1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/highmem.h> 15 #include <linux/memcontrol.h> 16 #include <linux/mm.h> 17 #include <linux/mutex.h> 18 #include <linux/pagevec.h> 19 #include <linux/sched.h> 20 #include <linux/sched/signal.h> 21 #include <linux/uio.h> 22 #include <linux/vmstat.h> 23 #include <linux/pfn_t.h> 24 #include <linux/sizes.h> 25 #include <linux/mmu_notifier.h> 26 #include <linux/iomap.h> 27 #include <linux/rmap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 /** 148 * enum dax_wake_mode: waitqueue wakeup behaviour 149 * @WAKE_ALL: wake all waiters in the waitqueue 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue 151 */ 152 enum dax_wake_mode { 153 WAKE_ALL, 154 WAKE_NEXT, 155 }; 156 157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 158 void *entry, struct exceptional_entry_key *key) 159 { 160 unsigned long hash; 161 unsigned long index = xas->xa_index; 162 163 /* 164 * If 'entry' is a PMD, align the 'index' that we use for the wait 165 * queue to the start of that PMD. This ensures that all offsets in 166 * the range covered by the PMD map to the same bit lock. 167 */ 168 if (dax_is_pmd_entry(entry)) 169 index &= ~PG_PMD_COLOUR; 170 key->xa = xas->xa; 171 key->entry_start = index; 172 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 174 return wait_table + hash; 175 } 176 177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 178 unsigned int mode, int sync, void *keyp) 179 { 180 struct exceptional_entry_key *key = keyp; 181 struct wait_exceptional_entry_queue *ewait = 182 container_of(wait, struct wait_exceptional_entry_queue, wait); 183 184 if (key->xa != ewait->key.xa || 185 key->entry_start != ewait->key.entry_start) 186 return 0; 187 return autoremove_wake_function(wait, mode, sync, NULL); 188 } 189 190 /* 191 * @entry may no longer be the entry at the index in the mapping. 192 * The important information it's conveying is whether the entry at 193 * this index used to be a PMD entry. 194 */ 195 static void dax_wake_entry(struct xa_state *xas, void *entry, 196 enum dax_wake_mode mode) 197 { 198 struct exceptional_entry_key key; 199 wait_queue_head_t *wq; 200 201 wq = dax_entry_waitqueue(xas, entry, &key); 202 203 /* 204 * Checking for locked entry and prepare_to_wait_exclusive() happens 205 * under the i_pages lock, ditto for entry handling in our callers. 206 * So at this point all tasks that could have seen our entry locked 207 * must be in the waitqueue and the following check will see them. 208 */ 209 if (waitqueue_active(wq)) 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 211 } 212 213 /* 214 * Look up entry in page cache, wait for it to become unlocked if it 215 * is a DAX entry and return it. The caller must subsequently call 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 217 * if it did. The entry returned may have a larger order than @order. 218 * If @order is larger than the order of the entry found in i_pages, this 219 * function returns a dax_is_conflict entry. 220 * 221 * Must be called with the i_pages lock held. 222 */ 223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 224 { 225 void *entry; 226 struct wait_exceptional_entry_queue ewait; 227 wait_queue_head_t *wq; 228 229 init_wait(&ewait.wait); 230 ewait.wait.func = wake_exceptional_entry_func; 231 232 for (;;) { 233 entry = xas_find_conflict(xas); 234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 235 return entry; 236 if (dax_entry_order(entry) < order) 237 return XA_RETRY_ENTRY; 238 if (!dax_is_locked(entry)) 239 return entry; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 prepare_to_wait_exclusive(wq, &ewait.wait, 243 TASK_UNINTERRUPTIBLE); 244 xas_unlock_irq(xas); 245 xas_reset(xas); 246 schedule(); 247 finish_wait(wq, &ewait.wait); 248 xas_lock_irq(xas); 249 } 250 } 251 252 /* 253 * The only thing keeping the address space around is the i_pages lock 254 * (it's cycled in clear_inode() after removing the entries from i_pages) 255 * After we call xas_unlock_irq(), we cannot touch xas->xa. 256 */ 257 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 258 { 259 struct wait_exceptional_entry_queue ewait; 260 wait_queue_head_t *wq; 261 262 init_wait(&ewait.wait); 263 ewait.wait.func = wake_exceptional_entry_func; 264 265 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 266 /* 267 * Unlike get_unlocked_entry() there is no guarantee that this 268 * path ever successfully retrieves an unlocked entry before an 269 * inode dies. Perform a non-exclusive wait in case this path 270 * never successfully performs its own wake up. 271 */ 272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 273 xas_unlock_irq(xas); 274 schedule(); 275 finish_wait(wq, &ewait.wait); 276 } 277 278 static void put_unlocked_entry(struct xa_state *xas, void *entry, 279 enum dax_wake_mode mode) 280 { 281 if (entry && !dax_is_conflict(entry)) 282 dax_wake_entry(xas, entry, mode); 283 } 284 285 /* 286 * We used the xa_state to get the entry, but then we locked the entry and 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset 288 * before use. 289 */ 290 static void dax_unlock_entry(struct xa_state *xas, void *entry) 291 { 292 void *old; 293 294 BUG_ON(dax_is_locked(entry)); 295 xas_reset(xas); 296 xas_lock_irq(xas); 297 old = xas_store(xas, entry); 298 xas_unlock_irq(xas); 299 BUG_ON(!dax_is_locked(old)); 300 dax_wake_entry(xas, entry, WAKE_NEXT); 301 } 302 303 /* 304 * Return: The entry stored at this location before it was locked. 