xref: /openbmc/linux/fs/dax.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 static inline bool dax_page_is_shared(struct page *page)
338 {
339 	return page->mapping == PAGE_MAPPING_DAX_SHARED;
340 }
341 
342 /*
343  * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344  * refcount.
345  */
346 static inline void dax_page_share_get(struct page *page)
347 {
348 	if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
349 		/*
350 		 * Reset the index if the page was already mapped
351 		 * regularly before.
352 		 */
353 		if (page->mapping)
354 			page->share = 1;
355 		page->mapping = PAGE_MAPPING_DAX_SHARED;
356 	}
357 	page->share++;
358 }
359 
360 static inline unsigned long dax_page_share_put(struct page *page)
361 {
362 	return --page->share;
363 }
364 
365 /*
366  * When it is called in dax_insert_entry(), the shared flag will indicate that
367  * whether this entry is shared by multiple files.  If so, set the page->mapping
368  * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
369  */
370 static void dax_associate_entry(void *entry, struct address_space *mapping,
371 		struct vm_area_struct *vma, unsigned long address, bool shared)
372 {
373 	unsigned long size = dax_entry_size(entry), pfn, index;
374 	int i = 0;
375 
376 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377 		return;
378 
379 	index = linear_page_index(vma, address & ~(size - 1));
380 	for_each_mapped_pfn(entry, pfn) {
381 		struct page *page = pfn_to_page(pfn);
382 
383 		if (shared) {
384 			dax_page_share_get(page);
385 		} else {
386 			WARN_ON_ONCE(page->mapping);
387 			page->mapping = mapping;
388 			page->index = index + i++;
389 		}
390 	}
391 }
392 
393 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394 		bool trunc)
395 {
396 	unsigned long pfn;
397 
398 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399 		return;
400 
401 	for_each_mapped_pfn(entry, pfn) {
402 		struct page *page = pfn_to_page(pfn);
403 
404 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405 		if (dax_page_is_shared(page)) {
406 			/* keep the shared flag if this page is still shared */
407 			if (dax_page_share_put(page) > 0)
408 				continue;
409 		} else
410 			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411 		page->mapping = NULL;
412 		page->index = 0;
413 	}
414 }
415 
416 static struct page *dax_busy_page(void *entry)
417 {
418 	unsigned long pfn;
419 
420 	for_each_mapped_pfn(entry, pfn) {
421 		struct page *page = pfn_to_page(pfn);
422 
423 		if (page_ref_count(page) > 1)
424 			return page;
425 	}
426 	return NULL;
427 }
428 
429 /*
430  * dax_lock_page - Lock the DAX entry corresponding to a page
431  * @page: The page whose entry we want to lock
432  *
433  * Context: Process context.
434  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435  * not be locked.
436  */
437 dax_entry_t dax_lock_page(struct page *page)
438 {
439 	XA_STATE(xas, NULL, 0);
440 	void *entry;
441 
442 	/* Ensure page->mapping isn't freed while we look at it */
443 	rcu_read_lock();
444 	for (;;) {
445 		struct address_space *mapping = READ_ONCE(page->mapping);
446 
447 		entry = NULL;
448 		if (!mapping || !dax_mapping(mapping))
449 			break;
450 
451 		/*
452 		 * In the device-dax case there's no need to lock, a
453 		 * struct dev_pagemap pin is sufficient to keep the
454 		 * inode alive, and we assume we have dev_pagemap pin
455 		 * otherwise we would not have a valid pfn_to_page()
456 		 * translation.
457 		 */
458 		entry = (void *)~0UL;
459 		if (S_ISCHR(mapping->host->i_mode))
460 			break;
461 
462 		xas.xa = &mapping->i_pages;
463 		xas_lock_irq(&xas);
464 		if (mapping != page->mapping) {
465 			xas_unlock_irq(&xas);
466 			continue;
467 		}
468 		xas_set(&xas, page->index);
469 		entry = xas_load(&xas);
470 		if (dax_is_locked(entry)) {
471 			rcu_read_unlock();
472 			wait_entry_unlocked(&xas, entry);
473 			rcu_read_lock();
474 			continue;
475 		}
476 		dax_lock_entry(&xas, entry);
477 		xas_unlock_irq(&xas);
478 		break;
479 	}
480 	rcu_read_unlock();
481 	return (dax_entry_t)entry;
482 }
483 
484 void dax_unlock_page(struct page *page, dax_entry_t cookie)
485 {
486 	struct address_space *mapping = page->mapping;
487 	XA_STATE(xas, &mapping->i_pages, page->index);
488 
489 	if (S_ISCHR(mapping->host->i_mode))
490 		return;
491 
492 	dax_unlock_entry(&xas, (void *)cookie);
493 }
494 
495 /*
496  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497  * @mapping: the file's mapping whose entry we want to lock
498  * @index: the offset within this file
499  * @page: output the dax page corresponding to this dax entry
500  *
501  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502  * could not be locked.
503  */
504 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505 		struct page **page)
506 {
507 	XA_STATE(xas, NULL, 0);
508 	void *entry;
509 
510 	rcu_read_lock();
511 	for (;;) {
512 		entry = NULL;
513 		if (!dax_mapping(mapping))
514 			break;
515 
516 		xas.xa = &mapping->i_pages;
517 		xas_lock_irq(&xas);
518 		xas_set(&xas, index);
519 		entry = xas_load(&xas);
520 		if (dax_is_locked(entry)) {
521 			rcu_read_unlock();
522 			wait_entry_unlocked(&xas, entry);
523 			rcu_read_lock();
524 			continue;
525 		}
526 		if (!entry ||
527 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528 			/*
529 			 * Because we are looking for entry from file's mapping
530 			 * and index, so the entry may not be inserted for now,
531 			 * or even a zero/empty entry.  We don't think this is
532 			 * an error case.  So, return a special value and do
533 			 * not output @page.
534 			 */
535 			entry = (void *)~0UL;
536 		} else {
537 			*page = pfn_to_page(dax_to_pfn(entry));
538 			dax_lock_entry(&xas, entry);
539 		}
540 		xas_unlock_irq(&xas);
541 		break;
542 	}
543 	rcu_read_unlock();
544 	return (dax_entry_t)entry;
545 }
546 
547 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548 		dax_entry_t cookie)
549 {
550 	XA_STATE(xas, &mapping->i_pages, index);
551 
552 	if (cookie == ~0UL)
553 		return;
554 
555 	dax_unlock_entry(&xas, (void *)cookie);
556 }
557 
558 /*
559  * Find page cache entry at given index. If it is a DAX entry, return it
560  * with the entry locked. If the page cache doesn't contain an entry at
561  * that index, add a locked empty entry.
