xref: /openbmc/linux/fs/dax.c (revision 3f2fb9a834cb1fcddbae22deca7fde136944dc89)
1  /*
2   * fs/dax.c - Direct Access filesystem code
3   * Copyright (c) 2013-2014 Intel Corporation
4   * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5   * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6   *
7   * This program is free software; you can redistribute it and/or modify it
8   * under the terms and conditions of the GNU General Public License,
9   * version 2, as published by the Free Software Foundation.
10   *
11   * This program is distributed in the hope it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   * more details.
15   */
16  
17  #include <linux/atomic.h>
18  #include <linux/blkdev.h>
19  #include <linux/buffer_head.h>
20  #include <linux/dax.h>
21  #include <linux/fs.h>
22  #include <linux/genhd.h>
23  #include <linux/highmem.h>
24  #include <linux/memcontrol.h>
25  #include <linux/mm.h>
26  #include <linux/mutex.h>
27  #include <linux/pagevec.h>
28  #include <linux/pmem.h>
29  #include <linux/sched.h>
30  #include <linux/uio.h>
31  #include <linux/vmstat.h>
32  #include <linux/pfn_t.h>
33  #include <linux/sizes.h>
34  
35  static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36  {
37  	struct request_queue *q = bdev->bd_queue;
38  	long rc = -EIO;
39  
40  	dax->addr = (void __pmem *) ERR_PTR(-EIO);
41  	if (blk_queue_enter(q, true) != 0)
42  		return rc;
43  
44  	rc = bdev_direct_access(bdev, dax);
45  	if (rc < 0) {
46  		dax->addr = (void __pmem *) ERR_PTR(rc);
47  		blk_queue_exit(q);
48  		return rc;
49  	}
50  	return rc;
51  }
52  
53  static void dax_unmap_atomic(struct block_device *bdev,
54  		const struct blk_dax_ctl *dax)
55  {
56  	if (IS_ERR(dax->addr))
57  		return;
58  	blk_queue_exit(bdev->bd_queue);
59  }
60  
61  struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62  {
63  	struct page *page = alloc_pages(GFP_KERNEL, 0);
64  	struct blk_dax_ctl dax = {
65  		.size = PAGE_SIZE,
66  		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67  	};
68  	long rc;
69  
70  	if (!page)
71  		return ERR_PTR(-ENOMEM);
72  
73  	rc = dax_map_atomic(bdev, &dax);
74  	if (rc < 0)
75  		return ERR_PTR(rc);
76  	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77  	dax_unmap_atomic(bdev, &dax);
78  	return page;
79  }
80  
81  /*
82   * dax_clear_blocks() is called from within transaction context from XFS,
83   * and hence this means the stack from this point must follow GFP_NOFS
84   * semantics for all operations.
85   */
86  int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
87  {
88  	struct block_device *bdev = inode->i_sb->s_bdev;
89  	struct blk_dax_ctl dax = {
90  		.sector = block << (inode->i_blkbits - 9),
91  		.size = _size,
92  	};
93  
94  	might_sleep();
95  	do {
96  		long count, sz;
97  
98  		count = dax_map_atomic(bdev, &dax);
99  		if (count < 0)
100  			return count;
101  		sz = min_t(long, count, SZ_128K);
102  		clear_pmem(dax.addr, sz);
103  		dax.size -= sz;
104  		dax.sector += sz / 512;
105  		dax_unmap_atomic(bdev, &dax);
106  		cond_resched();
107  	} while (dax.size);
108  
109  	wmb_pmem();
110  	return 0;
111  }
112  EXPORT_SYMBOL_GPL(dax_clear_blocks);
113  
114  /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115  static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
116  		loff_t pos, loff_t end)
117  {
118  	loff_t final = end - pos + first; /* The final byte of the buffer */
119  
120  	if (first > 0)
121  		clear_pmem(addr, first);
122  	if (final < size)
123  		clear_pmem(addr + final, size - final);
124  }
125  
126  static bool buffer_written(struct buffer_head *bh)
127  {
128  	return buffer_mapped(bh) && !buffer_unwritten(bh);
129  }
130  
131  /*
132   * When ext4 encounters a hole, it returns without modifying the buffer_head
133   * which means that we can't trust b_size.  To cope with this, we set b_state
134   * to 0 before calling get_block and, if any bit is set, we know we can trust
135   * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
136   * and would save us time calling get_block repeatedly.
