xref: /openbmc/linux/fs/dax.c (revision 31cb1fb4)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
46 
47 static int __init init_dax_wait_table(void)
48 {
49 	int i;
50 
51 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
52 		init_waitqueue_head(wait_table + i);
53 	return 0;
54 }
55 fs_initcall(init_dax_wait_table);
56 
57 static int dax_is_pmd_entry(void *entry)
58 {
59 	return (unsigned long)entry & RADIX_DAX_PMD;
60 }
61 
62 static int dax_is_pte_entry(void *entry)
63 {
64 	return !((unsigned long)entry & RADIX_DAX_PMD);
65 }
66 
67 static int dax_is_zero_entry(void *entry)
68 {
69 	return (unsigned long)entry & RADIX_DAX_HZP;
70 }
71 
72 static int dax_is_empty_entry(void *entry)
73 {
74 	return (unsigned long)entry & RADIX_DAX_EMPTY;
75 }
76 
77 /*
78  * DAX radix tree locking
79  */
80 struct exceptional_entry_key {
81 	struct address_space *mapping;
82 	pgoff_t entry_start;
83 };
84 
85 struct wait_exceptional_entry_queue {
86 	wait_queue_entry_t wait;
87 	struct exceptional_entry_key key;
88 };
89 
90 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
91 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
92 {
93 	unsigned long hash;
94 
95 	/*
96 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
97 	 * queue to the start of that PMD.  This ensures that all offsets in
98 	 * the range covered by the PMD map to the same bit lock.
99 	 */
100 	if (dax_is_pmd_entry(entry))
101 		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
102 
103 	key->mapping = mapping;
104 	key->entry_start = index;
105 
106 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
107 	return wait_table + hash;
108 }
109 
110 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
111 				       int sync, void *keyp)
112 {
113 	struct exceptional_entry_key *key = keyp;
114 	struct wait_exceptional_entry_queue *ewait =
115 		container_of(wait, struct wait_exceptional_entry_queue, wait);
116 
117 	if (key->mapping != ewait->key.mapping ||
118 	    key->entry_start != ewait->key.entry_start)
119 		return 0;
120 	return autoremove_wake_function(wait, mode, sync, NULL);
121 }
122 
123 /*
124  * Check whether the given slot is locked. The function must be called with
125  * mapping->tree_lock held
126  */
127 static inline int slot_locked(struct address_space *mapping, void **slot)
128 {
129 	unsigned long entry = (unsigned long)
130 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
131 	return entry & RADIX_DAX_ENTRY_LOCK;
132 }
133 
134 /*
135  * Mark the given slot is locked. The function must be called with
136  * mapping->tree_lock held
137  */
138 static inline void *lock_slot(struct address_space *mapping, void **slot)
139 {
140 	unsigned long entry = (unsigned long)
141 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
142 
143 	entry |= RADIX_DAX_ENTRY_LOCK;
144 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
145 	return (void *)entry;
146 }
147 
148 /*
149  * Mark the given slot is unlocked. The function must be called with
150  * mapping->tree_lock held
151  */
152 static inline void *unlock_slot(struct address_space *mapping, void **slot)
153 {
154 	unsigned long entry = (unsigned long)
155 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
156 
157 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
158 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
159 	return (void *)entry;
160 }
161 
162 /*
163  * Lookup entry in radix tree, wait for it to become unlocked if it is
164  * exceptional entry and return it. The caller must call
165  * put_unlocked_mapping_entry() when he decided not to lock the entry or
166  * put_locked_mapping_entry() when he locked the entry and now wants to
167  * unlock it.
168  *
169  * The function must be called with mapping->tree_lock held.
170  */
171 static void *get_unlocked_mapping_entry(struct address_space *mapping,
172 					pgoff_t index, void ***slotp)
173 {
174 	void *entry, **slot;
175 	struct wait_exceptional_entry_queue ewait;
176 	wait_queue_head_t *wq;
177 
178 	init_wait(&ewait.wait);
179 	ewait.wait.func = wake_exceptional_entry_func;
180 
181 	for (;;) {
182 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
183 					  &slot);
184 		if (!entry || !radix_tree_exceptional_entry(entry) ||
185 		    !slot_locked(mapping, slot)) {
186 			if (slotp)
187 				*slotp = slot;
188 			return entry;
189 		}
190 
191 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
192 		prepare_to_wait_exclusive(wq, &ewait.wait,
193 					  TASK_UNINTERRUPTIBLE);
194 		spin_unlock_irq(&mapping->tree_lock);
195 		schedule();
196 		finish_wait(wq, &ewait.wait);
197 		spin_lock_irq(&mapping->tree_lock);
198 	}
199 }
200 
201 static void dax_unlock_mapping_entry(struct address_space *mapping,
202 				     pgoff_t index)
203 {
204 	void *entry, **slot;
205 
206 	spin_lock_irq(&mapping->tree_lock);
207 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
208 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
209 			 !slot_locked(mapping, slot))) {
210 		spin_unlock_irq(&mapping->tree_lock);
211 		return;
212 	}
213 	unlock_slot(mapping, slot);
214 	spin_unlock_irq(&mapping->tree_lock);
215 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
216 }
217 
218 static void put_locked_mapping_entry(struct address_space *mapping,
219 				     pgoff_t index, void *entry)
220 {
221 	if (!radix_tree_exceptional_entry(entry)) {
222 		unlock_page(entry);
223 		put_page(entry);
224 	} else {
225 		dax_unlock_mapping_entry(mapping, index);
226 	}
227 }
228 
229 /*
230  * Called when we are done with radix tree entry we looked up via
231  * get_unlocked_mapping_entry() and which we didn't lock in the end.
