  * By this point grab_mapping_entry() has ensured that we have a locked entry
739  * of the appropriate size so we don't have to worry about downgrading PMDs to
740  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
741  * already in the tree, we will skip the insertion and just dirty the PMD as
742  * appropriate.
743  */
744 static void *dax_insert_entry(struct xa_state *xas,
745 		struct address_space *mapping, struct vm_fault *vmf,
746 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
747 {
748 	void *new_entry = dax_make_entry(pfn, flags);
749 
750 	if (dirty)
751 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752 
753 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
754 		unsigned long index = xas->xa_index;
755 		/* we are replacing a zero page with block mapping */
756 		if (dax_is_pmd_entry(entry))
757 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
758 					PG_PMD_NR, false);
759 		else /* pte entry */
760 			unmap_mapping_pages(mapping, index, 1, false);
761 	}
762 
763 	xas_reset(xas);
764 	xas_lock_irq(xas);
765 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
766 		void *old;
767 
768 		dax_disassociate_entry(entry, mapping, false);
769 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
770 		/*
771 		 * Only swap our new entry into the page cache if the current
772 		 * entry is a zero page or an empty entry.  If a normal PTE or
773 		 * PMD entry is already in the cache, we leave it alone.  This
774 		 * means that if we are trying to insert a PTE and the
775 		 * existing entry is a PMD, we will just leave the PMD in the
776 		 * tree and dirty it if necessary.
777 		 */
778 		old = dax_lock_entry(xas, new_entry);
779 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
780 					DAX_LOCKED));
781 		entry = new_entry;
782 	} else {
783 		xas_load(xas);	/* Walk the xa_state */
784 	}
785 
786 	if (dirty)
787 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
788 
789 	xas_unlock_irq(xas);
790 	return entry;
791 }
792 
793 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
794 		struct address_space *mapping, void *entry)
795 {
796 	unsigned long pfn, index, count, end;
797 	long ret = 0;
798 	struct vm_area_struct *vma;
799 
800 	/*
801 	 * A page got tagged dirty in DAX mapping? Something is seriously
802 	 * wrong.
803 	 */
804 	if (WARN_ON(!xa_is_value(entry)))
805 		return -EIO;
806 
807 	if (unlikely(dax_is_locked(entry))) {
808 		void *old_entry = entry;
809 
810 		entry = get_unlocked_entry(xas, 0);
811 
812 		/* Entry got punched out / reallocated? */
813 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
814 			goto put_unlocked;
815 		/*
816 		 * Entry got reallocated elsewhere? No need to writeback.
817 		 * We have to compare pfns as we must not bail out due to
818 		 * difference in lockbit or entry type.
819 		 */
820 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
821 			goto put_unlocked;
822 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
823 					dax_is_zero_entry(entry))) {
824 			ret = -EIO;
825 			goto put_unlocked;
826 		}
827 
828 		/* Another fsync thread may have already done this entry */
829 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
830 			goto put_unlocked;
831 	}
832 
833 	/* Lock the entry to serialize with page faults */
834 	dax_lock_entry(xas, entry);
835 
836 	/*
837 	 * We can clear the tag now but we have to be careful so that concurrent
838 	 * dax_writeback_one() calls for the same index cannot finish before we
839 	 * actually flush the caches. This is achieved as the calls will look
840 	 * at the entry only under the i_pages lock and once they do that
841 	 * they will see the entry locked and wait for it to unlock.
842 	 */
843 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
844 	xas_unlock_irq(xas);
845 
846 	/*
847 	 * If dax_writeback_mapping_range() was given a wbc->range_start
848 	 * in the middle of a PMD, the 'index' we use needs to be
849 	 * aligned to the start of the PMD.
850 	 * This allows us to flush for PMD_SIZE and not have to worry about
851 	 * partial PMD writebacks.