137   */
138  static bool buffer_size_valid(struct buffer_head *bh)
139  {
140  	return bh->b_state != 0;
141  }
142  
143  
144  static sector_t to_sector(const struct buffer_head *bh,
145  		const struct inode *inode)
146  {
147  	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
148  
149  	return sector;
150  }
151  
152  static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
153  		      loff_t start, loff_t end, get_block_t get_block,
154  		      struct buffer_head *bh)
155  {
156  	loff_t pos = start, max = start, bh_max = start;
157  	bool hole = false, need_wmb = false;
158  	struct block_device *bdev = NULL;
159  	int rw = iov_iter_rw(iter), rc;
160  	long map_len = 0;
161  	struct blk_dax_ctl dax = {
162  		.addr = (void __pmem *) ERR_PTR(-EIO),
163  	};
164  
165  	if (rw == READ)
166  		end = min(end, i_size_read(inode));
167  
168  	while (pos < end) {
169  		size_t len;
170  		if (pos == max) {
171  			unsigned blkbits = inode->i_blkbits;
172  			long page = pos >> PAGE_SHIFT;
173  			sector_t block = page << (PAGE_SHIFT - blkbits);
174  			unsigned first = pos - (block << blkbits);
175  			long size;
176  
177  			if (pos == bh_max) {
178  				bh->b_size = PAGE_ALIGN(end - pos);
179  				bh->b_state = 0;
180  				rc = get_block(inode, block, bh, rw == WRITE);
181  				if (rc)
182  					break;
183  				if (!buffer_size_valid(bh))
184  					bh->b_size = 1 << blkbits;
185  				bh_max = pos - first + bh->b_size;
186  				bdev = bh->b_bdev;
187  			} else {
188  				unsigned done = bh->b_size -
189  						(bh_max - (pos - first));
190  				bh->b_blocknr += done >> blkbits;
191  				bh->b_size -= done;
192  			}
193  
194  			hole = rw == READ && !buffer_written(bh);
195  			if (hole) {
196  				size = bh->b_size - first;
197  			} else {
198  				dax_unmap_atomic(bdev, &dax);
199  				dax.sector = to_sector(bh, inode);
200  				dax.size = bh->b_size;
201  				map_len = dax_map_atomic(bdev, &dax);
202  				if (map_len < 0) {
203  					rc = map_len;
204  					break;
205  				}
206  				if (buffer_unwritten(bh) || buffer_new(bh)) {
207  					dax_new_buf(dax.addr, map_len, first,
208  							pos, end);
209  					need_wmb = true;
210  				}
211  				dax.addr += first;
212  				size = map_len - first;
213  			}
214  			max = min(pos + size, end);
215  		}
216  
217  		if (iov_iter_rw(iter) == WRITE) {
218  			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219  			need_wmb = true;
220  		} else if (!hole)
221  			len = copy_to_iter((void __force *) dax.addr, max - pos,
222  					iter);
223  		else
224  			len = iov_iter_zero(max - pos, iter);
225  
226  		if (!len) {
227  			rc = -EFAULT;
228  			break;
229  		}
230  
231  		pos += len;
232  		if (!IS_ERR(dax.addr))
233  			dax.addr += len;
234  	}
235  
236  	if (need_wmb)
237  		wmb_pmem();
238  	dax_unmap_atomic(bdev, &dax);
239  
240  	return (pos == start) ? rc : pos - start;
241  }
242  
243  /**
244   * dax_do_io - Perform I/O to a DAX file
245   * @iocb: The control block for this I/O
246   * @inode: The file which the I/O is directed at
247   * @iter: The addresses to do I/O from or to
248   * @pos: The file offset where the I/O starts
249   * @get_block: The filesystem method used to translate file offsets to blocks
250   * @end_io: A filesystem callback for I/O completion
251   * @flags: See below
252   *
253   * This function uses the same locking scheme as do_blockdev_direct_IO:
254   * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255   * caller for writes.  For reads, we take and release the i_mutex ourselves.
256   * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257   * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258   * is in progress.
259   */
260  ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261  		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
262  		  dio_iodone_t end_io, int flags)
263  {
264  	struct buffer_head bh;
265  	ssize_t retval = -EINVAL;
266  	loff_t end = pos + iov_iter_count(iter);
267  
268  	memset(&bh, 0, sizeof(bh));
269  	bh.b_bdev = inode->i_sb->s_bdev;
270  
271  	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272  		struct address_space *mapping = inode->i_mapping;
273  		inode_lock(inode);
274  		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275  		if (retval) {
276  			inode_unlock(inode);
277  			goto out;
278  		}
279  	}
280  
281  	/* Protects against truncate */
282  	if (!(flags & DIO_SKIP_DIO_COUNT))
283  		inode_dio_begin(inode);
284  
285  	retval = dax_io(inode, iter, pos, end, get_block, &bh);
286  
287  	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288  		inode_unlock(inode);
289  
290  	if ((retval > 0) && end_io)
291  		end_io(iocb, pos, retval, bh.b_private);
292  
293  	if (!(flags & DIO_SKIP_DIO_COUNT))
294  		inode_dio_end(inode);
295   out:
296  	return retval;
297  }
298  EXPORT_SYMBOL_GPL(dax_do_io);
299  
300  /*
301   * The user has performed a load from a hole in the file.  Allocating
302   * a new page in the file would cause excessive storage usage for
303   * workloads with sparse files.  We allocate a page cache page instead.
