xref: /openbmc/linux/fs/dax.c (revision 2f437eff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153 	WAKE_ALL,
154 	WAKE_NEXT,
155 };
156 
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 		void *entry, struct exceptional_entry_key *key)
159 {
160 	unsigned long hash;
161 	unsigned long index = xas->xa_index;
162 
163 	/*
164 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 	 * queue to the start of that PMD.  This ensures that all offsets in
166 	 * the range covered by the PMD map to the same bit lock.
167 	 */
168 	if (dax_is_pmd_entry(entry))
169 		index &= ~PG_PMD_COLOUR;
170 	key->xa = xas->xa;
171 	key->entry_start = index;
172 
173 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 	return wait_table + hash;
175 }
176 
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 		unsigned int mode, int sync, void *keyp)
179 {
180 	struct exceptional_entry_key *key = keyp;
181 	struct wait_exceptional_entry_queue *ewait =
182 		container_of(wait, struct wait_exceptional_entry_queue, wait);
183 
184 	if (key->xa != ewait->key.xa ||
185 	    key->entry_start != ewait->key.entry_start)
186 		return 0;
187 	return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189 
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 			   enum dax_wake_mode mode)
197 {
198 	struct exceptional_entry_key key;
199 	wait_queue_head_t *wq;
200 
201 	wq = dax_entry_waitqueue(xas, entry, &key);
202 
203 	/*
204 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 	 * under the i_pages lock, ditto for entry handling in our callers.
206 	 * So at this point all tasks that could have seen our entry locked
207 	 * must be in the waitqueue and the following check will see them.
208 	 */
209 	if (waitqueue_active(wq))
210 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212 
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 	void *entry;
226 	struct wait_exceptional_entry_queue ewait;
227 	wait_queue_head_t *wq;
228 
229 	init_wait(&ewait.wait);
230 	ewait.wait.func = wake_exceptional_entry_func;
231 
232 	for (;;) {
233 		entry = xas_find_conflict(xas);
234 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 			return entry;
236 		if (dax_entry_order(entry) < order)
237 			return XA_RETRY_ENTRY;
238 		if (!dax_is_locked(entry))
239 			return entry;
240 
241 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 		prepare_to_wait_exclusive(wq, &ewait.wait,
243 					  TASK_UNINTERRUPTIBLE);
244 		xas_unlock_irq(xas);
245 		xas_reset(xas);
246 		schedule();
247 		finish_wait(wq, &ewait.wait);
248 		xas_lock_irq(xas);
249 	}
250 }
251 
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 	struct wait_exceptional_entry_queue ewait;
260 	wait_queue_head_t *wq;
261 
262 	init_wait(&ewait.wait);
263 	ewait.wait.func = wake_exceptional_entry_func;
264 
265 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 	/*
267 	 * Unlike get_unlocked_entry() there is no guarantee that this
268 	 * path ever successfully retrieves an unlocked entry before an
269 	 * inode dies. Perform a non-exclusive wait in case this path
270 	 * never successfully performs its own wake up.
271 	 */
272 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 	xas_unlock_irq(xas);
274 	schedule();
275 	finish_wait(wq, &ewait.wait);
276 }
277 
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 			       enum dax_wake_mode mode)
280 {
281 	if (entry && !dax_is_conflict(entry))
282 		dax_wake_entry(xas, entry, mode);
283 }
284 
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 	void *old;
293 
294 	BUG_ON(dax_is_locked(entry));
295 	xas_reset(xas);
296 	xas_lock_irq(xas);
297 	old = xas_store(xas, entry);
298 	xas_unlock_irq(xas);
299 	BUG_ON(!dax_is_locked(old));
300 	dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302 
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 	unsigned long v = xa_to_value(entry);
309 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311 
312 static unsigned long dax_entry_size(void *entry)
313 {
314 	if (dax_is_zero_entry(entry))
315 		return 0;
316 	else if (dax_is_empty_entry(entry))
317 		return 0;
318 	else if (dax_is_pmd_entry(entry))
319 		return PMD_SIZE;
320 	else
321 		return PAGE_SIZE;
322 }
323 
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328 
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334 	for (pfn = dax_to_pfn(entry); \
335 			pfn < dax_end_pfn(entry); pfn++)
336 
337 /*
338  * TODO: for reflink+dax we need a way to associate a single page with
339  * multiple address_space instances at different linear_page_index()
340  * offsets.
341  */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 		struct vm_area_struct *vma, unsigned long address)
344 {
345 	unsigned long size = dax_entry_size(entry), pfn, index;
346 	int i = 0;
347 
348 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 		return;
350 
351 	index = linear_page_index(vma, address & ~(size - 1));
352 	for_each_mapped_pfn(entry, pfn) {
353 		struct page *page = pfn_to_page(pfn);
354 
355 		WARN_ON_ONCE(page->mapping);
356 		page->mapping = mapping;
357 		page->index = index + i++;
358 	}
359 }
360 
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 		bool trunc)
363 {
364 	unsigned long pfn;
365 
366 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 		return;
368 
369 	for_each_mapped_pfn(entry, pfn) {
370 		struct page *page = pfn_to_page(pfn);
371 
372 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 		page->mapping = NULL;
375 		page->index = 0;
376 	}
377 }
378 
379 static struct page *dax_busy_page(void *entry)
380 {
381 	unsigned long pfn;
382 
383 	for_each_mapped_pfn(entry, pfn) {
384 		struct page *page = pfn_to_page(pfn);
385 
386 		if (page_ref_count(page) > 1)
387 			return page;
388 	}
389 	return NULL;
390 }
391 
392 /*
393  * dax_lock_page - Lock the DAX entry corresponding to a page
394  * @page: The page whose entry we want to lock
395  *
396  * Context: Process context.
397  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398  * not be locked.