305 */ 306 static void *dax_lock_entry(struct xa_state *xas, void *entry) 307 { 308 unsigned long v = xa_to_value(entry); 309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 310 } 311 312 static unsigned long dax_entry_size(void *entry) 313 { 314 if (dax_is_zero_entry(entry)) 315 return 0; 316 else if (dax_is_empty_entry(entry)) 317 return 0; 318 else if (dax_is_pmd_entry(entry)) 319 return PMD_SIZE; 320 else 321 return PAGE_SIZE; 322 } 323 324 static unsigned long dax_end_pfn(void *entry) 325 { 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 327 } 328 329 /* 330 * Iterate through all mapped pfns represented by an entry, i.e. skip 331 * 'empty' and 'zero' entries. 332 */ 333 #define for_each_mapped_pfn(entry, pfn) \ 334 for (pfn = dax_to_pfn(entry); \ 335 pfn < dax_end_pfn(entry); pfn++) 336 337 /* 338 * TODO: for reflink+dax we need a way to associate a single page with 339 * multiple address_space instances at different linear_page_index() 340 * offsets. 341 */ 342 static void dax_associate_entry(void *entry, struct address_space *mapping, 343 struct vm_area_struct *vma, unsigned long address) 344 { 345 unsigned long size = dax_entry_size(entry), pfn, index; 346 int i = 0; 347 348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 349 return; 350 351 index = linear_page_index(vma, address & ~(size - 1)); 352 for_each_mapped_pfn(entry, pfn) { 353 struct page *page = pfn_to_page(pfn); 354 355 WARN_ON_ONCE(page->mapping); 356 page->mapping = mapping; 357 page->index = index + i++; 358 } 359 } 360 361 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 362 bool trunc) 363 { 364 unsigned long pfn; 365 366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 367 return; 368 369 for_each_mapped_pfn(entry, pfn) { 370 struct page *page = pfn_to_page(pfn); 371 372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 373 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 374 page->mapping = NULL; 375 page->index = 0; 376 } 377 } 378 379 static struct page *dax_busy_page(void *entry) 380 { 381 unsigned long pfn; 382 383 for_each_mapped_pfn(entry, pfn) { 384 struct page *page = pfn_to_page(pfn); 385 386 if (page_ref_count(page) > 1) 387 return page; 388 } 389 return NULL; 390 } 391 392 /* 393 * dax_lock_page - Lock the DAX entry corresponding to a page 394 * @page: The page whose entry we want to lock 395 * 396 * Context: Process context. 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 398 * not be locked. 399 */ 400 dax_entry_t dax_lock_page(struct page *page) 401 { 402 XA_STATE(xas, NULL, 0); 403 void *entry; 404 405 /* Ensure page->mapping isn't freed while we look at it */ 406 rcu_read_lock(); 407 for (;;) { 408 struct address_space *mapping = READ_ONCE(page->mapping); 409 410 entry = NULL; 411 if (!mapping || !dax_mapping(mapping)) 412 break; 413 414 /* 415 * In the device-dax case there's no need to lock, a 416 * struct dev_pagemap pin is sufficient to keep the 417 * inode alive, and we assume we have dev_pagemap pin 418 * otherwise we would not have a valid pfn_to_page() 419 * translation. 420 */ 421 entry = (void *)~0UL; 422 if (S_ISCHR(mapping->host->i_mode)) 423 break; 424 425 xas.xa = &mapping->i_pages; 426 xas_lock_irq(&xas); 427 if (mapping != page->mapping) { 428 xas_unlock_irq(&xas); 429 continue; 430 } 431 xas_set(&xas, page->index); 432 entry = xas_load(&xas); 433 if (dax_is_locked(entry)) { 434 rcu_read_unlock(); 435 wait_entry_unlocked(&xas, entry); 436 rcu_read_lock(); 437 continue; 438 } 439 dax_lock_entry(&xas, entry); 440 xas_unlock_irq(&xas); 441 break; 442 } 443 rcu_read_unlock(); 444 return (dax_entry_t)entry; 445 } 446 447 void dax_unlock_page(struct page *page, dax_entry_t cookie) 448 { 449 struct address_space *mapping = page->mapping; 450 XA_STATE(xas, &mapping->i_pages, page->index); 451 452 if (S_ISCHR(mapping->host->i_mode)) 453 return; 454 455 dax_unlock_entry(&xas, (void *)cookie); 456 } 457 458 /* 459 * Find page cache entry at given index. If it is a DAX entry, return it 460 * with the entry locked. If the page cache doesn't contain an entry at 461 * that index, add a locked empty entry. 462 * 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 464 * either return that locked entry or will return VM_FAULT_FALLBACK. 465 * This will happen if there are any PTE entries within the PMD range 466 * that we are requesting. 467 * 468 * We always favor PTE entries over PMD entries. There isn't a flow where we 469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 470 * insertion will fail if it finds any PTE entries already in the tree, and a 471 * PTE insertion will cause an existing PMD entry to be unmapped and 472 * downgraded to PTE entries. This happens for both PMD zero pages as 473 * well as PMD empty entries. 474 * 475 * The exception to this downgrade path is for PMD entries that have 476 * real storage backing them. We will leave these real PMD entries in 477 * the tree, and PTE writes will simply dirty the entire PMD entry. 478 * 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 480 * persistent memory the benefit is doubtful. We can add that later if we can 481 * show it helps. 482 * 483 * On error, this function does not return an ERR_PTR. Instead it returns 484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 485 * overlap with xarray value entries. 486 */ 487 static void *grab_mapping_entry(struct xa_state *xas, 488 struct address_space *mapping, unsigned int order) 489 { 490 unsigned long index = xas->xa_index; 491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 492 void *entry; 493 494 retry: 495 pmd_downgrade = false; 496 xas_lock_irq(xas); 497 entry = get_unlocked_entry(xas, order); 498 499 if (entry) { 500 if (dax_is_conflict(entry)) 501 goto fallback; 502 if (!xa_is_value(entry)) { 503 xas_set_err(xas, -EIO); 504 goto out_unlock; 505 } 506 507 if (order == 0) { 508 if (dax_is_pmd_entry(entry) && 509 (dax_is_zero_entry(entry) || 510 dax_is_empty_entry(entry))) { 511 pmd_downgrade = true; 512 } 513 } 514 } 515 516 if (pmd_downgrade) { 517 /* 518 * Make sure 'entry' remains valid while we drop 519 * the i_pages lock. 520 */ 521 dax_lock_entry(xas, entry); 522 523 /* 524 * Besides huge zero pages the only other thing that gets 525 * downgraded are empty entries which don't need to be 526 * unmapped. 