852 	 */
853 	pfn = dax_to_pfn(entry);
854 	count = 1UL << dax_entry_order(entry);
855 	index = xas->xa_index & ~(count - 1);
856 	end = index + count - 1;
857 
858 	/* Walk all mappings of a given index of a file and writeprotect them */
859 	i_mmap_lock_read(mapping);
860 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
861 		pfn_mkclean_range(pfn, count, index, vma);
862 		cond_resched();
863 	}
864 	i_mmap_unlock_read(mapping);
865 
866 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
867 	/*
868 	 * After we have flushed the cache, we can clear the dirty tag. There
869 	 * cannot be new dirty data in the pfn after the flush has completed as
870 	 * the pfn mappings are writeprotected and fault waits for mapping
871 	 * entry lock.
872 	 */
873 	xas_reset(xas);
874 	xas_lock_irq(xas);
875 	xas_store(xas, entry);
876 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
877 	dax_wake_entry(xas, entry, WAKE_NEXT);
878 
879 	trace_dax_writeback_one(mapping->host, index, count);
880 	return ret;
881 
882  put_unlocked:
883 	put_unlocked_entry(xas, entry, WAKE_NEXT);
884 	return ret;
885 }
886 
887 /*
888  * Flush the mapping to the persistent domain within the byte range of [start,
889  * end]. This is required by data integrity operations to ensure file data is
890  * on persistent storage prior to completion of the operation.
891  */
892 int dax_writeback_mapping_range(struct address_space *mapping,
893 		struct dax_device *dax_dev, struct writeback_control *wbc)
894 {
895 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
896 	struct inode *inode = mapping->host;
897 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
898 	void *entry;
899 	int ret = 0;
900 	unsigned int scanned = 0;
901 
902 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
903 		return -EIO;
904 
905 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
906 		return 0;
907 
908 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
909 
910 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
911 
912 	xas_lock_irq(&xas);
913 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
914 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
915 		if (ret < 0) {
916 			mapping_set_error(mapping, ret);
917 			break;
918 		}
919 		if (++scanned % XA_CHECK_SCHED)
920 			continue;
921 
922 		xas_pause(&xas);
923 		xas_unlock_irq(&xas);
924 		cond_resched();
925 		xas_lock_irq(&xas);
926 	}
927 	xas_unlock_irq(&xas);
928 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
929 	return ret;
930 }
931 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
932 
933 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
934 			 pfn_t *pfnp)
935 {
936 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
937 	int id, rc;
938 	long length;
939 
940 	id = dax_read_lock();
941 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
942 				   NULL, pfnp);
943 	if (length < 0) {
944 		rc = length;
945 		goto out;
946 	}
947 	rc = -EINVAL;
948 	if (PFN_PHYS(length) < size)
949 		goto out;
950 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
951 		goto out;
952 	/* For larger pages we need devmap */
953 	if (length > 1 && !pfn_t_devmap(*pfnp))
954 		goto out;
955 	rc = 0;
956 out:
957 	dax_read_unlock(id);
958 	return rc;
959 }
960 
961 /*
962  * The user has performed a load from a hole in the file.  Allocating a new
963  * page in the file would cause excessive storage usage for workloads with
964  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
965  * If this page is ever written to we will re-fault and change the mapping to
966  * point to real DAX storage instead.
