xref: /openbmc/linux/fs/dax.c (revision 44530d58)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 /*
36  * We use lowest available bit in exceptional entry for locking, other two
37  * bits to determine entry type. In total 3 special bits.
38  */
39 #define RADIX_DAX_SHIFT	(RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
40 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
41 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
42 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
43 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
44 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
45 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
46 		RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
47 		RADIX_TREE_EXCEPTIONAL_ENTRY))
48 
49 /* We choose 4096 entries - same as per-zone page wait tables */
50 #define DAX_WAIT_TABLE_BITS 12
51 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
52 
53 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
54 
55 static int __init init_dax_wait_table(void)
56 {
57 	int i;
58 
59 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
60 		init_waitqueue_head(wait_table + i);
61 	return 0;
62 }
63 fs_initcall(init_dax_wait_table);
64 
65 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
66 					      pgoff_t index)
67 {
68 	unsigned long hash = hash_long((unsigned long)mapping ^ index,
69 				       DAX_WAIT_TABLE_BITS);
70 	return wait_table + hash;
71 }
72 
73 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
74 {
75 	struct request_queue *q = bdev->bd_queue;
76 	long rc = -EIO;
77 
78 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
79 	if (blk_queue_enter(q, true) != 0)
80 		return rc;
81 
82 	rc = bdev_direct_access(bdev, dax);
83 	if (rc < 0) {
84 		dax->addr = (void __pmem *) ERR_PTR(rc);
85 		blk_queue_exit(q);
86 		return rc;
87 	}
88 	return rc;
89 }
90 
91 static void dax_unmap_atomic(struct block_device *bdev,
92 		const struct blk_dax_ctl *dax)
93 {
94 	if (IS_ERR(dax->addr))
95 		return;
96 	blk_queue_exit(bdev->bd_queue);
97 }
98 
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101 	struct page *page = alloc_pages(GFP_KERNEL, 0);
102 	struct blk_dax_ctl dax = {
103 		.size = PAGE_SIZE,
104 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 	};
106 	long rc;
107 
108 	if (!page)
109 		return ERR_PTR(-ENOMEM);
110 
111 	rc = dax_map_atomic(bdev, &dax);
112 	if (rc < 0)
113 		return ERR_PTR(rc);
114 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 	dax_unmap_atomic(bdev, &dax);
116 	return page;
117 }
118 
119 static bool buffer_written(struct buffer_head *bh)
120 {
121 	return buffer_mapped(bh) && !buffer_unwritten(bh);
122 }
123 
124 /*
125  * When ext4 encounters a hole, it returns without modifying the buffer_head
126  * which means that we can't trust b_size.  To cope with this, we set b_state
127  * to 0 before calling get_block and, if any bit is set, we know we can trust
128  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
129  * and would save us time calling get_block repeatedly.
130  */
131 static bool buffer_size_valid(struct buffer_head *bh)
132 {
133 	return bh->b_state != 0;
134 }
135 
136 
137 static sector_t to_sector(const struct buffer_head *bh,
138 		const struct inode *inode)
139 {
140 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
141 
142 	return sector;
143 }
144 
145 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
146 		      loff_t start, loff_t end, get_block_t get_block,
147 		      struct buffer_head *bh)
148 {
149 	loff_t pos = start, max = start, bh_max = start;
150 	bool hole = false, need_wmb = false;
151 	struct block_device *bdev = NULL;
152 	int rw = iov_iter_rw(iter), rc;
153 	long map_len = 0;
154 	struct blk_dax_ctl dax = {
155 		.addr = (void __pmem *) ERR_PTR(-EIO),
156 	};
157 	unsigned blkbits = inode->i_blkbits;
158 	sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
159 								>> blkbits;
160 
161 	if (rw == READ)
162 		end = min(end, i_size_read(inode));
163 
164 	while (pos < end) {
165 		size_t len;
166 		if (pos == max) {
167 			long page = pos >> PAGE_SHIFT;
168 			sector_t block = page << (PAGE_SHIFT - blkbits);
169 			unsigned first = pos - (block << blkbits);
170 			long size;
171 
172 			if (pos == bh_max) {
173 				bh->b_size = PAGE_ALIGN(end - pos);
174 				bh->b_state = 0;
175 				rc = get_block(inode, block, bh, rw == WRITE);
176 				if (rc)
177 					break;
178 				if (!buffer_size_valid(bh))
179 					bh->b_size = 1 << blkbits;
180 				bh_max = pos - first + bh->b_size;
181 				bdev = bh->b_bdev;
182 				/*
183 				 * We allow uninitialized buffers for writes
184 				 * beyond EOF as those cannot race with faults
185 				 */
186 				WARN_ON_ONCE(
187 					(buffer_new(bh) && block < file_blks) ||
188 					(rw == WRITE && buffer_unwritten(bh)));
189 			} else {
190 				unsigned done = bh->b_size -
191 						(bh_max - (pos - first));
192 				bh->b_blocknr += done >> blkbits;
193 				bh->b_size -= done;
194 			}
195 
196 			hole = rw == READ && !buffer_written(bh);
197 			if (hole) {
198 				size = bh->b_size - first;
199 			} else {
200 				dax_unmap_atomic(bdev, &dax);
201 				dax.sector = to_sector(bh, inode);
202 				dax.size = bh->b_size;
203 				map_len = dax_map_atomic(bdev, &dax);
204 				if (map_len < 0) {
205 					rc = map_len;
206 					break;
207 				}
208 				dax.addr += first;
209 				size = map_len - first;
210 			}
211 			/*
212 			 * pos + size is one past the last offset for IO,
213 			 * so pos + size can overflow loff_t at extreme offsets.