304   * We'll kick it out of the page cache if it's ever written to,
305   * otherwise it will simply fall out of the page cache under memory
306   * pressure without ever having been dirtied.
307   */
308  static int dax_load_hole(struct address_space *mapping, struct page *page,
309  							struct vm_fault *vmf)
310  {
311  	unsigned long size;
312  	struct inode *inode = mapping->host;
313  	if (!page)
314  		page = find_or_create_page(mapping, vmf->pgoff,
315  						GFP_KERNEL | __GFP_ZERO);
316  	if (!page)
317  		return VM_FAULT_OOM;
318  	/* Recheck i_size under page lock to avoid truncate race */
319  	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
320  	if (vmf->pgoff >= size) {
321  		unlock_page(page);
322  		page_cache_release(page);
323  		return VM_FAULT_SIGBUS;
324  	}
325  
326  	vmf->page = page;
327  	return VM_FAULT_LOCKED;
328  }
329  
330  static int copy_user_bh(struct page *to, struct inode *inode,
331  		struct buffer_head *bh, unsigned long vaddr)
332  {
333  	struct blk_dax_ctl dax = {
334  		.sector = to_sector(bh, inode),
335  		.size = bh->b_size,
336  	};
337  	struct block_device *bdev = bh->b_bdev;
338  	void *vto;
339  
340  	if (dax_map_atomic(bdev, &dax) < 0)
341  		return PTR_ERR(dax.addr);
342  	vto = kmap_atomic(to);
343  	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
344  	kunmap_atomic(vto);
345  	dax_unmap_atomic(bdev, &dax);
346  	return 0;
347  }
348  
349  #define NO_SECTOR -1
350  #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
351  
352  static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
353  		sector_t sector, bool pmd_entry, bool dirty)
354  {
355  	struct radix_tree_root *page_tree = &mapping->page_tree;
356  	pgoff_t pmd_index = DAX_PMD_INDEX(index);
357  	int type, error = 0;
358  	void *entry;
359  
360  	WARN_ON_ONCE(pmd_entry && !dirty);
361  	if (dirty)
362  		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
363  
364  	spin_lock_irq(&mapping->tree_lock);
365  
366  	entry = radix_tree_lookup(page_tree, pmd_index);
367  	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
368  		index = pmd_index;
369  		goto dirty;
370  	}
371  
372  	entry = radix_tree_lookup(page_tree, index);
373  	if (entry) {
374  		type = RADIX_DAX_TYPE(entry);
375  		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
376  					type != RADIX_DAX_PMD)) {
377  			error = -EIO;
378  			goto unlock;
379  		}
380  
381  		if (!pmd_entry || type == RADIX_DAX_PMD)
382  			goto dirty;
383  
384  		/*
385  		 * We only insert dirty PMD entries into the radix tree.  This
386  		 * means we don't need to worry about removing a dirty PTE
387  		 * entry and inserting a clean PMD entry, thus reducing the
388  		 * range we would flush with a follow-up fsync/msync call.
389  		 */
390  		radix_tree_delete(&mapping->page_tree, index);
391  		mapping->nrexceptional--;
392  	}
393  
394  	if (sector == NO_SECTOR) {
395  		/*
396  		 * This can happen during correct operation if our pfn_mkwrite
397  		 * fault raced against a hole punch operation.  If this
398  		 * happens the pte that was hole punched will have been
399  		 * unmapped and the radix tree entry will have been removed by
400  		 * the time we are called, but the call will still happen.  We
401  		 * will return all the way up to wp_pfn_shared(), where the
402  		 * pte_same() check will fail, eventually causing page fault
403  		 * to be retried by the CPU.
404  		 */
405  		goto unlock;
406  	}
407  
408  	error = radix_tree_insert(page_tree, index,
409  			RADIX_DAX_ENTRY(sector, pmd_entry));
410  	if (error)
411  		goto unlock;
412  
413  	mapping->nrexceptional++;
414   dirty:
415  	if (dirty)
416  		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
417   unlock:
418  	spin_unlock_irq(&mapping->tree_lock);
419  	return error;
420  }
421  
422  static int dax_writeback_one(struct block_device *bdev,
423  		struct address_space *mapping, pgoff_t index, void *entry)
424  {
425  	struct radix_tree_root *page_tree = &mapping->page_tree;
426  	int type = RADIX_DAX_TYPE(entry);
427  	struct radix_tree_node *node;
428  	struct blk_dax_ctl dax;
429  	void **slot;
430  	int ret = 0;
431  
432  	spin_lock_irq(&mapping->tree_lock);
433  	/*
434  	 * Regular page slots are stabilized by the page lock even
435  	 * without the tree itself locked.  These unlocked entries
436  	 * need verification under the tree lock.