967  */
968 static vm_fault_t dax_load_hole(struct xa_state *xas,
969 		struct address_space *mapping, void **entry,
970 		struct vm_fault *vmf)
971 {
972 	struct inode *inode = mapping->host;
973 	unsigned long vaddr = vmf->address;
974 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
975 	vm_fault_t ret;
976 
977 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
978 			DAX_ZERO_PAGE, false);
979 
980 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
981 	trace_dax_load_hole(inode, vmf, ret);
982 	return ret;
983 }
984 
985 #ifdef CONFIG_FS_DAX_PMD
986 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
987 		const struct iomap *iomap, void **entry)
988 {
989 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
990 	unsigned long pmd_addr = vmf->address & PMD_MASK;
991 	struct vm_area_struct *vma = vmf->vma;
992 	struct inode *inode = mapping->host;
993 	pgtable_t pgtable = NULL;
994 	struct page *zero_page;
995 	spinlock_t *ptl;
996 	pmd_t pmd_entry;
997 	pfn_t pfn;
998 
999 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1000 
1001 	if (unlikely(!zero_page))
1002 		goto fallback;
1003 
1004 	pfn = page_to_pfn_t(zero_page);
1005 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1006 			DAX_PMD | DAX_ZERO_PAGE, false);
1007 
1008 	if (arch_needs_pgtable_deposit()) {
1009 		pgtable = pte_alloc_one(vma->vm_mm);
1010 		if (!pgtable)
1011 			return VM_FAULT_OOM;
1012 	}
1013 
1014 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1015 	if (!pmd_none(*(vmf->pmd))) {
1016 		spin_unlock(ptl);
1017 		goto fallback;
1018 	}
1019 
1020 	if (pgtable) {
1021 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1022 		mm_inc_nr_ptes(vma->vm_mm);
1023 	}
1024 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1025 	pmd_entry = pmd_mkhuge(pmd_entry);
1026 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1027 	spin_unlock(ptl);
1028 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1029 	return VM_FAULT_NOPAGE;
1030 
1031 fallback:
1032 	if (pgtable)
1033 		pte_free(vma->vm_mm, pgtable);
1034 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1035 	return VM_FAULT_FALLBACK;
1036 }
1037 #else
1038 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1039 		const struct iomap *iomap, void **entry)
1040 {
1041 	return VM_FAULT_FALLBACK;
1042 }
1043 #endif /* CONFIG_FS_DAX_PMD */
1044 
1045 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1046 		unsigned int offset, size_t size)
1047 {
1048 	void *kaddr;
1049 	long ret;
1050 
1051 	ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1052 	if (ret > 0) {
1053 		memset(kaddr + offset, 0, size);
1054 		dax_flush(dax_dev, kaddr + offset, size);
1055 	}
1056 	return ret;
1057 }
1058 
1059 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1060 {
1061 	const struct iomap *iomap = &iter->iomap;
1062 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1063 	loff_t pos = iter->pos;
1064 	u64 length = iomap_length(iter);
1065 	s64 written = 0;
1066 
1067 	/* already zeroed?  we're done. */
1068 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1069 		return length;
1070 
1071 	do {
1072 		unsigned offset = offset_in_page(pos);
1073 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1074 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1075 		long rc;
1076 		int id;
1077 
1078 		id = dax_read_lock();
1079 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1080 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1081 		else
1082 			rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1083 		dax_read_unlock(id);
1084 
1085 		if (rc < 0)
1086 			return rc;
1087 		pos += size;
1088 		length -= size;
1089 		written += size;
1090 		if (did_zero)
1091 			*did_zero = true;
1092 	} while (length > 0);
1093 
1094 	return written;
1095 }
1096 
1097 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1098 		const struct iomap_ops *ops)
1099 {
1100 	struct iomap_iter iter = {
1101 		.inode		= inode,
1102 		.pos		= pos,
1103 		.len		= len,
1104 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1105 	};
1106 	int ret;
1107 
1108 	while ((ret = iomap_iter(&iter, ops)) > 0)
1109 		iter.processed = dax_zero_iter(&iter, did_zero);
1110 	return ret;
1111 }
1112 EXPORT_SYMBOL_GPL(dax_zero_range);
1113 
1114 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1115 		const struct iomap_ops *ops)
1116 {
1117 	unsigned int blocksize = i_blocksize(inode);
1118 	unsigned int off = pos & (blocksize - 1);
1119 
1120 	/* Block boundary? Nothing to do */
1121 	if (!off)
1122 		return 0;
1123 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1124 }
1125 EXPORT_SYMBOL_GPL(dax_truncate_page);
1126 
1127 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1128 		struct iov_iter *iter)
1129 {
1130 	const struct iomap *iomap = &iomi->iomap;
1131 	loff_t length = iomap_length(iomi);
1132 	loff_t pos = iomi->pos;
1133 	struct dax_device *dax_dev = iomap->dax_dev;
1134 	loff_t end = pos + length, done = 0;
1135 	ssize_t ret = 0;
1136 	size_t xfer;
1137 	int id;
1138 
1139 	if (iov_iter_rw(iter) == READ) {
1140 		end = min(end, i_size_read(iomi->inode));
1141 		if (pos >= end)
1142 			return 0;
1143 
1144 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1145 			return iov_iter_zero(min(length, end - pos), iter);
1146 	}
1147 
1148 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1149 		return -EIO;
1150 
1151 	/*
1152 	 * Write can allocate block for an area which has a hole page mapped
1153 	 * into page tables. We have to tear down these mappings so that data
1154 	 * written by write(2) is visible in mmap.