527 */ 528 if (dax_is_zero_entry(entry)) { 529 xas_unlock_irq(xas); 530 unmap_mapping_pages(mapping, 531 xas->xa_index & ~PG_PMD_COLOUR, 532 PG_PMD_NR, false); 533 xas_reset(xas); 534 xas_lock_irq(xas); 535 } 536 537 dax_disassociate_entry(entry, mapping, false); 538 xas_store(xas, NULL); /* undo the PMD join */ 539 dax_wake_entry(xas, entry, WAKE_ALL); 540 mapping->nrpages -= PG_PMD_NR; 541 entry = NULL; 542 xas_set(xas, index); 543 } 544 545 if (entry) { 546 dax_lock_entry(xas, entry); 547 } else { 548 unsigned long flags = DAX_EMPTY; 549 550 if (order > 0) 551 flags |= DAX_PMD; 552 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 553 dax_lock_entry(xas, entry); 554 if (xas_error(xas)) 555 goto out_unlock; 556 mapping->nrpages += 1UL << order; 557 } 558 559 out_unlock: 560 xas_unlock_irq(xas); 561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 562 goto retry; 563 if (xas->xa_node == XA_ERROR(-ENOMEM)) 564 return xa_mk_internal(VM_FAULT_OOM); 565 if (xas_error(xas)) 566 return xa_mk_internal(VM_FAULT_SIGBUS); 567 return entry; 568 fallback: 569 xas_unlock_irq(xas); 570 return xa_mk_internal(VM_FAULT_FALLBACK); 571 } 572 573 /** 574 * dax_layout_busy_page_range - find first pinned page in @mapping 575 * @mapping: address space to scan for a page with ref count > 1 576 * @start: Starting offset. Page containing 'start' is included. 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 578 * pages from 'start' till the end of file are included. 579 * 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never 581 * 'onlined' to the page allocator so they are considered idle when 582 * page->count == 1. A filesystem uses this interface to determine if 583 * any page in the mapping is busy, i.e. for DMA, or other 584 * get_user_pages() usages. 585 * 586 * It is expected that the filesystem is holding locks to block the 587 * establishment of new mappings in this address_space. I.e. it expects 588 * to be able to run unmap_mapping_range() and subsequently not race 589 * mapping_mapped() becoming true. 590 */ 591 struct page *dax_layout_busy_page_range(struct address_space *mapping, 592 loff_t start, loff_t end) 593 { 594 void *entry; 595 unsigned int scanned = 0; 596 struct page *page = NULL; 597 pgoff_t start_idx = start >> PAGE_SHIFT; 598 pgoff_t end_idx; 599 XA_STATE(xas, &mapping->i_pages, start_idx); 600 601 /* 602 * In the 'limited' case get_user_pages() for dax is disabled. 603 */ 604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 605 return NULL; 606 607 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 608 return NULL; 609 610 /* If end == LLONG_MAX, all pages from start to till end of file */ 611 if (end == LLONG_MAX) 612 end_idx = ULONG_MAX; 613 else 614 end_idx = end >> PAGE_SHIFT; 615 /* 616 * If we race get_user_pages_fast() here either we'll see the 617 * elevated page count in the iteration and wait, or 618 * get_user_pages_fast() will see that the page it took a reference 619 * against is no longer mapped in the page tables and bail to the 620 * get_user_pages() slow path. The slow path is protected by 621 * pte_lock() and pmd_lock(). New references are not taken without 622 * holding those locks, and unmap_mapping_pages() will not zero the 623 * pte or pmd without holding the respective lock, so we are 624 * guaranteed to either see new references or prevent new 625 * references from being established. 626 */ 627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 628 629 xas_lock_irq(&xas); 630 xas_for_each(&xas, entry, end_idx) { 631 if (WARN_ON_ONCE(!xa_is_value(entry))) 632 continue; 633 if (unlikely(dax_is_locked(entry))) 634 entry = get_unlocked_entry(&xas, 0); 635 if (entry) 636 page = dax_busy_page(entry); 637 put_unlocked_entry(&xas, entry, WAKE_NEXT); 638 if (page) 639 break; 640 if (++scanned % XA_CHECK_SCHED) 641 continue; 642 643 xas_pause(&xas); 644 xas_unlock_irq(&xas); 645 cond_resched(); 646 xas_lock_irq(&xas); 647 } 648 xas_unlock_irq(&xas); 649 return page; 650 } 651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 652 653 struct page *dax_layout_busy_page(struct address_space *mapping) 654 { 655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 656 } 657 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 658 659 static int __dax_invalidate_entry(struct address_space *mapping, 660 pgoff_t index, bool trunc) 661 { 662 XA_STATE(xas, &mapping->i_pages, index); 663 int ret = 0; 664 void *entry; 665 666 xas_lock_irq(&xas); 667 entry = get_unlocked_entry(&xas, 0); 668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 669 goto out; 670 if (!trunc && 671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 673 goto out; 674 dax_disassociate_entry(entry, mapping, trunc); 675 xas_store(&xas, NULL); 676 mapping->nrpages -= 1UL << dax_entry_order(entry); 677 ret = 1; 678 out: 679 put_unlocked_entry(&xas, entry, WAKE_ALL); 680 xas_unlock_irq(&xas); 681 return ret; 682 } 683 684 /* 685 * Delete DAX entry at @index from @mapping. Wait for it 686 * to be unlocked before deleting it. 687 */ 688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 689 { 690 int ret = __dax_invalidate_entry(mapping, index, true); 691 692 /* 693 * This gets called from truncate / punch_hole path. As such, the caller 694 * must hold locks protecting against concurrent modifications of the 695 * page cache (usually fs-private i_mmap_sem for writing). Since the 696 * caller has seen a DAX entry for this index, we better find it 697 * at that index as well... 698 */ 699 WARN_ON_ONCE(!ret); 700 return ret; 701 } 702 703 /* 704 * Invalidate DAX entry if it is clean. 