437  	 */
438  	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
439  		goto unlock;
440  	if (*slot != entry)
441  		goto unlock;
442  
443  	/* another fsync thread may have already written back this entry */
444  	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
445  		goto unlock;
446  
447  	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
448  		ret = -EIO;
449  		goto unlock;
450  	}
451  
452  	dax.sector = RADIX_DAX_SECTOR(entry);
453  	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
454  	spin_unlock_irq(&mapping->tree_lock);
455  
456  	/*
457  	 * We cannot hold tree_lock while calling dax_map_atomic() because it
458  	 * eventually calls cond_resched().
459  	 */
460  	ret = dax_map_atomic(bdev, &dax);
461  	if (ret < 0)
462  		return ret;
463  
464  	if (WARN_ON_ONCE(ret < dax.size)) {
465  		ret = -EIO;
466  		goto unmap;
467  	}
468  
469  	wb_cache_pmem(dax.addr, dax.size);
470  
471  	spin_lock_irq(&mapping->tree_lock);
472  	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
473  	spin_unlock_irq(&mapping->tree_lock);
474   unmap:
475  	dax_unmap_atomic(bdev, &dax);
476  	return ret;
477  
478   unlock:
479  	spin_unlock_irq(&mapping->tree_lock);
480  	return ret;
481  }
482  
483  /*
484   * Flush the mapping to the persistent domain within the byte range of [start,
485   * end]. This is required by data integrity operations to ensure file data is
486   * on persistent storage prior to completion of the operation.
487   */
488  int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
489  		loff_t end)
490  {
491  	struct inode *inode = mapping->host;
492  	struct block_device *bdev = inode->i_sb->s_bdev;
493  	pgoff_t start_index, end_index, pmd_index;
494  	pgoff_t indices[PAGEVEC_SIZE];
495  	struct pagevec pvec;
496  	bool done = false;
497  	int i, ret = 0;
498  	void *entry;
499  
500  	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
501  		return -EIO;
502  
503  	start_index = start >> PAGE_CACHE_SHIFT;
504  	end_index = end >> PAGE_CACHE_SHIFT;
505  	pmd_index = DAX_PMD_INDEX(start_index);
506  
507  	rcu_read_lock();
508  	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
509  	rcu_read_unlock();
510  
511  	/* see if the start of our range is covered by a PMD entry */
512  	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
513  		start_index = pmd_index;
514  
515  	tag_pages_for_writeback(mapping, start_index, end_index);
516  
517  	pagevec_init(&pvec, 0);
518  	while (!done) {
519  		pvec.nr = find_get_entries_tag(mapping, start_index,
520  				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
521  				pvec.pages, indices);
522  
523  		if (pvec.nr == 0)
524  			break;
525  
526  		for (i = 0; i < pvec.nr; i++) {
527  			if (indices[i] > end_index) {
528  				done = true;
529  				break;
530  			}
531  
532  			ret = dax_writeback_one(bdev, mapping, indices[i],
533  					pvec.pages[i]);
534  			if (ret < 0)
535  				return ret;
536  		}
537  	}
538  	wmb_pmem();
539  	return 0;
540  }
541  EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
542  
543  static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
544  			struct vm_area_struct *vma, struct vm_fault *vmf)
545  {
546  	unsigned long vaddr = (unsigned long)vmf->virtual_address;
547  	struct address_space *mapping = inode->i_mapping;
548  	struct block_device *bdev = bh->b_bdev;
549  	struct blk_dax_ctl dax = {
550  		.sector = to_sector(bh, inode),
551  		.size = bh->b_size,
552  	};
553  	pgoff_t size;
554  	int error;
555  
556  	i_mmap_lock_read(mapping);
557  
558  	/*
559  	 * Check truncate didn't happen while we were allocating a block.
560  	 * If it did, this block may or may not be still allocated to the
561  	 * file.  We can't tell the filesystem to free it because we can't
562  	 * take i_mutex here.  In the worst case, the file still has blocks
563  	 * allocated past the end of the file.
564  	 */
565  	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
566  	if (unlikely(vmf->pgoff >= size)) {
567  		error = -EIO;
568  		goto out;
569  	}
570  
571  	if (dax_map_atomic(bdev, &dax) < 0) {
572  		error = PTR_ERR(dax.addr);
573  		goto out;
574  	}
575  
576  	if (buffer_unwritten(bh) || buffer_new(bh)) {
577  		clear_pmem(dax.addr, PAGE_SIZE);
578  		wmb_pmem();
579  	}
580  	dax_unmap_atomic(bdev, &dax);
581  
582  	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
583  			vmf->flags & FAULT_FLAG_WRITE);
584  	if (error)
585  		goto out;
586  
587  	error = vm_insert_mixed(vma, vaddr, dax.pfn);
588  
589   out:
590  	i_mmap_unlock_read(mapping);
591  
592  	return error;
593  }
594  
595  /**
596   * __dax_fault - handle a page fault on a DAX file
597   * @vma: The virtual memory area where the fault occurred
598   * @vmf: The description of the fault
599   * @get_block: The filesystem method used to translate file offsets to blocks
600   * @complete_unwritten: The filesystem method used to convert unwritten blocks
601   *	to written so the data written to them is exposed. This is required for
602   *	required by write faults for filesystems that will return unwritten
603   *	extent mappings from @get_block, but it is optional for reads as
604   *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
605   *	not support unwritten extents, the it should pass NULL.