1155 	 */
1156 	if (iomap->flags & IOMAP_F_NEW) {
1157 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1158 					      pos >> PAGE_SHIFT,
1159 					      (end - 1) >> PAGE_SHIFT);
1160 	}
1161 
1162 	id = dax_read_lock();
1163 	while (pos < end) {
1164 		unsigned offset = pos & (PAGE_SIZE - 1);
1165 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1166 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1167 		ssize_t map_len;
1168 		void *kaddr;
1169 
1170 		if (fatal_signal_pending(current)) {
1171 			ret = -EINTR;
1172 			break;
1173 		}
1174 
1175 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1176 				&kaddr, NULL);
1177 		if (map_len < 0) {
1178 			ret = map_len;
1179 			break;
1180 		}
1181 
1182 		map_len = PFN_PHYS(map_len);
1183 		kaddr += offset;
1184 		map_len -= offset;
1185 		if (map_len > end - pos)
1186 			map_len = end - pos;
1187 
1188 		if (iov_iter_rw(iter) == WRITE)
1189 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1190 					map_len, iter);
1191 		else
1192 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1193 					map_len, iter);
1194 
1195 		pos += xfer;
1196 		length -= xfer;
1197 		done += xfer;
1198 
1199 		if (xfer == 0)
1200 			ret = -EFAULT;
1201 		if (xfer < map_len)
1202 			break;
1203 	}
1204 	dax_read_unlock(id);
1205 
1206 	return done ? done : ret;
1207 }
1208 
1209 /**
1210  * dax_iomap_rw - Perform I/O to a DAX file
1211  * @iocb:	The control block for this I/O
1212  * @iter:	The addresses to do I/O from or to
1213  * @ops:	iomap ops passed from the file system
1214  *
1215  * This function performs read and write operations to directly mapped
1216  * persistent memory.  The callers needs to take care of read/write exclusion
1217  * and evicting any page cache pages in the region under I/O.
1218  */
1219 ssize_t
1220 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1221 		const struct iomap_ops *ops)
1222 {
1223 	struct iomap_iter iomi = {
1224 		.inode		= iocb->ki_filp->f_mapping->host,
1225 		.pos		= iocb->ki_pos,
1226 		.len		= iov_iter_count(iter),
1227 		.flags		= IOMAP_DAX,
1228 	};
1229 	loff_t done = 0;
1230 	int ret;
1231 
1232 	if (iov_iter_rw(iter) == WRITE) {
1233 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1234 		iomi.flags |= IOMAP_WRITE;
1235 	} else {
1236 		lockdep_assert_held(&iomi.inode->i_rwsem);
1237 	}
1238 
1239 	if (iocb->ki_flags & IOCB_NOWAIT)
1240 		iomi.flags |= IOMAP_NOWAIT;
1241 
1242 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1243 		iomi.processed = dax_iomap_iter(&iomi, iter);
1244 
1245 	done = iomi.pos - iocb->ki_pos;
1246 	iocb->ki_pos = iomi.pos;
1247 	return done ? done : ret;
1248 }
1249 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1250 
1251 static vm_fault_t dax_fault_return(int error)
1252 {
1253 	if (error == 0)
1254 		return VM_FAULT_NOPAGE;
1255 	return vmf_error(error);
1256 }
1257 
1258 /*
1259  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1260  * flushed on write-faults (non-cow), but not read-faults.