232  */
233 static void put_unlocked_mapping_entry(struct address_space *mapping,
234 				       pgoff_t index, void *entry)
235 {
236 	if (!radix_tree_exceptional_entry(entry))
237 		return;
238 
239 	/* We have to wake up next waiter for the radix tree entry lock */
240 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
241 }
242 
243 /*
244  * Find radix tree entry at given index. If it points to a page, return with
245  * the page locked. If it points to the exceptional entry, return with the
246  * radix tree entry locked. If the radix tree doesn't contain given index,
247  * create empty exceptional entry for the index and return with it locked.
248  *
249  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
250  * either return that locked entry or will return an error.  This error will
251  * happen if there are any 4k entries (either zero pages or DAX entries)
252  * within the 2MiB range that we are requesting.
253  *
254  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
255  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
256  * insertion will fail if it finds any 4k entries already in the tree, and a
257  * 4k insertion will cause an existing 2MiB entry to be unmapped and
258  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
259  * well as 2MiB empty entries.
260  *
261  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
262  * real storage backing them.  We will leave these real 2MiB DAX entries in
263  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
264  *
265  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
266  * persistent memory the benefit is doubtful. We can add that later if we can
267  * show it helps.
268  */
269 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
270 		unsigned long size_flag)
271 {
272 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
273 	void *entry, **slot;
274 
275 restart:
276 	spin_lock_irq(&mapping->tree_lock);
277 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
278 
279 	if (entry) {
280 		if (size_flag & RADIX_DAX_PMD) {
281 			if (!radix_tree_exceptional_entry(entry) ||
282 			    dax_is_pte_entry(entry)) {
283 				put_unlocked_mapping_entry(mapping, index,
284 						entry);
285 				entry = ERR_PTR(-EEXIST);
286 				goto out_unlock;
287 			}
288 		} else { /* trying to grab a PTE entry */
289 			if (radix_tree_exceptional_entry(entry) &&
290 			    dax_is_pmd_entry(entry) &&
291 			    (dax_is_zero_entry(entry) ||
292 			     dax_is_empty_entry(entry))) {
293 				pmd_downgrade = true;
294 			}
295 		}
296 	}
297 
298 	/* No entry for given index? Make sure radix tree is big enough. */
299 	if (!entry || pmd_downgrade) {
300 		int err;
301 
302 		if (pmd_downgrade) {
303 			/*
304 			 * Make sure 'entry' remains valid while we drop
305 			 * mapping->tree_lock.
306 			 */
307 			entry = lock_slot(mapping, slot);
308 		}
309 
310 		spin_unlock_irq(&mapping->tree_lock);
311 		/*
312 		 * Besides huge zero pages the only other thing that gets
313 		 * downgraded are empty entries which don't need to be
314 		 * unmapped.
315 		 */
316 		if (pmd_downgrade && dax_is_zero_entry(entry))
317 			unmap_mapping_range(mapping,
318 				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
319 
320 		err = radix_tree_preload(
321 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
322 		if (err) {
323 			if (pmd_downgrade)
324 				put_locked_mapping_entry(mapping, index, entry);
325 			return ERR_PTR(err);
326 		}
327 		spin_lock_irq(&mapping->tree_lock);
328 
329 		if (!entry) {
330 			/*
331 			 * We needed to drop the page_tree lock while calling
332 			 * radix_tree_preload() and we didn't have an entry to
333 			 * lock.  See if another thread inserted an entry at
334 			 * our index during this time.
335 			 */
336 			entry = __radix_tree_lookup(&mapping->page_tree, index,
337 					NULL, &slot);
338 			if (entry) {
339 				radix_tree_preload_end();
340 				spin_unlock_irq(&mapping->tree_lock);
341 				goto restart;
342 			}
343 		}
344 
345 		if (pmd_downgrade) {
346 			radix_tree_delete(&mapping->page_tree, index);
347 			mapping->nrexceptional--;
348 			dax_wake_mapping_entry_waiter(mapping, index, entry,
349 					true);
350 		}
351 
352 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
353 
354 		err = __radix_tree_insert(&mapping->page_tree, index,
355 				dax_radix_order(entry), entry);
356 		radix_tree_preload_end();
357 		if (err) {
358 			spin_unlock_irq(&mapping->tree_lock);
359 			/*
360 			 * Our insertion of a DAX entry failed, most likely
361 			 * because we were inserting a PMD entry and it
362 			 * collided with a PTE sized entry at a different
363 			 * index in the PMD range.  We haven't inserted
364 			 * anything into the radix tree and have no waiters to
365 			 * wake.
366 			 */
367 			return ERR_PTR(err);
368 		}
369 		/* Good, we have inserted empty locked entry into the tree. */
370 		mapping->nrexceptional++;
371 		spin_unlock_irq(&mapping->tree_lock);
372 		return entry;
373 	}
374 	/* Normal page in radix tree? */
375 	if (!radix_tree_exceptional_entry(entry)) {
376 		struct page *page = entry;
377 
378 		get_page(page);
379 		spin_unlock_irq(&mapping->tree_lock);
380 		lock_page(page);
381 		/* Page got truncated? Retry... */
382 		if (unlikely(page->mapping != mapping)) {
383 			unlock_page(page);
384 			put_page(page);
385 			goto restart;
386 		}
387 		return page;
388 	}
389 	entry = lock_slot(mapping, slot);
390  out_unlock:
391 	spin_unlock_irq(&mapping->tree_lock);
392 	return entry;
393 }
394 
395 /*
396  * We do not necessarily hold the mapping->tree_lock when we call this
397  * function so it is possible that 'entry' is no longer a valid item in the
398  * radix tree.  This is okay because all we really need to do is to find the
399  * correct waitqueue where tasks might be waiting for that old 'entry' and
400  * wake them.
401  */
402 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
403 		pgoff_t index, void *entry, bool wake_all)
404 {
405 	struct exceptional_entry_key key;
406 	wait_queue_head_t *wq;
407 
408 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
409 
410 	/*
411 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
412 	 * under mapping->tree_lock, ditto for entry handling in our callers.