606   *
607   * When a page fault occurs, filesystems may call this helper in their
608   * fault handler for DAX files. __dax_fault() assumes the caller has done all
609   * the necessary locking for the page fault to proceed successfully.
610   */
611  int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
612  			get_block_t get_block, dax_iodone_t complete_unwritten)
613  {
614  	struct file *file = vma->vm_file;
615  	struct address_space *mapping = file->f_mapping;
616  	struct inode *inode = mapping->host;
617  	struct page *page;
618  	struct buffer_head bh;
619  	unsigned long vaddr = (unsigned long)vmf->virtual_address;
620  	unsigned blkbits = inode->i_blkbits;
621  	sector_t block;
622  	pgoff_t size;
623  	int error;
624  	int major = 0;
625  
626  	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
627  	if (vmf->pgoff >= size)
628  		return VM_FAULT_SIGBUS;
629  
630  	memset(&bh, 0, sizeof(bh));
631  	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
632  	bh.b_bdev = inode->i_sb->s_bdev;
633  	bh.b_size = PAGE_SIZE;
634  
635   repeat:
636  	page = find_get_page(mapping, vmf->pgoff);
637  	if (page) {
638  		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
639  			page_cache_release(page);
640  			return VM_FAULT_RETRY;
641  		}
642  		if (unlikely(page->mapping != mapping)) {
643  			unlock_page(page);
644  			page_cache_release(page);
645  			goto repeat;
646  		}
647  		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
648  		if (unlikely(vmf->pgoff >= size)) {
649  			/*
650  			 * We have a struct page covering a hole in the file
651  			 * from a read fault and we've raced with a truncate
652  			 */
653  			error = -EIO;
654  			goto unlock_page;
655  		}
656  	}
657  
658  	error = get_block(inode, block, &bh, 0);
659  	if (!error && (bh.b_size < PAGE_SIZE))
660  		error = -EIO;		/* fs corruption? */
661  	if (error)
662  		goto unlock_page;
663  
664  	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
665  		if (vmf->flags & FAULT_FLAG_WRITE) {
666  			error = get_block(inode, block, &bh, 1);
667  			count_vm_event(PGMAJFAULT);
668  			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
669  			major = VM_FAULT_MAJOR;
670  			if (!error && (bh.b_size < PAGE_SIZE))
671  				error = -EIO;
672  			if (error)
673  				goto unlock_page;
674  		} else {
675  			return dax_load_hole(mapping, page, vmf);
676  		}
677  	}
678  
679  	if (vmf->cow_page) {
680  		struct page *new_page = vmf->cow_page;
681  		if (buffer_written(&bh))
682  			error = copy_user_bh(new_page, inode, &bh, vaddr);
683  		else
684  			clear_user_highpage(new_page, vaddr);
685  		if (error)
686  			goto unlock_page;
687  		vmf->page = page;
688  		if (!page) {
689  			i_mmap_lock_read(mapping);
690  			/* Check we didn't race with truncate */
691  			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
692  								PAGE_SHIFT;
693  			if (vmf->pgoff >= size) {
694  				i_mmap_unlock_read(mapping);
695  				error = -EIO;
696  				goto out;
697  			}
698  		}
699  		return VM_FAULT_LOCKED;
700  	}
701  
702  	/* Check we didn't race with a read fault installing a new page */
703  	if (!page && major)
704  		page = find_lock_page(mapping, vmf->pgoff);
705  
706  	if (page) {
707  		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
708  							PAGE_CACHE_SIZE, 0);
709  		delete_from_page_cache(page);
710  		unlock_page(page);
711  		page_cache_release(page);
712  		page = NULL;
713  	}
714  
715  	/*
716  	 * If we successfully insert the new mapping over an unwritten extent,
717  	 * we need to ensure we convert the unwritten extent. If there is an
718  	 * error inserting the mapping, the filesystem needs to leave it as
719  	 * unwritten to prevent exposure of the stale underlying data to
720  	 * userspace, but we still need to call the completion function so
721  	 * the private resources on the mapping buffer can be released. We
722  	 * indicate what the callback should do via the uptodate variable, same
723  	 * as for normal BH based IO completions.
