xref: /openbmc/linux/fs/dax.c (revision 3df0e680)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
48 
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 
51 static int __init init_dax_wait_table(void)
52 {
53 	int i;
54 
55 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 		init_waitqueue_head(wait_table + i);
57 	return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60 
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 	return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80 
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 			(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86 
87 static unsigned int dax_radix_order(void *entry)
88 {
89 	if ((unsigned long)entry & RADIX_DAX_PMD)
90 		return PMD_SHIFT - PAGE_SHIFT;
91 	return 0;
92 }
93 
94 static int dax_is_pmd_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98 
99 static int dax_is_pte_entry(void *entry)
100 {
101 	return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103 
104 static int dax_is_zero_entry(void *entry)
105 {
106 	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108 
109 static int dax_is_empty_entry(void *entry)
110 {
111 	return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113 
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118 	struct address_space *mapping;
119 	pgoff_t entry_start;
120 };
121 
122 struct wait_exceptional_entry_queue {
123 	wait_queue_entry_t wait;
124 	struct exceptional_entry_key key;
125 };
126 
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 	unsigned long hash;
131 
132 	/*
133 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 	 * queue to the start of that PMD.  This ensures that all offsets in
135 	 * the range covered by the PMD map to the same bit lock.
136 	 */
137 	if (dax_is_pmd_entry(entry))
138 		index &= ~PG_PMD_COLOUR;
139 
140 	key->mapping = mapping;
141 	key->entry_start = index;
142 
143 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 	return wait_table + hash;
145 }
146 
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 				       int sync, void *keyp)
149 {
150 	struct exceptional_entry_key *key = keyp;
151 	struct wait_exceptional_entry_queue *ewait =
152 		container_of(wait, struct wait_exceptional_entry_queue, wait);
153 
154 	if (key->mapping != ewait->key.mapping ||
155 	    key->entry_start != ewait->key.entry_start)
156 		return 0;
157 	return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159 
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 		pgoff_t index, void *entry, bool wake_all)
167 {
168 	struct exceptional_entry_key key;
169 	wait_queue_head_t *wq;
170 
171 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
172 
173 	/*
174 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 	 * under the i_pages lock, ditto for entry handling in our callers.
176 	 * So at this point all tasks that could have seen our entry locked
177 	 * must be in the waitqueue and the following check will see them.
178 	 */
179 	if (waitqueue_active(wq))
180 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182 
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 	unsigned long entry = (unsigned long)
190 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 	return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193 
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 	unsigned long entry = (unsigned long)
200 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201 
202 	entry |= RADIX_DAX_ENTRY_LOCK;
203 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 	return (void *)entry;
205 }
206 
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 	unsigned long entry = (unsigned long)
213 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214 
215 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 	return (void *)entry;
218 }
219 
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230 		pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232 	void *entry, **slot;
233 	struct wait_exceptional_entry_queue ewait;
234 	wait_queue_head_t *wq;
235 
236 	init_wait(&ewait.wait);
237 	ewait.wait.func = wake_exceptional_entry_func;
238 
239 	for (;;) {
240 		bool revalidate;
241 
242 		entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243 					  &slot);
244 		if (!entry ||
245 		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246 		    !slot_locked(mapping, slot)) {
247 			if (slotp)
248 				*slotp = slot;
249 			return entry;
250 		}
251 
252 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253 		prepare_to_wait_exclusive(wq, &ewait.wait,
254 					  TASK_UNINTERRUPTIBLE);
255 		xa_unlock_irq(&mapping->i_pages);
256 		revalidate = wait_fn();
257 		finish_wait(wq, &ewait.wait);
258 		xa_lock_irq(&mapping->i_pages);
259 		if (revalidate)
260 			return ERR_PTR(-EAGAIN);
261 	}
262 }
263 
264 static bool entry_wait(void)
265 {
266 	schedule();
267 	/*
268 	 * Never return an ERR_PTR() from
269 	 * __get_unlocked_mapping_entry(), just keep looping.
270 	 */
271 	return false;
272 }
273 
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275 		pgoff_t index, void ***slotp)
276 {
277 	return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279 
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282 	void *entry, **slot;
283 
284 	xa_lock_irq(&mapping->i_pages);
285 	entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287 			 !slot_locked(mapping, slot))) {
288 		xa_unlock_irq(&mapping->i_pages);
289 		return;
290 	}
291 	unlock_slot(mapping, slot);
292 	xa_unlock_irq(&mapping->i_pages);
293 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295 
296 static void put_locked_mapping_entry(struct address_space *mapping,
297 		pgoff_t index)
298 {
299 	unlock_mapping_entry(mapping, index);
300 }
301 
302 /*
303  * Called when we are done with radix tree entry we looked up via
304  * get_unlocked_mapping_entry() and which we didn't lock in the end.
305  */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307 				       pgoff_t index, void *entry)
308 {
309 	if (!entry)
310 		return;
311 
312 	/* We have to wake up next waiter for the radix tree entry lock */
313 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315 
316 static unsigned long dax_entry_size(void *entry)
317 {
318 	if (dax_is_zero_entry(entry))
319 		return 0;
320 	else if (dax_is_empty_entry(entry))
321 		return 0;
322 	else if (dax_is_pmd_entry(entry))
323 		return PMD_SIZE;
324 	else
325 		return PAGE_SIZE;
326 }
327 
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330 	return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332 
333 /*
334  * Iterate through all mapped pfns represented by an entry, i.e. skip
335  * 'empty' and 'zero' entries.
336  */
337 #define for_each_mapped_pfn(entry, pfn) \
338 	for (pfn = dax_radix_pfn(entry); \
339 			pfn < dax_radix_end_pfn(entry); pfn++)
340 
341 /*
342  * TODO: for reflink+dax we need a way to associate a single page with
343  * multiple address_space instances at different linear_page_index()
344  * offsets.