413 	 * So at this point all tasks that could have seen our entry locked
414 	 * must be in the waitqueue and the following check will see them.
415 	 */
416 	if (waitqueue_active(wq))
417 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
418 }
419 
420 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
421 					  pgoff_t index, bool trunc)
422 {
423 	int ret = 0;
424 	void *entry;
425 	struct radix_tree_root *page_tree = &mapping->page_tree;
426 
427 	spin_lock_irq(&mapping->tree_lock);
428 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
429 	if (!entry || !radix_tree_exceptional_entry(entry))
430 		goto out;
431 	if (!trunc &&
432 	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
433 	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
434 		goto out;
435 	radix_tree_delete(page_tree, index);
436 	mapping->nrexceptional--;
437 	ret = 1;
438 out:
439 	put_unlocked_mapping_entry(mapping, index, entry);
440 	spin_unlock_irq(&mapping->tree_lock);
441 	return ret;
442 }
443 /*
444  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
445  * entry to get unlocked before deleting it.
446  */
447 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
448 {
449 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
450 
451 	/*
452 	 * This gets called from truncate / punch_hole path. As such, the caller
453 	 * must hold locks protecting against concurrent modifications of the
454 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
455 	 * caller has seen exceptional entry for this index, we better find it
456 	 * at that index as well...
457 	 */
458 	WARN_ON_ONCE(!ret);
459 	return ret;
460 }
461 
462 /*
463  * Invalidate exceptional DAX entry if it is clean.
464  */
465 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
466 				      pgoff_t index)
467 {
468 	return __dax_invalidate_mapping_entry(mapping, index, false);
469 }
470 
471 /*
472  * The user has performed a load from a hole in the file.  Allocating
473  * a new page in the file would cause excessive storage usage for
474  * workloads with sparse files.  We allocate a page cache page instead.
475  * We'll kick it out of the page cache if it's ever written to,
476  * otherwise it will simply fall out of the page cache under memory
477  * pressure without ever having been dirtied.
478  */
479 static int dax_load_hole(struct address_space *mapping, void **entry,
480 			 struct vm_fault *vmf)
481 {
482 	struct inode *inode = mapping->host;
483 	struct page *page;
484 	int ret;
485 
486 	/* Hole page already exists? Return it...  */
487 	if (!radix_tree_exceptional_entry(*entry)) {
488 		page = *entry;
489 		goto finish_fault;
490 	}
491 
492 	/* This will replace locked radix tree entry with a hole page */
493 	page = find_or_create_page(mapping, vmf->pgoff,
494 				   vmf->gfp_mask | __GFP_ZERO);
495 	if (!page) {
496 		ret = VM_FAULT_OOM;
497 		goto out;
498 	}
499 
500 finish_fault:
501 	vmf->page = page;
502 	ret = finish_fault(vmf);
503 	vmf->page = NULL;
504 	*entry = page;
505 	if (!ret) {
506 		/* Grab reference for PTE that is now referencing the page */
507 		get_page(page);
508 		ret = VM_FAULT_NOPAGE;
509 	}
510 out:
511 	trace_dax_load_hole(inode, vmf, ret);
512 	return ret;
513 }
514 
515 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
516 		sector_t sector, size_t size, struct page *to,
517 		unsigned long vaddr)
518 {
519 	void *vto, *kaddr;
520 	pgoff_t pgoff;
521 	pfn_t pfn;
522 	long rc;
523 	int id;
524 
525 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
526 	if (rc)
527 		return rc;
528 
529 	id = dax_read_lock();
530 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
531 	if (rc < 0) {
532 		dax_read_unlock(id);
533 		return rc;
534 	}
535 	vto = kmap_atomic(to);
536 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
537 	kunmap_atomic(vto);
538 	dax_read_unlock(id);
539 	return 0;
540 }
541 
542 /*
543  * By this point grab_mapping_entry() has ensured that we have a locked entry
544  * of the appropriate size so we don't have to worry about downgrading PMDs to
545  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
546  * already in the tree, we will skip the insertion and just dirty the PMD as
547  * appropriate.
548  */
549 static void *dax_insert_mapping_entry(struct address_space *mapping,
550 				      struct vm_fault *vmf,
551 				      void *entry, sector_t sector,
552 				      unsigned long flags)
553 {
554 	struct radix_tree_root *page_tree = &mapping->page_tree;
555 	int error = 0;
556 	bool hole_fill = false;
557 	void *new_entry;
558 	pgoff_t index = vmf->pgoff;
559 
560 	if (vmf->flags & FAULT_FLAG_WRITE)
561 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
562 
563 	/* Replacing hole page with block mapping? */
564 	if (!radix_tree_exceptional_entry(entry)) {
565 		hole_fill = true;
566 		/*
567 		 * Unmap the page now before we remove it from page cache below.
568 		 * The page is locked so it cannot be faulted in again.
569 		 */
570 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
571 				    PAGE_SIZE, 0);
572 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
573 		if (error)
574 			return ERR_PTR(error);
575 	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
576 		/* replacing huge zero page with PMD block mapping */
577 		unmap_mapping_range(mapping,
578 			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
579 	}
580 
581 	spin_lock_irq(&mapping->tree_lock);
582 	new_entry = dax_radix_locked_entry(sector, flags);
583 
584 	if (hole_fill) {
585 		__delete_from_page_cache(entry, NULL);
586 		/* Drop pagecache reference */
587 		put_page(entry);
588 		error = __radix_tree_insert(page_tree, index,
589 				dax_radix_order(new_entry), new_entry);
590 		if (error) {
591 			new_entry = ERR_PTR(error);
592 			goto unlock;
593 		}
594 		mapping->nrexceptional++;
595 	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
596 		/*
597 		 * Only swap our new entry into the radix tree if the current
598 		 * entry is a zero page or an empty entry.  If a normal PTE or
599 		 * PMD entry is already in the tree, we leave it alone.  This
600 		 * means that if we are trying to insert a PTE and the
601 		 * existing entry is a PMD, we will just leave the PMD in the
602 		 * tree and dirty it if necessary.
