1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pmem.h> 28 #include <linux/sched.h> 29 #include <linux/uio.h> 30 #include <linux/vmstat.h> 31 32 /* 33 * dax_clear_blocks() is called from within transaction context from XFS, 34 * and hence this means the stack from this point must follow GFP_NOFS 35 * semantics for all operations. 36 */ 37 int dax_clear_blocks(struct inode *inode, sector_t block, long size) 38 { 39 struct block_device *bdev = inode->i_sb->s_bdev; 40 sector_t sector = block << (inode->i_blkbits - 9); 41 42 might_sleep(); 43 do { 44 void __pmem *addr; 45 unsigned long pfn; 46 long count; 47 48 count = bdev_direct_access(bdev, sector, &addr, &pfn, size); 49 if (count < 0) 50 return count; 51 BUG_ON(size < count); 52 while (count > 0) { 53 unsigned pgsz = PAGE_SIZE - offset_in_page(addr); 54 if (pgsz > count) 55 pgsz = count; 56 clear_pmem(addr, pgsz); 57 addr += pgsz; 58 size -= pgsz; 59 count -= pgsz; 60 BUG_ON(pgsz & 511); 61 sector += pgsz / 512; 62 cond_resched(); 63 } 64 } while (size); 65 66 wmb_pmem(); 67 return 0; 68 } 69 EXPORT_SYMBOL_GPL(dax_clear_blocks); 70 71 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr, 72 unsigned blkbits) 73 { 74 unsigned long pfn; 75 sector_t sector = bh->b_blocknr << (blkbits - 9); 76 return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size); 77 } 78 79 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */ 80 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first, 81 loff_t pos, loff_t end) 82 { 83 loff_t final = end - pos + first; /* The final byte of the buffer */ 84 85 if (first > 0) 86 clear_pmem(addr, first); 87 if (final < size) 88 clear_pmem(addr + final, size - final); 89 } 90 91 static bool buffer_written(struct buffer_head *bh) 92 { 93 return buffer_mapped(bh) && !buffer_unwritten(bh); 94 } 95 96 /* 97 * When ext4 encounters a hole, it returns without modifying the buffer_head 98 * which means that we can't trust b_size. To cope with this, we set b_state 99 * to 0 before calling get_block and, if any bit is set, we know we can trust 100 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is 101 * and would save us time calling get_block repeatedly. 102 */ 103 static bool buffer_size_valid(struct buffer_head *bh) 104 { 105 return bh->b_state != 0; 106 } 107 108 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, 109 loff_t start, loff_t end, get_block_t get_block, 110 struct buffer_head *bh) 111 { 112 ssize_t retval = 0; 113 loff_t pos = start; 114 loff_t max = start; 115 loff_t bh_max = start; 116 void __pmem *addr; 117 bool hole = false; 118 bool need_wmb = false; 119 120 if (iov_iter_rw(iter) != WRITE) 121 end = min(end, i_size_read(inode)); 122 123 while (pos < end) { 124 size_t len; 125 if (pos == max) { 126 unsigned blkbits = inode->i_blkbits; 127 long page = pos >> PAGE_SHIFT; 128 sector_t block = page << (PAGE_SHIFT - blkbits); 129 unsigned first = pos - (block << blkbits); 130 long size; 131 132 if (pos == bh_max) { 133 bh->b_size = PAGE_ALIGN(end - pos); 134 bh->b_state = 0; 135 retval = get_block(inode, block, bh, 136 iov_iter_rw(iter) == WRITE); 137 if (retval) 138 break; 139 if (!buffer_size_valid(bh)) 140 bh->b_size = 1 << blkbits; 141 bh_max = pos - first + bh->b_size; 142 } else { 143 unsigned done = bh->b_size - 144 (bh_max - (pos - first)); 145 bh->b_blocknr += done >> blkbits; 146 bh->b_size -= done; 147 } 148 149 hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh); 150 if (hole) { 151 addr = NULL; 152 size = bh->b_size - first; 153 } else { 154 retval = dax_get_addr(bh, &addr, blkbits); 155 if (retval < 0) 156 break; 157 if (buffer_unwritten(bh) || buffer_new(bh)) { 158 dax_new_buf(addr, retval, first, pos, 159 end); 160 need_wmb = true; 161 } 162 addr += first; 163 size = retval - first; 164 } 165 max = min(pos + size, end); 166 } 167 168 if (iov_iter_rw(iter) == WRITE) { 169 len = copy_from_iter_pmem(addr, max - pos, iter); 170 need_wmb = true; 171 } else if (!hole) 172 len = copy_to_iter((void __force *)addr, max - pos, 173 iter); 174 else 175 len = iov_iter_zero(max - pos, iter); 176 177 if (!len) { 178 retval = -EFAULT; 179 break; 180 } 181 182 pos += len; 183 addr += len; 184 } 185 186 if (need_wmb) 187 wmb_pmem(); 188 189 return (pos == start) ? retval : pos - start; 190 } 191 192 /** 193 * dax_do_io - Perform I/O to a DAX file 194 * @iocb: The control block for this I/O 195 * @inode: The file which the I/O is directed at 196 * @iter: The addresses to do I/O from or to 197 * @pos: The file offset where the I/O starts 198 * @get_block: The filesystem method used to translate file offsets to blocks 199 * @end_io: A filesystem callback for I/O completion 200 * @flags: See below 201 * 202 * This function uses the same locking scheme as do_blockdev_direct_IO: 203 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the 204 * caller for writes. For reads, we take and release the i_mutex ourselves. 205 * If DIO_LOCKING is not set, the filesystem takes care of its own locking. 206 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O 207 * is in progress. 208 */ 209 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, 210 struct iov_iter *iter, loff_t pos, get_block_t get_block, 211 dio_iodone_t end_io, int flags) 212 { 213 struct buffer_head bh; 214 ssize_t retval = -EINVAL; 215 loff_t end = pos + iov_iter_count(iter); 216 217 memset(&bh, 0, sizeof(bh)); 218 219 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) { 220 struct address_space *mapping = inode->i_mapping; 221 mutex_lock(&inode->i_mutex); 222 retval = filemap_write_and_wait_range(mapping, pos, end - 1); 223 if (retval) { 224 mutex_unlock(&inode->i_mutex); 225 goto out; 226 } 227 } 228 229 /* Protects against truncate */ 230 if (!(flags & DIO_SKIP_DIO_COUNT)) 231 inode_dio_begin(inode); 232 233 retval = dax_io(inode, iter, pos, end, get_block, &bh); 234 235 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) 236 mutex_unlock(&inode->i_mutex); 237 238 if ((retval > 0) && end_io) 239 end_io(iocb, pos, retval, bh.b_private); 240 241 if (!(flags & DIO_SKIP_DIO_COUNT)) 242 inode_dio_end(inode); 243 out: 244 return retval; 245 } 246 EXPORT_SYMBOL_GPL(dax_do_io); 247 248 /* 249 * The user has performed a load from a hole in the file. Allocating 250 * a new page in the file would cause excessive storage usage for 251 * workloads with sparse files. We allocate a page cache page instead. 252 * We'll kick it out of the page cache if it's ever written to, 253 * otherwise it will simply fall out of the page cache under memory 254 * pressure without ever having been dirtied. 255 */ 256 static int dax_load_hole(struct address_space *mapping, struct page *page, 257 struct vm_fault *vmf) 258 { 259 unsigned long size; 260 struct inode *inode = mapping->host; 261 if (!page) 262 page = find_or_create_page(mapping, vmf->pgoff, 263 GFP_KERNEL | __GFP_ZERO); 264 if (!page) 265 return VM_FAULT_OOM; 266 /* Recheck i_size under page lock to avoid truncate race */ 267 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 268 if (vmf->pgoff >= size) { 269 unlock_page(page); 270 page_cache_release(page); 271 return VM_FAULT_SIGBUS; 272 } 273 274 vmf->page = page; 275 return VM_FAULT_LOCKED; 276 } 277 278 static