562  *
563  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564  * either return that locked entry or will return VM_FAULT_FALLBACK.
565  * This will happen if there are any PTE entries within the PMD range
566  * that we are requesting.
567  *
568  * We always favor PTE entries over PMD entries. There isn't a flow where we
569  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
570  * insertion will fail if it finds any PTE entries already in the tree, and a
571  * PTE insertion will cause an existing PMD entry to be unmapped and
572  * downgraded to PTE entries.  This happens for both PMD zero pages as
573  * well as PMD empty entries.
574  *
575  * The exception to this downgrade path is for PMD entries that have
576  * real storage backing them.  We will leave these real PMD entries in
577  * the tree, and PTE writes will simply dirty the entire PMD entry.
578  *
579  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580  * persistent memory the benefit is doubtful. We can add that later if we can
581  * show it helps.
582  *
583  * On error, this function does not return an ERR_PTR.  Instead it returns
584  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
585  * overlap with xarray value entries.
586  */
587 static void *grab_mapping_entry(struct xa_state *xas,
588 		struct address_space *mapping, unsigned int order)
589 {
590 	unsigned long index = xas->xa_index;
591 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
592 	void *entry;
593 
594 retry:
595 	pmd_downgrade = false;
596 	xas_lock_irq(xas);
597 	entry = get_unlocked_entry(xas, order);
598 
599 	if (entry) {
600 		if (dax_is_conflict(entry))
601 			goto fallback;
602 		if (!xa_is_value(entry)) {
603 			xas_set_err(xas, -EIO);
604 			goto out_unlock;
605 		}
606 
607 		if (order == 0) {
608 			if (dax_is_pmd_entry(entry) &&
609 			    (dax_is_zero_entry(entry) ||
610 			     dax_is_empty_entry(entry))) {
611 				pmd_downgrade = true;
612 			}
613 		}
614 	}
615 
616 	if (pmd_downgrade) {
617 		/*
618 		 * Make sure 'entry' remains valid while we drop
619 		 * the i_pages lock.
620 		 */
621 		dax_lock_entry(xas, entry);
622 
623 		/*
624 		 * Besides huge zero pages the only other thing that gets
625 		 * downgraded are empty entries which don't need to be
626 		 * unmapped.
627 		 */
628 		if (dax_is_zero_entry(entry)) {
629 			xas_unlock_irq(xas);
630 			unmap_mapping_pages(mapping,
631 					xas->xa_index & ~PG_PMD_COLOUR,
632 					PG_PMD_NR, false);
633 			xas_reset(xas);
634 			xas_lock_irq(xas);
635 		}
636 
637 		dax_disassociate_entry(entry, mapping, false);
638 		xas_store(xas, NULL);	/* undo the PMD join */
639 		dax_wake_entry(xas, entry, WAKE_ALL);
640 		mapping->nrpages -= PG_PMD_NR;
641 		entry = NULL;
642 		xas_set(xas, index);
643 	}
644 
645 	if (entry) {
646 		dax_lock_entry(xas, entry);
647 	} else {
648 		unsigned long flags = DAX_EMPTY;
649 
650 		if (order > 0)
651 			flags |= DAX_PMD;
652 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653 		dax_lock_entry(xas, entry);
654 		if (xas_error(xas))
655 			goto out_unlock;
656 		mapping->nrpages += 1UL << order;
657 	}
658 
659 out_unlock:
660 	xas_unlock_irq(xas);
661 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662 		goto retry;
663 	if (xas->xa_node == XA_ERROR(-ENOMEM))
664 		return xa_mk_internal(VM_FAULT_OOM);
665 	if (xas_error(xas))
666 		return xa_mk_internal(VM_FAULT_SIGBUS);
667 	return entry;
668 fallback:
669 	xas_unlock_irq(xas);
670 	return xa_mk_internal(VM_FAULT_FALLBACK);
671 }
672 
673 /**
674  * dax_layout_busy_page_range - find first pinned page in @mapping
675  * @mapping: address space to scan for a page with ref count > 1
676  * @start: Starting offset. Page containing 'start' is included.
677  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678  *       pages from 'start' till the end of file are included.
679  *
680  * DAX requires ZONE_DEVICE mapped pages. These pages are never
681  * 'onlined' to the page allocator so they are considered idle when
682  * page->count == 1. A filesystem uses this interface to determine if
683  * any page in the mapping is busy, i.e. for DMA, or other
684  * get_user_pages() usages.
685  *
686  * It is expected that the filesystem is holding locks to block the
687  * establishment of new mappings in this address_space. I.e. it expects
688  * to be able to run unmap_mapping_range() and subsequently not race
689  * mapping_mapped() becoming true.
690  */
691 struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 					loff_t start, loff_t end)
693 {
694 	void *entry;
695 	unsigned int scanned = 0;
696 	struct page *page = NULL;
697 	pgoff_t start_idx = start >> PAGE_SHIFT;
698 	pgoff_t end_idx;
699 	XA_STATE(xas, &mapping->i_pages, start_idx);
700 
701 	/*
702 	 * In the 'limited' case get_user_pages() for dax is disabled.
703 	 */
704 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705 		return NULL;
706 
707 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708 		return NULL;
709 
710 	/* If end == LLONG_MAX, all pages from start to till end of file */
711 	if (end == LLONG_MAX)
712 		end_idx = ULONG_MAX;
713 	else
714 		end_idx = end >> PAGE_SHIFT;
715 	/*
716 	 * If we race get_user_pages_fast() here either we'll see the
717 	 * elevated page count in the iteration and wait, or
718 	 * get_user_pages_fast() will see that the page it took a reference
719 	 * against is no longer mapped in the page tables and bail to the
720 	 * get_user_pages() slow path.  The slow path is protected by
721 	 * pte_lock() and pmd_lock(). New references are not taken without
722 	 * holding those locks, and unmap_mapping_pages() will not zero the
723 	 * pte or pmd without holding the respective lock, so we are
724 	 * guaranteed to either see new references or prevent new
725 	 * references from being established.