345  */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347 		struct vm_area_struct *vma, unsigned long address)
348 {
349 	unsigned long size = dax_entry_size(entry), pfn, index;
350 	int i = 0;
351 
352 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353 		return;
354 
355 	index = linear_page_index(vma, address & ~(size - 1));
356 	for_each_mapped_pfn(entry, pfn) {
357 		struct page *page = pfn_to_page(pfn);
358 
359 		WARN_ON_ONCE(page->mapping);
360 		page->mapping = mapping;
361 		page->index = index + i++;
362 	}
363 }
364 
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366 		bool trunc)
367 {
368 	unsigned long pfn;
369 
370 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 		return;
372 
373 	for_each_mapped_pfn(entry, pfn) {
374 		struct page *page = pfn_to_page(pfn);
375 
376 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378 		page->mapping = NULL;
379 		page->index = 0;
380 	}
381 }
382 
383 static struct page *dax_busy_page(void *entry)
384 {
385 	unsigned long pfn;
386 
387 	for_each_mapped_pfn(entry, pfn) {
388 		struct page *page = pfn_to_page(pfn);
389 
390 		if (page_ref_count(page) > 1)
391 			return page;
392 	}
393 	return NULL;
394 }
395 
396 static bool entry_wait_revalidate(void)
397 {
398 	rcu_read_unlock();
399 	schedule();
400 	rcu_read_lock();
401 
402 	/*
403 	 * Tell __get_unlocked_mapping_entry() to take a break, we need
404 	 * to revalidate page->mapping after dropping locks
405 	 */
406 	return true;
407 }
408 
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411 	pgoff_t index;
412 	struct inode *inode;
413 	bool did_lock = false;
414 	void *entry = NULL, **slot;
415 	struct address_space *mapping;
416 
417 	rcu_read_lock();
418 	for (;;) {
419 		mapping = READ_ONCE(page->mapping);
420 
421 		if (!dax_mapping(mapping))
422 			break;
423 
424 		/*
425 		 * In the device-dax case there's no need to lock, a
426 		 * struct dev_pagemap pin is sufficient to keep the
427 		 * inode alive, and we assume we have dev_pagemap pin
428 		 * otherwise we would not have a valid pfn_to_page()
429 		 * translation.
430 		 */
431 		inode = mapping->host;
432 		if (S_ISCHR(inode->i_mode)) {
433 			did_lock = true;
434 			break;
435 		}
436 
437 		xa_lock_irq(&mapping->i_pages);
438 		if (mapping != page->mapping) {
439 			xa_unlock_irq(&mapping->i_pages);
440 			continue;
441 		}
442 		index = page->index;
443 
444 		entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445 				entry_wait_revalidate);
446 		if (!entry) {
447 			xa_unlock_irq(&mapping->i_pages);
448 			break;
449 		} else if (IS_ERR(entry)) {
450 			xa_unlock_irq(&mapping->i_pages);
451 			WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
452 			continue;
453 		}
454 		lock_slot(mapping, slot);
455 		did_lock = true;
456 		xa_unlock_irq(&mapping->i_pages);
457 		break;
458 	}
459 	rcu_read_unlock();
460 
461 	return did_lock;
462 }
463 
464 void dax_unlock_mapping_entry(struct page *page)
465 {
466 	struct address_space *mapping = page->mapping;
467 	struct inode *inode = mapping->host;
468 
469 	if (S_ISCHR(inode->i_mode))
470 		return;
471 
472 	unlock_mapping_entry(mapping, page->index);
473 }
474 
475 /*
476  * Find radix tree entry at given index. If it points to an exceptional entry,
477  * return it with the radix tree entry locked. If the radix tree doesn't
478  * contain given index, create an empty exceptional entry for the index and
479  * return with it locked.
480  *
481  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
482  * either return that locked entry or will return an error.  This error will
483  * happen if there are any 4k entries within the 2MiB range that we are
484  * requesting.
485  *
486  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
487  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
488  * insertion will fail if it finds any 4k entries already in the tree, and a
489  * 4k insertion will cause an existing 2MiB entry to be unmapped and
490  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
491  * well as 2MiB empty entries.
492  *
493  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
494  * real storage backing them.  We will leave these real 2MiB DAX entries in
495  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
496  *
497  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
498  * persistent memory the benefit is doubtful. We can add that later if we can
499  * show it helps.
500  */
501 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
502 		unsigned long size_flag)
503 {
504 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
505 	void *entry, **slot;
506 
507 restart:
508 	xa_lock_irq(&mapping->i_pages);
509 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
510 
511 	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
512 		entry = ERR_PTR(-EIO);
513 		goto out_unlock;
514 	}
515 
516 	if (entry) {
517 		if (size_flag & RADIX_DAX_PMD) {
518 			if (dax_is_pte_entry(entry)) {
519 				put_unlocked_mapping_entry(mapping, index,
520 						entry);
521 				entry = ERR_PTR(-EEXIST);
522 				goto out_unlock;
523 			}
524 		} else { /* trying to grab a PTE entry */
525 			if (dax_is_pmd_entry(entry) &&
526 			    (dax_is_zero_entry(entry) ||
527 			     dax_is_empty_entry(entry))) {
528 				pmd_downgrade = true;
529 			}
530 		}
531 	}
532 
533 	/* No entry for given index? Make sure radix tree is big enough. */
534 	if (!entry || pmd_downgrade) {
535 		int err;
536 
537 		if (pmd_downgrade) {
538 			/*
539 			 * Make sure 'entry' remains valid while we drop
540 			 * the i_pages lock.
541 			 */
542 			entry = lock_slot(mapping, slot);
543 		}
544 
545 		xa_unlock_irq(&mapping->i_pages);
546 		/*
547 		 * Besides huge zero pages the only other thing that gets
548 		 * downgraded are empty entries which don't need to be
549 		 * unmapped.
550 		 */
551 		if (pmd_downgrade && dax_is_zero_entry(entry))
552 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
553 							PG_PMD_NR, false);
554 
555 		err = radix_tree_preload(
556 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
557 		if (err) {
558 			if (pmd_downgrade)
559 				put_locked_mapping_entry(mapping, index);
560 			return ERR_PTR(err);
561 		}
562 		xa_lock_irq(&mapping->i_pages);
563 
564 		if (!entry) {
565 			/*
566 			 * We needed to drop the i_pages lock while calling
567 			 * radix_tree_preload() and we didn't have an entry to
568 			 * lock.  See if another thread inserted an entry at
569 			 * our index during this time.