214 			 * Cast to u64 to catch this and get the true minimum.
215 			 */
216 			max = min_t(u64, pos + size, end);
217 		}
218 
219 		if (iov_iter_rw(iter) == WRITE) {
220 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
221 			need_wmb = true;
222 		} else if (!hole)
223 			len = copy_to_iter((void __force *) dax.addr, max - pos,
224 					iter);
225 		else
226 			len = iov_iter_zero(max - pos, iter);
227 
228 		if (!len) {
229 			rc = -EFAULT;
230 			break;
231 		}
232 
233 		pos += len;
234 		if (!IS_ERR(dax.addr))
235 			dax.addr += len;
236 	}
237 
238 	if (need_wmb)
239 		wmb_pmem();
240 	dax_unmap_atomic(bdev, &dax);
241 
242 	return (pos == start) ? rc : pos - start;
243 }
244 
245 /**
246  * dax_do_io - Perform I/O to a DAX file
247  * @iocb: The control block for this I/O
248  * @inode: The file which the I/O is directed at
249  * @iter: The addresses to do I/O from or to
250  * @get_block: The filesystem method used to translate file offsets to blocks
251  * @end_io: A filesystem callback for I/O completion
252  * @flags: See below
253  *
254  * This function uses the same locking scheme as do_blockdev_direct_IO:
255  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
256  * caller for writes.  For reads, we take and release the i_mutex ourselves.
257  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
258  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
259  * is in progress.
260  */
261 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
262 		  struct iov_iter *iter, get_block_t get_block,
263 		  dio_iodone_t end_io, int flags)
264 {
265 	struct buffer_head bh;
266 	ssize_t retval = -EINVAL;
267 	loff_t pos = iocb->ki_pos;
268 	loff_t end = pos + iov_iter_count(iter);
269 
270 	memset(&bh, 0, sizeof(bh));
271 	bh.b_bdev = inode->i_sb->s_bdev;
272 
273 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
274 		inode_lock(inode);
275 
276 	/* Protects against truncate */
277 	if (!(flags & DIO_SKIP_DIO_COUNT))
278 		inode_dio_begin(inode);
279 
280 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
281 
282 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
283 		inode_unlock(inode);
284 
285 	if (end_io) {
286 		int err;
287 
288 		err = end_io(iocb, pos, retval, bh.b_private);
289 		if (err)
290 			retval = err;
291 	}
292 
293 	if (!(flags & DIO_SKIP_DIO_COUNT))
294 		inode_dio_end(inode);
295 	return retval;
296 }
297 EXPORT_SYMBOL_GPL(dax_do_io);
298 
299 /*
300  * DAX radix tree locking
301  */
302 struct exceptional_entry_key {
303 	struct address_space *mapping;
304 	unsigned long index;
305 };
306 
307 struct wait_exceptional_entry_queue {
308 	wait_queue_t wait;
309 	struct exceptional_entry_key key;
310 };
311 
312 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
313 				       int sync, void *keyp)
314 {
315 	struct exceptional_entry_key *key = keyp;
316 	struct wait_exceptional_entry_queue *ewait =
317 		container_of(wait, struct wait_exceptional_entry_queue, wait);
318 
319 	if (key->mapping != ewait->key.mapping ||
320 	    key->index != ewait->key.index)
321 		return 0;
322 	return autoremove_wake_function(wait, mode, sync, NULL);
323 }
324 
325 /*
326  * Check whether the given slot is locked. The function must be called with
327  * mapping->tree_lock held
328  */
329 static inline int slot_locked(struct address_space *mapping, void **slot)
330 {
331 	unsigned long entry = (unsigned long)
332 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
333 	return entry & RADIX_DAX_ENTRY_LOCK;
334 }
335 
336 /*
337  * Mark the given slot is locked. The function must be called with
338  * mapping->tree_lock held
339  */
340 static inline void *lock_slot(struct address_space *mapping, void **slot)
341 {
342 	unsigned long entry = (unsigned long)
343 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
344 
345 	entry |= RADIX_DAX_ENTRY_LOCK;
346 	radix_tree_replace_slot(slot, (void *)entry);
347 	return (void *)entry;
348 }
349 
350 /*
351  * Mark the given slot is unlocked. The function must be called with
352  * mapping->tree_lock held
353  */
354 static inline void *unlock_slot(struct address_space *mapping, void **slot)
355 {
356 	unsigned long entry = (unsigned long)
357 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
358 
359 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
360 	radix_tree_replace_slot(slot, (void *)entry);
361 	return (void *)entry;
362 }
363 
364 /*
365  * Lookup entry in radix tree, wait for it to become unlocked if it is
366  * exceptional entry and return it. The caller must call
367  * put_unlocked_mapping_entry() when he decided not to lock the entry or
368  * put_locked_mapping_entry() when he locked the entry and now wants to
369  * unlock it.
370  *
371  * The function must be called with mapping->tree_lock held.