726 	 */
727 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
728 
729 	xas_lock_irq(&xas);
730 	xas_for_each(&xas, entry, end_idx) {
731 		if (WARN_ON_ONCE(!xa_is_value(entry)))
732 			continue;
733 		if (unlikely(dax_is_locked(entry)))
734 			entry = get_unlocked_entry(&xas, 0);
735 		if (entry)
736 			page = dax_busy_page(entry);
737 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
738 		if (page)
739 			break;
740 		if (++scanned % XA_CHECK_SCHED)
741 			continue;
742 
743 		xas_pause(&xas);
744 		xas_unlock_irq(&xas);
745 		cond_resched();
746 		xas_lock_irq(&xas);
747 	}
748 	xas_unlock_irq(&xas);
749 	return page;
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752 
753 struct page *dax_layout_busy_page(struct address_space *mapping)
754 {
755 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756 }
757 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758 
759 static int __dax_invalidate_entry(struct address_space *mapping,
760 					  pgoff_t index, bool trunc)
761 {
762 	XA_STATE(xas, &mapping->i_pages, index);
763 	int ret = 0;
764 	void *entry;
765 
766 	xas_lock_irq(&xas);
767 	entry = get_unlocked_entry(&xas, 0);
768 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
769 		goto out;
770 	if (!trunc &&
771 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
773 		goto out;
774 	dax_disassociate_entry(entry, mapping, trunc);
775 	xas_store(&xas, NULL);
776 	mapping->nrpages -= 1UL << dax_entry_order(entry);
777 	ret = 1;
778 out:
779 	put_unlocked_entry(&xas, entry, WAKE_ALL);
780 	xas_unlock_irq(&xas);
781 	return ret;
782 }
783 
784 static int __dax_clear_dirty_range(struct address_space *mapping,
785 		pgoff_t start, pgoff_t end)
786 {
787 	XA_STATE(xas, &mapping->i_pages, start);
788 	unsigned int scanned = 0;
789 	void *entry;
790 
791 	xas_lock_irq(&xas);
792 	xas_for_each(&xas, entry, end) {
793 		entry = get_unlocked_entry(&xas, 0);
794 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
797 
798 		if (++scanned % XA_CHECK_SCHED)
799 			continue;
800 
801 		xas_pause(&xas);
802 		xas_unlock_irq(&xas);
803 		cond_resched();
804 		xas_lock_irq(&xas);
805 	}
806 	xas_unlock_irq(&xas);
807 
808 	return 0;
809 }
810 
811 /*
812  * Delete DAX entry at @index from @mapping.  Wait for it
813  * to be unlocked before deleting it.
814  */
815 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
816 {
817 	int ret = __dax_invalidate_entry(mapping, index, true);
818 
819 	/*
820 	 * This gets called from truncate / punch_hole path. As such, the caller
821 	 * must hold locks protecting against concurrent modifications of the
822 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
823 	 * caller has seen a DAX entry for this index, we better find it
824 	 * at that index as well...
825 	 */
826 	WARN_ON_ONCE(!ret);
827 	return ret;
828 }
829 
830 /*
831  * Invalidate DAX entry if it is clean.
832  */
833 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
834 				      pgoff_t index)
835 {
836 	return __dax_invalidate_entry(mapping, index, false);
837 }
838 
839 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
840 {
841 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
842 }
843 
844 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
845 {
846 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
847 	void *vto, *kaddr;
848 	long rc;
849 	int id;
850 
851 	id = dax_read_lock();
852 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
853 				&kaddr, NULL);
854 	if (rc < 0) {
855 		dax_read_unlock(id);
856 		return rc;
857 	}
858 	vto = kmap_atomic(vmf->cow_page);
859 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
860 	kunmap_atomic(vto);
861 	dax_read_unlock(id);
862 	return 0;
863 }
864 
865 /*
866  * MAP_SYNC on a dax mapping guarantees dirty metadata is
867  * flushed on write-faults (non-cow), but not read-faults.
868  */
869 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870 		struct vm_area_struct *vma)
871 {
872 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873 		(iter->iomap.flags & IOMAP_F_DIRTY);
874 }
875 
876 /*
877  * By this point grab_mapping_entry() has ensured that we have a locked entry
878  * of the appropriate size so we don't have to worry about downgrading PMDs to
879  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
880  * already in the tree, we will skip the insertion and just dirty the PMD as
881  * appropriate.
882  */
883 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884 		const struct iomap_iter *iter, void *entry, pfn_t pfn,
885 		unsigned long flags)
886 {
887 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
888 	void *new_entry = dax_make_entry(pfn, flags);
889 	bool write = iter->flags & IOMAP_WRITE;
890 	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891 	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
892 
893 	if (dirty)
894 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
895 
896 	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
897 		unsigned long index = xas->xa_index;
898 		/* we are replacing a zero page with block mapping */
899 		if (dax_is_pmd_entry(entry))
900 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
901 					PG_PMD_NR, false);
902 		else /* pte entry */
903 			unmap_mapping_pages(mapping, index, 1, false);
904 	}
905 
906 	xas_reset(xas);
907 	xas_lock_irq(xas);
908 	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
909 		void *old;
910 
911 		dax_disassociate_entry(entry, mapping, false);
912 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
913 				shared);
914 		/*
915 		 * Only swap our new entry into the page cache if the current
916 		 * entry is a zero page or an empty entry.  If a normal PTE or
917 		 * PMD entry is already in the cache, we leave it alone.  This
918 		 * means that if we are trying to insert a PTE and the
919 		 * existing entry is a PMD, we will just leave the PMD in the
920 		 * tree and dirty it if necessary.
921 		 */
922 		old = dax_lock_entry(xas, new_entry);
923 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
924 					DAX_LOCKED));
925 		entry = new_entry;
926 	} else {
927 		xas_load(xas);	/* Walk the xa_state */
928 	}
929 
930 	if (dirty)
931 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
932 
933 	if (write && shared)
934 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
935 
936 	xas_unlock_irq(xas);
937 	return entry;
938 }
939 
940 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941 		struct address_space *mapping, void *entry)
942 {
943 	unsigned long pfn, index, count, end;
944 	long ret = 0;
945 	struct vm_area_struct *vma;
946 
947 	/*
948 	 * A page got tagged dirty in DAX mapping? Something is seriously
949 	 * wrong.
950 	 */
951 	if (WARN_ON(!xa_is_value(entry)))
952 		return -EIO;
953 
954 	if (unlikely(dax_is_locked(entry))) {
955 		void *old_entry = entry;
956 
957 		entry = get_unlocked_entry(xas, 0);
958 
959 		/* Entry got punched out / reallocated? */
960 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
961 			goto put_unlocked;
962 		/*
963 		 * Entry got reallocated elsewhere? No need to writeback.
964 		 * We have to compare pfns as we must not bail out due to
965 		 * difference in lockbit or entry type.
966 		 */
967 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
968 			goto put_unlocked;
969 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970 					dax_is_zero_entry(entry))) {
971 			ret = -EIO;
972 			goto put_unlocked;
973 		}
974 
975 		/* Another fsync thread may have already done this entry */
976 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
977 			goto put_unlocked;
978 	}
979 
980 	/* Lock the entry to serialize with page faults */
981 	dax_lock_entry(xas, entry);
982 
983 	/*
984 	 * We can clear the tag now but we have to be careful so that concurrent
985 	 * dax_writeback_one() calls for the same index cannot finish before we
986 	 * actually flush the caches. This is achieved as the calls will look
987 	 * at the entry only under the i_pages lock and once they do that
988 	 * they will see the entry locked and wait for it to unlock.