603 		 */
604 		struct radix_tree_node *node;
605 		void **slot;
606 		void *ret;
607 
608 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
609 		WARN_ON_ONCE(ret != entry);
610 		__radix_tree_replace(page_tree, node, slot,
611 				     new_entry, NULL, NULL);
612 	}
613 	if (vmf->flags & FAULT_FLAG_WRITE)
614 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
615  unlock:
616 	spin_unlock_irq(&mapping->tree_lock);
617 	if (hole_fill) {
618 		radix_tree_preload_end();
619 		/*
620 		 * We don't need hole page anymore, it has been replaced with
621 		 * locked radix tree entry now.
622 		 */
623 		if (mapping->a_ops->freepage)
624 			mapping->a_ops->freepage(entry);
625 		unlock_page(entry);
626 		put_page(entry);
627 	}
628 	return new_entry;
629 }
630 
631 static inline unsigned long
632 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
633 {
634 	unsigned long address;
635 
636 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
637 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
638 	return address;
639 }
640 
641 /* Walk all mappings of a given index of a file and writeprotect them */
642 static void dax_mapping_entry_mkclean(struct address_space *mapping,
643 				      pgoff_t index, unsigned long pfn)
644 {
645 	struct vm_area_struct *vma;
646 	pte_t pte, *ptep = NULL;
647 	pmd_t *pmdp = NULL;
648 	spinlock_t *ptl;
649 	bool changed;
650 
651 	i_mmap_lock_read(mapping);
652 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
653 		unsigned long address;
654 
655 		cond_resched();
656 
657 		if (!(vma->vm_flags & VM_SHARED))
658 			continue;
659 
660 		address = pgoff_address(index, vma);
661 		changed = false;
662 		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
663 			continue;
664 
665 		if (pmdp) {
666 #ifdef CONFIG_FS_DAX_PMD
667 			pmd_t pmd;
668 
669 			if (pfn != pmd_pfn(*pmdp))
670 				goto unlock_pmd;
671 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
672 				goto unlock_pmd;
673 
674 			flush_cache_page(vma, address, pfn);
675 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
676 			pmd = pmd_wrprotect(pmd);
677 			pmd = pmd_mkclean(pmd);
678 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
679 			changed = true;
680 unlock_pmd:
681 			spin_unlock(ptl);
682 #endif
683 		} else {
684 			if (pfn != pte_pfn(*ptep))
685 				goto unlock_pte;
686 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
687 				goto unlock_pte;
688 
689 			flush_cache_page(vma, address, pfn);
690 			pte = ptep_clear_flush(vma, address, ptep);
691 			pte = pte_wrprotect(pte);
692 			pte = pte_mkclean(pte);
693 			set_pte_at(vma->vm_mm, address, ptep, pte);
694 			changed = true;
695 unlock_pte:
696 			pte_unmap_unlock(ptep, ptl);
697 		}
698 
699 		if (changed)
700 			mmu_notifier_invalidate_page(vma->vm_mm, address);
701 	}
702 	i_mmap_unlock_read(mapping);
703 }
704 
705 static int dax_writeback_one(struct block_device *bdev,
706 		struct dax_device *dax_dev, struct address_space *mapping,
707 		pgoff_t index, void *entry)
708 {
709 	struct radix_tree_root *page_tree = &mapping->page_tree;
710 	void *entry2, **slot, *kaddr;
711 	long ret = 0, id;
712 	sector_t sector;
713 	pgoff_t pgoff;
714 	size_t size;
715 	pfn_t pfn;
716 
717 	/*
718 	 * A page got tagged dirty in DAX mapping? Something is seriously
719 	 * wrong.
720 	 */
721 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
722 		return -EIO;
723 
724 	spin_lock_irq(&mapping->tree_lock);
725 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
726 	/* Entry got punched out / reallocated? */
727 	if (!entry2 || !radix_tree_exceptional_entry(entry2))
728 		goto put_unlocked;
729 	/*
730 	 * Entry got reallocated elsewhere? No need to writeback. We have to
731 	 * compare sectors as we must not bail out due to difference in lockbit
732 	 * or entry type.
733 	 */
734 	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
735 		goto put_unlocked;
736 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
737 				dax_is_zero_entry(entry))) {
738 		ret = -EIO;
739 		goto put_unlocked;
740 	}
741 
742 	/* Another fsync thread may have already written back this entry */
743 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
744 		goto put_unlocked;
745 	/* Lock the entry to serialize with page faults */
746 	entry = lock_slot(mapping, slot);
747 	/*
748 	 * We can clear the tag now but we have to be careful so that concurrent
749 	 * dax_writeback_one() calls for the same index cannot finish before we
750 	 * actually flush the caches. This is achieved as the calls will look
751 	 * at the entry only under tree_lock and once they do that they will
752 	 * see the entry locked and wait for it to unlock.
753 	 */
754 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
755 	spin_unlock_irq(&mapping->tree_lock);
756 
757 	/*
758 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
759 	 * in the middle of a PMD, the 'index' we are given will be aligned to
760 	 * the start index of the PMD, as will the sector we pull from
761 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
762 	 * worry about partial PMD writebacks.
763 	 */
764 	sector = dax_radix_sector(entry);
765 	size = PAGE_SIZE << dax_radix_order(entry);
766 
767 	id = dax_read_lock();
768 	ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
769 	if (ret)
770 		goto dax_unlock;
771 
772 	/*
773 	 * dax_direct_access() may sleep, so cannot hold tree_lock over
774 	 * its invocation.