372  */
373 static void *get_unlocked_mapping_entry(struct address_space *mapping,
374 					pgoff_t index, void ***slotp)
375 {
376 	void *ret, **slot;
377 	struct wait_exceptional_entry_queue ewait;
378 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
379 
380 	init_wait(&ewait.wait);
381 	ewait.wait.func = wake_exceptional_entry_func;
382 	ewait.key.mapping = mapping;
383 	ewait.key.index = index;
384 
385 	for (;;) {
386 		ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
387 					  &slot);
388 		if (!ret || !radix_tree_exceptional_entry(ret) ||
389 		    !slot_locked(mapping, slot)) {
390 			if (slotp)
391 				*slotp = slot;
392 			return ret;
393 		}
394 		prepare_to_wait_exclusive(wq, &ewait.wait,
395 					  TASK_UNINTERRUPTIBLE);
396 		spin_unlock_irq(&mapping->tree_lock);
397 		schedule();
398 		finish_wait(wq, &ewait.wait);
399 		spin_lock_irq(&mapping->tree_lock);
400 	}
401 }
402 
403 /*
404  * Find radix tree entry at given index. If it points to a page, return with
405  * the page locked. If it points to the exceptional entry, return with the
406  * radix tree entry locked. If the radix tree doesn't contain given index,
407  * create empty exceptional entry for the index and return with it locked.
408  *
409  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
410  * persistent memory the benefit is doubtful. We can add that later if we can
411  * show it helps.
412  */
413 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
414 {
415 	void *ret, **slot;
416 
417 restart:
418 	spin_lock_irq(&mapping->tree_lock);
419 	ret = get_unlocked_mapping_entry(mapping, index, &slot);
420 	/* No entry for given index? Make sure radix tree is big enough. */
421 	if (!ret) {
422 		int err;
423 
424 		spin_unlock_irq(&mapping->tree_lock);
425 		err = radix_tree_preload(
426 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
427 		if (err)
428 			return ERR_PTR(err);
429 		ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
430 			       RADIX_DAX_ENTRY_LOCK);
431 		spin_lock_irq(&mapping->tree_lock);
432 		err = radix_tree_insert(&mapping->page_tree, index, ret);
433 		radix_tree_preload_end();
434 		if (err) {
435 			spin_unlock_irq(&mapping->tree_lock);
436 			/* Someone already created the entry? */
437 			if (err == -EEXIST)
438 				goto restart;
439 			return ERR_PTR(err);
440 		}
441 		/* Good, we have inserted empty locked entry into the tree. */
442 		mapping->nrexceptional++;
443 		spin_unlock_irq(&mapping->tree_lock);
444 		return ret;
445 	}
446 	/* Normal page in radix tree? */
447 	if (!radix_tree_exceptional_entry(ret)) {
448 		struct page *page = ret;
449 
450 		get_page(page);
451 		spin_unlock_irq(&mapping->tree_lock);
452 		lock_page(page);
453 		/* Page got truncated? Retry... */
454 		if (unlikely(page->mapping != mapping)) {
455 			unlock_page(page);
456 			put_page(page);
457 			goto restart;
458 		}
459 		return page;
460 	}
461 	ret = lock_slot(mapping, slot);
462 	spin_unlock_irq(&mapping->tree_lock);
463 	return ret;
464 }
465 
466 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
467 				   pgoff_t index, bool wake_all)
468 {
469 	wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
470 
471 	/*
472 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
473 	 * under mapping->tree_lock, ditto for entry handling in our callers.
474 	 * So at this point all tasks that could have seen our entry locked
475 	 * must be in the waitqueue and the following check will see them.
476 	 */
477 	if (waitqueue_active(wq)) {
478 		struct exceptional_entry_key key;
479 
480 		key.mapping = mapping;
481 		key.index = index;
482 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
483 	}
484 }
485 
486 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
487 {
488 	void *ret, **slot;
489 
490 	spin_lock_irq(&mapping->tree_lock);
491 	ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
492 	if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
493 			 !slot_locked(mapping, slot))) {
494 		spin_unlock_irq(&mapping->tree_lock);
495 		return;
496 	}
497 	unlock_slot(mapping, slot);
498 	spin_unlock_irq(&mapping->tree_lock);
499 	dax_wake_mapping_entry_waiter(mapping, index, false);
500 }
501 
502 static void put_locked_mapping_entry(struct address_space *mapping,
503 				     pgoff_t index, void *entry)
504 {
505 	if (!radix_tree_exceptional_entry(entry)) {
506 		unlock_page(entry);
507 		put_page(entry);
508 	} else {
509 		dax_unlock_mapping_entry(mapping, index);
510 	}
511 }
512 
513 /*
514  * Called when we are done with radix tree entry we looked up via
515  * get_unlocked_mapping_entry() and which we didn't lock in the end.
516  */
517 static void put_unlocked_mapping_entry(struct address_space *mapping,
518 				       pgoff_t index, void *entry)
519 {
520 	if (!radix_tree_exceptional_entry(entry))
521 		return;
522 
523 	/* We have to wake up next waiter for the radix tree entry lock */
524 	dax_wake_mapping_entry_waiter(mapping, index, false);
525 }
526 
527 /*
528  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
529  * entry to get unlocked before deleting it.