989 	 */
990 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
991 	xas_unlock_irq(xas);
992 
993 	/*
994 	 * If dax_writeback_mapping_range() was given a wbc->range_start
995 	 * in the middle of a PMD, the 'index' we use needs to be
996 	 * aligned to the start of the PMD.
997 	 * This allows us to flush for PMD_SIZE and not have to worry about
998 	 * partial PMD writebacks.
999 	 */
1000 	pfn = dax_to_pfn(entry);
1001 	count = 1UL << dax_entry_order(entry);
1002 	index = xas->xa_index & ~(count - 1);
1003 	end = index + count - 1;
1004 
1005 	/* Walk all mappings of a given index of a file and writeprotect them */
1006 	i_mmap_lock_read(mapping);
1007 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008 		pfn_mkclean_range(pfn, count, index, vma);
1009 		cond_resched();
1010 	}
1011 	i_mmap_unlock_read(mapping);
1012 
1013 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1014 	/*
1015 	 * After we have flushed the cache, we can clear the dirty tag. There
1016 	 * cannot be new dirty data in the pfn after the flush has completed as
1017 	 * the pfn mappings are writeprotected and fault waits for mapping
1018 	 * entry lock.
1019 	 */
1020 	xas_reset(xas);
1021 	xas_lock_irq(xas);
1022 	xas_store(xas, entry);
1023 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1024 	dax_wake_entry(xas, entry, WAKE_NEXT);
1025 
1026 	trace_dax_writeback_one(mapping->host, index, count);
1027 	return ret;
1028 
1029  put_unlocked:
1030 	put_unlocked_entry(xas, entry, WAKE_NEXT);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Flush the mapping to the persistent domain within the byte range of [start,
1036  * end]. This is required by data integrity operations to ensure file data is
1037  * on persistent storage prior to completion of the operation.
1038  */
1039 int dax_writeback_mapping_range(struct address_space *mapping,
1040 		struct dax_device *dax_dev, struct writeback_control *wbc)
1041 {
1042 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1043 	struct inode *inode = mapping->host;
1044 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1045 	void *entry;
1046 	int ret = 0;
1047 	unsigned int scanned = 0;
1048 
1049 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1050 		return -EIO;
1051 
1052 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1053 		return 0;
1054 
1055 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1056 
1057 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1058 
1059 	xas_lock_irq(&xas);
1060 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1062 		if (ret < 0) {
1063 			mapping_set_error(mapping, ret);
1064 			break;
1065 		}
1066 		if (++scanned % XA_CHECK_SCHED)
1067 			continue;
1068 
1069 		xas_pause(&xas);
1070 		xas_unlock_irq(&xas);
1071 		cond_resched();
1072 		xas_lock_irq(&xas);
1073 	}
1074 	xas_unlock_irq(&xas);
1075 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1076 	return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1079 
1080 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081 		size_t size, void **kaddr, pfn_t *pfnp)
1082 {
1083 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1084 	int id, rc = 0;
1085 	long length;
1086 
1087 	id = dax_read_lock();
1088 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1089 				   DAX_ACCESS, kaddr, pfnp);
1090 	if (length < 0) {
1091 		rc = length;
1092 		goto out;
1093 	}
1094 	if (!pfnp)
1095 		goto out_check_addr;
1096 	rc = -EINVAL;
1097 	if (PFN_PHYS(length) < size)
1098 		goto out;
1099 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1100 		goto out;
1101 	/* For larger pages we need devmap */
1102 	if (length > 1 && !pfn_t_devmap(*pfnp))
1103 		goto out;
1104 	rc = 0;
1105 
1106 out_check_addr:
1107 	if (!kaddr)
1108 		goto out;
1109 	if (!*kaddr)
1110 		rc = -EFAULT;
1111 out:
1112 	dax_read_unlock(id);
1113 	return rc;
1114 }
1115 
1116 /**
1117  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118  * by copying the data before and after the range to be written.
1119  * @pos:	address to do copy from.
1120  * @length:	size of copy operation.
1121  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122  * @srcmap:	iomap srcmap
1123  * @daddr:	destination address to copy to.
1124  *
1125  * This can be called from two places. Either during DAX write fault (page
1126  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1127  * write operation, dax_iomap_iter() might call this to do the copy of either
1128  * start or end unaligned address. In the latter case the rest of the copy of
1129  * aligned ranges is taken care by dax_iomap_iter() itself.
1130  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131  * area to make sure no old data remains.
1132  */
1133 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1134 		const struct iomap *srcmap, void *daddr)
1135 {
1136 	loff_t head_off = pos & (align_size - 1);
1137 	size_t size = ALIGN(head_off + length, align_size);
1138 	loff_t end = pos + length;
1139 	loff_t pg_end = round_up(end, align_size);
1140 	/* copy_all is usually in page fault case */
1141 	bool copy_all = head_off == 0 && end == pg_end;
1142 	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143 	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144 			 srcmap->type == IOMAP_UNWRITTEN;
1145 	void *saddr = 0;
1146 	int ret = 0;
1147 
1148 	if (!zero_edge) {
1149 		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 
1154 	if (copy_all) {
1155 		if (zero_edge)
1156 			memset(daddr, 0, size);
1157 		else
1158 			ret = copy_mc_to_kernel(daddr, saddr, length);
1159 		goto out;
1160 	}
1161 
1162 	/* Copy the head part of the range */
1163 	if (head_off) {
1164 		if (zero_edge)
1165 			memset(daddr, 0, head_off);
1166 		else {
1167 			ret = copy_mc_to_kernel(daddr, saddr, head_off);
1168 			if (ret)
1169 				return -EIO;
1170 		}
1171 	}
1172 
1173 	/* Copy the tail part of the range */
1174 	if (end < pg_end) {
1175 		loff_t tail_off = head_off + length;
1176 		loff_t tail_len = pg_end - end;
1177 
1178 		if (zero_edge)
1179 			memset(daddr + tail_off, 0, tail_len);
1180 		else {
1181 			ret = copy_mc_to_kernel(daddr + tail_off,
1182 						saddr + tail_off, tail_len);
1183 			if (ret)
1184 				return -EIO;
1185 		}
1186 	}
1187 out:
1188 	if (zero_edge)
1189 		dax_flush(srcmap->dax_dev, daddr, size);
1190 	return ret ? -EIO : 0;
1191 }
1192 
1193 /*
1194  * The user has performed a load from a hole in the file.  Allocating a new
1195  * page in the file would cause excessive storage usage for workloads with
1196  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1197  * If this page is ever written to we will re-fault and change the mapping to
1198  * point to real DAX storage instead.