705 */ 706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 707 pgoff_t index) 708 { 709 return __dax_invalidate_entry(mapping, index, false); 710 } 711 712 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 713 { 714 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 715 } 716 717 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 718 { 719 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 720 void *vto, *kaddr; 721 long rc; 722 int id; 723 724 id = dax_read_lock(); 725 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL); 726 if (rc < 0) { 727 dax_read_unlock(id); 728 return rc; 729 } 730 vto = kmap_atomic(vmf->cow_page); 731 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 732 kunmap_atomic(vto); 733 dax_read_unlock(id); 734 return 0; 735 } 736 737 /* 738 * By this point grab_mapping_entry() has ensured that we have a locked entry 739 * of the appropriate size so we don't have to worry about downgrading PMDs to 740 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 741 * already in the tree, we will skip the insertion and just dirty the PMD as 742 * appropriate. 743 */ 744 static void *dax_insert_entry(struct xa_state *xas, 745 struct address_space *mapping, struct vm_fault *vmf, 746 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 747 { 748 void *new_entry = dax_make_entry(pfn, flags); 749 750 if (dirty) 751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 752 753 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 754 unsigned long index = xas->xa_index; 755 /* we are replacing a zero page with block mapping */ 756 if (dax_is_pmd_entry(entry)) 757 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 758 PG_PMD_NR, false); 759 else /* pte entry */ 760 unmap_mapping_pages(mapping, index, 1, false); 761 } 762 763 xas_reset(xas); 764 xas_lock_irq(xas); 765 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 766 void *old; 767 768 dax_disassociate_entry(entry, mapping, false); 769 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 770 /* 771 * Only swap our new entry into the page cache if the current 772 * entry is a zero page or an empty entry. If a normal PTE or 773 * PMD entry is already in the cache, we leave it alone. This 774 * means that if we are trying to insert a PTE and the 775 * existing entry is a PMD, we will just leave the PMD in the 776 * tree and dirty it if necessary. 777 */ 778 old = dax_lock_entry(xas, new_entry); 779 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 780 DAX_LOCKED)); 781 entry = new_entry; 782 } else { 783 xas_load(xas); /* Walk the xa_state */ 784 } 785 786 if (dirty) 787 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 788 789 xas_unlock_irq(xas); 790 return entry; 791 } 792 793 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 794 struct address_space *mapping, void *entry) 795 { 796 unsigned long pfn, index, count, end; 797 long ret = 0; 798 struct vm_area_struct *vma; 799 800 /* 801 * A page got tagged dirty in DAX mapping? Something is seriously 802 * wrong. 803 */ 804 if (WARN_ON(!xa_is_value(entry))) 805 return -EIO; 806 807 if (unlikely(dax_is_locked(entry))) { 808 void *old_entry = entry; 809 810 entry = get_unlocked_entry(xas, 0); 811 812 /* Entry got punched out / reallocated? */ 813 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 814 goto put_unlocked; 815 /* 816 * Entry got reallocated elsewhere? No need to writeback. 817 * We have to compare pfns as we must not bail out due to 818 * difference in lockbit or entry type. 819 */ 820 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 821 goto put_unlocked; 822 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 823 dax_is_zero_entry(entry))) { 824 ret = -EIO; 825 goto put_unlocked; 826 } 827 828 /* Another fsync thread may have already done this entry */ 829 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 830 goto put_unlocked; 831 } 832 833 /* Lock the entry to serialize with page faults */ 834 dax_lock_entry(xas, entry); 835 836 /* 837 * We can clear the tag now but we have to be careful so that concurrent 838 * dax_writeback_one() calls for the same index cannot finish before we 839 * actually flush the caches. This is achieved as the calls will look 840 * at the entry only under the i_pages lock and once they do that 841 * they will see the entry locked and wait for it to unlock. 842 */ 843 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 844 xas_unlock_irq(xas); 845 846 /* 847 * If dax_writeback_mapping_range() was given a wbc->range_start 848 * in the middle of a PMD, the 'index' we use needs to be 849 * aligned to the start of the PMD. 850 * This allows us to flush for PMD_SIZE and not have to worry about 851 * partial PMD writebacks. 852 */ 853 pfn = dax_to_pfn(entry); 854 count = 1UL << dax_entry_order(entry); 855 index = xas->xa_index & ~(count - 1); 856 end = index + count - 1; 857 858 /* Walk all mappings of a given index of a file and writeprotect them */ 859 i_mmap_lock_read(mapping); 860 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 861 pfn_mkclean_range(pfn, count, index, vma); 862 cond_resched(); 863 } 864 i_mmap_unlock_read(mapping); 865 866 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 867 /* 868 * After we have flushed the cache, we can clear the dirty tag. There 869 * cannot be new dirty data in the pfn after the flush has completed as 870 * the pfn mappings are writeprotected and fault waits for mapping 871 * entry lock. 872 */ 873 xas_reset(xas); 874 xas_lock_irq(xas); 875 xas_store(xas, entry); 876 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 877 dax_wake_entry(xas, entry, WAKE_NEXT); 878 879 trace_dax_writeback_one(mapping->host, index, count); 880 return ret; 881 882 put_unlocked: 883 put_unlocked_entry(xas, entry, WAKE_NEXT); 884 return ret; 885 } 886 887 /* 888 * Flush the mapping to the persistent domain within the byte range of [start, 889 * end]. This is required by data integrity operations to ensure file data is 890 * on persistent storage prior to completion of the operation. 