775 	 */
776 	ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
777 	if (ret < 0)
778 		goto dax_unlock;
779 
780 	if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
781 		ret = -EIO;
782 		goto dax_unlock;
783 	}
784 
785 	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
786 	dax_flush(dax_dev, pgoff, kaddr, size);
787 	/*
788 	 * After we have flushed the cache, we can clear the dirty tag. There
789 	 * cannot be new dirty data in the pfn after the flush has completed as
790 	 * the pfn mappings are writeprotected and fault waits for mapping
791 	 * entry lock.
792 	 */
793 	spin_lock_irq(&mapping->tree_lock);
794 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
795 	spin_unlock_irq(&mapping->tree_lock);
796 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
797  dax_unlock:
798 	dax_read_unlock(id);
799 	put_locked_mapping_entry(mapping, index, entry);
800 	return ret;
801 
802  put_unlocked:
803 	put_unlocked_mapping_entry(mapping, index, entry2);
804 	spin_unlock_irq(&mapping->tree_lock);
805 	return ret;
806 }
807 
808 /*
809  * Flush the mapping to the persistent domain within the byte range of [start,
810  * end]. This is required by data integrity operations to ensure file data is
811  * on persistent storage prior to completion of the operation.
812  */
813 int dax_writeback_mapping_range(struct address_space *mapping,
814 		struct block_device *bdev, struct writeback_control *wbc)
815 {
816 	struct inode *inode = mapping->host;
817 	pgoff_t start_index, end_index;
818 	pgoff_t indices[PAGEVEC_SIZE];
819 	struct dax_device *dax_dev;
820 	struct pagevec pvec;
821 	bool done = false;
822 	int i, ret = 0;
823 
824 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
825 		return -EIO;
826 
827 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
828 		return 0;
829 
830 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
831 	if (!dax_dev)
832 		return -EIO;
833 
834 	start_index = wbc->range_start >> PAGE_SHIFT;
835 	end_index = wbc->range_end >> PAGE_SHIFT;
836 
837 	trace_dax_writeback_range(inode, start_index, end_index);
838 
839 	tag_pages_for_writeback(mapping, start_index, end_index);
840 
841 	pagevec_init(&pvec, 0);
842 	while (!done) {
843 		pvec.nr = find_get_entries_tag(mapping, start_index,
844 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
845 				pvec.pages, indices);
846 
847 		if (pvec.nr == 0)
848 			break;
849 
850 		for (i = 0; i < pvec.nr; i++) {
851 			if (indices[i] > end_index) {
852 				done = true;
853 				break;
854 			}
855 
856 			ret = dax_writeback_one(bdev, dax_dev, mapping,
857 					indices[i], pvec.pages[i]);
858 			if (ret < 0) {
859 				mapping_set_error(mapping, ret);
860 				goto out;
861 			}
862 		}
863 		start_index = indices[pvec.nr - 1] + 1;
864 	}
865 out:
866 	put_dax(dax_dev);
867 	trace_dax_writeback_range_done(inode, start_index, end_index);
868 	return (ret < 0 ? ret : 0);
869 }
870 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
871 
872 static int dax_insert_mapping(struct address_space *mapping,
873 		struct block_device *bdev, struct dax_device *dax_dev,
874 		sector_t sector, size_t size, void **entryp,
875 		struct vm_area_struct *vma, struct vm_fault *vmf)
876 {
877 	unsigned long vaddr = vmf->address;
878 	void *entry = *entryp;
879 	void *ret, *kaddr;
880 	pgoff_t pgoff;
881 	int id, rc;
882 	pfn_t pfn;
883 
884 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
885 	if (rc)
886 		return rc;
887 
888 	id = dax_read_lock();
889 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
890 	if (rc < 0) {
891 		dax_read_unlock(id);
892 		return rc;
893 	}
894 	dax_read_unlock(id);
895 
896 	ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
897 	if (IS_ERR(ret))
898 		return PTR_ERR(ret);
899 	*entryp = ret;
900 
901 	trace_dax_insert_mapping(mapping->host, vmf, ret);
902 	return vm_insert_mixed(vma, vaddr, pfn);
903 }
904 
905 /**
906  * dax_pfn_mkwrite - handle first write to DAX page
907  * @vmf: The description of the fault
908  */
909 int dax_pfn_mkwrite(struct vm_fault *vmf)
910 {
911 	struct file *file = vmf->vma->vm_file;
912 	struct address_space *mapping = file->f_mapping;
913 	struct inode *inode = mapping->host;
914 	void *entry, **slot;
915 	pgoff_t index = vmf->pgoff;
916 
917 	spin_lock_irq(&mapping->tree_lock);
918 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
919 	if (!entry || !radix_tree_exceptional_entry(entry)) {
920 		if (entry)
921 			put_unlocked_mapping_entry(mapping, index, entry);
922 		spin_unlock_irq(&mapping->tree_lock);
923 		trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
924 		return VM_FAULT_NOPAGE;
925 	}
926 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
927 	entry = lock_slot(mapping, slot);
928 	spin_unlock_irq(&mapping->tree_lock);
929 	/*
930 	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
931 	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
932 	 * the fault in either case.