530  */
531 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
532 {
533 	void *entry;
534 
535 	spin_lock_irq(&mapping->tree_lock);
536 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
537 	/*
538 	 * This gets called from truncate / punch_hole path. As such, the caller
539 	 * must hold locks protecting against concurrent modifications of the
540 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
541 	 * caller has seen exceptional entry for this index, we better find it
542 	 * at that index as well...
543 	 */
544 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
545 		spin_unlock_irq(&mapping->tree_lock);
546 		return 0;
547 	}
548 	radix_tree_delete(&mapping->page_tree, index);
549 	mapping->nrexceptional--;
550 	spin_unlock_irq(&mapping->tree_lock);
551 	dax_wake_mapping_entry_waiter(mapping, index, true);
552 
553 	return 1;
554 }
555 
556 /*
557  * The user has performed a load from a hole in the file.  Allocating
558  * a new page in the file would cause excessive storage usage for
559  * workloads with sparse files.  We allocate a page cache page instead.
560  * We'll kick it out of the page cache if it's ever written to,
561  * otherwise it will simply fall out of the page cache under memory
562  * pressure without ever having been dirtied.
563  */
564 static int dax_load_hole(struct address_space *mapping, void *entry,
565 			 struct vm_fault *vmf)
566 {
567 	struct page *page;
568 
569 	/* Hole page already exists? Return it...  */
570 	if (!radix_tree_exceptional_entry(entry)) {
571 		vmf->page = entry;
572 		return VM_FAULT_LOCKED;
573 	}
574 
575 	/* This will replace locked radix tree entry with a hole page */
576 	page = find_or_create_page(mapping, vmf->pgoff,
577 				   vmf->gfp_mask | __GFP_ZERO);
578 	if (!page) {
579 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
580 		return VM_FAULT_OOM;
581 	}
582 	vmf->page = page;
583 	return VM_FAULT_LOCKED;
584 }
585 
586 static int copy_user_bh(struct page *to, struct inode *inode,
587 		struct buffer_head *bh, unsigned long vaddr)
588 {
589 	struct blk_dax_ctl dax = {
590 		.sector = to_sector(bh, inode),
591 		.size = bh->b_size,
592 	};
593 	struct block_device *bdev = bh->b_bdev;
594 	void *vto;
595 
596 	if (dax_map_atomic(bdev, &dax) < 0)
597 		return PTR_ERR(dax.addr);
598 	vto = kmap_atomic(to);
599 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
600 	kunmap_atomic(vto);
601 	dax_unmap_atomic(bdev, &dax);
602 	return 0;
603 }
604 
605 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
606 
607 static void *dax_insert_mapping_entry(struct address_space *mapping,
608 				      struct vm_fault *vmf,
609 				      void *entry, sector_t sector)
610 {
611 	struct radix_tree_root *page_tree = &mapping->page_tree;
612 	int error = 0;
613 	bool hole_fill = false;
614 	void *new_entry;
615 	pgoff_t index = vmf->pgoff;
616 
617 	if (vmf->flags & FAULT_FLAG_WRITE)
618 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
619 
620 	/* Replacing hole page with block mapping? */
621 	if (!radix_tree_exceptional_entry(entry)) {
622 		hole_fill = true;
623 		/*
624 		 * Unmap the page now before we remove it from page cache below.
625 		 * The page is locked so it cannot be faulted in again.
626 		 */
627 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
628 				    PAGE_SIZE, 0);
629 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
630 		if (error)
631 			return ERR_PTR(error);
632 	}
633 
634 	spin_lock_irq(&mapping->tree_lock);
635 	new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
636 		       RADIX_DAX_ENTRY_LOCK);
637 	if (hole_fill) {
638 		__delete_from_page_cache(entry, NULL);
639 		/* Drop pagecache reference */
640 		put_page(entry);
641 		error = radix_tree_insert(page_tree, index, new_entry);
642 		if (error) {
643 			new_entry = ERR_PTR(error);
644 			goto unlock;
645 		}
646 		mapping->nrexceptional++;
647 	} else {
648 		void **slot;
649 		void *ret;
650 
651 		ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
652 		WARN_ON_ONCE(ret != entry);
653 		radix_tree_replace_slot(slot, new_entry);
654 	}
655 	if (vmf->flags & FAULT_FLAG_WRITE)
656 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
657  unlock:
658 	spin_unlock_irq(&mapping->tree_lock);
659 	if (hole_fill) {
660 		radix_tree_preload_end();
661 		/*
662 		 * We don't need hole page anymore, it has been replaced with
663 		 * locked radix tree entry now.
664 		 */
665 		if (mapping->a_ops->freepage)
666 			mapping->a_ops->freepage(entry);
667 		unlock_page(entry);
668 		put_page(entry);
669 	}
670 	return new_entry;
671 }
672 
673 static int dax_writeback_one(struct block_device *bdev,
674 		struct address_space *mapping, pgoff_t index, void *entry)
675 {
676 	struct radix_tree_root *page_tree = &mapping->page_tree;
677 	int type = RADIX_DAX_TYPE(entry);
678 	struct radix_tree_node *node;
679 	struct blk_dax_ctl dax;
680 	void **slot;
681 	int ret = 0;
682 
683 	spin_lock_irq(&mapping->tree_lock);
684 	/*
685 	 * Regular page slots are stabilized by the page lock even
686 	 * without the tree itself locked.  These unlocked entries
687 	 * need verification under the tree lock.