570 			 */
571 			entry = __radix_tree_lookup(&mapping->i_pages, index,
572 					NULL, &slot);
573 			if (entry) {
574 				radix_tree_preload_end();
575 				xa_unlock_irq(&mapping->i_pages);
576 				goto restart;
577 			}
578 		}
579 
580 		if (pmd_downgrade) {
581 			dax_disassociate_entry(entry, mapping, false);
582 			radix_tree_delete(&mapping->i_pages, index);
583 			mapping->nrexceptional--;
584 			dax_wake_mapping_entry_waiter(mapping, index, entry,
585 					true);
586 		}
587 
588 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
589 
590 		err = __radix_tree_insert(&mapping->i_pages, index,
591 				dax_radix_order(entry), entry);
592 		radix_tree_preload_end();
593 		if (err) {
594 			xa_unlock_irq(&mapping->i_pages);
595 			/*
596 			 * Our insertion of a DAX entry failed, most likely
597 			 * because we were inserting a PMD entry and it
598 			 * collided with a PTE sized entry at a different
599 			 * index in the PMD range.  We haven't inserted
600 			 * anything into the radix tree and have no waiters to
601 			 * wake.
602 			 */
603 			return ERR_PTR(err);
604 		}
605 		/* Good, we have inserted empty locked entry into the tree. */
606 		mapping->nrexceptional++;
607 		xa_unlock_irq(&mapping->i_pages);
608 		return entry;
609 	}
610 	entry = lock_slot(mapping, slot);
611  out_unlock:
612 	xa_unlock_irq(&mapping->i_pages);
613 	return entry;
614 }
615 
616 /**
617  * dax_layout_busy_page - find first pinned page in @mapping
618  * @mapping: address space to scan for a page with ref count > 1
619  *
620  * DAX requires ZONE_DEVICE mapped pages. These pages are never
621  * 'onlined' to the page allocator so they are considered idle when
622  * page->count == 1. A filesystem uses this interface to determine if
623  * any page in the mapping is busy, i.e. for DMA, or other
624  * get_user_pages() usages.
625  *
626  * It is expected that the filesystem is holding locks to block the
627  * establishment of new mappings in this address_space. I.e. it expects
628  * to be able to run unmap_mapping_range() and subsequently not race
629  * mapping_mapped() becoming true.
630  */
631 struct page *dax_layout_busy_page(struct address_space *mapping)
632 {
633 	pgoff_t	indices[PAGEVEC_SIZE];
634 	struct page *page = NULL;
635 	struct pagevec pvec;
636 	pgoff_t	index, end;
637 	unsigned i;
638 
639 	/*
640 	 * In the 'limited' case get_user_pages() for dax is disabled.
641 	 */
642 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
643 		return NULL;
644 
645 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
646 		return NULL;
647 
648 	pagevec_init(&pvec);
649 	index = 0;
650 	end = -1;
651 
652 	/*
653 	 * If we race get_user_pages_fast() here either we'll see the
654 	 * elevated page count in the pagevec_lookup and wait, or
655 	 * get_user_pages_fast() will see that the page it took a reference
656 	 * against is no longer mapped in the page tables and bail to the
657 	 * get_user_pages() slow path.  The slow path is protected by
658 	 * pte_lock() and pmd_lock(). New references are not taken without
659 	 * holding those locks, and unmap_mapping_range() will not zero the
660 	 * pte or pmd without holding the respective lock, so we are
661 	 * guaranteed to either see new references or prevent new
662 	 * references from being established.
663 	 */
664 	unmap_mapping_range(mapping, 0, 0, 1);
665 
666 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
667 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
668 				indices)) {
669 		for (i = 0; i < pagevec_count(&pvec); i++) {
670 			struct page *pvec_ent = pvec.pages[i];
671 			void *entry;
672 
673 			index = indices[i];
674 			if (index >= end)
675 				break;
676 
677 			if (WARN_ON_ONCE(
678 			     !radix_tree_exceptional_entry(pvec_ent)))
679 				continue;
680 
681 			xa_lock_irq(&mapping->i_pages);
682 			entry = get_unlocked_mapping_entry(mapping, index, NULL);
683 			if (entry)
684 				page = dax_busy_page(entry);
685 			put_unlocked_mapping_entry(mapping, index, entry);
686 			xa_unlock_irq(&mapping->i_pages);
687 			if (page)
688 				break;
689 		}
690 
691 		/*
692 		 * We don't expect normal struct page entries to exist in our
693 		 * tree, but we keep these pagevec calls so that this code is
694 		 * consistent with the common pattern for handling pagevecs
695 		 * throughout the kernel.
696 		 */
697 		pagevec_remove_exceptionals(&pvec);
698 		pagevec_release(&pvec);
699 		index++;
700 
701 		if (page)
702 			break;
703 	}
704 	return page;
705 }
706 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
707 
708 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
709 					  pgoff_t index, bool trunc)
710 {
711 	int ret = 0;
712 	void *entry;
713 	struct radix_tree_root *pages = &mapping->i_pages;
714 
715 	xa_lock_irq(pages);
716 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
717 	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
718 		goto out;
719 	if (!trunc &&
720 	    (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
721 	     radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
722 		goto out;
723 	dax_disassociate_entry(entry, mapping, trunc);
724 	radix_tree_delete(pages, index);
725 	mapping->nrexceptional--;
726 	ret = 1;
727 out:
728 	put_unlocked_mapping_entry(mapping, index, entry);
729 	xa_unlock_irq(pages);
730 	return ret;
731 }
732 /*
733  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
734  * entry to get unlocked before deleting it.
735  */
736 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
737 {
738 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
739 
740 	/*
741 	 * This gets called from truncate / punch_hole path. As such, the caller
742 	 * must hold locks protecting against concurrent modifications of the
743 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
744 	 * caller has seen exceptional entry for this index, we better find it
745 	 * at that index as well...
746 	 */
747 	WARN_ON_ONCE(!ret);
748 	return ret;
749 }
750 
751 /*
752  * Invalidate exceptional DAX entry if it is clean.
753  */
754 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
755 				      pgoff_t index)
756 {
757 	return __dax_invalidate_mapping_entry(mapping, index, false);
758 }
759 
760 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
761 		sector_t sector, size_t size, struct page *to,
762 		unsigned long vaddr)
763 {
764 	void *vto, *kaddr;
765 	pgoff_t pgoff;
766 	long rc;
767 	int id;
768 
769 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
770 	if (rc)
771 		return rc;
772 
773 	id = dax_read_lock();
774 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
775 	if (rc < 0) {
776 		dax_read_unlock(id);
777 		return rc;
778 	}
779 	vto = kmap_atomic(to);
780 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
781 	kunmap_atomic(vto);
782 	dax_read_unlock(id);
783 	return 0;
784 }
785 
786 /*
787  * By this point grab_mapping_entry() has ensured that we have a locked entry
788  * of the appropriate size so we don't have to worry about downgrading PMDs to
789  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
790  * already in the tree, we will skip the insertion and just dirty the PMD as
791  * appropriate.