933 	 */
934 	finish_mkwrite_fault(vmf);
935 	put_locked_mapping_entry(mapping, index, entry);
936 	trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
937 	return VM_FAULT_NOPAGE;
938 }
939 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
940 
941 static bool dax_range_is_aligned(struct block_device *bdev,
942 				 unsigned int offset, unsigned int length)
943 {
944 	unsigned short sector_size = bdev_logical_block_size(bdev);
945 
946 	if (!IS_ALIGNED(offset, sector_size))
947 		return false;
948 	if (!IS_ALIGNED(length, sector_size))
949 		return false;
950 
951 	return true;
952 }
953 
954 int __dax_zero_page_range(struct block_device *bdev,
955 		struct dax_device *dax_dev, sector_t sector,
956 		unsigned int offset, unsigned int size)
957 {
958 	if (dax_range_is_aligned(bdev, offset, size)) {
959 		sector_t start_sector = sector + (offset >> 9);
960 
961 		return blkdev_issue_zeroout(bdev, start_sector,
962 				size >> 9, GFP_NOFS, 0);
963 	} else {
964 		pgoff_t pgoff;
965 		long rc, id;
966 		void *kaddr;
967 		pfn_t pfn;
968 
969 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
970 		if (rc)
971 			return rc;
972 
973 		id = dax_read_lock();
974 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
975 				&pfn);
976 		if (rc < 0) {
977 			dax_read_unlock(id);
978 			return rc;
979 		}
980 		memset(kaddr + offset, 0, size);
981 		dax_flush(dax_dev, pgoff, kaddr + offset, size);
982 		dax_read_unlock(id);
983 	}
984 	return 0;
985 }
986 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
987 
988 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
989 {
990 	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
991 }
992 
993 static loff_t
994 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
995 		struct iomap *iomap)
996 {
997 	struct block_device *bdev = iomap->bdev;
998 	struct dax_device *dax_dev = iomap->dax_dev;
999 	struct iov_iter *iter = data;
1000 	loff_t end = pos + length, done = 0;
1001 	ssize_t ret = 0;
1002 	int id;
1003 
1004 	if (iov_iter_rw(iter) == READ) {
1005 		end = min(end, i_size_read(inode));
1006 		if (pos >= end)
1007 			return 0;
1008 
1009 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1010 			return iov_iter_zero(min(length, end - pos), iter);
1011 	}
1012 
1013 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1014 		return -EIO;
1015 
1016 	/*
1017 	 * Write can allocate block for an area which has a hole page mapped
1018 	 * into page tables. We have to tear down these mappings so that data
1019 	 * written by write(2) is visible in mmap.
1020 	 */
1021 	if (iomap->flags & IOMAP_F_NEW) {
1022 		invalidate_inode_pages2_range(inode->i_mapping,
1023 					      pos >> PAGE_SHIFT,
1024 					      (end - 1) >> PAGE_SHIFT);
1025 	}
1026 
1027 	id = dax_read_lock();
1028 	while (pos < end) {
1029 		unsigned offset = pos & (PAGE_SIZE - 1);
1030 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1031 		const sector_t sector = dax_iomap_sector(iomap, pos);
1032 		ssize_t map_len;
1033 		pgoff_t pgoff;
1034 		void *kaddr;
1035 		pfn_t pfn;
1036 
1037 		if (fatal_signal_pending(current)) {
1038 			ret = -EINTR;
1039 			break;
1040 		}
1041 
1042 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1043 		if (ret)
1044 			break;
1045 
1046 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1047 				&kaddr, &pfn);
1048 		if (map_len < 0) {
1049 			ret = map_len;
1050 			break;
1051 		}
1052 
1053 		map_len = PFN_PHYS(map_len);
1054 		kaddr += offset;
1055 		map_len -= offset;
1056 		if (map_len > end - pos)
1057 			map_len = end - pos;
1058 
1059 		if (iov_iter_rw(iter) == WRITE)
1060 			map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1061 					map_len, iter);
1062 		else
1063 			map_len = copy_to_iter(kaddr, map_len, iter);
1064 		if (map_len <= 0) {
1065 			ret = map_len ? map_len : -EFAULT;
1066 			break;
1067 		}
1068 
1069 		pos += map_len;
1070 		length -= map_len;
1071 		done += map_len;
1072 	}
1073 	dax_read_unlock(id);
1074 
1075 	return done ? done : ret;
1076 }
1077 
1078 /**
1079  * dax_iomap_rw - Perform I/O to a DAX file
1080  * @iocb:	The control block for this I/O
1081  * @iter:	The addresses to do I/O from or to
1082  * @ops:	iomap ops passed from the file system
1083  *
1084  * This function performs read and write operations to directly mapped
1085  * persistent memory.  The callers needs to take care of read/write exclusion
1086  * and evicting any page cache pages in the region under I/O.
1087  */
1088 ssize_t
1089 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1090 		const struct iomap_ops *ops)
1091 {
1092 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1093 	struct inode *inode = mapping->host;
1094 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1095 	unsigned flags = 0;
1096 
1097 	if (iov_iter_rw(iter) == WRITE) {
1098 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1099 		flags |= IOMAP_WRITE;
1100 	} else {
1101 		lockdep_assert_held(&inode->i_rwsem);
1102 	}
1103 
1104 	while (iov_iter_count(iter)) {
1105 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1106 				iter, dax_iomap_actor);
1107 		if (ret <= 0)
1108 			break;
1109 		pos += ret;
1110 		done += ret;
1111 	}
1112 
1113 	iocb->ki_pos += done;
1114 	return done ? done : ret;
1115 }
1116 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1117 
1118 static int dax_fault_return(int error)
1119 {
1120 	if (error == 0)
1121 		return VM_FAULT_NOPAGE;
1122 	if (error == -ENOMEM)
1123 		return VM_FAULT_OOM;
1124 	return VM_FAULT_SIGBUS;
1125 }
1126 
1127 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1128 			       const struct iomap_ops *ops)
1129 {
1130 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1131 	struct inode *inode = mapping->host;
1132 	unsigned long vaddr = vmf->address;
1133 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1134 	sector_t sector;
1135 	struct iomap iomap = { 0 };
1136 	unsigned flags = IOMAP_FAULT;
1137 	int error, major = 0;
1138 	int vmf_ret = 0;
1139 	void *entry;
1140 
1141 	trace_dax_pte_fault(inode, vmf, vmf_ret);
1142 	/*
1143 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1144 	 * to hold locks serializing us with truncate / punch hole so this is
1145 	 * a reliable test.