1199  */
1200 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201 		const struct iomap_iter *iter, void **entry)
1202 {
1203 	struct inode *inode = iter->inode;
1204 	unsigned long vaddr = vmf->address;
1205 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1206 	vm_fault_t ret;
1207 
1208 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1209 
1210 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1211 	trace_dax_load_hole(inode, vmf, ret);
1212 	return ret;
1213 }
1214 
1215 #ifdef CONFIG_FS_DAX_PMD
1216 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1217 		const struct iomap_iter *iter, void **entry)
1218 {
1219 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1221 	struct vm_area_struct *vma = vmf->vma;
1222 	struct inode *inode = mapping->host;
1223 	pgtable_t pgtable = NULL;
1224 	struct page *zero_page;
1225 	spinlock_t *ptl;
1226 	pmd_t pmd_entry;
1227 	pfn_t pfn;
1228 
1229 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1230 
1231 	if (unlikely(!zero_page))
1232 		goto fallback;
1233 
1234 	pfn = page_to_pfn_t(zero_page);
1235 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236 				  DAX_PMD | DAX_ZERO_PAGE);
1237 
1238 	if (arch_needs_pgtable_deposit()) {
1239 		pgtable = pte_alloc_one(vma->vm_mm);
1240 		if (!pgtable)
1241 			return VM_FAULT_OOM;
1242 	}
1243 
1244 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245 	if (!pmd_none(*(vmf->pmd))) {
1246 		spin_unlock(ptl);
1247 		goto fallback;
1248 	}
1249 
1250 	if (pgtable) {
1251 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252 		mm_inc_nr_ptes(vma->vm_mm);
1253 	}
1254 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255 	pmd_entry = pmd_mkhuge(pmd_entry);
1256 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1257 	spin_unlock(ptl);
1258 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259 	return VM_FAULT_NOPAGE;
1260 
1261 fallback:
1262 	if (pgtable)
1263 		pte_free(vma->vm_mm, pgtable);
1264 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265 	return VM_FAULT_FALLBACK;
1266 }
1267 #else
1268 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1269 		const struct iomap_iter *iter, void **entry)
1270 {
1271 	return VM_FAULT_FALLBACK;
1272 }
1273 #endif /* CONFIG_FS_DAX_PMD */
1274 
1275 static s64 dax_unshare_iter(struct iomap_iter *iter)
1276 {
1277 	struct iomap *iomap = &iter->iomap;
1278 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279 	loff_t pos = iter->pos;
1280 	loff_t length = iomap_length(iter);
1281 	int id = 0;
1282 	s64 ret = 0;
1283 	void *daddr = NULL, *saddr = NULL;
1284 
1285 	/* don't bother with blocks that are not shared to start with */
1286 	if (!(iomap->flags & IOMAP_F_SHARED))
1287 		return length;
1288 
1289 	id = dax_read_lock();
1290 	ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1291 	if (ret < 0)
1292 		goto out_unlock;
1293 
1294 	/* zero the distance if srcmap is HOLE or UNWRITTEN */
1295 	if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296 		memset(daddr, 0, length);
1297 		dax_flush(iomap->dax_dev, daddr, length);
1298 		ret = length;
1299 		goto out_unlock;
1300 	}
1301 
1302 	ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1303 	if (ret < 0)
1304 		goto out_unlock;
1305 
1306 	if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1307 		ret = length;
1308 	else
1309 		ret = -EIO;
1310 
1311 out_unlock:
1312 	dax_read_unlock(id);
1313 	return ret;
1314 }
1315 
1316 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 		const struct iomap_ops *ops)
1318 {
1319 	struct iomap_iter iter = {
1320 		.inode		= inode,
1321 		.pos		= pos,
1322 		.len		= len,
1323 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1324 	};
1325 	int ret;
1326 
1327 	while ((ret = iomap_iter(&iter, ops)) > 0)
1328 		iter.processed = dax_unshare_iter(&iter);
1329 	return ret;
1330 }
1331 EXPORT_SYMBOL_GPL(dax_file_unshare);
1332 
1333 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1334 {
1335 	const struct iomap *iomap = &iter->iomap;
1336 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337 	unsigned offset = offset_in_page(pos);
1338 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1339 	void *kaddr;
1340 	long ret;
1341 
1342 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1343 				NULL);
1344 	if (ret < 0)
1345 		return ret;
1346 	memset(kaddr + offset, 0, size);
1347 	if (iomap->flags & IOMAP_F_SHARED)
1348 		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1349 					    kaddr);
1350 	else
1351 		dax_flush(iomap->dax_dev, kaddr + offset, size);
1352 	return ret;
1353 }
1354 
1355 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1356 {
1357 	const struct iomap *iomap = &iter->iomap;
1358 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1359 	loff_t pos = iter->pos;
1360 	u64 length = iomap_length(iter);
1361 	s64 written = 0;
1362 
1363 	/* already zeroed?  we're done. */
1364 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1365 		return length;
1366 
1367 	/*
1368 	 * invalidate the pages whose sharing state is to be changed
1369 	 * because of CoW.
1370 	 */
1371 	if (iomap->flags & IOMAP_F_SHARED)
1372 		invalidate_inode_pages2_range(iter->inode->i_mapping,
1373 					      pos >> PAGE_SHIFT,
1374 					      (pos + length - 1) >> PAGE_SHIFT);
1375 
1376 	do {
1377 		unsigned offset = offset_in_page(pos);
1378 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1379 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1380 		long rc;
1381 		int id;
1382 
1383 		id = dax_read_lock();
1384 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1385 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1386 		else
1387 			rc = dax_memzero(iter, pos, size);
1388 		dax_read_unlock(id);
1389 
1390 		if (rc < 0)
1391 			return rc;
1392 		pos += size;
1393 		length -= size;
1394 		written += size;
1395 	} while (length > 0);
1396 
1397 	if (did_zero)
1398 		*did_zero = true;
1399 	return written;
1400 }
1401 
1402 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1403 		const struct iomap_ops *ops)
1404 {
1405 	struct iomap_iter iter = {
1406 		.inode		= inode,
1407 		.pos		= pos,
1408 		.len		= len,
1409 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1410 	};
1411 	int ret;
1412 
1413 	while ((ret = iomap_iter(&iter, ops)) > 0)
1414 		iter.processed = dax_zero_iter(&iter, did_zero);
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL_GPL(dax_zero_range);
1418 
1419 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1420 		const struct iomap_ops *ops)
1421 {
1422 	unsigned int blocksize = i_blocksize(inode);
1423 	unsigned int off = pos & (blocksize - 1);
1424 
1425 	/* Block boundary? Nothing to do */
1426 	if (!off)
1427 		return 0;
1428 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1429 }
1430 EXPORT_SYMBOL_GPL(dax_truncate_page);
1431 
1432 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1433 		struct iov_iter *iter)
1434 {
1435 	const struct iomap *iomap = &iomi->iomap;
1436 	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1437 	loff_t length = iomap_length(iomi);
1438 	loff_t pos = iomi->pos;
1439 	struct dax_device *dax_dev = iomap->dax_dev;
1440 	loff_t end = pos + length, done = 0;
1441 	bool write = iov_iter_rw(iter) == WRITE;
1442 	bool cow = write && iomap->flags & IOMAP_F_SHARED;
1443 	ssize_t ret = 0;
1444 	size_t xfer;
1445 	int id;
1446 
1447 	if (!write) {
1448 		end = min(end, i_size_read(iomi->inode));
1449 		if (pos >= end)
1450 			return 0;
1451 
1452 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1453 			return iov_iter_zero(min(length, end - pos), iter);
1454 	}
1455 
1456 	/*
1457 	 * In DAX mode, enforce either pure overwrites of written extents, or
1458 	 * writes to unwritten extents as part of a copy-on-write operation.