891 */ 892 int dax_writeback_mapping_range(struct address_space *mapping, 893 struct dax_device *dax_dev, struct writeback_control *wbc) 894 { 895 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 896 struct inode *inode = mapping->host; 897 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 898 void *entry; 899 int ret = 0; 900 unsigned int scanned = 0; 901 902 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 903 return -EIO; 904 905 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 906 return 0; 907 908 trace_dax_writeback_range(inode, xas.xa_index, end_index); 909 910 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 911 912 xas_lock_irq(&xas); 913 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 914 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 915 if (ret < 0) { 916 mapping_set_error(mapping, ret); 917 break; 918 } 919 if (++scanned % XA_CHECK_SCHED) 920 continue; 921 922 xas_pause(&xas); 923 xas_unlock_irq(&xas); 924 cond_resched(); 925 xas_lock_irq(&xas); 926 } 927 xas_unlock_irq(&xas); 928 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 929 return ret; 930 } 931 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 932 933 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size, 934 pfn_t *pfnp) 935 { 936 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 937 int id, rc; 938 long length; 939 940 id = dax_read_lock(); 941 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 942 NULL, pfnp); 943 if (length < 0) { 944 rc = length; 945 goto out; 946 } 947 rc = -EINVAL; 948 if (PFN_PHYS(length) < size) 949 goto out; 950 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 951 goto out; 952 /* For larger pages we need devmap */ 953 if (length > 1 && !pfn_t_devmap(*pfnp)) 954 goto out; 955 rc = 0; 956 out: 957 dax_read_unlock(id); 958 return rc; 959 } 960 961 /* 962 * The user has performed a load from a hole in the file. Allocating a new 963 * page in the file would cause excessive storage usage for workloads with 964 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 965 * If this page is ever written to we will re-fault and change the mapping to 966 * point to real DAX storage instead. 967 */ 968 static vm_fault_t dax_load_hole(struct xa_state *xas, 969 struct address_space *mapping, void **entry, 970 struct vm_fault *vmf) 971 { 972 struct inode *inode = mapping->host; 973 unsigned long vaddr = vmf->address; 974 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 975 vm_fault_t ret; 976 977 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 978 DAX_ZERO_PAGE, false); 979 980 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 981 trace_dax_load_hole(inode, vmf, ret); 982 return ret; 983 } 984 985 #ifdef CONFIG_FS_DAX_PMD 986 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 987 const struct iomap *iomap, void **entry) 988 { 989 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 990 unsigned long pmd_addr = vmf->address & PMD_MASK; 991 struct vm_area_struct *vma = vmf->vma; 992 struct inode *inode = mapping->host; 993 pgtable_t pgtable = NULL; 994 struct page *zero_page; 995 spinlock_t *ptl; 996 pmd_t pmd_entry; 997 pfn_t pfn; 998 999 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1000 1001 if (unlikely(!zero_page)) 1002 goto fallback; 1003 1004 pfn = page_to_pfn_t(zero_page); 1005 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1006 DAX_PMD | DAX_ZERO_PAGE, false); 1007 1008 if (arch_needs_pgtable_deposit()) { 1009 pgtable = pte_alloc_one(vma->vm_mm); 1010 if (!pgtable) 1011 return VM_FAULT_OOM; 1012 } 1013 1014 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1015 if (!pmd_none(*(vmf->pmd))) { 1016 spin_unlock(ptl); 1017 goto fallback; 1018 } 1019 1020 if (pgtable) { 1021 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1022 mm_inc_nr_ptes(vma->vm_mm); 1023 } 1024 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1025 pmd_entry = pmd_mkhuge(pmd_entry); 1026 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1027 spin_unlock(ptl); 1028 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1029 return VM_FAULT_NOPAGE; 1030 1031 fallback: 1032 if (pgtable) 1033 pte_free(vma->vm_mm, pgtable); 1034 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1035 return VM_FAULT_FALLBACK; 1036 } 1037 #else 1038 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1039 const struct iomap *iomap, void **entry) 1040 { 1041 return VM_FAULT_FALLBACK; 1042 } 1043 #endif /* CONFIG_FS_DAX_PMD */ 1044 1045 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff, 1046 unsigned int offset, size_t size) 1047 { 1048 void *kaddr; 1049 long ret; 1050 1051 ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1052 if (ret > 0) { 1053 memset(kaddr + offset, 0, size); 1054 dax_flush(dax_dev, kaddr + offset, size); 1055 } 1056 return ret; 1057 } 1058 1059 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1060 { 1061 const struct iomap *iomap = &iter->iomap; 1062 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1063 loff_t pos = iter->pos; 1064 u64 length = iomap_length(iter); 1065 s64 written = 0; 1066 1067 /* already zeroed? we're done. */ 1068 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1069 return length; 1070 1071 do { 1072 unsigned offset = offset_in_page(pos); 1073 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1074 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1075 long rc; 1076 int id; 1077 1078 id = dax_read_lock(); 1079 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1080 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1081 else 1082 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size); 1083 dax_read_unlock(id); 1084 