1146 	 */
1147 	if (pos >= i_size_read(inode)) {
1148 		vmf_ret = VM_FAULT_SIGBUS;
1149 		goto out;
1150 	}
1151 
1152 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1153 		flags |= IOMAP_WRITE;
1154 
1155 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1156 	if (IS_ERR(entry)) {
1157 		vmf_ret = dax_fault_return(PTR_ERR(entry));
1158 		goto out;
1159 	}
1160 
1161 	/*
1162 	 * It is possible, particularly with mixed reads & writes to private
1163 	 * mappings, that we have raced with a PMD fault that overlaps with
1164 	 * the PTE we need to set up.  If so just return and the fault will be
1165 	 * retried.
1166 	 */
1167 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1168 		vmf_ret = VM_FAULT_NOPAGE;
1169 		goto unlock_entry;
1170 	}
1171 
1172 	/*
1173 	 * Note that we don't bother to use iomap_apply here: DAX required
1174 	 * the file system block size to be equal the page size, which means
1175 	 * that we never have to deal with more than a single extent here.
1176 	 */
1177 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1178 	if (error) {
1179 		vmf_ret = dax_fault_return(error);
1180 		goto unlock_entry;
1181 	}
1182 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1183 		error = -EIO;	/* fs corruption? */
1184 		goto error_finish_iomap;
1185 	}
1186 
1187 	sector = dax_iomap_sector(&iomap, pos);
1188 
1189 	if (vmf->cow_page) {
1190 		switch (iomap.type) {
1191 		case IOMAP_HOLE:
1192 		case IOMAP_UNWRITTEN:
1193 			clear_user_highpage(vmf->cow_page, vaddr);
1194 			break;
1195 		case IOMAP_MAPPED:
1196 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1197 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1198 			break;
1199 		default:
1200 			WARN_ON_ONCE(1);
1201 			error = -EIO;
1202 			break;
1203 		}
1204 
1205 		if (error)
1206 			goto error_finish_iomap;
1207 
1208 		__SetPageUptodate(vmf->cow_page);
1209 		vmf_ret = finish_fault(vmf);
1210 		if (!vmf_ret)
1211 			vmf_ret = VM_FAULT_DONE_COW;
1212 		goto finish_iomap;
1213 	}
1214 
1215 	switch (iomap.type) {
1216 	case IOMAP_MAPPED:
1217 		if (iomap.flags & IOMAP_F_NEW) {
1218 			count_vm_event(PGMAJFAULT);
1219 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1220 			major = VM_FAULT_MAJOR;
1221 		}
1222 		error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1223 				sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1224 		/* -EBUSY is fine, somebody else faulted on the same PTE */
1225 		if (error == -EBUSY)
1226 			error = 0;
1227 		break;
1228 	case IOMAP_UNWRITTEN:
1229 	case IOMAP_HOLE:
1230 		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1231 			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1232 			goto finish_iomap;
1233 		}
1234 		/*FALLTHRU*/
1235 	default:
1236 		WARN_ON_ONCE(1);
1237 		error = -EIO;
1238 		break;
1239 	}
1240 
1241  error_finish_iomap:
1242 	vmf_ret = dax_fault_return(error) | major;
1243  finish_iomap:
1244 	if (ops->iomap_end) {
1245 		int copied = PAGE_SIZE;
1246 
1247 		if (vmf_ret & VM_FAULT_ERROR)
1248 			copied = 0;
1249 		/*
1250 		 * The fault is done by now and there's no way back (other
1251 		 * thread may be already happily using PTE we have installed).
1252 		 * Just ignore error from ->iomap_end since we cannot do much
1253 		 * with it.
1254 		 */
1255 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1256 	}
1257  unlock_entry:
1258 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1259  out:
1260 	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1261 	return vmf_ret;
1262 }
1263 
1264 #ifdef CONFIG_FS_DAX_PMD
1265 /*
1266  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1267  * more often than one might expect in the below functions.
1268  */
1269 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1270 
1271 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1272 		loff_t pos, void **entryp)
1273 {
1274 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1275 	const sector_t sector = dax_iomap_sector(iomap, pos);
1276 	struct dax_device *dax_dev = iomap->dax_dev;
1277 	struct block_device *bdev = iomap->bdev;
1278 	struct inode *inode = mapping->host;
1279 	const size_t size = PMD_SIZE;
1280 	void *ret = NULL, *kaddr;
1281 	long length = 0;
1282 	pgoff_t pgoff;
1283 	pfn_t pfn;
1284 	int id;
1285 
1286 	if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1287 		goto fallback;
1288 
1289 	id = dax_read_lock();
1290 	length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1291 	if (length < 0)
1292 		goto unlock_fallback;
1293 	length = PFN_PHYS(length);
1294 
1295 	if (length < size)
1296 		goto unlock_fallback;
1297 	if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1298 		goto unlock_fallback;
1299 	if (!pfn_t_devmap(pfn))
1300 		goto unlock_fallback;
1301 	dax_read_unlock(id);
1302 
1303 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1304 			RADIX_DAX_PMD);
1305 	if (IS_ERR(ret))
1306 		goto fallback;
1307 	*entryp = ret;
1308 
1309 	trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1310 	return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1311 			pfn, vmf->flags & FAULT_FLAG_WRITE);
1312 
1313 unlock_fallback:
1314 	dax_read_unlock(id);
1315 fallback:
1316 	trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1317 	return VM_FAULT_FALLBACK;
1318 }
1319 
1320 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1321 		void **entryp)
1322 {
1323 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1324 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1325 	struct inode *inode = mapping->host;
1326 	struct page *zero_page;
1327 	void *ret = NULL;
1328 	spinlock_t *ptl;
1329 	pmd_t pmd_entry;
1330 
1331 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1332 
1333 	if (unlikely(!zero_page))
1334 		goto fallback;
1335 
1336 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1337 			RADIX_DAX_PMD | RADIX_DAX_HZP);
1338 	if (IS_ERR(ret))
1339 		goto fallback;
1340 	*entryp = ret;
1341 
1342 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1343 	if (!pmd_none(*(vmf->pmd))) {
1344 		spin_unlock(ptl);
1345 		goto fallback;
1346 	}
1347 
1348 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1349 	pmd_entry = pmd_mkhuge(pmd_entry);
1350 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1351 	spin_unlock(ptl);
1352 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1353 	return VM_FAULT_NOPAGE;
1354 
1355 fallback:
1356 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1357 	return VM_FAULT_FALLBACK;
1358 }
1359 
1360 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1361 			       const struct iomap_ops *ops)
1362 {
1363 	struct vm_area_struct *vma = vmf->vma;
1364 	struct address_space *mapping = vma->vm_file->f_mapping;
1365 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1366 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1367 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1368 	struct inode *inode = mapping->host;
1369 	int result = VM_FAULT_FALLBACK;
1370 	struct iomap iomap = { 0 };
1371 	pgoff_t max_pgoff, pgoff;
1372 	void *entry;
1373 	loff_t pos;
1374 	int error;
1375 
1376 	/*
1377 	 * Check whether offset isn't beyond end of file now. Caller is
1378 	 * supposed to hold locks serializing us with truncate / punch hole so
1379 	 * this is a reliable test.