399  */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 	XA_STATE(xas, NULL, 0);
403 	void *entry;
404 
405 	/* Ensure page->mapping isn't freed while we look at it */
406 	rcu_read_lock();
407 	for (;;) {
408 		struct address_space *mapping = READ_ONCE(page->mapping);
409 
410 		entry = NULL;
411 		if (!mapping || !dax_mapping(mapping))
412 			break;
413 
414 		/*
415 		 * In the device-dax case there's no need to lock, a
416 		 * struct dev_pagemap pin is sufficient to keep the
417 		 * inode alive, and we assume we have dev_pagemap pin
418 		 * otherwise we would not have a valid pfn_to_page()
419 		 * translation.
420 		 */
421 		entry = (void *)~0UL;
422 		if (S_ISCHR(mapping->host->i_mode))
423 			break;
424 
425 		xas.xa = &mapping->i_pages;
426 		xas_lock_irq(&xas);
427 		if (mapping != page->mapping) {
428 			xas_unlock_irq(&xas);
429 			continue;
430 		}
431 		xas_set(&xas, page->index);
432 		entry = xas_load(&xas);
433 		if (dax_is_locked(entry)) {
434 			rcu_read_unlock();
435 			wait_entry_unlocked(&xas, entry);
436 			rcu_read_lock();
437 			continue;
438 		}
439 		dax_lock_entry(&xas, entry);
440 		xas_unlock_irq(&xas);
441 		break;
442 	}
443 	rcu_read_unlock();
444 	return (dax_entry_t)entry;
445 }
446 
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 	struct address_space *mapping = page->mapping;
450 	XA_STATE(xas, &mapping->i_pages, page->index);
451 
452 	if (S_ISCHR(mapping->host->i_mode))
453 		return;
454 
455 	dax_unlock_entry(&xas, (void *)cookie);
456 }
457 
458 /*
459  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
460  * @mapping: the file's mapping whose entry we want to lock
461  * @index: the offset within this file
462  * @page: output the dax page corresponding to this dax entry
463  *
464  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
465  * could not be locked.
466  */
467 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
468 		struct page **page)
469 {
470 	XA_STATE(xas, NULL, 0);
471 	void *entry;
472 
473 	rcu_read_lock();
474 	for (;;) {
475 		entry = NULL;
476 		if (!dax_mapping(mapping))
477 			break;
478 
479 		xas.xa = &mapping->i_pages;
480 		xas_lock_irq(&xas);
481 		xas_set(&xas, index);
482 		entry = xas_load(&xas);
483 		if (dax_is_locked(entry)) {
484 			rcu_read_unlock();
485 			wait_entry_unlocked(&xas, entry);
486 			rcu_read_lock();
487 			continue;
488 		}
489 		if (!entry ||
490 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
491 			/*
492 			 * Because we are looking for entry from file's mapping
493 			 * and index, so the entry may not be inserted for now,
494 			 * or even a zero/empty entry.  We don't think this is
495 			 * an error case.  So, return a special value and do
496 			 * not output @page.
497 			 */
498 			entry = (void *)~0UL;
499 		} else {
500 			*page = pfn_to_page(dax_to_pfn(entry));
501 			dax_lock_entry(&xas, entry);
502 		}
503 		xas_unlock_irq(&xas);
504 		break;
505 	}
506 	rcu_read_unlock();
507 	return (dax_entry_t)entry;
508 }
509 
510 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
511 		dax_entry_t cookie)
512 {
513 	XA_STATE(xas, &mapping->i_pages, index);
514 
515 	if (cookie == ~0UL)
516 		return;
517 
518 	dax_unlock_entry(&xas, (void *)cookie);
519 }
520 
521 /*
522  * Find page cache entry at given index. If it is a DAX entry, return it
523  * with the entry locked. If the page cache doesn't contain an entry at
524  * that index, add a locked empty entry.
525  *
526  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
527  * either return that locked entry or will return VM_FAULT_FALLBACK.
528  * This will happen if there are any PTE entries within the PMD range
529  * that we are requesting.
530  *
531  * We always favor PTE entries over PMD entries. There isn't a flow where we
532  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
533  * insertion will fail if it finds any PTE entries already in the tree, and a
534  * PTE insertion will cause an existing PMD entry to be unmapped and
535  * downgraded to PTE entries.  This happens for both PMD zero pages as
536  * well as PMD empty entries.
537  *
538  * The exception to this downgrade path is for PMD entries that have
539  * real storage backing them.  We will leave these real PMD entries in
540  * the tree, and PTE writes will simply dirty the entire PMD entry.
541  *
542  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
543  * persistent memory the benefit is doubtful. We can add that later if we can
544  * show it helps.
545  *
546  * On error, this function does not return an ERR_PTR.  Instead it returns
547  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
548  * overlap with xarray value entries.
549  */
550 static void *grab_mapping_entry(struct xa_state *xas,
551 		struct address_space *mapping, unsigned int order)
552 {
553 	unsigned long index = xas->xa_index;
554 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
555 	void *entry;
556 
557 retry:
558 	pmd_downgrade = false;
559 	xas_lock_irq(xas);
560 	entry = get_unlocked_entry(xas, order);
561 
562 	if (entry) {
563 		if (dax_is_conflict(entry))
564 			goto fallback;
565 		if (!xa_is_value(entry)) {
566 			xas_set_err(xas, -EIO);
567 			goto out_unlock;
568 		}
569 
570 		if (order == 0) {
571 			if (dax_is_pmd_entry(entry) &&
572 			    (dax_is_zero_entry(entry) ||
573 			     dax_is_empty_entry(entry))) {
574 				pmd_downgrade = true;
575 			}
576 		}
577 	}
578 
579 	if (pmd_downgrade) {
580 		/*
581 		 * Make sure 'entry' remains valid while we drop
582 		 * the i_pages lock.
583 		 */
584 		dax_lock_entry(xas, entry);
585 
586 		/*
587 		 * Besides huge zero pages the only other thing that gets
588 		 * downgraded are empty entries which don't need to be
589 		 * unmapped.