1085 if (rc < 0) 1086 return rc; 1087 pos += size; 1088 length -= size; 1089 written += size; 1090 if (did_zero) 1091 *did_zero = true; 1092 } while (length > 0); 1093 1094 return written; 1095 } 1096 1097 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1098 const struct iomap_ops *ops) 1099 { 1100 struct iomap_iter iter = { 1101 .inode = inode, 1102 .pos = pos, 1103 .len = len, 1104 .flags = IOMAP_DAX | IOMAP_ZERO, 1105 }; 1106 int ret; 1107 1108 while ((ret = iomap_iter(&iter, ops)) > 0) 1109 iter.processed = dax_zero_iter(&iter, did_zero); 1110 return ret; 1111 } 1112 EXPORT_SYMBOL_GPL(dax_zero_range); 1113 1114 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1115 const struct iomap_ops *ops) 1116 { 1117 unsigned int blocksize = i_blocksize(inode); 1118 unsigned int off = pos & (blocksize - 1); 1119 1120 /* Block boundary? Nothing to do */ 1121 if (!off) 1122 return 0; 1123 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1124 } 1125 EXPORT_SYMBOL_GPL(dax_truncate_page); 1126 1127 static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1128 struct iov_iter *iter) 1129 { 1130 const struct iomap *iomap = &iomi->iomap; 1131 loff_t length = iomap_length(iomi); 1132 loff_t pos = iomi->pos; 1133 struct dax_device *dax_dev = iomap->dax_dev; 1134 loff_t end = pos + length, done = 0; 1135 ssize_t ret = 0; 1136 size_t xfer; 1137 int id; 1138 1139 if (iov_iter_rw(iter) == READ) { 1140 end = min(end, i_size_read(iomi->inode)); 1141 if (pos >= end) 1142 return 0; 1143 1144 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1145 return iov_iter_zero(min(length, end - pos), iter); 1146 } 1147 1148 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1149 return -EIO; 1150 1151 /* 1152 * Write can allocate block for an area which has a hole page mapped 1153 * into page tables. We have to tear down these mappings so that data 1154 * written by write(2) is visible in mmap. 1155 */ 1156 if (iomap->flags & IOMAP_F_NEW) { 1157 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1158 pos >> PAGE_SHIFT, 1159 (end - 1) >> PAGE_SHIFT); 1160 } 1161 1162 id = dax_read_lock(); 1163 while (pos < end) { 1164 unsigned offset = pos & (PAGE_SIZE - 1); 1165 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1166 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1167 ssize_t map_len; 1168 void *kaddr; 1169 1170 if (fatal_signal_pending(current)) { 1171 ret = -EINTR; 1172 break; 1173 } 1174 1175 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1176 &kaddr, NULL); 1177 if (map_len < 0) { 1178 ret = map_len; 1179 break; 1180 } 1181 1182 map_len = PFN_PHYS(map_len); 1183 kaddr += offset; 1184 map_len -= offset; 1185 if (map_len > end - pos) 1186 map_len = end - pos; 1187 1188 if (iov_iter_rw(iter) == WRITE) 1189 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1190 map_len, iter); 1191 else 1192 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1193 map_len, iter); 1194 1195 pos += xfer; 1196 length -= xfer; 1197 done += xfer; 1198 1199 if (xfer == 0) 1200 ret = -EFAULT; 1201 if (xfer < map_len) 1202 break; 1203 } 1204 dax_read_unlock(id); 1205 1206 return done ? done : ret; 1207 } 1208 1209 /** 1210 * dax_iomap_rw - Perform I/O to a DAX file 1211 * @iocb: The control block for this I/O 1212 * @iter: The addresses to do I/O from or to 1213 * @ops: iomap ops passed from the file system 1214 * 1215 * This function performs read and write operations to directly mapped 1216 * persistent memory. The callers needs to take care of read/write exclusion 1217 * and evicting any page cache pages in the region under I/O. 1218 */ 1219 ssize_t 1220 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1221 const struct iomap_ops *ops) 1222 { 1223 struct iomap_iter iomi = { 1224 .inode = iocb->ki_filp->f_mapping->host, 1225 .pos = iocb->ki_pos, 1226 .len = iov_iter_count(iter), 1227 .flags = IOMAP_DAX, 1228 }; 1229 loff_t done = 0; 1230 int ret; 1231 1232 if (iov_iter_rw(iter) == WRITE) { 1233 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1234 iomi.flags |= IOMAP_WRITE; 1235 } else { 1236 lockdep_assert_held(&iomi.inode->i_rwsem); 1237 } 1238 1239 if (iocb->ki_flags & IOCB_NOWAIT) 1240 iomi.flags |= IOMAP_NOWAIT; 1241 1242 while ((ret = iomap_iter(&iomi, ops)) > 0) 1243 iomi.processed = dax_iomap_iter(&iomi, iter); 1244 1245 done = iomi.pos - iocb->ki_pos; 1246 iocb->ki_pos = iomi.pos; 1247 return done ? done : ret; 1248 } 1249 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1250 1251 static vm_fault_t dax_fault_return(int error) 1252 { 1253 if (error == 0) 1254 return VM_FAULT_NOPAGE; 1255 return vmf_error(error); 1256 } 1257 1258 /* 1259 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1260 * flushed on write-faults (non-cow), but not read-faults. 1261 */ 1262 static bool dax_fault_is_synchronous(unsigned long flags, 1263 struct vm_area_struct *vma, const struct iomap *iomap) 1264 { 1265 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1266 && (iomap->flags & IOMAP_F_DIRTY); 1267 } 1268 1269 /* 1270 * When handling a synchronous page fault and the inode need a fsync, we can 1271 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1272 * insertion for now and return the pfn so that caller can insert it after the 1273 * fsync is done. 1274 */ 1275 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1276 { 1277 if (WARN_ON_ONCE(!pfnp)) 1278 return VM_FAULT_SIGBUS; 1279 *pfnp = pfn; 1280 return VM_FAULT_NEEDDSYNC; 1281 } 1282 1283 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1284 const struct iomap_iter *iter) 1285 { 1286 vm_fault_t ret; 1287 int error = 0; 1288 1289 switch (iter->iomap.type) { 1290 case IOMAP_HOLE: 1291 case IOMAP_UNWRITTEN: 1292 clear_user_highpage(vmf->cow_page, vmf->address); 1293 break; 1294 case IOMAP_MAPPED: 1295 error = copy_cow_page_dax(vmf, iter); 1296 