688 	 */
689 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
690 		goto unlock;
691 	if (*slot != entry)
692 		goto unlock;
693 
694 	/* another fsync thread may have already written back this entry */
695 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
696 		goto unlock;
697 
698 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
699 		ret = -EIO;
700 		goto unlock;
701 	}
702 
703 	dax.sector = RADIX_DAX_SECTOR(entry);
704 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
705 	spin_unlock_irq(&mapping->tree_lock);
706 
707 	/*
708 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
709 	 * eventually calls cond_resched().
710 	 */
711 	ret = dax_map_atomic(bdev, &dax);
712 	if (ret < 0)
713 		return ret;
714 
715 	if (WARN_ON_ONCE(ret < dax.size)) {
716 		ret = -EIO;
717 		goto unmap;
718 	}
719 
720 	wb_cache_pmem(dax.addr, dax.size);
721 
722 	spin_lock_irq(&mapping->tree_lock);
723 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
724 	spin_unlock_irq(&mapping->tree_lock);
725  unmap:
726 	dax_unmap_atomic(bdev, &dax);
727 	return ret;
728 
729  unlock:
730 	spin_unlock_irq(&mapping->tree_lock);
731 	return ret;
732 }
733 
734 /*
735  * Flush the mapping to the persistent domain within the byte range of [start,
736  * end]. This is required by data integrity operations to ensure file data is
737  * on persistent storage prior to completion of the operation.
738  */
739 int dax_writeback_mapping_range(struct address_space *mapping,
740 		struct block_device *bdev, struct writeback_control *wbc)
741 {
742 	struct inode *inode = mapping->host;
743 	pgoff_t start_index, end_index, pmd_index;
744 	pgoff_t indices[PAGEVEC_SIZE];
745 	struct pagevec pvec;
746 	bool done = false;
747 	int i, ret = 0;
748 	void *entry;
749 
750 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
751 		return -EIO;
752 
753 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
754 		return 0;
755 
756 	start_index = wbc->range_start >> PAGE_SHIFT;
757 	end_index = wbc->range_end >> PAGE_SHIFT;
758 	pmd_index = DAX_PMD_INDEX(start_index);
759 
760 	rcu_read_lock();
761 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
762 	rcu_read_unlock();
763 
764 	/* see if the start of our range is covered by a PMD entry */
765 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
766 		start_index = pmd_index;
767 
768 	tag_pages_for_writeback(mapping, start_index, end_index);
769 
770 	pagevec_init(&pvec, 0);
771 	while (!done) {
772 		pvec.nr = find_get_entries_tag(mapping, start_index,
773 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
774 				pvec.pages, indices);
775 
776 		if (pvec.nr == 0)
777 			break;
778 
779 		for (i = 0; i < pvec.nr; i++) {
780 			if (indices[i] > end_index) {
781 				done = true;
782 				break;
783 			}
784 
785 			ret = dax_writeback_one(bdev, mapping, indices[i],
786 					pvec.pages[i]);
787 			if (ret < 0)
788 				return ret;
789 		}
790 	}
791 	wmb_pmem();
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
795 
796 static int dax_insert_mapping(struct address_space *mapping,
797 			struct buffer_head *bh, void **entryp,
798 			struct vm_area_struct *vma, struct vm_fault *vmf)
799 {
800 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
801 	struct block_device *bdev = bh->b_bdev;
802 	struct blk_dax_ctl dax = {
803 		.sector = to_sector(bh, mapping->host),
804 		.size = bh->b_size,
805 	};
806 	void *ret;
807 	void *entry = *entryp;
808 
809 	if (dax_map_atomic(bdev, &dax) < 0)
810 		return PTR_ERR(dax.addr);
811 	dax_unmap_atomic(bdev, &dax);
812 
813 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
814 	if (IS_ERR(ret))
815 		return PTR_ERR(ret);
816 	*entryp = ret;
817 
818 	return vm_insert_mixed(vma, vaddr, dax.pfn);
819 }
820 
821 /**
822  * __dax_fault - handle a page fault on a DAX file
823  * @vma: The virtual memory area where the fault occurred
824  * @vmf: The description of the fault
825  * @get_block: The filesystem method used to translate file offsets to blocks
826  *
827  * When a page fault occurs, filesystems may call this helper in their
828  * fault handler for DAX files. __dax_fault() assumes the caller has done all
829  * the necessary locking for the page fault to proceed successfully.
830  */
831 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
832 			get_block_t get_block)
833 {
834 	struct file *file = vma->vm_file;
835 	struct address_space *mapping = file->f_mapping;
836 	struct inode *inode = mapping->host;
837 	void *entry;
838 	struct buffer_head bh;
839 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
840 	unsigned blkbits = inode->i_blkbits;
841 	sector_t block;
842 	pgoff_t size;
843 	int error;
844 	int major = 0;
845 
846 	/*
847 	 * Check whether offset isn't beyond end of file now. Caller is supposed
848 	 * to hold locks serializing us with truncate / punch hole so this is
849 	 * a reliable test.