1261  */
1262 static bool dax_fault_is_synchronous(unsigned long flags,
1263 		struct vm_area_struct *vma, const struct iomap *iomap)
1264 {
1265 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1266 		&& (iomap->flags & IOMAP_F_DIRTY);
1267 }
1268 
1269 /*
1270  * When handling a synchronous page fault and the inode need a fsync, we can
1271  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1272  * insertion for now and return the pfn so that caller can insert it after the
1273  * fsync is done.
1274  */
1275 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1276 {
1277 	if (WARN_ON_ONCE(!pfnp))
1278 		return VM_FAULT_SIGBUS;
1279 	*pfnp = pfn;
1280 	return VM_FAULT_NEEDDSYNC;
1281 }
1282 
1283 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1284 		const struct iomap_iter *iter)
1285 {
1286 	vm_fault_t ret;
1287 	int error = 0;
1288 
1289 	switch (iter->iomap.type) {
1290 	case IOMAP_HOLE:
1291 	case IOMAP_UNWRITTEN:
1292 		clear_user_highpage(vmf->cow_page, vmf->address);
1293 		break;
1294 	case IOMAP_MAPPED:
1295 		error = copy_cow_page_dax(vmf, iter);
1296 		break;
1297 	default:
1298 		WARN_ON_ONCE(1);
1299 		error = -EIO;
1300 		break;
1301 	}
1302 
1303 	if (error)
1304 		return dax_fault_return(error);
1305 
1306 	__SetPageUptodate(vmf->cow_page);
1307 	ret = finish_fault(vmf);
1308 	if (!ret)
1309 		return VM_FAULT_DONE_COW;
1310 	return ret;
1311 }
1312 
1313 /**
1314  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1315  * @vmf:	vm fault instance
1316  * @iter:	iomap iter
1317  * @pfnp:	pfn to be returned
1318  * @xas:	the dax mapping tree of a file
1319  * @entry:	an unlocked dax entry to be inserted
1320  * @pmd:	distinguish whether it is a pmd fault
1321  */
1322 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1323 		const struct iomap_iter *iter, pfn_t *pfnp,
1324 		struct xa_state *xas, void **entry, bool pmd)
1325 {
1326 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1327 	const struct iomap *iomap = &iter->iomap;
1328 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1329 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1330 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1331 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1332 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1333 	int err = 0;
1334 	pfn_t pfn;
1335 
1336 	if (!pmd && vmf->cow_page)
1337 		return dax_fault_cow_page(vmf, iter);
1338 
1339 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1340 	if (!write &&
1341 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1342 		if (!pmd)
1343 			return dax_load_hole(xas, mapping, entry, vmf);
1344 		return dax_pmd_load_hole(xas, vmf, iomap, entry);
1345 	}
1346 
1347 	if (iomap->type != IOMAP_MAPPED) {
1348 		WARN_ON_ONCE(1);
1349 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1350 	}
1351 
1352 	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1353 	if (err)
1354 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1355 
1356 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1357 				  write && !sync);
1358 
1359 	if (sync)
1360 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1361 
1362 	/* insert PMD pfn */
1363 	if (pmd)
1364 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1365 
1366 	/* insert PTE pfn */
1367 	if (write)
1368 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1369 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1370 }
1371 
1372 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1373 			       int *iomap_errp, const struct iomap_ops *ops)
1374 {
1375 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1376 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1377 	struct iomap_iter iter = {
1378 		.inode		= mapping->host,
1379 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1380 		.len		= PAGE_SIZE,
1381 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1382 	};
1383 	vm_fault_t ret = 0;
1384 	void *entry;
1385 	int error;
1386 
1387 	trace_dax_pte_fault(iter.inode, vmf, ret);
1388 	/*
1389 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1390 	 * to hold locks serializing us with truncate / punch hole so this is
1391 	 * a reliable test.