590 		 */
591 		if (dax_is_zero_entry(entry)) {
592 			xas_unlock_irq(xas);
593 			unmap_mapping_pages(mapping,
594 					xas->xa_index & ~PG_PMD_COLOUR,
595 					PG_PMD_NR, false);
596 			xas_reset(xas);
597 			xas_lock_irq(xas);
598 		}
599 
600 		dax_disassociate_entry(entry, mapping, false);
601 		xas_store(xas, NULL);	/* undo the PMD join */
602 		dax_wake_entry(xas, entry, WAKE_ALL);
603 		mapping->nrpages -= PG_PMD_NR;
604 		entry = NULL;
605 		xas_set(xas, index);
606 	}
607 
608 	if (entry) {
609 		dax_lock_entry(xas, entry);
610 	} else {
611 		unsigned long flags = DAX_EMPTY;
612 
613 		if (order > 0)
614 			flags |= DAX_PMD;
615 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
616 		dax_lock_entry(xas, entry);
617 		if (xas_error(xas))
618 			goto out_unlock;
619 		mapping->nrpages += 1UL << order;
620 	}
621 
622 out_unlock:
623 	xas_unlock_irq(xas);
624 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
625 		goto retry;
626 	if (xas->xa_node == XA_ERROR(-ENOMEM))
627 		return xa_mk_internal(VM_FAULT_OOM);
628 	if (xas_error(xas))
629 		return xa_mk_internal(VM_FAULT_SIGBUS);
630 	return entry;
631 fallback:
632 	xas_unlock_irq(xas);
633 	return xa_mk_internal(VM_FAULT_FALLBACK);
634 }
635 
636 /**
637  * dax_layout_busy_page_range - find first pinned page in @mapping
638  * @mapping: address space to scan for a page with ref count > 1
639  * @start: Starting offset. Page containing 'start' is included.
640  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
641  *       pages from 'start' till the end of file are included.
642  *
643  * DAX requires ZONE_DEVICE mapped pages. These pages are never
644  * 'onlined' to the page allocator so they are considered idle when
645  * page->count == 1. A filesystem uses this interface to determine if
646  * any page in the mapping is busy, i.e. for DMA, or other
647  * get_user_pages() usages.
648  *
649  * It is expected that the filesystem is holding locks to block the
650  * establishment of new mappings in this address_space. I.e. it expects
651  * to be able to run unmap_mapping_range() and subsequently not race
652  * mapping_mapped() becoming true.
653  */
654 struct page *dax_layout_busy_page_range(struct address_space *mapping,
655 					loff_t start, loff_t end)
656 {
657 	void *entry;
658 	unsigned int scanned = 0;
659 	struct page *page = NULL;
660 	pgoff_t start_idx = start >> PAGE_SHIFT;
661 	pgoff_t end_idx;
662 	XA_STATE(xas, &mapping->i_pages, start_idx);
663 
664 	/*
665 	 * In the 'limited' case get_user_pages() for dax is disabled.
666 	 */
667 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
668 		return NULL;
669 
670 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
671 		return NULL;
672 
673 	/* If end == LLONG_MAX, all pages from start to till end of file */
674 	if (end == LLONG_MAX)
675 		end_idx = ULONG_MAX;
676 	else
677 		end_idx = end >> PAGE_SHIFT;
678 	/*
679 	 * If we race get_user_pages_fast() here either we'll see the
680 	 * elevated page count in the iteration and wait, or
681 	 * get_user_pages_fast() will see that the page it took a reference
682 	 * against is no longer mapped in the page tables and bail to the
683 	 * get_user_pages() slow path.  The slow path is protected by
684 	 * pte_lock() and pmd_lock(). New references are not taken without
685 	 * holding those locks, and unmap_mapping_pages() will not zero the
686 	 * pte or pmd without holding the respective lock, so we are
687 	 * guaranteed to either see new references or prevent new
688 	 * references from being established.
689 	 */
690 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
691 
692 	xas_lock_irq(&xas);
693 	xas_for_each(&xas, entry, end_idx) {
694 		if (WARN_ON_ONCE(!xa_is_value(entry)))
695 			continue;
696 		if (unlikely(dax_is_locked(entry)))
697 			entry = get_unlocked_entry(&xas, 0);
698 		if (entry)
699 			page = dax_busy_page(entry);
700 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
701 		if (page)
702 			break;
703 		if (++scanned % XA_CHECK_SCHED)
704 			continue;
705 
706 		xas_pause(&xas);
707 		xas_unlock_irq(&xas);
708 		cond_resched();
709 		xas_lock_irq(&xas);
710 	}
711 	xas_unlock_irq(&xas);
712 	return page;
713 }
714 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
715 
716 struct page *dax_layout_busy_page(struct address_space *mapping)
717 {
718 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
719 }
720 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
721 
722 static int __dax_invalidate_entry(struct address_space *mapping,
723 					  pgoff_t index, bool trunc)
724 {
725 	XA_STATE(xas, &mapping->i_pages, index);
726 	int ret = 0;
727 	void *entry;
728 
729 	xas_lock_irq(&xas);
730 	entry = get_unlocked_entry(&xas, 0);
731 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
732 		goto out;
733 	if (!trunc &&
734 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
735 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
736 		goto out;
737 	dax_disassociate_entry(entry, mapping, trunc);
738 	xas_store(&xas, NULL);
739 	mapping->nrpages -= 1UL << dax_entry_order(entry);
740 	ret = 1;
741 out:
742 	put_unlocked_entry(&xas, entry, WAKE_ALL);
743 	xas_unlock_irq(&xas);
744 	return ret;
745 }
746 
747 /*
748  * Delete DAX entry at @index from @mapping.  Wait for it
749  * to be unlocked before deleting it.