850 	 */
851 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
852 	if (vmf->pgoff >= size)
853 		return VM_FAULT_SIGBUS;
854 
855 	memset(&bh, 0, sizeof(bh));
856 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
857 	bh.b_bdev = inode->i_sb->s_bdev;
858 	bh.b_size = PAGE_SIZE;
859 
860 	entry = grab_mapping_entry(mapping, vmf->pgoff);
861 	if (IS_ERR(entry)) {
862 		error = PTR_ERR(entry);
863 		goto out;
864 	}
865 
866 	error = get_block(inode, block, &bh, 0);
867 	if (!error && (bh.b_size < PAGE_SIZE))
868 		error = -EIO;		/* fs corruption? */
869 	if (error)
870 		goto unlock_entry;
871 
872 	if (vmf->cow_page) {
873 		struct page *new_page = vmf->cow_page;
874 		if (buffer_written(&bh))
875 			error = copy_user_bh(new_page, inode, &bh, vaddr);
876 		else
877 			clear_user_highpage(new_page, vaddr);
878 		if (error)
879 			goto unlock_entry;
880 		if (!radix_tree_exceptional_entry(entry)) {
881 			vmf->page = entry;
882 			return VM_FAULT_LOCKED;
883 		}
884 		vmf->entry = entry;
885 		return VM_FAULT_DAX_LOCKED;
886 	}
887 
888 	if (!buffer_mapped(&bh)) {
889 		if (vmf->flags & FAULT_FLAG_WRITE) {
890 			error = get_block(inode, block, &bh, 1);
891 			count_vm_event(PGMAJFAULT);
892 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
893 			major = VM_FAULT_MAJOR;
894 			if (!error && (bh.b_size < PAGE_SIZE))
895 				error = -EIO;
896 			if (error)
897 				goto unlock_entry;
898 		} else {
899 			return dax_load_hole(mapping, entry, vmf);
900 		}
901 	}
902 
903 	/* Filesystem should not return unwritten buffers to us! */
904 	WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
905 	error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf);
906  unlock_entry:
907 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
908  out:
909 	if (error == -ENOMEM)
910 		return VM_FAULT_OOM | major;
911 	/* -EBUSY is fine, somebody else faulted on the same PTE */
912 	if ((error < 0) && (error != -EBUSY))
913 		return VM_FAULT_SIGBUS | major;
914 	return VM_FAULT_NOPAGE | major;
915 }
916 EXPORT_SYMBOL(__dax_fault);
917 
918 /**
919  * dax_fault - handle a page fault on a DAX file
920  * @vma: The virtual memory area where the fault occurred
921  * @vmf: The description of the fault
922  * @get_block: The filesystem method used to translate file offsets to blocks
923  *
924  * When a page fault occurs, filesystems may call this helper in their
925  * fault handler for DAX files.
926  */
927 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
928 	      get_block_t get_block)
929 {
930 	int result;
931 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
932 
933 	if (vmf->flags & FAULT_FLAG_WRITE) {
934 		sb_start_pagefault(sb);
935 		file_update_time(vma->vm_file);
936 	}
937 	result = __dax_fault(vma, vmf, get_block);
938 	if (vmf->flags & FAULT_FLAG_WRITE)
939 		sb_end_pagefault(sb);
940 
941 	return result;
942 }
943 EXPORT_SYMBOL_GPL(dax_fault);
944 
945 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
946 /*
947  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
948  * more often than one might expect in the below function.
949  */
950 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
951 
952 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
953 		const char *reason, const char *fn)
954 {
955 	if (bh) {
956 		char bname[BDEVNAME_SIZE];
957 		bdevname(bh->b_bdev, bname);
958 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
959 			"length %zd fallback: %s\n", fn, current->comm,
960 			address, bname, bh->b_state, (u64)bh->b_blocknr,
961 			bh->b_size, reason);
962 	} else {
963 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
964 			current->comm, address, reason);
965 	}
966 }
967 
968 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
969 
970 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
971 		pmd_t *pmd, unsigned int flags, get_block_t get_block)
972 {
973 	struct file *file = vma->vm_file;
974 	struct address_space *mapping = file->f_mapping;
975 	struct inode *inode = mapping->host;
976 	struct buffer_head bh;
977 	unsigned blkbits = inode->i_blkbits;
978 	unsigned long pmd_addr = address & PMD_MASK;
979 	bool write = flags & FAULT_FLAG_WRITE;
980 	struct block_device *bdev;
981 	pgoff_t size, pgoff;
982 	sector_t block;
983 	int result = 0;
984 	bool alloc = false;
985 
986 	/* dax pmd mappings require pfn_t_devmap() */
987 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
988 		return VM_FAULT_FALLBACK;
989 
990 	/* Fall back to PTEs if we're going to COW */
991 	if (write && !(vma->vm_flags & VM_SHARED)) {
992 		split_huge_pmd(vma, pmd, address);
993 		dax_pmd_dbg(NULL, address, "cow write");
994 		return VM_FAULT_FALLBACK;
995 	}
996 	/* If the PMD would extend outside the VMA */
997 	if (pmd_addr < vma->vm_start) {
998 		dax_pmd_dbg(NULL, address, "vma start unaligned");
999 		return VM_FAULT_FALLBACK;
1000 	}
1001 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
1002 		dax_pmd_dbg(NULL, address, "vma end unaligned");
1003 		return VM_FAULT_FALLBACK;
1004 	}
1005 
1006 	pgoff = linear_page_index(vma, pmd_addr);
1007 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1008 	if (pgoff >= size)
1009 		return VM_FAULT_SIGBUS;
1010 	/* If the PMD would cover blocks out of the file */
1011 	if ((pgoff | PG_PMD_COLOUR) >= size) {
1012 		dax_pmd_dbg(NULL, address,
1013 				"offset + huge page size > file size");
1014 		return VM_FAULT_FALLBACK;
1015 	}
1016 
1017 	memset(&bh, 0, sizeof(bh));
1018 	bh.b_bdev = inode->i_sb->s_bdev;
1019 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
1020 
1021 	bh.b_size = PMD_SIZE;
1022 
1023 	if (get_block(inode, block, &bh, 0) != 0)
1024 		return VM_FAULT_SIGBUS;
1025 
1026 	if (!buffer_mapped(&bh) && write) {
1027 		if (get_block(inode, block, &bh, 1) != 0)
1028 			return VM_FAULT_SIGBUS;
1029 		alloc = true;
1030 		WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1031 	}
1032 
1033 	bdev = bh.b_bdev;
1034 
1035 	/*
1036 	 * If the filesystem isn't willing to tell us the length of a hole,
1037 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
1038 	 * would be silly.