1392 	 */
1393 	if (iter.pos >= i_size_read(iter.inode)) {
1394 		ret = VM_FAULT_SIGBUS;
1395 		goto out;
1396 	}
1397 
1398 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1399 		iter.flags |= IOMAP_WRITE;
1400 
1401 	entry = grab_mapping_entry(&xas, mapping, 0);
1402 	if (xa_is_internal(entry)) {
1403 		ret = xa_to_internal(entry);
1404 		goto out;
1405 	}
1406 
1407 	/*
1408 	 * It is possible, particularly with mixed reads & writes to private
1409 	 * mappings, that we have raced with a PMD fault that overlaps with
1410 	 * the PTE we need to set up.  If so just return and the fault will be
1411 	 * retried.
1412 	 */
1413 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1414 		ret = VM_FAULT_NOPAGE;
1415 		goto unlock_entry;
1416 	}
1417 
1418 	while ((error = iomap_iter(&iter, ops)) > 0) {
1419 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1420 			iter.processed = -EIO;	/* fs corruption? */
1421 			continue;
1422 		}
1423 
1424 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1425 		if (ret != VM_FAULT_SIGBUS &&
1426 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1427 			count_vm_event(PGMAJFAULT);
1428 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1429 			ret |= VM_FAULT_MAJOR;
1430 		}
1431 
1432 		if (!(ret & VM_FAULT_ERROR))
1433 			iter.processed = PAGE_SIZE;
1434 	}
1435 
1436 	if (iomap_errp)
1437 		*iomap_errp = error;
1438 	if (!ret && error)
1439 		ret = dax_fault_return(error);
1440 
1441 unlock_entry:
1442 	dax_unlock_entry(&xas, entry);
1443 out:
1444 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1445 	return ret;
1446 }
1447 
1448 #ifdef CONFIG_FS_DAX_PMD
1449 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1450 		pgoff_t max_pgoff)
1451 {
1452 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1453 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1454 
1455 	/*
1456 	 * Make sure that the faulting address's PMD offset (color) matches
1457 	 * the PMD offset from the start of the file.  This is necessary so
1458 	 * that a PMD range in the page table overlaps exactly with a PMD
1459 	 * range in the page cache.
1460 	 */
1461 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1462 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1463 		return true;
1464 
1465 	/* Fall back to PTEs if we're going to COW */
1466 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1467 		return true;
1468 
1469 	/* If the PMD would extend outside the VMA */
1470 	if (pmd_addr < vmf->vma->vm_start)
1471 		return true;
1472 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1473 		return true;
1474 
1475 	/* If the PMD would extend beyond the file size */
1476 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1477 		return true;
1478 
1479 	return false;
1480 }
1481 
1482 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1483 			       const struct iomap_ops *ops)
1484 {
1485 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1486 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1487 	struct iomap_iter iter = {
1488 		.inode		= mapping->host,
1489 		.len		= PMD_SIZE,
1490 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1491 	};
1492 	vm_fault_t ret = VM_FAULT_FALLBACK;
1493 	pgoff_t max_pgoff;
1494 	void *entry;
1495 	int error;
1496 
1497 	if (vmf->flags & FAULT_FLAG_WRITE)
1498 		iter.flags |= IOMAP_WRITE;
1499 
1500 	/*
1501 	 * Check whether offset isn't beyond end of file now. Caller is
1502 	 * supposed to hold locks serializing us with truncate / punch hole so
1503 	 * this is a reliable test.
1504 	 */
1505 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1506 
1507 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1508 
1509 	if (xas.xa_index >= max_pgoff) {
1510 		ret = VM_FAULT_SIGBUS;
1511 		goto out;
1512 	}
1513 
1514 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1515 		goto fallback;
1516 
1517 	/*
1518 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1519 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1520 	 * entry is already in the array, for instance), it will return
1521 	 * VM_FAULT_FALLBACK.
1522 	 */
1523 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1524 	if (xa_is_internal(entry)) {
1525 		ret = xa_to_internal(entry);
1526 		goto fallback;
1527 	}
1528 
1529 	/*
1530 	 * It is possible, particularly with mixed reads & writes to private
1531 	 * mappings, that we have raced with a PTE fault that overlaps with
1532 	 * the PMD we need to set up.  If so just return and the fault will be
1533 	 * retried.