int copy_user_bh(struct page *to, struct buffer_head *bh, 279 unsigned blkbits, unsigned long vaddr) 280 { 281 void __pmem *vfrom; 282 void *vto; 283 284 if (dax_get_addr(bh, &vfrom, blkbits) < 0) 285 return -EIO; 286 vto = kmap_atomic(to); 287 copy_user_page(vto, (void __force *)vfrom, vaddr, to); 288 kunmap_atomic(vto); 289 return 0; 290 } 291 292 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh, 293 struct vm_area_struct *vma, struct vm_fault *vmf) 294 { 295 struct address_space *mapping = inode->i_mapping; 296 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); 297 unsigned long vaddr = (unsigned long)vmf->virtual_address; 298 void __pmem *addr; 299 unsigned long pfn; 300 pgoff_t size; 301 int error; 302 303 i_mmap_lock_read(mapping); 304 305 /* 306 * Check truncate didn't happen while we were allocating a block. 307 * If it did, this block may or may not be still allocated to the 308 * file. We can't tell the filesystem to free it because we can't 309 * take i_mutex here. In the worst case, the file still has blocks 310 * allocated past the end of the file. 311 */ 312 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 313 if (unlikely(vmf->pgoff >= size)) { 314 error = -EIO; 315 goto out; 316 } 317 318 error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size); 319 if (error < 0) 320 goto out; 321 if (error < PAGE_SIZE) { 322 error = -EIO; 323 goto out; 324 } 325 326 if (buffer_unwritten(bh) || buffer_new(bh)) { 327 clear_pmem(addr, PAGE_SIZE); 328 wmb_pmem(); 329 } 330 331 error = vm_insert_mixed(vma, vaddr, pfn); 332 333 out: 334 i_mmap_unlock_read(mapping); 335 336 return error; 337 } 338 339 /** 340 * __dax_fault - handle a page fault on a DAX file 341 * @vma: The virtual memory area where the fault occurred 342 * @vmf: The description of the fault 343 * @get_block: The filesystem method used to translate file offsets to blocks 344 * @complete_unwritten: The filesystem method used to convert unwritten blocks 345 * to written so the data written to them is exposed. This is required for 346 * required by write faults for filesystems that will return unwritten 347 * extent mappings from @get_block, but it is optional for reads as 348 * dax_insert_mapping() will always zero unwritten blocks. If the fs does 349 * not support unwritten extents, the it should pass NULL. 350 * 351 * When a page fault occurs, filesystems may call this helper in their 352 * fault handler for DAX files. __dax_fault() assumes the caller has done all 353 * the necessary locking for the page fault to proceed successfully. 354 */ 355 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 356 get_block_t get_block, dax_iodone_t complete_unwritten) 357 { 358 struct file *file = vma->vm_file; 359 struct address_space *mapping = file->f_mapping; 360 struct inode *inode = mapping->host; 361 struct page *page; 362 struct buffer_head bh; 363 unsigned long vaddr = (unsigned long)vmf->virtual_address; 364 unsigned blkbits = inode->i_blkbits; 365 sector_t block; 366 pgoff_t size; 367 int error; 368 int major = 0; 369 370 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 371 if (vmf->pgoff >= size) 372 return VM_FAULT_SIGBUS; 373 374 memset(&bh, 0, sizeof(bh)); 375 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); 376 bh.b_size = PAGE_SIZE; 377 378 repeat: 379 page = find_get_page(mapping, vmf->pgoff); 380 if (page) { 381 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 382 page_cache_release(page); 383 return VM_FAULT_RETRY; 384 } 385 if (unlikely(page->mapping != mapping)) { 386 unlock_page(page); 387 page_cache_release(page); 388 goto