724  	 */
725  	error = dax_insert_mapping(inode, &bh, vma, vmf);
726  	if (buffer_unwritten(&bh)) {
727  		if (complete_unwritten)
728  			complete_unwritten(&bh, !error);
729  		else
730  			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
731  	}
732  
733   out:
734  	if (error == -ENOMEM)
735  		return VM_FAULT_OOM | major;
736  	/* -EBUSY is fine, somebody else faulted on the same PTE */
737  	if ((error < 0) && (error != -EBUSY))
738  		return VM_FAULT_SIGBUS | major;
739  	return VM_FAULT_NOPAGE | major;
740  
741   unlock_page:
742  	if (page) {
743  		unlock_page(page);
744  		page_cache_release(page);
745  	}
746  	goto out;
747  }
748  EXPORT_SYMBOL(__dax_fault);
749  
750  /**
751   * dax_fault - handle a page fault on a DAX file
752   * @vma: The virtual memory area where the fault occurred
753   * @vmf: The description of the fault
754   * @get_block: The filesystem method used to translate file offsets to blocks
755   *
756   * When a page fault occurs, filesystems may call this helper in their
757   * fault handler for DAX files.
758   */
759  int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
760  	      get_block_t get_block, dax_iodone_t complete_unwritten)
761  {
762  	int result;
763  	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
764  
765  	if (vmf->flags & FAULT_FLAG_WRITE) {
766  		sb_start_pagefault(sb);
767  		file_update_time(vma->vm_file);
768  	}
769  	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
770  	if (vmf->flags & FAULT_FLAG_WRITE)
771  		sb_end_pagefault(sb);
772  
773  	return result;
774  }
775  EXPORT_SYMBOL_GPL(dax_fault);
776  
777  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
778  /*
779   * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
780   * more often than one might expect in the below function.
781   */
782  #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
783  
784  static void __dax_dbg(struct buffer_head *bh, unsigned long address,
785  		const char *reason, const char *fn)
786  {
787  	if (bh) {
788  		char bname[BDEVNAME_SIZE];
789  		bdevname(bh->b_bdev, bname);
790  		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
791  			"length %zd fallback: %s\n", fn, current->comm,
792  			address, bname, bh->b_state, (u64)bh->b_blocknr,
793  			bh->b_size, reason);
794  	} else {
795  		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
796  			current->comm, address, reason);
797  	}
798  }
799  
800  #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
801  
802  int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
803  		pmd_t *pmd, unsigned int flags, get_block_t get_block,
804  		dax_iodone_t complete_unwritten)
805  {
806  	struct file *file = vma->vm_file;
807  	struct address_space *mapping = file->f_mapping;
808  	struct inode *inode = mapping->host;
809  	struct buffer_head bh;
810  	unsigned blkbits = inode->i_blkbits;
811  	unsigned long pmd_addr = address & PMD_MASK;
812  	bool write = flags & FAULT_FLAG_WRITE;
813  	struct block_device *bdev;
814  	pgoff_t size, pgoff;
815  	sector_t block;
816  	int error, result = 0;
817  	bool alloc = false;
818  
819  	/* dax pmd mappings require pfn_t_devmap() */
820  	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
821  		return VM_FAULT_FALLBACK;
822  
823  	/* Fall back to PTEs if we're going to COW */
824  	if (write && !(vma->vm_flags & VM_SHARED)) {
825  		split_huge_pmd(vma, pmd, address);
826  		dax_pmd_dbg(NULL, address, "cow write");
827  		return VM_FAULT_FALLBACK;
828  	}
829  	/* If the PMD would extend outside the VMA */
830  	if (pmd_addr < vma->vm_start) {
831  		dax_pmd_dbg(NULL, address, "vma start unaligned");
832  		return VM_FAULT_FALLBACK;
833  	}
834  	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
835  		dax_pmd_dbg(NULL, address, "vma end unaligned");
836  		return VM_FAULT_FALLBACK;
837  	}
838  
839  	pgoff = linear_page_index(vma, pmd_addr);
840  	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
841  	if (pgoff >= size)
842  		return VM_FAULT_SIGBUS;
843  	/* If the PMD would cover blocks out of the file */
844  	if ((pgoff | PG_PMD_COLOUR) >= size) {
845  		dax_pmd_dbg(NULL, address,
846  				"offset + huge page size > file size");
847  		return VM_FAULT_FALLBACK;
848  	}
849  
850  	memset(&bh, 0, sizeof(bh));
851  	bh.b_bdev = inode->i_sb->s_bdev;
852  	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
853  
854  	bh.b_size = PMD_SIZE;
855  
856  	if (get_block(inode, block, &bh, 0) != 0)
857  		return VM_FAULT_SIGBUS;
858  
859  	if (!buffer_mapped(&bh) && write) {
860  		if (get_block(inode, block, &bh, 1) != 0)
861  			return VM_FAULT_SIGBUS;
862  		alloc = true;
863  	}
864  
865  	bdev = bh.b_bdev;
866  
867  	/*
868  	 * If the filesystem isn't willing to tell us the length of a hole,
869  	 * just fall back to PTEs.  Calling get_block 512 times in a loop
870  	 * would be silly.