750  */
751 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
752 {
753 	int ret = __dax_invalidate_entry(mapping, index, true);
754 
755 	/*
756 	 * This gets called from truncate / punch_hole path. As such, the caller
757 	 * must hold locks protecting against concurrent modifications of the
758 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
759 	 * caller has seen a DAX entry for this index, we better find it
760 	 * at that index as well...
761 	 */
762 	WARN_ON_ONCE(!ret);
763 	return ret;
764 }
765 
766 /*
767  * Invalidate DAX entry if it is clean.
768  */
769 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
770 				      pgoff_t index)
771 {
772 	return __dax_invalidate_entry(mapping, index, false);
773 }
774 
775 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
776 {
777 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
778 }
779 
780 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
781 {
782 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
783 	void *vto, *kaddr;
784 	long rc;
785 	int id;
786 
787 	id = dax_read_lock();
788 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
789 				&kaddr, NULL);
790 	if (rc < 0) {
791 		dax_read_unlock(id);
792 		return rc;
793 	}
794 	vto = kmap_atomic(vmf->cow_page);
795 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
796 	kunmap_atomic(vto);
797 	dax_read_unlock(id);
798 	return 0;
799 }
800 
801 /*
802  * By this point grab_mapping_entry() has ensured that we have a locked entry
803  * of the appropriate size so we don't have to worry about downgrading PMDs to
804  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
805  * already in the tree, we will skip the insertion and just dirty the PMD as
806  * appropriate.
807  */
808 static void *dax_insert_entry(struct xa_state *xas,
809 		struct address_space *mapping, struct vm_fault *vmf,
810 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
811 {
812 	void *new_entry = dax_make_entry(pfn, flags);
813 
814 	if (dirty)
815 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
816 
817 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
818 		unsigned long index = xas->xa_index;
819 		/* we are replacing a zero page with block mapping */
820 		if (dax_is_pmd_entry(entry))
821 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
822 					PG_PMD_NR, false);
823 		else /* pte entry */
824 			unmap_mapping_pages(mapping, index, 1, false);
825 	}
826 
827 	xas_reset(xas);
828 	xas_lock_irq(xas);
829 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
830 		void *old;
831 
832 		dax_disassociate_entry(entry, mapping, false);
833 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
834 		/*
835 		 * Only swap our new entry into the page cache if the current
836 		 * entry is a zero page or an empty entry.  If a normal PTE or
837 		 * PMD entry is already in the cache, we leave it alone.  This
838 		 * means that if we are trying to insert a PTE and the
839 		 * existing entry is a PMD, we will just leave the PMD in the
840 		 * tree and dirty it if necessary.
841 		 */
842 		old = dax_lock_entry(xas, new_entry);
843 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
844 					DAX_LOCKED));
845 		entry = new_entry;
846 	} else {
847 		xas_load(xas);	/* Walk the xa_state */
848 	}
849 
850 	if (dirty)
851 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
852 
853 	xas_unlock_irq(xas);
854 	return entry;
855 }
856 
857 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
858 		struct address_space *mapping, void *entry)
859 {
860 	unsigned long pfn, index, count, end;
861 	long ret = 0;
862 	struct vm_area_struct *vma;
863 
864 	/*
865 	 * A page got tagged dirty in DAX mapping? Something is seriously
866 	 * wrong.
867 	 */
868 	if (WARN_ON(!xa_is_value(entry)))
869 		return -EIO;
870 
871 	if (unlikely(dax_is_locked(entry))) {
872 		void *old_entry = entry;
873 
874 		entry = get_unlocked_entry(xas, 0);
875 
876 		/* Entry got punched out / reallocated? */
877 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
878 			goto put_unlocked;
879 		/*
880 		 * Entry got reallocated elsewhere? No need to writeback.
881 		 * We have to compare pfns as we must not bail out due to
882 		 * difference in lockbit or entry type.
883 		 */
884 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
885 			goto put_unlocked;
886 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
887 					dax_is_zero_entry(entry))) {
888 			ret = -EIO;
889 			goto put_unlocked;
890 		}
891 
892 		/* Another fsync thread may have already done this entry */
893 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
894 			goto put_unlocked;
895 	}
896 
897 	/* Lock the entry to serialize with page faults */
898 	dax_lock_entry(xas, entry);
899 
900 	/*
901 	 * We can clear the tag now but we have to be careful so that concurrent
902 	 * dax_writeback_one() calls for the same index cannot finish before we
903 	 * actually flush the caches. This is achieved as the calls will look
904 	 * at the entry only under the i_pages lock and once they do that
905 	 * they will see the entry locked and wait for it to unlock.
906 	 */
907 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
908 	xas_unlock_irq(xas);
909 
910 	/*
911 	 * If dax_writeback_mapping_range() was given a wbc->range_start
912 	 * in the middle of a PMD, the 'index' we use needs to be
913 	 * aligned to the start of the PMD.
914 	 * This allows us to flush for PMD_SIZE and not have to worry about
915 	 * partial PMD writebacks.
916 	 */
917 	pfn = dax_to_pfn(entry);
918 	count = 1UL << dax_entry_order(entry);
919 	index = xas->xa_index & ~(count - 1);
920 	end = index + count - 1;
921 
922 	/* Walk all mappings of a given index of a file and writeprotect them */
923 	i_mmap_lock_read(mapping);
924 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
925 		pfn_mkclean_range(pfn, count, index, vma);
926 		cond_resched();
927 	}
928 	i_mmap_unlock_read(mapping);
929 
930 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
931 	/*
932 	 * After we have flushed the cache, we can clear the dirty tag. There
933 	 * cannot be new dirty data in the pfn after the flush has completed as
934 	 * the pfn mappings are writeprotected and fault waits for mapping
935 	 * entry lock.