792  */
793 static void *dax_insert_mapping_entry(struct address_space *mapping,
794 				      struct vm_fault *vmf,
795 				      void *entry, pfn_t pfn_t,
796 				      unsigned long flags, bool dirty)
797 {
798 	struct radix_tree_root *pages = &mapping->i_pages;
799 	unsigned long pfn = pfn_t_to_pfn(pfn_t);
800 	pgoff_t index = vmf->pgoff;
801 	void *new_entry;
802 
803 	if (dirty)
804 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
805 
806 	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
807 		/* we are replacing a zero page with block mapping */
808 		if (dax_is_pmd_entry(entry))
809 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
810 							PG_PMD_NR, false);
811 		else /* pte entry */
812 			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
813 	}
814 
815 	xa_lock_irq(pages);
816 	new_entry = dax_radix_locked_entry(pfn, flags);
817 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
818 		dax_disassociate_entry(entry, mapping, false);
819 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
820 	}
821 
822 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
823 		/*
824 		 * Only swap our new entry into the radix tree if the current
825 		 * entry is a zero page or an empty entry.  If a normal PTE or
826 		 * PMD entry is already in the tree, we leave it alone.  This
827 		 * means that if we are trying to insert a PTE and the
828 		 * existing entry is a PMD, we will just leave the PMD in the
829 		 * tree and dirty it if necessary.
830 		 */
831 		struct radix_tree_node *node;
832 		void **slot;
833 		void *ret;
834 
835 		ret = __radix_tree_lookup(pages, index, &node, &slot);
836 		WARN_ON_ONCE(ret != entry);
837 		__radix_tree_replace(pages, node, slot,
838 				     new_entry, NULL);
839 		entry = new_entry;
840 	}
841 
842 	if (dirty)
843 		radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
844 
845 	xa_unlock_irq(pages);
846 	return entry;
847 }
848 
849 static inline unsigned long
850 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
851 {
852 	unsigned long address;
853 
854 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
855 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
856 	return address;
857 }
858 
859 /* Walk all mappings of a given index of a file and writeprotect them */
860 static void dax_mapping_entry_mkclean(struct address_space *mapping,
861 				      pgoff_t index, unsigned long pfn)
862 {
863 	struct vm_area_struct *vma;
864 	pte_t pte, *ptep = NULL;
865 	pmd_t *pmdp = NULL;
866 	spinlock_t *ptl;
867 
868 	i_mmap_lock_read(mapping);
869 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
870 		unsigned long address, start, end;
871 
872 		cond_resched();
873 
874 		if (!(vma->vm_flags & VM_SHARED))
875 			continue;
876 
877 		address = pgoff_address(index, vma);
878 
879 		/*
880 		 * Note because we provide start/end to follow_pte_pmd it will
881 		 * call mmu_notifier_invalidate_range_start() on our behalf
882 		 * before taking any lock.
883 		 */
884 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
885 			continue;
886 
887 		/*
888 		 * No need to call mmu_notifier_invalidate_range() as we are
889 		 * downgrading page table protection not changing it to point
890 		 * to a new page.
891 		 *
892 		 * See Documentation/vm/mmu_notifier.rst
893 		 */
894 		if (pmdp) {
895 #ifdef CONFIG_FS_DAX_PMD
896 			pmd_t pmd;
897 
898 			if (pfn != pmd_pfn(*pmdp))
899 				goto unlock_pmd;
900 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
901 				goto unlock_pmd;
902 
903 			flush_cache_page(vma, address, pfn);
904 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
905 			pmd = pmd_wrprotect(pmd);
906 			pmd = pmd_mkclean(pmd);
907 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
908 unlock_pmd:
909 #endif
910 			spin_unlock(ptl);
911 		} else {
912 			if (pfn != pte_pfn(*ptep))
913 				goto unlock_pte;
914 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
915 				goto unlock_pte;
916 
917 			flush_cache_page(vma, address, pfn);
918 			pte = ptep_clear_flush(vma, address, ptep);
919 			pte = pte_wrprotect(pte);
920 			pte = pte_mkclean(pte);
921 			set_pte_at(vma->vm_mm, address, ptep, pte);
922 unlock_pte:
923 			pte_unmap_unlock(ptep, ptl);
924 		}
925 
926 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
927 	}
928 	i_mmap_unlock_read(mapping);
929 }
930 
931 static int dax_writeback_one(struct dax_device *dax_dev,
932 		struct address_space *mapping, pgoff_t index, void *entry)
933 {
934 	struct radix_tree_root *pages = &mapping->i_pages;
935 	void *entry2, **slot;
936 	unsigned long pfn;
937 	long ret = 0;
938 	size_t size;
939 
940 	/*
941 	 * A page got tagged dirty in DAX mapping? Something is seriously
942 	 * wrong.
943 	 */
944 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
945 		return -EIO;
946 
947 	xa_lock_irq(pages);
948 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
949 	/* Entry got punched out / reallocated? */
950 	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
951 		goto put_unlocked;
952 	/*
953 	 * Entry got reallocated elsewhere? No need to writeback. We have to
954 	 * compare pfns as we must not bail out due to difference in lockbit
955 	 * or entry type.
956 	 */
957 	if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
958 		goto put_unlocked;
959 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
960 				dax_is_zero_entry(entry))) {
961 		ret = -EIO;
962 		goto put_unlocked;
963 	}
964 
965 	/* Another fsync thread may have already written back this entry */
966 	if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
967 		goto put_unlocked;
968 	/* Lock the entry to serialize with page faults */
969 	entry = lock_slot(mapping, slot);
970 	/*
971 	 * We can clear the tag now but we have to be careful so that concurrent
972 	 * dax_writeback_one() calls for the same index cannot finish before we
973 	 * actually flush the caches. This is achieved as the calls will look
974 	 * at the entry only under the i_pages lock and once they do that
975 	 * they will see the entry locked and wait for it to unlock.
976 	 */
977 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
978 	xa_unlock_irq(pages);
979 
980 	/*
981 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
982 	 * in the middle of a PMD, the 'index' we are given will be aligned to
983 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
984 	 * This allows us to flush for PMD_SIZE and not have to worry about
985 	 * partial PMD writebacks.