repeat; 389 } 390 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 391 if (unlikely(vmf->pgoff >= size)) { 392 /* 393 * We have a struct page covering a hole in the file 394 * from a read fault and we've raced with a truncate 395 */ 396 error = -EIO; 397 goto unlock_page; 398 } 399 } 400 401 error = get_block(inode, block, &bh, 0); 402 if (!error && (bh.b_size < PAGE_SIZE)) 403 error = -EIO; /* fs corruption? */ 404 if (error) 405 goto unlock_page; 406 407 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) { 408 if (vmf->flags & FAULT_FLAG_WRITE) { 409 error = get_block(inode, block, &bh, 1); 410 count_vm_event(PGMAJFAULT); 411 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 412 major = VM_FAULT_MAJOR; 413 if (!error && (bh.b_size < PAGE_SIZE)) 414 error = -EIO; 415 if (error) 416 goto unlock_page; 417 } else { 418 return dax_load_hole(mapping, page, vmf); 419 } 420 } 421 422 if (vmf->cow_page) { 423 struct page *new_page = vmf->cow_page; 424 if (buffer_written(&bh)) 425 error = copy_user_bh(new_page, &bh, blkbits, vaddr); 426 else 427 clear_user_highpage(new_page, vaddr); 428 if (error) 429 goto unlock_page; 430 vmf->page = page; 431 if (!page) { 432 i_mmap_lock_read(mapping); 433 /* Check we didn't race with truncate */ 434 size = (i_size_read(inode) + PAGE_SIZE - 1) >> 435 PAGE_SHIFT; 436 if (vmf->pgoff >= size) { 437 i_mmap_unlock_read(mapping); 438 error = -EIO; 439 goto out; 440 } 441 } 442 return VM_FAULT_LOCKED; 443 } 444 445 /* Check we didn't race with a read fault installing a new page */ 446 if (!page && major) 447 page = find_lock_page(mapping, vmf->pgoff); 448 449 if (page) { 450 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 451 PAGE_CACHE_SIZE, 0); 452 delete_from_page_cache(page); 453 unlock_page(page); 454 page_cache_release(page); 455 } 456 457 /* 458 * If we successfully insert the new mapping over an unwritten extent, 459 * we need to ensure we convert the unwritten extent. If there is an 460 * error inserting the mapping, the filesystem needs to leave it as 461 * unwritten to prevent exposure of the stale underlying data to 462 * userspace, but we still need to call the completion function so 463 * the private resources on the mapping buffer can be released. We 464 * indicate what the callback should do via the uptodate variable, same 465 * as for normal BH based IO completions. 466 */ 467 error = dax_insert_mapping(inode, &bh, vma, vmf); 468 if (buffer_unwritten(&bh)) { 469 if (complete_unwritten) 470 complete_unwritten(&bh, !error); 471 else 472 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE)); 473 } 474 475 out: 476 if (error == -ENOMEM) 477 return VM_FAULT_OOM | major; 478 /* -EBUSY is fine, somebody else faulted on the same PTE */ 479 if ((error < 0) && (error != -EBUSY)) 480 return VM_FAULT_SIGBUS | major; 481 return VM_FAULT_NOPAGE | major; 482 483 unlock_page: 484 if (page) { 485 unlock_page(page); 486 page_cache_release(page); 487 } 488 goto out; 489 } 490 EXPORT_SYMBOL(__dax_fault); 491 492 /** 493 * dax_fault - handle a page fault on a DAX file 494 * @vma: The virtual memory area where the fault occurred 495 * @vmf: The description of the fault 496 * @get_block: The filesystem method used to translate file offsets to blocks 497 * 498 * When a page fault occurs, filesystems may call this helper in their 499 * fault handler for DAX files. 