936 	 */
937 	xas_reset(xas);
938 	xas_lock_irq(xas);
939 	xas_store(xas, entry);
940 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
941 	dax_wake_entry(xas, entry, WAKE_NEXT);
942 
943 	trace_dax_writeback_one(mapping->host, index, count);
944 	return ret;
945 
946  put_unlocked:
947 	put_unlocked_entry(xas, entry, WAKE_NEXT);
948 	return ret;
949 }
950 
951 /*
952  * Flush the mapping to the persistent domain within the byte range of [start,
953  * end]. This is required by data integrity operations to ensure file data is
954  * on persistent storage prior to completion of the operation.
955  */
956 int dax_writeback_mapping_range(struct address_space *mapping,
957 		struct dax_device *dax_dev, struct writeback_control *wbc)
958 {
959 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
960 	struct inode *inode = mapping->host;
961 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
962 	void *entry;
963 	int ret = 0;
964 	unsigned int scanned = 0;
965 
966 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
967 		return -EIO;
968 
969 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
970 		return 0;
971 
972 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
973 
974 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
975 
976 	xas_lock_irq(&xas);
977 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
978 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
979 		if (ret < 0) {
980 			mapping_set_error(mapping, ret);
981 			break;
982 		}
983 		if (++scanned % XA_CHECK_SCHED)
984 			continue;
985 
986 		xas_pause(&xas);
987 		xas_unlock_irq(&xas);
988 		cond_resched();
989 		xas_lock_irq(&xas);
990 	}
991 	xas_unlock_irq(&xas);
992 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
993 	return ret;
994 }
995 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
996 
997 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
998 			 pfn_t *pfnp)
999 {
1000 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1001 	int id, rc;
1002 	long length;
1003 
1004 	id = dax_read_lock();
1005 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1006 				   DAX_ACCESS, NULL, pfnp);
1007 	if (length < 0) {
1008 		rc = length;
1009 		goto out;
1010 	}
1011 	rc = -EINVAL;
1012 	if (PFN_PHYS(length) < size)
1013 		goto out;
1014 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1015 		goto out;
1016 	/* For larger pages we need devmap */
1017 	if (length > 1 && !pfn_t_devmap(*pfnp))
1018 		goto out;
1019 	rc = 0;
1020 out:
1021 	dax_read_unlock(id);
1022 	return rc;
1023 }
1024 
1025 /*
1026  * The user has performed a load from a hole in the file.  Allocating a new
1027  * page in the file would cause excessive storage usage for workloads with
1028  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1029  * If this page is ever written to we will re-fault and change the mapping to
1030  * point to real DAX storage instead.
1031  */
1032 static vm_fault_t dax_load_hole(struct xa_state *xas,
1033 		struct address_space *mapping, void **entry,
1034 		struct vm_fault *vmf)
1035 {
1036 	struct inode *inode = mapping->host;
1037 	unsigned long vaddr = vmf->address;
1038 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1039 	vm_fault_t ret;
1040 
1041 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1042 			DAX_ZERO_PAGE, false);
1043 
1044 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1045 	trace_dax_load_hole(inode, vmf, ret);
1046 	return ret;
1047 }
1048 
1049 #ifdef CONFIG_FS_DAX_PMD
1050 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1051 		const struct iomap *iomap, void **entry)
1052 {
1053 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1054 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1055 	struct vm_area_struct *vma = vmf->vma;
1056 	struct inode *inode = mapping->host;
1057 	pgtable_t pgtable = NULL;
1058 	struct page *zero_page;
1059 	spinlock_t *ptl;
1060 	pmd_t pmd_entry;
1061 	pfn_t pfn;
1062 
1063 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1064 
1065 	if (unlikely(!zero_page))
1066 		goto fallback;
1067 
1068 	pfn = page_to_pfn_t(zero_page);
1069 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1070 			DAX_PMD | DAX_ZERO_PAGE, false);
1071 
1072 	if (arch_needs_pgtable_deposit()) {
1073 		pgtable = pte_alloc_one(vma->vm_mm);
1074 		if (!pgtable)
1075 			return VM_FAULT_OOM;
1076 	}
1077 
1078 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1079 	if (!pmd_none(*(vmf->pmd))) {
1080 		spin_unlock(ptl);
1081 		goto fallback;
1082 	}
1083 
1084 	if (pgtable) {
1085 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1086 		mm_inc_nr_ptes(vma->vm_mm);
1087 	}
1088 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1089 	pmd_entry = pmd_mkhuge(pmd_entry);
1090 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1091 	spin_unlock(ptl);
1092 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1093 	return VM_FAULT_NOPAGE;
1094 
1095 fallback:
1096 	if (pgtable)
1097 		pte_free(vma->vm_mm, pgtable);
1098 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1099 	return VM_FAULT_FALLBACK;
1100 }
1101 #else
1102 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1103 		const struct iomap *iomap, void **entry)
1104 {
1105 	return VM_FAULT_FALLBACK;
1106 }
1107 #endif /* CONFIG_FS_DAX_PMD */
1108 
1109 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1110 		unsigned int offset, size_t size)
1111 {
1112 	void *kaddr;
1113 	long ret;
1114 
1115 	ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
1116 	if (ret > 0) {
1117 		memset(kaddr + offset, 0, size);
1118 		dax_flush(dax_dev, kaddr + offset, size);
1119 	}
1120 	return ret;
1121 }
1122 
1123 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1124 {
1125 	const struct iomap *iomap = &iter->iomap;
1126 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1127 	loff_t pos = iter->pos;
1128 	u64 length = iomap_length(iter);
1129 	s64 written = 0;
1130 
1131 	/* already zeroed?  we're done. */
1132 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1133 		return length;
1134 
1135 	do {
1136 		unsigned offset = offset_in_page(pos);
1137 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1138 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1139 		long rc;