871  	 */
872  	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
873  		dax_pmd_dbg(&bh, address, "allocated block too small");
874  		return VM_FAULT_FALLBACK;
875  	}
876  
877  	/*
878  	 * If we allocated new storage, make sure no process has any
879  	 * zero pages covering this hole
880  	 */
881  	if (alloc) {
882  		loff_t lstart = pgoff << PAGE_SHIFT;
883  		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
884  
885  		truncate_pagecache_range(inode, lstart, lend);
886  	}
887  
888  	i_mmap_lock_read(mapping);
889  
890  	/*
891  	 * If a truncate happened while we were allocating blocks, we may
892  	 * leave blocks allocated to the file that are beyond EOF.  We can't
893  	 * take i_mutex here, so just leave them hanging; they'll be freed
894  	 * when the file is deleted.
895  	 */
896  	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
897  	if (pgoff >= size) {
898  		result = VM_FAULT_SIGBUS;
899  		goto out;
900  	}
901  	if ((pgoff | PG_PMD_COLOUR) >= size) {
902  		dax_pmd_dbg(&bh, address,
903  				"offset + huge page size > file size");
904  		goto fallback;
905  	}
906  
907  	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
908  		spinlock_t *ptl;
909  		pmd_t entry;
910  		struct page *zero_page = get_huge_zero_page();
911  
912  		if (unlikely(!zero_page)) {
913  			dax_pmd_dbg(&bh, address, "no zero page");
914  			goto fallback;
915  		}
916  
917  		ptl = pmd_lock(vma->vm_mm, pmd);
918  		if (!pmd_none(*pmd)) {
919  			spin_unlock(ptl);
920  			dax_pmd_dbg(&bh, address, "pmd already present");
921  			goto fallback;
922  		}
923  
924  		dev_dbg(part_to_dev(bdev->bd_part),
925  				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
926  				__func__, current->comm, address,
927  				(unsigned long long) to_sector(&bh, inode));
928  
929  		entry = mk_pmd(zero_page, vma->vm_page_prot);
930  		entry = pmd_mkhuge(entry);
931  		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
932  		result = VM_FAULT_NOPAGE;
933  		spin_unlock(ptl);
934  	} else {
935  		struct blk_dax_ctl dax = {
936  			.sector = to_sector(&bh, inode),
937  			.size = PMD_SIZE,
938  		};
939  		long length = dax_map_atomic(bdev, &dax);
940  
941  		if (length < 0) {
942  			result = VM_FAULT_SIGBUS;
943  			goto out;
944  		}
945  		if (length < PMD_SIZE) {
946  			dax_pmd_dbg(&bh, address, "dax-length too small");
947  			dax_unmap_atomic(bdev, &dax);
948  			goto fallback;
949  		}
950  		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
951  			dax_pmd_dbg(&bh, address, "pfn unaligned");
952  			dax_unmap_atomic(bdev, &dax);
953  			goto fallback;
954  		}
955  
956  		if (!pfn_t_devmap(dax.pfn)) {
957  			dax_unmap_atomic(bdev, &dax);
958  			dax_pmd_dbg(&bh, address, "pfn not in memmap");
959  			goto fallback;
960  		}
961  
962  		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
963  			clear_pmem(dax.addr, PMD_SIZE);
964  			wmb_pmem();
965  			count_vm_event(PGMAJFAULT);
966  			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
967  			result |= VM_FAULT_MAJOR;
968  		}
969  		dax_unmap_atomic(bdev, &dax);
970  
971  		/*
972  		 * For PTE faults we insert a radix tree entry for reads, and
973  		 * leave it clean.  Then on the first write we dirty the radix
974  		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
975  		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
976  		 * call into get_block() to translate the pgoff to a sector in
977  		 * order to be able to create a new radix tree entry.
978  		 *
979  		 * The PMD path doesn't have an equivalent to
980  		 * dax_pfn_mkwrite(), though, so for a read followed by a
981  		 * write we traverse all the way through __dax_pmd_fault()
982  		 * twice.  This means we can just skip inserting a radix tree
983  		 * entry completely on the initial read and just wait until
984  		 * the write to insert a dirty entry.
985  		 */
986  		if (write) {
987  			error = dax_radix_entry(mapping, pgoff, dax.sector,
988  					true, true);
989  			if (error) {
990  				dax_pmd_dbg(&bh, address,
991  						"PMD radix insertion failed");
992  				goto fallback;
993  			}
994  		}
995  
996  		dev_dbg(part_to_dev(bdev->bd_part),
997  				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
998  				__func__, current->comm, address,
999  				pfn_t_to_pfn(dax.pfn),
1000  				(unsigned long long) dax.sector);
1001  		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1002  				dax.pfn, write);
1003  	}
1004  
1005   out:
1006  	i_mmap_unlock_read(mapping);
1007  
1008  	if (buffer_unwritten(&bh))
1009  		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1010  
1011  	return result;
1012  
1013   fallback:
1014  	count_vm_event(THP_FAULT_FALLBACK);
1015  	result = VM_FAULT_FALLBACK;
1016  	goto out;
1017  }
1018  EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1019  
1020  /**
1021   * dax_pmd_fault - handle a PMD fault on a DAX file
1022   * @vma: The virtual memory area where the fault occurred
1023   * @vmf: The description of the fault
1024   * @get_block: The filesystem method used to translate file offsets to blocks
1025   *
1026   * When a page fault occurs, filesystems may call this helper in their
1027   * pmd_fault handler for DAX files.