break; 1297 default: 1298 WARN_ON_ONCE(1); 1299 error = -EIO; 1300 break; 1301 } 1302 1303 if (error) 1304 return dax_fault_return(error); 1305 1306 __SetPageUptodate(vmf->cow_page); 1307 ret = finish_fault(vmf); 1308 if (!ret) 1309 return VM_FAULT_DONE_COW; 1310 return ret; 1311 } 1312 1313 /** 1314 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1315 * @vmf: vm fault instance 1316 * @iter: iomap iter 1317 * @pfnp: pfn to be returned 1318 * @xas: the dax mapping tree of a file 1319 * @entry: an unlocked dax entry to be inserted 1320 * @pmd: distinguish whether it is a pmd fault 1321 */ 1322 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1323 const struct iomap_iter *iter, pfn_t *pfnp, 1324 struct xa_state *xas, void **entry, bool pmd) 1325 { 1326 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1327 const struct iomap *iomap = &iter->iomap; 1328 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1329 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1330 bool write = vmf->flags & FAULT_FLAG_WRITE; 1331 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap); 1332 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1333 int err = 0; 1334 pfn_t pfn; 1335 1336 if (!pmd && vmf->cow_page) 1337 return dax_fault_cow_page(vmf, iter); 1338 1339 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1340 if (!write && 1341 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1342 if (!pmd) 1343 return dax_load_hole(xas, mapping, entry, vmf); 1344 return dax_pmd_load_hole(xas, vmf, iomap, entry); 1345 } 1346 1347 if (iomap->type != IOMAP_MAPPED) { 1348 WARN_ON_ONCE(1); 1349 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1350 } 1351 1352 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn); 1353 if (err) 1354 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1355 1356 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags, 1357 write && !sync); 1358 1359 if (sync) 1360 return dax_fault_synchronous_pfnp(pfnp, pfn); 1361 1362 /* insert PMD pfn */ 1363 if (pmd) 1364 return vmf_insert_pfn_pmd(vmf, pfn, write); 1365 1366 /* insert PTE pfn */ 1367 if (write) 1368 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1369 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1370 } 1371 1372 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1373 int *iomap_errp, const struct iomap_ops *ops) 1374 { 1375 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1376 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1377 struct iomap_iter iter = { 1378 .inode = mapping->host, 1379 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1380 .len = PAGE_SIZE, 1381 .flags = IOMAP_DAX | IOMAP_FAULT, 1382 }; 1383 vm_fault_t ret = 0; 1384 void *entry; 1385 int error; 1386 1387 trace_dax_pte_fault(iter.inode, vmf, ret); 1388 /* 1389 * Check whether offset isn't beyond end of file now. Caller is supposed 1390 * to hold locks serializing us with truncate / punch hole so this is 1391 * a reliable test. 1392 */ 1393 if (iter.pos >= i_size_read(iter.inode)) { 1394 ret = VM_FAULT_SIGBUS; 1395 goto out; 1396 } 1397 1398 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1399 iter.flags |= IOMAP_WRITE; 1400 1401 entry = grab_mapping_entry(&xas, mapping, 0); 1402 if (xa_is_internal(entry)) { 1403 ret = xa_to_internal(entry); 1404 goto out; 1405 } 1406 1407 /* 1408 * It is possible, particularly with mixed reads & writes to private 1409 * mappings, that we have raced with a PMD fault that overlaps with 1410 * the PTE we need to set up. If so just return and the fault will be 1411 * retried. 1412 */ 1413 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1414 ret = VM_FAULT_NOPAGE; 1415 goto unlock_entry; 1416 } 1417 1418 while ((error = iomap_iter(&iter, ops)) > 0) { 1419 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1420 iter.processed = -EIO; /* fs corruption? */ 1421 continue; 1422 } 1423 1424 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1425 if (ret != VM_FAULT_SIGBUS && 1426 (iter.iomap.flags & IOMAP_F_NEW)) { 1427 count_vm_event(PGMAJFAULT); 1428 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1429 ret |= VM_FAULT_MAJOR; 1430 } 1431 1432 if (!(ret & VM_FAULT_ERROR)) 1433 iter.processed = PAGE_SIZE; 1434 } 1435 1436 if (iomap_errp) 1437 *iomap_errp = error; 1438 if (!ret && error) 1439 ret = dax_fault_return(error); 1440 1441 unlock_entry: 1442 dax_unlock_entry(&xas, entry); 1443 out: 1444 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1445 return ret; 1446 } 1447 1448 #ifdef CONFIG_FS_DAX_PMD 1449 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1450 pgoff_t max_pgoff) 1451 { 1452 unsigned long pmd_addr = vmf->address & PMD_MASK; 1453 bool write = vmf->flags & FAULT_FLAG_WRITE; 1454 1455 /* 1456 * Make sure that the faulting address's PMD offset (color) matches 1457 * the PMD offset from the start of the file. This is necessary so 1458 * that a PMD range in the page table overlaps exactly with a PMD 1459 * range in the page cache. 