1140 		int id;
1141 
1142 		id = dax_read_lock();
1143 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1144 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1145 		else
1146 			rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1147 		dax_read_unlock(id);
1148 
1149 		if (rc < 0)
1150 			return rc;
1151 		pos += size;
1152 		length -= size;
1153 		written += size;
1154 		if (did_zero)
1155 			*did_zero = true;
1156 	} while (length > 0);
1157 
1158 	return written;
1159 }
1160 
1161 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1162 		const struct iomap_ops *ops)
1163 {
1164 	struct iomap_iter iter = {
1165 		.inode		= inode,
1166 		.pos		= pos,
1167 		.len		= len,
1168 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1169 	};
1170 	int ret;
1171 
1172 	while ((ret = iomap_iter(&iter, ops)) > 0)
1173 		iter.processed = dax_zero_iter(&iter, did_zero);
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(dax_zero_range);
1177 
1178 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1179 		const struct iomap_ops *ops)
1180 {
1181 	unsigned int blocksize = i_blocksize(inode);
1182 	unsigned int off = pos & (blocksize - 1);
1183 
1184 	/* Block boundary? Nothing to do */
1185 	if (!off)
1186 		return 0;
1187 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1188 }
1189 EXPORT_SYMBOL_GPL(dax_truncate_page);
1190 
1191 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1192 		struct iov_iter *iter)
1193 {
1194 	const struct iomap *iomap = &iomi->iomap;
1195 	loff_t length = iomap_length(iomi);
1196 	loff_t pos = iomi->pos;
1197 	struct dax_device *dax_dev = iomap->dax_dev;
1198 	loff_t end = pos + length, done = 0;
1199 	ssize_t ret = 0;
1200 	size_t xfer;
1201 	int id;
1202 
1203 	if (iov_iter_rw(iter) == READ) {
1204 		end = min(end, i_size_read(iomi->inode));
1205 		if (pos >= end)
1206 			return 0;
1207 
1208 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1209 			return iov_iter_zero(min(length, end - pos), iter);
1210 	}
1211 
1212 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1213 		return -EIO;
1214 
1215 	/*
1216 	 * Write can allocate block for an area which has a hole page mapped
1217 	 * into page tables. We have to tear down these mappings so that data
1218 	 * written by write(2) is visible in mmap.
1219 	 */
1220 	if (iomap->flags & IOMAP_F_NEW) {
1221 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1222 					      pos >> PAGE_SHIFT,
1223 					      (end - 1) >> PAGE_SHIFT);
1224 	}
1225 
1226 	id = dax_read_lock();
1227 	while (pos < end) {
1228 		unsigned offset = pos & (PAGE_SIZE - 1);
1229 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1230 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1231 		ssize_t map_len;
1232 		bool recovery = false;
1233 		void *kaddr;
1234 
1235 		if (fatal_signal_pending(current)) {
1236 			ret = -EINTR;
1237 			break;
1238 		}
1239 
1240 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1241 				DAX_ACCESS, &kaddr, NULL);
1242 		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1243 			map_len = dax_direct_access(dax_dev, pgoff,
1244 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1245 					&kaddr, NULL);
1246 			if (map_len > 0)
1247 				recovery = true;
1248 		}
1249 		if (map_len < 0) {
1250 			ret = map_len;
1251 			break;
1252 		}
1253 
1254 		map_len = PFN_PHYS(map_len);
1255 		kaddr += offset;
1256 		map_len -= offset;
1257 		if (map_len > end - pos)
1258 			map_len = end - pos;
1259 
1260 		if (recovery)
1261 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1262 					map_len, iter);
1263 		else if (iov_iter_rw(iter) == WRITE)
1264 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1265 					map_len, iter);
1266 		else
1267 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1268 					map_len, iter);
1269 
1270 		pos += xfer;
1271 		length -= xfer;
1272 		done += xfer;
1273 
1274 		if (xfer == 0)
1275 			ret = -EFAULT;
1276 		if (xfer < map_len)
1277 			break;
1278 	}
1279 	dax_read_unlock(id);
1280 
1281 	return done ? done : ret;
1282 }
1283 
1284 /**
1285  * dax_iomap_rw - Perform I/O to a DAX file
1286  * @iocb:	The control block for this I/O
1287  * @iter:	The addresses to do I/O from or to
1288  * @ops:	iomap ops passed from the file system
1289  *
1290  * This function performs read and write operations to directly mapped
1291  * persistent memory.  The callers needs to take care of read/write exclusion
1292  * and evicting any page cache pages in the region under I/O.
1293  */
1294 ssize_t
1295 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1296 		const struct iomap_ops *ops)
1297 {
1298 	struct iomap_iter iomi = {
1299 		.inode		= iocb->ki_filp->f_mapping->host,
1300 		.pos		= iocb->ki_pos,
1301 		.len		= iov_iter_count(iter),
1302 		.flags		= IOMAP_DAX,
1303 	};
1304 	loff_t done = 0;
1305 	int ret;
1306 
1307 	if (iov_iter_rw(iter) == WRITE) {
1308 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1309 		iomi.flags |= IOMAP_WRITE;
1310 	} else {
1311 		lockdep_assert_held(&iomi.inode->i_rwsem);
1312 	}
1313 
1314 	if (iocb->ki_flags & IOCB_NOWAIT)
1315 		iomi.flags |= IOMAP_NOWAIT;
1316 
1317 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1318 		iomi.processed = dax_iomap_iter(&iomi, iter);
1319 
1320 	done = iomi.pos - iocb->ki_pos;
1321 	iocb->ki_pos = iomi.pos;
1322 	return done ? done : ret;
1323 }
1324 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1325 
1326 static vm_fault_t dax_fault_return(int error)
1327 {
1328 	if (error == 0)
1329 		return VM_FAULT_NOPAGE;
1330 	return vmf_error(error);
1331 }
1332 
1333 /*
1334  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1335  * flushed on write-faults (non-cow), but not read-faults.
1336  */
1337 static bool dax_fault_is_synchronous(unsigned long flags,
1338 		struct vm_area_struct *vma, const struct iomap *iomap)
1339 {
1340 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1341 		&& (iomap->flags & IOMAP_F_DIRTY);
1342 }
1343 
1344 /*
1345  * When handling a synchronous page fault and the inode need a fsync, we can
1346  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1347  * insertion for now and return the pfn so that caller can insert it after the
1348  * fsync is done.