1028   */
1029  int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1030  			pmd_t *pmd, unsigned int flags, get_block_t get_block,
1031  			dax_iodone_t complete_unwritten)
1032  {
1033  	int result;
1034  	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1035  
1036  	if (flags & FAULT_FLAG_WRITE) {
1037  		sb_start_pagefault(sb);
1038  		file_update_time(vma->vm_file);
1039  	}
1040  	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1041  				complete_unwritten);
1042  	if (flags & FAULT_FLAG_WRITE)
1043  		sb_end_pagefault(sb);
1044  
1045  	return result;
1046  }
1047  EXPORT_SYMBOL_GPL(dax_pmd_fault);
1048  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1049  
1050  /**
1051   * dax_pfn_mkwrite - handle first write to DAX page
1052   * @vma: The virtual memory area where the fault occurred
1053   * @vmf: The description of the fault
1054   */
1055  int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1056  {
1057  	struct file *file = vma->vm_file;
1058  
1059  	/*
1060  	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1061  	 * RADIX_DAX_PTE entry already exists in the radix tree from a
1062  	 * previous call to __dax_fault().  We just want to look up that PTE
1063  	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
1064  	 * saves us from having to make a call to get_block() here to look
1065  	 * up the sector.
1066  	 */
1067  	dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1068  	return VM_FAULT_NOPAGE;
1069  }
1070  EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1071  
1072  /**
1073   * dax_zero_page_range - zero a range within a page of a DAX file
1074   * @inode: The file being truncated
1075   * @from: The file offset that is being truncated to
1076   * @length: The number of bytes to zero
1077   * @get_block: The filesystem method used to translate file offsets to blocks
1078   *
1079   * This function can be called by a filesystem when it is zeroing part of a
1080   * page in a DAX file.  This is intended for hole-punch operations.  If
1081   * you are truncating a file, the helper function dax_truncate_page() may be
1082   * more convenient.
1083   *
1084   * We work in terms of PAGE_CACHE_SIZE here for commonality with
1085   * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1086   * took care of disposing of the unnecessary blocks.  Even if the filesystem
1087   * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1088   * since the file might be mmapped.
1089   */
1090  int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1091  							get_block_t get_block)
1092  {
1093  	struct buffer_head bh;
1094  	pgoff_t index = from >> PAGE_CACHE_SHIFT;
1095  	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1096  	int err;
1097  
1098  	/* Block boundary? Nothing to do */
1099  	if (!length)
1100  		return 0;
1101  	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1102  
1103  	memset(&bh, 0, sizeof(bh));
1104  	bh.b_bdev = inode->i_sb->s_bdev;
1105  	bh.b_size = PAGE_CACHE_SIZE;
1106  	err = get_block(inode, index, &bh, 0);
1107  	if (err < 0)
1108  		return err;
1109  	if (buffer_written(&bh)) {
1110  		struct block_device *bdev = bh.b_bdev;
1111  		struct blk_dax_ctl dax = {
1112  			.sector = to_sector(&bh, inode),
1113  			.size = PAGE_CACHE_SIZE,
1114  		};
1115  
1116  		if (dax_map_atomic(bdev, &dax) < 0)
1117  			return PTR_ERR(dax.addr);
1118  		clear_pmem(dax.addr + offset, length);
1119  		wmb_pmem();
1120  		dax_unmap_atomic(bdev, &dax);
1121  	}
1122  
1123  	return 0;
1124  }
1125  EXPORT_SYMBOL_GPL(dax_zero_page_range);
1126  
1127  /**
1128   * dax_truncate_page - handle a partial page being truncated in a DAX file
1129   * @inode: The file being truncated
1130   * @from: The file offset that is being truncated to
1131   * @get_block: The filesystem method used to translate file offsets to blocks
1132   *
1133   * Similar to block_truncate_page(), this function can be called by a
1134   * filesystem when it is truncating a DAX file to handle the partial page.
1135   *
1136   * We work in terms of PAGE_CACHE_SIZE here for commonality with
1137   * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1138   * took care of disposing of the unnecessary blocks.  Even if the filesystem
1139   * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1140   * since the file might be mmapped.
1141   */
1142  int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1143  {
1144  	unsigned length = PAGE_CACHE_ALIGN(from) - from;
1145  	return dax_zero_page_range(inode, from, length, get_block);
1146  }
1147  EXPORT_SYMBOL_GPL(dax_truncate_page);
1148