1459 	 */
1460 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1461 			!(iomap->flags & IOMAP_F_SHARED)))
1462 		return -EIO;
1463 
1464 	/*
1465 	 * Write can allocate block for an area which has a hole page mapped
1466 	 * into page tables. We have to tear down these mappings so that data
1467 	 * written by write(2) is visible in mmap.
1468 	 */
1469 	if (iomap->flags & IOMAP_F_NEW || cow) {
1470 		/*
1471 		 * Filesystem allows CoW on non-shared extents. The src extents
1472 		 * may have been mmapped with dirty mark before. To be able to
1473 		 * invalidate its dax entries, we need to clear the dirty mark
1474 		 * in advance.
1475 		 */
1476 		if (cow)
1477 			__dax_clear_dirty_range(iomi->inode->i_mapping,
1478 						pos >> PAGE_SHIFT,
1479 						(end - 1) >> PAGE_SHIFT);
1480 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1481 					      pos >> PAGE_SHIFT,
1482 					      (end - 1) >> PAGE_SHIFT);
1483 	}
1484 
1485 	id = dax_read_lock();
1486 	while (pos < end) {
1487 		unsigned offset = pos & (PAGE_SIZE - 1);
1488 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1489 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1490 		ssize_t map_len;
1491 		bool recovery = false;
1492 		void *kaddr;
1493 
1494 		if (fatal_signal_pending(current)) {
1495 			ret = -EINTR;
1496 			break;
1497 		}
1498 
1499 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1500 				DAX_ACCESS, &kaddr, NULL);
1501 		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1502 			map_len = dax_direct_access(dax_dev, pgoff,
1503 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1504 					&kaddr, NULL);
1505 			if (map_len > 0)
1506 				recovery = true;
1507 		}
1508 		if (map_len < 0) {
1509 			ret = map_len;
1510 			break;
1511 		}
1512 
1513 		if (cow) {
1514 			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1515 						    srcmap, kaddr);
1516 			if (ret)
1517 				break;
1518 		}
1519 
1520 		map_len = PFN_PHYS(map_len);
1521 		kaddr += offset;
1522 		map_len -= offset;
1523 		if (map_len > end - pos)
1524 			map_len = end - pos;
1525 
1526 		if (recovery)
1527 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1528 					map_len, iter);
1529 		else if (write)
1530 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1531 					map_len, iter);
1532 		else
1533 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1534 					map_len, iter);
1535 
1536 		pos += xfer;
1537 		length -= xfer;
1538 		done += xfer;
1539 
1540 		if (xfer == 0)
1541 			ret = -EFAULT;
1542 		if (xfer < map_len)
1543 			break;
1544 	}
1545 	dax_read_unlock(id);
1546 
1547 	return done ? done : ret;
1548 }
1549 
1550 /**
1551  * dax_iomap_rw - Perform I/O to a DAX file
1552  * @iocb:	The control block for this I/O
1553  * @iter:	The addresses to do I/O from or to
1554  * @ops:	iomap ops passed from the file system
1555  *
1556  * This function performs read and write operations to directly mapped
1557  * persistent memory.  The callers needs to take care of read/write exclusion
1558  * and evicting any page cache pages in the region under I/O.
1559  */
1560 ssize_t
1561 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1562 		const struct iomap_ops *ops)
1563 {
1564 	struct iomap_iter iomi = {
1565 		.inode		= iocb->ki_filp->f_mapping->host,
1566 		.pos		= iocb->ki_pos,
1567 		.len		= iov_iter_count(iter),
1568 		.flags		= IOMAP_DAX,
1569 	};
1570 	loff_t done = 0;
1571 	int ret;
1572 
1573 	if (!iomi.len)
1574 		return 0;
1575 
1576 	if (iov_iter_rw(iter) == WRITE) {
1577 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1578 		iomi.flags |= IOMAP_WRITE;
1579 	} else {
1580 		lockdep_assert_held(&iomi.inode->i_rwsem);
1581 	}
1582 
1583 	if (iocb->ki_flags & IOCB_NOWAIT)
1584 		iomi.flags |= IOMAP_NOWAIT;
1585 
1586 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1587 		iomi.processed = dax_iomap_iter(&iomi, iter);
1588 
1589 	done = iomi.pos - iocb->ki_pos;
1590 	iocb->ki_pos = iomi.pos;
1591 	return done ? done : ret;
1592 }
1593 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1594 
1595 static vm_fault_t dax_fault_return(int error)
1596 {
1597 	if (error == 0)
1598 		return VM_FAULT_NOPAGE;
1599 	return vmf_error(error);
1600 }
1601 
1602 /*
1603  * When handling a synchronous page fault and the inode need a fsync, we can
1604  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1605  * insertion for now and return the pfn so that caller can insert it after the
1606  * fsync is done.