1349  */
1350 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1351 {
1352 	if (WARN_ON_ONCE(!pfnp))
1353 		return VM_FAULT_SIGBUS;
1354 	*pfnp = pfn;
1355 	return VM_FAULT_NEEDDSYNC;
1356 }
1357 
1358 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1359 		const struct iomap_iter *iter)
1360 {
1361 	vm_fault_t ret;
1362 	int error = 0;
1363 
1364 	switch (iter->iomap.type) {
1365 	case IOMAP_HOLE:
1366 	case IOMAP_UNWRITTEN:
1367 		clear_user_highpage(vmf->cow_page, vmf->address);
1368 		break;
1369 	case IOMAP_MAPPED:
1370 		error = copy_cow_page_dax(vmf, iter);
1371 		break;
1372 	default:
1373 		WARN_ON_ONCE(1);
1374 		error = -EIO;
1375 		break;
1376 	}
1377 
1378 	if (error)
1379 		return dax_fault_return(error);
1380 
1381 	__SetPageUptodate(vmf->cow_page);
1382 	ret = finish_fault(vmf);
1383 	if (!ret)
1384 		return VM_FAULT_DONE_COW;
1385 	return ret;
1386 }
1387 
1388 /**
1389  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1390  * @vmf:	vm fault instance
1391  * @iter:	iomap iter
1392  * @pfnp:	pfn to be returned
1393  * @xas:	the dax mapping tree of a file
1394  * @entry:	an unlocked dax entry to be inserted
1395  * @pmd:	distinguish whether it is a pmd fault
1396  */
1397 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1398 		const struct iomap_iter *iter, pfn_t *pfnp,
1399 		struct xa_state *xas, void **entry, bool pmd)
1400 {
1401 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1402 	const struct iomap *iomap = &iter->iomap;
1403 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1404 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1405 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1406 	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1407 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1408 	int err = 0;
1409 	pfn_t pfn;
1410 
1411 	if (!pmd && vmf->cow_page)
1412 		return dax_fault_cow_page(vmf, iter);
1413 
1414 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1415 	if (!write &&
1416 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1417 		if (!pmd)
1418 			return dax_load_hole(xas, mapping, entry, vmf);
1419 		return dax_pmd_load_hole(xas, vmf, iomap, entry);
1420 	}
1421 
1422 	if (iomap->type != IOMAP_MAPPED) {
1423 		WARN_ON_ONCE(1);
1424 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1425 	}
1426 
1427 	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1428 	if (err)
1429 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1430 
1431 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1432 				  write && !sync);
1433 
1434 	if (sync)
1435 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1436 
1437 	/* insert PMD pfn */
1438 	if (pmd)
1439 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1440 
1441 	/* insert PTE pfn */
1442 	if (write)
1443 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1444 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1445 }
1446 
1447 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1448 			       int *iomap_errp, const struct iomap_ops *ops)
1449 {
1450 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1451 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1452 	struct iomap_iter iter = {
1453 		.inode		= mapping->host,
1454 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1455 		.len		= PAGE_SIZE,
1456 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1457 	};
1458 	vm_fault_t ret = 0;
1459 	void *entry;
1460 	int error;
1461 
1462 	trace_dax_pte_fault(iter.inode, vmf, ret);
1463 	/*
1464 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1465 	 * to hold locks serializing us with truncate / punch hole so this is
1466 	 * a reliable test.
1467 	 */
1468 	if (iter.pos >= i_size_read(iter.inode)) {
1469 		ret = VM_FAULT_SIGBUS;
1470 		goto out;
1471 	}
1472 
1473 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1474 		iter.flags |= IOMAP_WRITE;
1475 
1476 	entry = grab_mapping_entry(&xas, mapping, 0);
1477 	if (xa_is_internal(entry)) {
1478 		ret = xa_to_internal(entry);
1479 		goto out;
1480 	}
1481 
1482 	/*
1483 	 * It is possible, particularly with mixed reads & writes to private
1484 	 * mappings, that we have raced with a PMD fault that overlaps with
1485 	 * the PTE we need to set up.  If so just return and the fault will be
1486 	 * retried.
1487 	 */
1488 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1489 		ret = VM_FAULT_NOPAGE;
1490 		goto unlock_entry;
1491 	}
1492 
1493 	while ((error = iomap_iter(&iter, ops)) > 0) {
1494 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1495 			iter.processed = -EIO;	/* fs corruption? */
1496 			continue;
1497 		}
1498 
1499 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1500 		if (ret != VM_FAULT_SIGBUS &&
1501 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1502 			count_vm_event(PGMAJFAULT);
1503 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1504 			ret |= VM_FAULT_MAJOR;
1505 		}
1506 
1507 		if (!(ret & VM_FAULT_ERROR))
1508 			iter.processed = PAGE_SIZE;
1509 	}
1510 
1511 	if (iomap_errp)
1512 		*iomap_errp = error;
1513 	if (!ret && error)
1514 		ret = dax_fault_return(error);
1515 
1516 unlock_entry:
1517 	dax_unlock_entry(&xas, entry);
1518 out:
1519 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1520 	return ret;
1521 }
1522 
1523 #ifdef CONFIG_FS_DAX_PMD
1524 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1525 		pgoff_t max_pgoff)
1526 {
1527 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1528 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1529 
1530 	/*
1531 	 * Make sure that the faulting address's PMD offset (color) matches
1532 	 * the PMD offset from the start of the file.  This is necessary so
1533 	 * that a PMD range in the page table overlaps exactly with a PMD
1534 	 * range in the page cache.