1534 	 */
1535 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1536 			!pmd_devmap(*vmf->pmd)) {
1537 		ret = 0;
1538 		goto unlock_entry;
1539 	}
1540 
1541 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1542 	while ((error = iomap_iter(&iter, ops)) > 0) {
1543 		if (iomap_length(&iter) < PMD_SIZE)
1544 			continue; /* actually breaks out of the loop */
1545 
1546 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1547 		if (ret != VM_FAULT_FALLBACK)
1548 			iter.processed = PMD_SIZE;
1549 	}
1550 
1551 unlock_entry:
1552 	dax_unlock_entry(&xas, entry);
1553 fallback:
1554 	if (ret == VM_FAULT_FALLBACK) {
1555 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1556 		count_vm_event(THP_FAULT_FALLBACK);
1557 	}
1558 out:
1559 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1560 	return ret;
1561 }
1562 #else
1563 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1564 			       const struct iomap_ops *ops)
1565 {
1566 	return VM_FAULT_FALLBACK;
1567 }
1568 #endif /* CONFIG_FS_DAX_PMD */
1569 
1570 /**
1571  * dax_iomap_fault - handle a page fault on a DAX file
1572  * @vmf: The description of the fault
1573  * @pe_size: Size of the page to fault in
1574  * @pfnp: PFN to insert for synchronous faults if fsync is required
1575  * @iomap_errp: Storage for detailed error code in case of error
1576  * @ops: Iomap ops passed from the file system
1577  *
1578  * When a page fault occurs, filesystems may call this helper in
1579  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1580  * has done all the necessary locking for page fault to proceed
1581  * successfully.
1582  */
1583 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1584 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1585 {
1586 	switch (pe_size) {
1587 	case PE_SIZE_PTE:
1588 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1589 	case PE_SIZE_PMD:
1590 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1591 	default:
1592 		return VM_FAULT_FALLBACK;
1593 	}
1594 }
1595 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1596 
1597 /*
1598  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1599  * @vmf: The description of the fault
1600  * @pfn: PFN to insert
1601  * @order: Order of entry to insert.
1602  *
1603  * This function inserts a writeable PTE or PMD entry into the page tables
1604  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1605  */
1606 static vm_fault_t
1607 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1608 {
1609 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1610 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1611 	void *entry;
1612 	vm_fault_t ret;
1613 
1614 	xas_lock_irq(&xas);
1615 	entry = get_unlocked_entry(&xas, order);
1616 	/* Did we race with someone splitting entry or so? */
1617 	if (!entry || dax_is_conflict(entry) ||
1618 	    (order == 0 && !dax_is_pte_entry(entry))) {
1619 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1620 		xas_unlock_irq(&xas);
1621 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1622 						      VM_FAULT_NOPAGE);
1623 		return VM_FAULT_NOPAGE;
1624 	}
1625 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1626 	dax_lock_entry(&xas, entry);
1627 	xas_unlock_irq(&xas);
1628 	if (order == 0)
1629 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1630 #ifdef CONFIG_FS_DAX_PMD
1631 	else if (order == PMD_ORDER)
1632 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1633 #endif
1634 	else
1635 		ret = VM_FAULT_FALLBACK;
1636 	dax_unlock_entry(&xas, entry);
1637 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1638 	return ret;
1639 }
1640 
1641 /**
1642  * dax_finish_sync_fault - finish synchronous page fault
1643  * @vmf: The description of the fault
1644  * @pe_size: Size of entry to be inserted
1645  * @pfn: PFN to insert
1646  *
1647  * This function ensures that the file range touched by the page fault is
1648  * stored persistently on the media and handles inserting of appropriate page
1649  * table entry.
1650  */
1651 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1652 		enum page_entry_size pe_size, pfn_t pfn)
1653 {
1654 	int err;
1655 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1656 	unsigned int order = pe_order(pe_size);
1657 	size_t len = PAGE_SIZE << order;
1658 
1659 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1660 	if (err)
1661 		return VM_FAULT_SIGBUS;
1662 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1663 }
1664 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1665