986 	 */
987 	pfn = dax_radix_pfn(entry);
988 	size = PAGE_SIZE << dax_radix_order(entry);
989 
990 	dax_mapping_entry_mkclean(mapping, index, pfn);
991 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
992 	/*
993 	 * After we have flushed the cache, we can clear the dirty tag. There
994 	 * cannot be new dirty data in the pfn after the flush has completed as
995 	 * the pfn mappings are writeprotected and fault waits for mapping
996 	 * entry lock.
997 	 */
998 	xa_lock_irq(pages);
999 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1000 	xa_unlock_irq(pages);
1001 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1002 	put_locked_mapping_entry(mapping, index);
1003 	return ret;
1004 
1005  put_unlocked:
1006 	put_unlocked_mapping_entry(mapping, index, entry2);
1007 	xa_unlock_irq(pages);
1008 	return ret;
1009 }
1010 
1011 /*
1012  * Flush the mapping to the persistent domain within the byte range of [start,
1013  * end]. This is required by data integrity operations to ensure file data is
1014  * on persistent storage prior to completion of the operation.
1015  */
1016 int dax_writeback_mapping_range(struct address_space *mapping,
1017 		struct block_device *bdev, struct writeback_control *wbc)
1018 {
1019 	struct inode *inode = mapping->host;
1020 	pgoff_t start_index, end_index;
1021 	pgoff_t indices[PAGEVEC_SIZE];
1022 	struct dax_device *dax_dev;
1023 	struct pagevec pvec;
1024 	bool done = false;
1025 	int i, ret = 0;
1026 
1027 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1028 		return -EIO;
1029 
1030 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1031 		return 0;
1032 
1033 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1034 	if (!dax_dev)
1035 		return -EIO;
1036 
1037 	start_index = wbc->range_start >> PAGE_SHIFT;
1038 	end_index = wbc->range_end >> PAGE_SHIFT;
1039 
1040 	trace_dax_writeback_range(inode, start_index, end_index);
1041 
1042 	tag_pages_for_writeback(mapping, start_index, end_index);
1043 
1044 	pagevec_init(&pvec);
1045 	while (!done) {
1046 		pvec.nr = find_get_entries_tag(mapping, start_index,
1047 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1048 				pvec.pages, indices);
1049 
1050 		if (pvec.nr == 0)
1051 			break;
1052 
1053 		for (i = 0; i < pvec.nr; i++) {
1054 			if (indices[i] > end_index) {
1055 				done = true;
1056 				break;
1057 			}
1058 
1059 			ret = dax_writeback_one(dax_dev, mapping, indices[i],
1060 					pvec.pages[i]);
1061 			if (ret < 0) {
1062 				mapping_set_error(mapping, ret);
1063 				goto out;
1064 			}
1065 		}
1066 		start_index = indices[pvec.nr - 1] + 1;
1067 	}
1068 out:
1069 	put_dax(dax_dev);
1070 	trace_dax_writeback_range_done(inode, start_index, end_index);
1071 	return (ret < 0 ? ret : 0);
1072 }
1073 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1074 
1075 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1076 {
1077 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1078 }
1079 
1080 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1081 			 pfn_t *pfnp)
1082 {
1083 	const sector_t sector = dax_iomap_sector(iomap, pos);
1084 	pgoff_t pgoff;
1085 	int id, rc;
1086 	long length;
1087 
1088 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1089 	if (rc)
1090 		return rc;
1091 	id = dax_read_lock();
1092 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1093 				   NULL, pfnp);
1094 	if (length < 0) {
1095 		rc = length;
1096 		goto out;
1097 	}
1098 	rc = -EINVAL;
1099 	if (PFN_PHYS(length) < size)
1100 		goto out;
1101 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1102 		goto out;
1103 	/* For larger pages we need devmap */
1104 	if (length > 1 && !pfn_t_devmap(*pfnp))
1105 		goto out;
1106 	rc = 0;
1107 out:
1108 	dax_read_unlock(id);
1109 	return rc;
1110 }
1111 
1112 /*
1113  * The user has performed a load from a hole in the file.  Allocating a new
1114  * page in the file would cause excessive storage usage for workloads with
1115  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1116  * If this page is ever written to we will re-fault and change the mapping to
1117  * point to real DAX storage instead.
1118  */
1119 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1120 			 struct vm_fault *vmf)
1121 {
1122 	struct inode *inode = mapping->host;
1123 	unsigned long vaddr = vmf->address;
1124 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1125 	vm_fault_t ret;
1126 
1127 	dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1128 			false);
1129 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1130 	trace_dax_load_hole(inode, vmf, ret);
1131 	return ret;
1132 }
1133 
1134 static bool dax_range_is_aligned(struct block_device *bdev,
1135 				 unsigned int offset, unsigned int length)
1136 {
1137 	unsigned short sector_size = bdev_logical_block_size(bdev);
1138 
1139 	if (!IS_ALIGNED(offset, sector_size))
1140 		return false;
1141 	if (!IS_ALIGNED(length, sector_size))
1142 		return false;
1143 
1144 	return true;
1145 }
1146 
1147 int __dax_zero_page_range(struct block_device *bdev,
1148 		struct dax_device *dax_dev, sector_t sector,
1149 		unsigned int offset, unsigned int size)
1150 {
1151 	if (dax_range_is_aligned(bdev, offset, size)) {
1152 		sector_t start_sector = sector + (offset >> 9);
1153 
1154 		return blkdev_issue_zeroout(bdev, start_sector,
1155 				size >> 9, GFP_NOFS, 0);
1156 	} else {
1157 		pgoff_t pgoff;
1158 		long rc, id;
1159 		void *kaddr;
1160 
1161 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1162 		if (rc)
1163 			return rc;
1164 
1165 		id = dax_read_lock();
1166 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1167 		if (rc < 0) {
1168 			dax_read_unlock(id);
1169 			return rc;
1170 		}
1171 		memset(kaddr + offset, 0, size);
1172 		dax_flush(dax_dev, kaddr + offset, size);
1173 		dax_read_unlock(id);
1174 	}
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1178 
1179 static loff_t
1180 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1181 		struct iomap *iomap)
1182 {
1183 	struct block_device *bdev = iomap->bdev;
1184 	struct dax_device *dax_dev = iomap->dax_dev;
1185 	struct iov_iter *iter = data;
1186 	loff_t end = pos + length, done = 0;
1187 	ssize_t ret = 0;
1188 	size_t xfer;
1189 	int id;
1190 
1191 	if (iov_iter_rw(iter) == READ) {
1192 		end = min(end, i_size_read(inode));
1193 		if (pos >= end)
1194 			return 0;
1195 
1196 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1197 			return iov_iter_zero(min(length, end - pos), iter);
1198 	}
1199 
1200 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1201 		return -EIO;
1202 
1203 	/*
1204 	 * Write can allocate block for an area which has a hole page mapped
1205 	 * into page tables. We have to tear down these mappings so that data
1206 	 * written by write(2) is visible in mmap.