1039 	 */
1040 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
1041 		dax_pmd_dbg(&bh, address, "allocated block too small");
1042 		return VM_FAULT_FALLBACK;
1043 	}
1044 
1045 	/*
1046 	 * If we allocated new storage, make sure no process has any
1047 	 * zero pages covering this hole
1048 	 */
1049 	if (alloc) {
1050 		loff_t lstart = pgoff << PAGE_SHIFT;
1051 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1052 
1053 		truncate_pagecache_range(inode, lstart, lend);
1054 	}
1055 
1056 	if (!write && !buffer_mapped(&bh)) {
1057 		spinlock_t *ptl;
1058 		pmd_t entry;
1059 		struct page *zero_page = get_huge_zero_page();
1060 
1061 		if (unlikely(!zero_page)) {
1062 			dax_pmd_dbg(&bh, address, "no zero page");
1063 			goto fallback;
1064 		}
1065 
1066 		ptl = pmd_lock(vma->vm_mm, pmd);
1067 		if (!pmd_none(*pmd)) {
1068 			spin_unlock(ptl);
1069 			dax_pmd_dbg(&bh, address, "pmd already present");
1070 			goto fallback;
1071 		}
1072 
1073 		dev_dbg(part_to_dev(bdev->bd_part),
1074 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1075 				__func__, current->comm, address,
1076 				(unsigned long long) to_sector(&bh, inode));
1077 
1078 		entry = mk_pmd(zero_page, vma->vm_page_prot);
1079 		entry = pmd_mkhuge(entry);
1080 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
1081 		result = VM_FAULT_NOPAGE;
1082 		spin_unlock(ptl);
1083 	} else {
1084 		struct blk_dax_ctl dax = {
1085 			.sector = to_sector(&bh, inode),
1086 			.size = PMD_SIZE,
1087 		};
1088 		long length = dax_map_atomic(bdev, &dax);
1089 
1090 		if (length < 0) {
1091 			dax_pmd_dbg(&bh, address, "dax-error fallback");
1092 			goto fallback;
1093 		}
1094 		if (length < PMD_SIZE) {
1095 			dax_pmd_dbg(&bh, address, "dax-length too small");
1096 			dax_unmap_atomic(bdev, &dax);
1097 			goto fallback;
1098 		}
1099 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1100 			dax_pmd_dbg(&bh, address, "pfn unaligned");
1101 			dax_unmap_atomic(bdev, &dax);
1102 			goto fallback;
1103 		}
1104 
1105 		if (!pfn_t_devmap(dax.pfn)) {
1106 			dax_unmap_atomic(bdev, &dax);
1107 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
1108 			goto fallback;
1109 		}
1110 		dax_unmap_atomic(bdev, &dax);
1111 
1112 		/*
1113 		 * For PTE faults we insert a radix tree entry for reads, and
1114 		 * leave it clean.  Then on the first write we dirty the radix
1115 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
1116 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1117 		 * call into get_block() to translate the pgoff to a sector in
1118 		 * order to be able to create a new radix tree entry.
1119 		 *
1120 		 * The PMD path doesn't have an equivalent to
1121 		 * dax_pfn_mkwrite(), though, so for a read followed by a
1122 		 * write we traverse all the way through __dax_pmd_fault()
1123 		 * twice.  This means we can just skip inserting a radix tree
1124 		 * entry completely on the initial read and just wait until
1125 		 * the write to insert a dirty entry.
1126 		 */
1127 		if (write) {
1128 			/*
1129 			 * We should insert radix-tree entry and dirty it here.
1130 			 * For now this is broken...