1460 */ 1461 if ((vmf->pgoff & PG_PMD_COLOUR) != 1462 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1463 return true; 1464 1465 /* Fall back to PTEs if we're going to COW */ 1466 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1467 return true; 1468 1469 /* If the PMD would extend outside the VMA */ 1470 if (pmd_addr < vmf->vma->vm_start) 1471 return true; 1472 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1473 return true; 1474 1475 /* If the PMD would extend beyond the file size */ 1476 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1477 return true; 1478 1479 return false; 1480 } 1481 1482 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1483 const struct iomap_ops *ops) 1484 { 1485 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1486 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1487 struct iomap_iter iter = { 1488 .inode = mapping->host, 1489 .len = PMD_SIZE, 1490 .flags = IOMAP_DAX | IOMAP_FAULT, 1491 }; 1492 vm_fault_t ret = VM_FAULT_FALLBACK; 1493 pgoff_t max_pgoff; 1494 void *entry; 1495 int error; 1496 1497 if (vmf->flags & FAULT_FLAG_WRITE) 1498 iter.flags |= IOMAP_WRITE; 1499 1500 /* 1501 * Check whether offset isn't beyond end of file now. Caller is 1502 * supposed to hold locks serializing us with truncate / punch hole so 1503 * this is a reliable test. 1504 */ 1505 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1506 1507 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1508 1509 if (xas.xa_index >= max_pgoff) { 1510 ret = VM_FAULT_SIGBUS; 1511 goto out; 1512 } 1513 1514 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1515 goto fallback; 1516 1517 /* 1518 * grab_mapping_entry() will make sure we get an empty PMD entry, 1519 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1520 * entry is already in the array, for instance), it will return 1521 * VM_FAULT_FALLBACK. 1522 */ 1523 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1524 if (xa_is_internal(entry)) { 1525 ret = xa_to_internal(entry); 1526 goto fallback; 1527 } 1528 1529 /* 1530 * It is possible, particularly with mixed reads & writes to private 1531 * mappings, that we have raced with a PTE fault that overlaps with 1532 * the PMD we need to set up. If so just return and the fault will be 1533 * retried. 1534 */ 1535 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1536 !pmd_devmap(*vmf->pmd)) { 1537 ret = 0; 1538 goto unlock_entry; 1539 } 1540 1541 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1542 while ((error = iomap_iter(&iter, ops)) > 0) { 1543 if (iomap_length(&iter) < PMD_SIZE) 1544 continue; /* actually breaks out of the loop */ 1545 1546 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1547 if (ret != VM_FAULT_FALLBACK) 1548 iter.processed = PMD_SIZE; 1549 } 1550 1551 unlock_entry: 1552 dax_unlock_entry(&xas, entry); 1553 fallback: 1554 if (ret == VM_FAULT_FALLBACK) { 1555 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1556 count_vm_event(THP_FAULT_FALLBACK); 1557 } 1558 out: 1559 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1560 return ret; 1561 } 1562 #else 1563 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1564 const struct iomap_ops *ops) 1565 { 1566 return VM_FAULT_FALLBACK; 1567 } 1568 #endif /* CONFIG_FS_DAX_PMD */ 1569 1570 /** 1571 * dax_iomap_fault - handle a page fault on a DAX file 1572 * @vmf: The description of the fault 1573 * @pe_size: Size of the page to fault in 1574 * @pfnp: PFN to insert for synchronous faults if fsync is required 1575 * @iomap_errp: Storage for detailed error code in case of error 1576 * @ops: Iomap ops passed from the file system 1577 * 1578 * When a page fault occurs, filesystems may call this helper in 1579 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1580 * has done all the necessary locking for page fault to proceed 1581 * successfully. 1582 */ 1583 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1584 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1585 { 1586 switch (pe_size) { 1587 case PE_SIZE_PTE: 1588 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1589 case PE_SIZE_PMD: 1590 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1591 default: 1592 return VM_FAULT_FALLBACK; 1593 } 1594 } 1595 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1596 1597 /* 1598 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1599 * @vmf: The description of the fault 1600 * @pfn: PFN to insert 1601 * @order: Order of entry to insert. 1602 * 1603 * This function inserts a writeable PTE or PMD entry into the page tables 1604 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1605 */ 1606 static vm_fault_t 1607 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1608 { 1609 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1610 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1611 void *entry; 1612 vm_fault_t ret; 1613 1614 xas_lock_irq(&xas); 1615 entry = get_unlocked_entry(&xas, order); 1616 /* Did we race with someone splitting entry or so? */ 1617 if (!entry || dax_is_conflict(entry) || 1618 (order == 0 && !dax_is_pte_entry(entry))) { 1619 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1620 xas_unlock_irq(&xas); 1621 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1622 VM_FAULT_NOPAGE); 1623 return VM_FAULT_NOPAGE; 1624 } 1625 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1626 dax_lock_entry(&xas, entry); 1627 xas_unlock_irq(&xas); 1628 if (order == 0) 1629 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1630 #ifdef CONFIG_FS_DAX_PMD 1631 else if (order == PMD_ORDER) 1632 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1633 #endif 1634 else 1635 ret = VM_FAULT_FALLBACK; 1636 dax_unlock_entry(&xas, entry); 1637 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1638 return ret; 1639 } 1640 1641 /** 1642 * dax_finish_sync_fault - finish synchronous page fault 1643 * @vmf: The description of the fault 1644 * @pe_size: Size of entry to be inserted 1645 * @pfn: PFN to insert 1646 * 1647 * This function ensures that the file range touched by the page fault is 1648 * stored persistently on the media and handles inserting of appropriate page 1649 * table entry. 1650 */ 1651 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1652 enum page_entry_size pe_size, pfn_t pfn) 1653 { 1654 int err; 1655 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1656 unsigned int order = pe_order(pe_size); 1657 size_t len = PAGE_SIZE << order; 1658 1659 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1660 if (err) 1661 return VM_FAULT_SIGBUS; 1662 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1663 } 1664 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1665