1207 	 */
1208 	if (iomap->flags & IOMAP_F_NEW) {
1209 		invalidate_inode_pages2_range(inode->i_mapping,
1210 					      pos >> PAGE_SHIFT,
1211 					      (end - 1) >> PAGE_SHIFT);
1212 	}
1213 
1214 	id = dax_read_lock();
1215 	while (pos < end) {
1216 		unsigned offset = pos & (PAGE_SIZE - 1);
1217 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1218 		const sector_t sector = dax_iomap_sector(iomap, pos);
1219 		ssize_t map_len;
1220 		pgoff_t pgoff;
1221 		void *kaddr;
1222 
1223 		if (fatal_signal_pending(current)) {
1224 			ret = -EINTR;
1225 			break;
1226 		}
1227 
1228 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1229 		if (ret)
1230 			break;
1231 
1232 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1233 				&kaddr, NULL);
1234 		if (map_len < 0) {
1235 			ret = map_len;
1236 			break;
1237 		}
1238 
1239 		map_len = PFN_PHYS(map_len);
1240 		kaddr += offset;
1241 		map_len -= offset;
1242 		if (map_len > end - pos)
1243 			map_len = end - pos;
1244 
1245 		/*
1246 		 * The userspace address for the memory copy has already been
1247 		 * validated via access_ok() in either vfs_read() or
1248 		 * vfs_write(), depending on which operation we are doing.
1249 		 */
1250 		if (iov_iter_rw(iter) == WRITE)
1251 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1252 					map_len, iter);
1253 		else
1254 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1255 					map_len, iter);
1256 
1257 		pos += xfer;
1258 		length -= xfer;
1259 		done += xfer;
1260 
1261 		if (xfer == 0)
1262 			ret = -EFAULT;
1263 		if (xfer < map_len)
1264 			break;
1265 	}
1266 	dax_read_unlock(id);
1267 
1268 	return done ? done : ret;
1269 }
1270 
1271 /**
1272  * dax_iomap_rw - Perform I/O to a DAX file
1273  * @iocb:	The control block for this I/O
1274  * @iter:	The addresses to do I/O from or to
1275  * @ops:	iomap ops passed from the file system
1276  *
1277  * This function performs read and write operations to directly mapped
1278  * persistent memory.  The callers needs to take care of read/write exclusion
1279  * and evicting any page cache pages in the region under I/O.
1280  */
1281 ssize_t
1282 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1283 		const struct iomap_ops *ops)
1284 {
1285 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1286 	struct inode *inode = mapping->host;
1287 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1288 	unsigned flags = 0;
1289 
1290 	if (iov_iter_rw(iter) == WRITE) {
1291 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1292 		flags |= IOMAP_WRITE;
1293 	} else {
1294 		lockdep_assert_held(&inode->i_rwsem);
1295 	}
1296 
1297 	while (iov_iter_count(iter)) {
1298 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1299 				iter, dax_iomap_actor);
1300 		if (ret <= 0)
1301 			break;
1302 		pos += ret;
1303 		done += ret;
1304 	}
1305 
1306 	iocb->ki_pos += done;
1307 	return done ? done : ret;
1308 }
1309 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1310 
1311 static vm_fault_t dax_fault_return(int error)
1312 {
1313 	if (error == 0)
1314 		return VM_FAULT_NOPAGE;
1315 	if (error == -ENOMEM)
1316 		return VM_FAULT_OOM;
1317 	return VM_FAULT_SIGBUS;
1318 }
1319 
1320 /*
1321  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1322  * flushed on write-faults (non-cow), but not read-faults.
1323  */
1324 static bool dax_fault_is_synchronous(unsigned long flags,
1325 		struct vm_area_struct *vma, struct iomap *iomap)
1326 {
1327 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1328 		&& (iomap->flags & IOMAP_F_DIRTY);
1329 }
1330 
1331 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1332 			       int *iomap_errp, const struct iomap_ops *ops)
1333 {
1334 	struct vm_area_struct *vma = vmf->vma;
1335 	struct address_space *mapping = vma->vm_file->f_mapping;
1336 	struct inode *inode = mapping->host;
1337 	unsigned long vaddr = vmf->address;
1338 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1339 	struct iomap iomap = { 0 };
1340 	unsigned flags = IOMAP_FAULT;
1341 	int error, major = 0;
1342 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1343 	bool sync;
1344 	vm_fault_t ret = 0;
1345 	void *entry;
1346 	pfn_t pfn;
1347 
1348 	trace_dax_pte_fault(inode, vmf, ret);
1349 	/*
1350 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1351 	 * to hold locks serializing us with truncate / punch hole so this is
1352 	 * a reliable test.
1353 	 */
1354 	if (pos >= i_size_read(inode)) {
1355 		ret = VM_FAULT_SIGBUS;
1356 		goto out;
1357 	}
1358 
1359 	if (write && !vmf->cow_page)
1360 		flags |= IOMAP_WRITE;
1361 
1362 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1363 	if (IS_ERR(entry)) {
1364 		ret = dax_fault_return(PTR_ERR(entry));
1365 		goto out;
1366 	}
1367 
1368 	/*
1369 	 * It is possible, particularly with mixed reads & writes to private
1370 	 * mappings, that we have raced with a PMD fault that overlaps with
1371 	 * the PTE we need to set up.  If so just return and the fault will be
1372 	 * retried.
1373 	 */
1374 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1375 		ret = VM_FAULT_NOPAGE;
1376 		goto unlock_entry;
1377 	}
1378 
1379 	/*
1380 	 * Note that we don't bother to use iomap_apply here: DAX required
1381 	 * the file system block size to be equal the page size, which means
1382 	 * that we never have to deal with more than a single extent here.