1380 	 */
1381 	pgoff = linear_page_index(vma, pmd_addr);
1382 	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1383 
1384 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1385 
1386 	/* Fall back to PTEs if we're going to COW */
1387 	if (write && !(vma->vm_flags & VM_SHARED))
1388 		goto fallback;
1389 
1390 	/* If the PMD would extend outside the VMA */
1391 	if (pmd_addr < vma->vm_start)
1392 		goto fallback;
1393 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1394 		goto fallback;
1395 
1396 	if (pgoff > max_pgoff) {
1397 		result = VM_FAULT_SIGBUS;
1398 		goto out;
1399 	}
1400 
1401 	/* If the PMD would extend beyond the file size */
1402 	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1403 		goto fallback;
1404 
1405 	/*
1406 	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1407 	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1408 	 * the tree, for instance), it will return -EEXIST and we just fall
1409 	 * back to 4k entries.
1410 	 */
1411 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1412 	if (IS_ERR(entry))
1413 		goto fallback;
1414 
1415 	/*
1416 	 * It is possible, particularly with mixed reads & writes to private
1417 	 * mappings, that we have raced with a PTE fault that overlaps with
1418 	 * the PMD we need to set up.  If so just return and the fault will be
1419 	 * retried.
1420 	 */
1421 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1422 			!pmd_devmap(*vmf->pmd)) {
1423 		result = 0;
1424 		goto unlock_entry;
1425 	}
1426 
1427 	/*
1428 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1429 	 * setting up a mapping, so really we're using iomap_begin() as a way
1430 	 * to look up our filesystem block.
1431 	 */
1432 	pos = (loff_t)pgoff << PAGE_SHIFT;
1433 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1434 	if (error)
1435 		goto unlock_entry;
1436 
1437 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1438 		goto finish_iomap;
1439 
1440 	switch (iomap.type) {
1441 	case IOMAP_MAPPED:
1442 		result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1443 		break;
1444 	case IOMAP_UNWRITTEN:
1445 	case IOMAP_HOLE:
1446 		if (WARN_ON_ONCE(write))
1447 			break;
1448 		result = dax_pmd_load_hole(vmf, &iomap, &entry);
1449 		break;
1450 	default:
1451 		WARN_ON_ONCE(1);
1452 		break;
1453 	}
1454 
1455  finish_iomap:
1456 	if (ops->iomap_end) {
1457 		int copied = PMD_SIZE;
1458 
1459 		if (result == VM_FAULT_FALLBACK)
1460 			copied = 0;
1461 		/*
1462 		 * The fault is done by now and there's no way back (other
1463 		 * thread may be already happily using PMD we have installed).
1464 		 * Just ignore error from ->iomap_end since we cannot do much
1465 		 * with it.
1466 		 */
1467 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1468 				&iomap);
1469 	}
1470  unlock_entry:
1471 	put_locked_mapping_entry(mapping, pgoff, entry);
1472  fallback:
1473 	if (result == VM_FAULT_FALLBACK) {
1474 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1475 		count_vm_event(THP_FAULT_FALLBACK);
1476 	}
1477 out:
1478 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1479 	return result;
1480 }
1481 #else
1482 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1483 			       const struct iomap_ops *ops)
1484 {
1485 	return VM_FAULT_FALLBACK;
1486 }
1487 #endif /* CONFIG_FS_DAX_PMD */
1488 
1489 /**
1490  * dax_iomap_fault - handle a page fault on a DAX file
1491  * @vmf: The description of the fault
1492  * @ops: iomap ops passed from the file system
1493  *
1494  * When a page fault occurs, filesystems may call this helper in
1495  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1496  * has done all the necessary locking for page fault to proceed
1497  * successfully.
1498  */
1499 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1500 		    const struct iomap_ops *ops)
1501 {
1502 	switch (pe_size) {
1503 	case PE_SIZE_PTE:
1504 		return dax_iomap_pte_fault(vmf, ops);
1505 	case PE_SIZE_PMD:
1506 		return dax_iomap_pmd_fault(vmf, ops);
1507 	default:
1508 		return VM_FAULT_FALLBACK;
1509 	}
1510 }
1511 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1512