1607  */
1608 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1609 {
1610 	if (WARN_ON_ONCE(!pfnp))
1611 		return VM_FAULT_SIGBUS;
1612 	*pfnp = pfn;
1613 	return VM_FAULT_NEEDDSYNC;
1614 }
1615 
1616 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1617 		const struct iomap_iter *iter)
1618 {
1619 	vm_fault_t ret;
1620 	int error = 0;
1621 
1622 	switch (iter->iomap.type) {
1623 	case IOMAP_HOLE:
1624 	case IOMAP_UNWRITTEN:
1625 		clear_user_highpage(vmf->cow_page, vmf->address);
1626 		break;
1627 	case IOMAP_MAPPED:
1628 		error = copy_cow_page_dax(vmf, iter);
1629 		break;
1630 	default:
1631 		WARN_ON_ONCE(1);
1632 		error = -EIO;
1633 		break;
1634 	}
1635 
1636 	if (error)
1637 		return dax_fault_return(error);
1638 
1639 	__SetPageUptodate(vmf->cow_page);
1640 	ret = finish_fault(vmf);
1641 	if (!ret)
1642 		return VM_FAULT_DONE_COW;
1643 	return ret;
1644 }
1645 
1646 /**
1647  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1648  * @vmf:	vm fault instance
1649  * @iter:	iomap iter
1650  * @pfnp:	pfn to be returned
1651  * @xas:	the dax mapping tree of a file
1652  * @entry:	an unlocked dax entry to be inserted
1653  * @pmd:	distinguish whether it is a pmd fault
1654  */
1655 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1656 		const struct iomap_iter *iter, pfn_t *pfnp,
1657 		struct xa_state *xas, void **entry, bool pmd)
1658 {
1659 	const struct iomap *iomap = &iter->iomap;
1660 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1661 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1662 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1663 	bool write = iter->flags & IOMAP_WRITE;
1664 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1665 	int err = 0;
1666 	pfn_t pfn;
1667 	void *kaddr;
1668 
1669 	if (!pmd && vmf->cow_page)
1670 		return dax_fault_cow_page(vmf, iter);
1671 
1672 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1673 	if (!write &&
1674 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1675 		if (!pmd)
1676 			return dax_load_hole(xas, vmf, iter, entry);
1677 		return dax_pmd_load_hole(xas, vmf, iter, entry);
1678 	}
1679 
1680 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1681 		WARN_ON_ONCE(1);
1682 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1683 	}
1684 
1685 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1686 	if (err)
1687 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1688 
1689 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1690 
1691 	if (write && iomap->flags & IOMAP_F_SHARED) {
1692 		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1693 		if (err)
1694 			return dax_fault_return(err);
1695 	}
1696 
1697 	if (dax_fault_is_synchronous(iter, vmf->vma))
1698 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1699 
1700 	/* insert PMD pfn */
1701 	if (pmd)
1702 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1703 
1704 	/* insert PTE pfn */
1705 	if (write)
1706 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1707 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1708 }
1709 
1710 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1711 			       int *iomap_errp, const struct iomap_ops *ops)
1712 {
1713 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1714 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1715 	struct iomap_iter iter = {
1716 		.inode		= mapping->host,
1717 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1718 		.len		= PAGE_SIZE,
1719 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1720 	};
1721 	vm_fault_t ret = 0;
1722 	void *entry;
1723 	int error;
1724 
1725 	trace_dax_pte_fault(iter.inode, vmf, ret);
1726 	/*
1727 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1728 	 * to hold locks serializing us with truncate / punch hole so this is
1729 	 * a reliable test.
1730 	 */
1731 	if (iter.pos >= i_size_read(iter.inode)) {
1732 		ret = VM_FAULT_SIGBUS;
1733 		goto out;
1734 	}
1735 
1736 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1737 		iter.flags |= IOMAP_WRITE;
1738 
1739 	entry = grab_mapping_entry(&xas, mapping, 0);
1740 	if (xa_is_internal(entry)) {
1741 		ret = xa_to_internal(entry);
1742 		goto out;
1743 	}
1744 
1745 	/*
1746 	 * It is possible, particularly with mixed reads & writes to private
1747 	 * mappings, that we have raced with a PMD fault that overlaps with
1748 	 * the PTE we need to set up.  If so just return and the fault will be
1749 	 * retried.
1750 	 */
1751 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1752 		ret = VM_FAULT_NOPAGE;
1753 		goto unlock_entry;
1754 	}
1755 
1756 	while ((error = iomap_iter(&iter, ops)) > 0) {
1757 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1758 			iter.processed = -EIO;	/* fs corruption? */
1759 			continue;
1760 		}
1761 
1762 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1763 		if (ret != VM_FAULT_SIGBUS &&
1764 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1765 			count_vm_event(PGMAJFAULT);
1766 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1767 			ret |= VM_FAULT_MAJOR;
1768 		}
1769 
1770 		if (!(ret & VM_FAULT_ERROR))
1771 			iter.processed = PAGE_SIZE;
1772 	}
1773 
1774 	if (iomap_errp)
1775 		*iomap_errp = error;
1776 	if (!ret && error)
1777 		ret = dax_fault_return(error);
1778 
1779 unlock_entry:
1780 	dax_unlock_entry(&xas, entry);
1781 out:
1782 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1783 	return ret;
1784 }
1785 
1786 #ifdef CONFIG_FS_DAX_PMD
1787 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1788 		pgoff_t max_pgoff)
1789 {
1790 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1791 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1792 
1793 	/*
1794 	 * Make sure that the faulting address's PMD offset (color) matches
1795 	 * the PMD offset from the start of the file.  This is necessary so
1796 	 * that a PMD range in the page table overlaps exactly with a PMD
1797 	 * range in the page cache.
1798 	 */
1799 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1800 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1801 		return true;
1802 
1803 	/* Fall back to PTEs if we're going to COW */
1804 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1805 		return true;
1806 
1807 	/* If the PMD would extend outside the VMA */
1808 	if (pmd_addr < vmf->vma->vm_start)
1809 		return true;
1810 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1811 		return true;
1812 
1813 	/* If the PMD would extend beyond the file size */
1814 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1815 		return true;
1816 
1817 	return false;
1818 }
1819 
1820 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1821 			       const struct iomap_ops *ops)
1822 {
1823 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1824 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1825 	struct iomap_iter iter = {
1826 		.inode		= mapping->host,
1827 		.len		= PMD_SIZE,
1828 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1829 	};
1830 	vm_fault_t ret = VM_FAULT_FALLBACK;
1831 	pgoff_t max_pgoff;
1832 	void *entry;
1833 	int error;
1834 
1835 	if (vmf->flags & FAULT_FLAG_WRITE)
1836 		iter.flags |= IOMAP_WRITE;
1837 
1838 	/*
1839 	 * Check whether offset isn't beyond end of file now. Caller is
1840 	 * supposed to hold locks serializing us with truncate / punch hole so
1841 	 * this is a reliable test.
1842 	 */
1843 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1844 
1845 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1846 
1847 	if (xas.xa_index >= max_pgoff) {
1848 		ret = VM_FAULT_SIGBUS;
1849 		goto out;
1850 	}
1851 
1852 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1853 		goto fallback;
1854 
1855 	/*
1856 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1857 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1858 	 * entry is already in the array, for instance), it will return
1859 	 * VM_FAULT_FALLBACK.