1383 	 */
1384 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1385 	if (iomap_errp)
1386 		*iomap_errp = error;
1387 	if (error) {
1388 		ret = dax_fault_return(error);
1389 		goto unlock_entry;
1390 	}
1391 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1392 		error = -EIO;	/* fs corruption? */
1393 		goto error_finish_iomap;
1394 	}
1395 
1396 	if (vmf->cow_page) {
1397 		sector_t sector = dax_iomap_sector(&iomap, pos);
1398 
1399 		switch (iomap.type) {
1400 		case IOMAP_HOLE:
1401 		case IOMAP_UNWRITTEN:
1402 			clear_user_highpage(vmf->cow_page, vaddr);
1403 			break;
1404 		case IOMAP_MAPPED:
1405 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1406 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1407 			break;
1408 		default:
1409 			WARN_ON_ONCE(1);
1410 			error = -EIO;
1411 			break;
1412 		}
1413 
1414 		if (error)
1415 			goto error_finish_iomap;
1416 
1417 		__SetPageUptodate(vmf->cow_page);
1418 		ret = finish_fault(vmf);
1419 		if (!ret)
1420 			ret = VM_FAULT_DONE_COW;
1421 		goto finish_iomap;
1422 	}
1423 
1424 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1425 
1426 	switch (iomap.type) {
1427 	case IOMAP_MAPPED:
1428 		if (iomap.flags & IOMAP_F_NEW) {
1429 			count_vm_event(PGMAJFAULT);
1430 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1431 			major = VM_FAULT_MAJOR;
1432 		}
1433 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1434 		if (error < 0)
1435 			goto error_finish_iomap;
1436 
1437 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1438 						 0, write && !sync);
1439 
1440 		/*
1441 		 * If we are doing synchronous page fault and inode needs fsync,
1442 		 * we can insert PTE into page tables only after that happens.
1443 		 * Skip insertion for now and return the pfn so that caller can
1444 		 * insert it after fsync is done.
1445 		 */
1446 		if (sync) {
1447 			if (WARN_ON_ONCE(!pfnp)) {
1448 				error = -EIO;
1449 				goto error_finish_iomap;
1450 			}
1451 			*pfnp = pfn;
1452 			ret = VM_FAULT_NEEDDSYNC | major;
1453 			goto finish_iomap;
1454 		}
1455 		trace_dax_insert_mapping(inode, vmf, entry);
1456 		if (write)
1457 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1458 		else
1459 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1460 
1461 		goto finish_iomap;
1462 	case IOMAP_UNWRITTEN:
1463 	case IOMAP_HOLE:
1464 		if (!write) {
1465 			ret = dax_load_hole(mapping, entry, vmf);
1466 			goto finish_iomap;
1467 		}
1468 		/*FALLTHRU*/
1469 	default:
1470 		WARN_ON_ONCE(1);
1471 		error = -EIO;
1472 		break;
1473 	}
1474 
1475  error_finish_iomap:
1476 	ret = dax_fault_return(error);
1477  finish_iomap:
1478 	if (ops->iomap_end) {
1479 		int copied = PAGE_SIZE;
1480 
1481 		if (ret & VM_FAULT_ERROR)
1482 			copied = 0;
1483 		/*
1484 		 * The fault is done by now and there's no way back (other
1485 		 * thread may be already happily using PTE we have installed).
1486 		 * Just ignore error from ->iomap_end since we cannot do much
1487 		 * with it.
1488 		 */
1489 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1490 	}
1491  unlock_entry:
1492 	put_locked_mapping_entry(mapping, vmf->pgoff);
1493  out:
1494 	trace_dax_pte_fault_done(inode, vmf, ret);
1495 	return ret | major;
1496 }
1497 
1498 #ifdef CONFIG_FS_DAX_PMD
1499 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1500 		void *entry)
1501 {
1502 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1503 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1504 	struct inode *inode = mapping->host;
1505 	struct page *zero_page;
1506 	void *ret = NULL;
1507 	spinlock_t *ptl;
1508 	pmd_t pmd_entry;
1509 	pfn_t pfn;
1510 
1511 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1512 
1513 	if (unlikely(!zero_page))
1514 		goto fallback;
1515 
1516 	pfn = page_to_pfn_t(zero_page);
1517 	ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1518 			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1519 
1520 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1521 	if (!pmd_none(*(vmf->pmd))) {
1522 		spin_unlock(ptl);
1523 		goto fallback;
1524 	}
1525 
1526 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1527 	pmd_entry = pmd_mkhuge(pmd_entry);
1528 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1529 	spin_unlock(ptl);
1530 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1531 	return VM_FAULT_NOPAGE;
1532 
1533 fallback:
1534 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1535 	return VM_FAULT_FALLBACK;
1536 }
1537 
1538 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1539 			       const struct iomap_ops *ops)
1540 {
1541 	struct vm_area_struct *vma = vmf->vma;
1542 	struct address_space *mapping = vma->vm_file->f_mapping;
1543 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1544 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1545 	bool sync;
1546 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1547 	struct inode *inode = mapping->host;
1548 	vm_fault_t result = VM_FAULT_FALLBACK;
1549 	struct iomap iomap = { 0 };
1550 	pgoff_t max_pgoff, pgoff;
1551 	void *entry;
1552 	loff_t pos;
1553 	int error;
1554 	pfn_t pfn;
1555 
1556 	/*
1557 	 * Check whether offset isn't beyond end of file now. Caller is
1558 	 * supposed to hold locks serializing us with truncate / punch hole so
1559 	 * this is a reliable test.
1560 	 */
1561 	pgoff = linear_page_index(vma, pmd_addr);
1562 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1563 
1564 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1565 
1566 	/*
1567 	 * Make sure that the faulting address's PMD offset (color) matches
1568 	 * the PMD offset from the start of the file.  This is necessary so
1569 	 * that a PMD range in the page table overlaps exactly with a PMD
1570 	 * range in the radix tree.
1571 	 */
1572 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1573 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1574 		goto fallback;
1575 
1576 	/* Fall back to PTEs if we're going to COW */
1577 	if (write && !(vma->vm_flags & VM_SHARED))
1578 		goto fallback;
1579 
1580 	/* If the PMD would extend outside the VMA */
1581 	if (pmd_addr < vma->vm_start)
1582 		goto fallback;
1583 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1584 		goto fallback;
1585 
1586 	if (pgoff >= max_pgoff) {
1587 		result = VM_FAULT_SIGBUS;
1588 		goto out;
1589 	}
1590 
1591 	/* If the PMD would extend beyond the file size */
1592 	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1593 		goto fallback;
1594 
1595 	/*
1596 	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1597 	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1598 	 * is already in the tree, for instance), it will return -EEXIST and
1599 	 * we just fall back to 4k entries.