1131 			 */
1132 		}
1133 
1134 		dev_dbg(part_to_dev(bdev->bd_part),
1135 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
1136 				__func__, current->comm, address,
1137 				pfn_t_to_pfn(dax.pfn),
1138 				(unsigned long long) dax.sector);
1139 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1140 				dax.pfn, write);
1141 	}
1142 
1143  out:
1144 	return result;
1145 
1146  fallback:
1147 	count_vm_event(THP_FAULT_FALLBACK);
1148 	result = VM_FAULT_FALLBACK;
1149 	goto out;
1150 }
1151 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1152 
1153 /**
1154  * dax_pmd_fault - handle a PMD fault on a DAX file
1155  * @vma: The virtual memory area where the fault occurred
1156  * @vmf: The description of the fault
1157  * @get_block: The filesystem method used to translate file offsets to blocks
1158  *
1159  * When a page fault occurs, filesystems may call this helper in their
1160  * pmd_fault handler for DAX files.
1161  */
1162 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1163 			pmd_t *pmd, unsigned int flags, get_block_t get_block)
1164 {
1165 	int result;
1166 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1167 
1168 	if (flags & FAULT_FLAG_WRITE) {
1169 		sb_start_pagefault(sb);
1170 		file_update_time(vma->vm_file);
1171 	}
1172 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block);
1173 	if (flags & FAULT_FLAG_WRITE)
1174 		sb_end_pagefault(sb);
1175 
1176 	return result;
1177 }
1178 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1179 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1180 
1181 /**
1182  * dax_pfn_mkwrite - handle first write to DAX page
1183  * @vma: The virtual memory area where the fault occurred
1184  * @vmf: The description of the fault
1185  */
1186 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1187 {
1188 	struct file *file = vma->vm_file;
1189 	struct address_space *mapping = file->f_mapping;
1190 	void *entry;
1191 	pgoff_t index = vmf->pgoff;
1192 
1193 	spin_lock_irq(&mapping->tree_lock);
1194 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
1195 	if (!entry || !radix_tree_exceptional_entry(entry))
1196 		goto out;
1197 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1198 	put_unlocked_mapping_entry(mapping, index, entry);
1199 out:
1200 	spin_unlock_irq(&mapping->tree_lock);
1201 	return VM_FAULT_NOPAGE;
1202 }
1203 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1204 
1205 static bool dax_range_is_aligned(struct block_device *bdev,
1206 				 unsigned int offset, unsigned int length)
1207 {
1208 	unsigned short sector_size = bdev_logical_block_size(bdev);
1209 
1210 	if (!IS_ALIGNED(offset, sector_size))
1211 		return false;
1212 	if (!IS_ALIGNED(length, sector_size))
1213 		return false;
1214 
1215 	return true;
1216 }
1217 
1218 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1219 		unsigned int offset, unsigned int length)
1220 {
1221 	struct blk_dax_ctl dax = {
1222 		.sector		= sector,
1223 		.size		= PAGE_SIZE,
1224 	};
1225 
1226 	if (dax_range_is_aligned(bdev, offset, length)) {
1227 		sector_t start_sector = dax.sector + (offset >> 9);
1228 
1229 		return blkdev_issue_zeroout(bdev, start_sector,
1230 				length >> 9, GFP_NOFS, true);
1231 	} else {
1232 		if (dax_map_atomic(bdev, &dax) < 0)
1233 			return PTR_ERR(dax.addr);
1234 		clear_pmem(dax.addr + offset, length);
1235 		wmb_pmem();
1236 		dax_unmap_atomic(bdev, &dax);
1237 	}
1238 	return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1241 
1242 /**
1243  * dax_zero_page_range - zero a range within a page of a DAX file
1244  * @inode: The file being truncated
1245  * @from: The file offset that is being truncated to
1246  * @length: The number of bytes to zero
1247  * @get_block: The filesystem method used to translate file offsets to blocks
1248  *
1249  * This function can be called by a filesystem when it is zeroing part of a
1250  * page in a DAX file.  This is intended for hole-punch operations.  If
1251  * you are truncating a file, the helper function dax_truncate_page() may be
1252  * more convenient.
1253  */
1254 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1255 							get_block_t get_block)
1256 {
1257 	struct buffer_head bh;
1258 	pgoff_t index = from >> PAGE_SHIFT;
1259 	unsigned offset = from & (PAGE_SIZE-1);
1260 	int err;
1261 
1262 	/* Block boundary? Nothing to do */
1263 	if (!length)
1264 		return 0;
1265 	BUG_ON((offset + length) > PAGE_SIZE);
1266 
1267 	memset(&bh, 0, sizeof(bh));
1268 	bh.b_bdev = inode->i_sb->s_bdev;
1269 	bh.b_size = PAGE_SIZE;
1270 	err = get_block(inode, index, &bh, 0);
1271 	if (err < 0 || !buffer_written(&bh))
1272 		return err;
1273 
1274 	return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1275 			offset, length);
1276 }
1277 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1278 
1279 /**
1280  * dax_truncate_page - handle a partial page being truncated in a DAX file
1281  * @inode: The file being truncated
1282  * @from: The file offset that is being truncated to
1283  * @get_block: The filesystem method used to translate file offsets to blocks
1284  *
1285  * Similar to block_truncate_page(), this function can be called by a
1286  * filesystem when it is truncating a DAX file to handle the partial page.
1287  */
1288 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1289 {
1290 	unsigned length = PAGE_ALIGN(from) - from;
1291 	return dax_zero_page_range(inode, from, length, get_block);
1292 }
1293 EXPORT_SYMBOL_GPL(dax_truncate_page);
1294