1860 	 */
1861 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1862 	if (xa_is_internal(entry)) {
1863 		ret = xa_to_internal(entry);
1864 		goto fallback;
1865 	}
1866 
1867 	/*
1868 	 * It is possible, particularly with mixed reads & writes to private
1869 	 * mappings, that we have raced with a PTE fault that overlaps with
1870 	 * the PMD we need to set up.  If so just return and the fault will be
1871 	 * retried.
1872 	 */
1873 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874 			!pmd_devmap(*vmf->pmd)) {
1875 		ret = 0;
1876 		goto unlock_entry;
1877 	}
1878 
1879 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880 	while ((error = iomap_iter(&iter, ops)) > 0) {
1881 		if (iomap_length(&iter) < PMD_SIZE)
1882 			continue; /* actually breaks out of the loop */
1883 
1884 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885 		if (ret != VM_FAULT_FALLBACK)
1886 			iter.processed = PMD_SIZE;
1887 	}
1888 
1889 unlock_entry:
1890 	dax_unlock_entry(&xas, entry);
1891 fallback:
1892 	if (ret == VM_FAULT_FALLBACK) {
1893 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1894 		count_vm_event(THP_FAULT_FALLBACK);
1895 	}
1896 out:
1897 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1898 	return ret;
1899 }
1900 #else
1901 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1902 			       const struct iomap_ops *ops)
1903 {
1904 	return VM_FAULT_FALLBACK;
1905 }
1906 #endif /* CONFIG_FS_DAX_PMD */
1907 
1908 /**
1909  * dax_iomap_fault - handle a page fault on a DAX file
1910  * @vmf: The description of the fault
1911  * @pe_size: Size of the page to fault in
1912  * @pfnp: PFN to insert for synchronous faults if fsync is required
1913  * @iomap_errp: Storage for detailed error code in case of error
1914  * @ops: Iomap ops passed from the file system
1915  *
1916  * When a page fault occurs, filesystems may call this helper in
1917  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918  * has done all the necessary locking for page fault to proceed
1919  * successfully.
1920  */
1921 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1922 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1923 {
1924 	switch (pe_size) {
1925 	case PE_SIZE_PTE:
1926 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1927 	case PE_SIZE_PMD:
1928 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1929 	default:
1930 		return VM_FAULT_FALLBACK;
1931 	}
1932 }
1933 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1934 
1935 /*
1936  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937  * @vmf: The description of the fault
1938  * @pfn: PFN to insert
1939  * @order: Order of entry to insert.
1940  *
1941  * This function inserts a writeable PTE or PMD entry into the page tables
1942  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1943  */
1944 static vm_fault_t
1945 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1946 {
1947 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1948 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1949 	void *entry;
1950 	vm_fault_t ret;
1951 
1952 	xas_lock_irq(&xas);
1953 	entry = get_unlocked_entry(&xas, order);
1954 	/* Did we race with someone splitting entry or so? */
1955 	if (!entry || dax_is_conflict(entry) ||
1956 	    (order == 0 && !dax_is_pte_entry(entry))) {
1957 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1958 		xas_unlock_irq(&xas);
1959 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1960 						      VM_FAULT_NOPAGE);
1961 		return VM_FAULT_NOPAGE;
1962 	}
1963 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964 	dax_lock_entry(&xas, entry);
1965 	xas_unlock_irq(&xas);
1966 	if (order == 0)
1967 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1968 #ifdef CONFIG_FS_DAX_PMD
1969 	else if (order == PMD_ORDER)
1970 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1971 #endif
1972 	else
1973 		ret = VM_FAULT_FALLBACK;
1974 	dax_unlock_entry(&xas, entry);
1975 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1976 	return ret;
1977 }
1978 
1979 /**
1980  * dax_finish_sync_fault - finish synchronous page fault
1981  * @vmf: The description of the fault
1982  * @pe_size: Size of entry to be inserted
1983  * @pfn: PFN to insert
1984  *
1985  * This function ensures that the file range touched by the page fault is
1986  * stored persistently on the media and handles inserting of appropriate page
1987  * table entry.
1988  */
1989 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990 		enum page_entry_size pe_size, pfn_t pfn)
1991 {
1992 	int err;
1993 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1994 	unsigned int order = pe_order(pe_size);
1995 	size_t len = PAGE_SIZE << order;
1996 
1997 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1998 	if (err)
1999 		return VM_FAULT_SIGBUS;
2000 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
2001 }
2002 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2003 
2004 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005 		struct iomap_iter *it_dest, u64 len, bool *same)
2006 {
2007 	const struct iomap *smap = &it_src->iomap;
2008 	const struct iomap *dmap = &it_dest->iomap;
2009 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010 	void *saddr, *daddr;
2011 	int id, ret;
2012 
2013 	len = min(len, min(smap->length, dmap->length));
2014 
2015 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2016 		*same = true;
2017 		return len;
2018 	}
2019 
2020 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2021 		*same = false;
2022 		return 0;
2023 	}
2024 
2025 	id = dax_read_lock();
2026 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2027 				      &saddr, NULL);
2028 	if (ret < 0)
2029 		goto out_unlock;
2030 
2031 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2032 				      &daddr, NULL);
2033 	if (ret < 0)
2034 		goto out_unlock;
2035 
2036 	*same = !memcmp(saddr, daddr, len);
2037 	if (!*same)
2038 		len = 0;
2039 	dax_read_unlock(id);
2040 	return len;
2041 
2042 out_unlock:
2043 	dax_read_unlock(id);
2044 	return -EIO;
2045 }
2046 
2047 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048 		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049 		const struct iomap_ops *ops)
2050 {
2051 	struct iomap_iter src_iter = {
2052 		.inode		= src,
2053 		.pos		= srcoff,
2054 		.len		= len,
2055 		.flags		= IOMAP_DAX,
2056 	};
2057 	struct iomap_iter dst_iter = {
2058 		.inode		= dst,
2059 		.pos		= dstoff,
2060 		.len		= len,
2061 		.flags		= IOMAP_DAX,
2062 	};
2063 	int ret, compared = 0;
2064 
2065 	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066 	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
2067 		compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068 				min(src_iter.len, dst_iter.len), same);
2069 		if (compared < 0)
2070 			return ret;
2071 		src_iter.processed = dst_iter.processed = compared;
2072 	}
2073 	return ret;
2074 }
2075 
2076 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077 			      struct file *file_out, loff_t pos_out,
2078 			      loff_t *len, unsigned int remap_flags,
2079 			      const struct iomap_ops *ops)
2080 {
2081 	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082 					       pos_out, len, remap_flags, ops);
2083 }
2084 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
2085