1600 	 */
1601 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1602 	if (IS_ERR(entry))
1603 		goto fallback;
1604 
1605 	/*
1606 	 * It is possible, particularly with mixed reads & writes to private
1607 	 * mappings, that we have raced with a PTE fault that overlaps with
1608 	 * the PMD we need to set up.  If so just return and the fault will be
1609 	 * retried.
1610 	 */
1611 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1612 			!pmd_devmap(*vmf->pmd)) {
1613 		result = 0;
1614 		goto unlock_entry;
1615 	}
1616 
1617 	/*
1618 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1619 	 * setting up a mapping, so really we're using iomap_begin() as a way
1620 	 * to look up our filesystem block.
1621 	 */
1622 	pos = (loff_t)pgoff << PAGE_SHIFT;
1623 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1624 	if (error)
1625 		goto unlock_entry;
1626 
1627 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1628 		goto finish_iomap;
1629 
1630 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1631 
1632 	switch (iomap.type) {
1633 	case IOMAP_MAPPED:
1634 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1635 		if (error < 0)
1636 			goto finish_iomap;
1637 
1638 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1639 						RADIX_DAX_PMD, write && !sync);
1640 
1641 		/*
1642 		 * If we are doing synchronous page fault and inode needs fsync,
1643 		 * we can insert PMD into page tables only after that happens.
1644 		 * Skip insertion for now and return the pfn so that caller can
1645 		 * insert it after fsync is done.
1646 		 */
1647 		if (sync) {
1648 			if (WARN_ON_ONCE(!pfnp))
1649 				goto finish_iomap;
1650 			*pfnp = pfn;
1651 			result = VM_FAULT_NEEDDSYNC;
1652 			goto finish_iomap;
1653 		}
1654 
1655 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1656 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1657 					    write);
1658 		break;
1659 	case IOMAP_UNWRITTEN:
1660 	case IOMAP_HOLE:
1661 		if (WARN_ON_ONCE(write))
1662 			break;
1663 		result = dax_pmd_load_hole(vmf, &iomap, entry);
1664 		break;
1665 	default:
1666 		WARN_ON_ONCE(1);
1667 		break;
1668 	}
1669 
1670  finish_iomap:
1671 	if (ops->iomap_end) {
1672 		int copied = PMD_SIZE;
1673 
1674 		if (result == VM_FAULT_FALLBACK)
1675 			copied = 0;
1676 		/*
1677 		 * The fault is done by now and there's no way back (other
1678 		 * thread may be already happily using PMD we have installed).
1679 		 * Just ignore error from ->iomap_end since we cannot do much
1680 		 * with it.
1681 		 */
1682 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1683 				&iomap);
1684 	}
1685  unlock_entry:
1686 	put_locked_mapping_entry(mapping, pgoff);
1687  fallback:
1688 	if (result == VM_FAULT_FALLBACK) {
1689 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1690 		count_vm_event(THP_FAULT_FALLBACK);
1691 	}
1692 out:
1693 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1694 	return result;
1695 }
1696 #else
1697 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1698 			       const struct iomap_ops *ops)
1699 {
1700 	return VM_FAULT_FALLBACK;
1701 }
1702 #endif /* CONFIG_FS_DAX_PMD */
1703 
1704 /**
1705  * dax_iomap_fault - handle a page fault on a DAX file
1706  * @vmf: The description of the fault
1707  * @pe_size: Size of the page to fault in
1708  * @pfnp: PFN to insert for synchronous faults if fsync is required
1709  * @iomap_errp: Storage for detailed error code in case of error
1710  * @ops: Iomap ops passed from the file system
1711  *
1712  * When a page fault occurs, filesystems may call this helper in
1713  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1714  * has done all the necessary locking for page fault to proceed
1715  * successfully.
1716  */
1717 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1718 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1719 {
1720 	switch (pe_size) {
1721 	case PE_SIZE_PTE:
1722 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1723 	case PE_SIZE_PMD:
1724 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1725 	default:
1726 		return VM_FAULT_FALLBACK;
1727 	}
1728 }
1729 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1730 
1731 /**
1732  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1733  * @vmf: The description of the fault
1734  * @pe_size: Size of entry to be inserted
1735  * @pfn: PFN to insert
1736  *
1737  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1738  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1739  * as well.
1740  */
1741 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1742 				  enum page_entry_size pe_size,
1743 				  pfn_t pfn)
1744 {
1745 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1746 	void *entry, **slot;
1747 	pgoff_t index = vmf->pgoff;
1748 	vm_fault_t ret;
1749 
1750 	xa_lock_irq(&mapping->i_pages);
1751 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
1752 	/* Did we race with someone splitting entry or so? */
1753 	if (!entry ||
1754 	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1755 	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1756 		put_unlocked_mapping_entry(mapping, index, entry);
1757 		xa_unlock_irq(&mapping->i_pages);
1758 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1759 						      VM_FAULT_NOPAGE);
1760 		return VM_FAULT_NOPAGE;
1761 	}
1762 	radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1763 	entry = lock_slot(mapping, slot);
1764 	xa_unlock_irq(&mapping->i_pages);
1765 	switch (pe_size) {
1766 	case PE_SIZE_PTE:
1767 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1768 		break;
1769 #ifdef CONFIG_FS_DAX_PMD
1770 	case PE_SIZE_PMD:
1771 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1772 			pfn, true);
1773 		break;
1774 #endif
1775 	default:
1776 		ret = VM_FAULT_FALLBACK;
1777 	}
1778 	put_locked_mapping_entry(mapping, index);
1779 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1780 	return ret;
1781 }
1782 
1783 /**
1784  * dax_finish_sync_fault - finish synchronous page fault
1785  * @vmf: The description of the fault
1786  * @pe_size: Size of entry to be inserted
1787  * @pfn: PFN to insert
1788  *
1789  * This function ensures that the file range touched by the page fault is
1790  * stored persistently on the media and handles inserting of appropriate page
1791  * table entry.
1792  */
1793 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1794 		enum page_entry_size pe_size, pfn_t pfn)
1795 {
1796 	int err;
1797 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1798 	size_t len = 0;
1799 
1800 	if (pe_size == PE_SIZE_PTE)
1801 		len = PAGE_SIZE;
1802 	else if (pe_size == PE_SIZE_PMD)
1803 		len = PMD_SIZE;
1804 	else
1805 		WARN_ON_ONCE(1);
1806 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1807 	if (err)
1808 		return VM_FAULT_SIGBUS;
1809 	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1810 }
1811 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1812