1535 	 */
1536 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1537 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1538 		return true;
1539 
1540 	/* Fall back to PTEs if we're going to COW */
1541 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1542 		return true;
1543 
1544 	/* If the PMD would extend outside the VMA */
1545 	if (pmd_addr < vmf->vma->vm_start)
1546 		return true;
1547 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1548 		return true;
1549 
1550 	/* If the PMD would extend beyond the file size */
1551 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1552 		return true;
1553 
1554 	return false;
1555 }
1556 
1557 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1558 			       const struct iomap_ops *ops)
1559 {
1560 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1561 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1562 	struct iomap_iter iter = {
1563 		.inode		= mapping->host,
1564 		.len		= PMD_SIZE,
1565 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1566 	};
1567 	vm_fault_t ret = VM_FAULT_FALLBACK;
1568 	pgoff_t max_pgoff;
1569 	void *entry;
1570 	int error;
1571 
1572 	if (vmf->flags & FAULT_FLAG_WRITE)
1573 		iter.flags |= IOMAP_WRITE;
1574 
1575 	/*
1576 	 * Check whether offset isn't beyond end of file now. Caller is
1577 	 * supposed to hold locks serializing us with truncate / punch hole so
1578 	 * this is a reliable test.
1579 	 */
1580 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1581 
1582 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1583 
1584 	if (xas.xa_index >= max_pgoff) {
1585 		ret = VM_FAULT_SIGBUS;
1586 		goto out;
1587 	}
1588 
1589 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1590 		goto fallback;
1591 
1592 	/*
1593 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1594 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1595 	 * entry is already in the array, for instance), it will return
1596 	 * VM_FAULT_FALLBACK.
1597 	 */
1598 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1599 	if (xa_is_internal(entry)) {
1600 		ret = xa_to_internal(entry);
1601 		goto fallback;
1602 	}
1603 
1604 	/*
1605 	 * It is possible, particularly with mixed reads & writes to private
1606 	 * mappings, that we have raced with a PTE fault that overlaps with
1607 	 * the PMD we need to set up.  If so just return and the fault will be
1608 	 * retried.
1609 	 */
1610 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1611 			!pmd_devmap(*vmf->pmd)) {
1612 		ret = 0;
1613 		goto unlock_entry;
1614 	}
1615 
1616 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1617 	while ((error = iomap_iter(&iter, ops)) > 0) {
1618 		if (iomap_length(&iter) < PMD_SIZE)
1619 			continue; /* actually breaks out of the loop */
1620 
1621 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1622 		if (ret != VM_FAULT_FALLBACK)
1623 			iter.processed = PMD_SIZE;
1624 	}
1625 
1626 unlock_entry:
1627 	dax_unlock_entry(&xas, entry);
1628 fallback:
1629 	if (ret == VM_FAULT_FALLBACK) {
1630 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1631 		count_vm_event(THP_FAULT_FALLBACK);
1632 	}
1633 out:
1634 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1635 	return ret;
1636 }
1637 #else
1638 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1639 			       const struct iomap_ops *ops)
1640 {
1641 	return VM_FAULT_FALLBACK;
1642 }
1643 #endif /* CONFIG_FS_DAX_PMD */
1644 
1645 /**
1646  * dax_iomap_fault - handle a page fault on a DAX file
1647  * @vmf: The description of the fault
1648  * @pe_size: Size of the page to fault in
1649  * @pfnp: PFN to insert for synchronous faults if fsync is required
1650  * @iomap_errp: Storage for detailed error code in case of error
1651  * @ops: Iomap ops passed from the file system
1652  *
1653  * When a page fault occurs, filesystems may call this helper in
1654  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1655  * has done all the necessary locking for page fault to proceed
1656  * successfully.
1657  */
1658 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1659 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1660 {
1661 	switch (pe_size) {
1662 	case PE_SIZE_PTE:
1663 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1664 	case PE_SIZE_PMD:
1665 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1666 	default:
1667 		return VM_FAULT_FALLBACK;
1668 	}
1669 }
1670 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1671 
1672 /*
1673  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1674  * @vmf: The description of the fault
1675  * @pfn: PFN to insert
1676  * @order: Order of entry to insert.
1677  *
1678  * This function inserts a writeable PTE or PMD entry into the page tables
1679  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1680  */
1681 static vm_fault_t
1682 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1683 {
1684 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1685 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1686 	void *entry;
1687 	vm_fault_t ret;
1688 
1689 	xas_lock_irq(&xas);
1690 	entry = get_unlocked_entry(&xas, order);
1691 	/* Did we race with someone splitting entry or so? */
1692 	if (!entry || dax_is_conflict(entry) ||
1693 	    (order == 0 && !dax_is_pte_entry(entry))) {
1694 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1695 		xas_unlock_irq(&xas);
1696 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1697 						      VM_FAULT_NOPAGE);
1698 		return VM_FAULT_NOPAGE;
1699 	}
1700 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1701 	dax_lock_entry(&xas, entry);
1702 	xas_unlock_irq(&xas);
1703 	if (order == 0)
1704 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1705 #ifdef CONFIG_FS_DAX_PMD
1706 	else if (order == PMD_ORDER)
1707 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1708 #endif
1709 	else
1710 		ret = VM_FAULT_FALLBACK;
1711 	dax_unlock_entry(&xas, entry);
1712 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1713 	return ret;
1714 }
1715 
1716 /**
1717  * dax_finish_sync_fault - finish synchronous page fault
1718  * @vmf: The description of the fault
1719  * @pe_size: Size of entry to be inserted
1720  * @pfn: PFN to insert
1721  *
1722  * This function ensures that the file range touched by the page fault is
1723  * stored persistently on the media and handles inserting of appropriate page
1724  * table entry.
1725  */
1726 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1727 		enum page_entry_size pe_size, pfn_t pfn)
1728 {
1729 	int err;
1730 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1731 	unsigned int order = pe_order(pe_size);
1732 	size_t len = PAGE_SIZE << order;
1733 
1734 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1735 	if (err)
1736 		return VM_FAULT_SIGBUS;
1737 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1738 }
1739 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1740