500 */ 501 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 502 get_block_t get_block, dax_iodone_t complete_unwritten) 503 { 504 int result; 505 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 506 507 if (vmf->flags & FAULT_FLAG_WRITE) { 508 sb_start_pagefault(sb); 509 file_update_time(vma->vm_file); 510 } 511 result = __dax_fault(vma, vmf, get_block, complete_unwritten); 512 if (vmf->flags & FAULT_FLAG_WRITE) 513 sb_end_pagefault(sb); 514 515 return result; 516 } 517 EXPORT_SYMBOL_GPL(dax_fault); 518 519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 520 /* 521 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 522 * more often than one might expect in the below function. 523 */ 524 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 525 526 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, 527 pmd_t *pmd, unsigned int flags, get_block_t get_block, 528 dax_iodone_t complete_unwritten) 529 { 530 struct file *file = vma->vm_file; 531 struct address_space *mapping = file->f_mapping; 532 struct inode *inode = mapping->host; 533 struct buffer_head bh; 534 unsigned blkbits = inode->i_blkbits; 535 unsigned long pmd_addr = address & PMD_MASK; 536 bool write = flags & FAULT_FLAG_WRITE; 537 long length; 538 void __pmem *kaddr; 539 pgoff_t size, pgoff; 540 sector_t block, sector; 541 unsigned long pfn; 542 int result = 0; 543 544 /* dax pmd mappings are broken wrt gup and fork */ 545 if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) 546 return VM_FAULT_FALLBACK; 547 548 /* Fall back to PTEs if we're going to COW */ 549 if (write && !(vma->vm_flags & VM_SHARED)) 550 return VM_FAULT_FALLBACK; 551 /* If the PMD would extend outside the VMA */ 552 if (pmd_addr < vma->vm_start) 553 return VM_FAULT_FALLBACK; 554 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 555 return VM_FAULT_FALLBACK; 556 557 pgoff = linear_page_index(vma, pmd_addr); 558 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 559 if (pgoff >= size) 560 return VM_FAULT_SIGBUS; 561 /* If the PMD would cover blocks out of the file */ 562 if ((pgoff | PG_PMD_COLOUR) >= size) 563 return VM_FAULT_FALLBACK; 564 565 memset(&bh, 0, sizeof(bh)); 566 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); 567 568 bh.b_size = PMD_SIZE; 569 length = get_block(inode, block, &bh, write); 570 if (length) 571 return VM_FAULT_SIGBUS; 572 i_mmap_lock_read(mapping); 573 574 /* 575 * If the filesystem isn't willing to tell us the length of a hole, 576 * just fall back to PTEs. Calling get_block 512 times in a loop 577 * would be silly. 578 */ 579 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) 580 goto fallback; 581 582 /* 583 * If we allocated new storage, make sure no process has any 584 * zero pages covering this hole 585 */ 586 if (buffer_new(&bh)) { 587 i_mmap_unlock_read(mapping); 588 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0); 589 i_mmap_lock_read(mapping); 590 } 591 592 /* 593 * If a truncate happened while we were allocating blocks, we may 594 * leave blocks allocated to the file that are beyond EOF. We can't 595 * take i_mutex here, so just leave them hanging; they'll be freed 596 * when the file is deleted. 597 */ 598 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 599 if (pgoff >= size) { 600 result = VM_FAULT_SIGBUS; 601 goto out; 602 } 603 if ((pgoff | PG_PMD_COLOUR) >= size) 604 goto fallback; 605 606 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) { 607 spinlock_t *ptl; 608 pmd_t entry; 609 struct page *zero_page = get_huge_zero_page(); 610 611 if (unlikely(!zero_page)) 612 goto fallback; 613 614 ptl = pmd_lock(vma->vm_mm, pmd); 615 if (!pmd_none(*pmd)) { 616 spin_unlock(ptl); 617 goto fallback; 618 } 619 620 entry = mk_pmd(zero_page, vma->vm_page_prot); 621 entry = pmd_mkhuge(entry); 622 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); 623 result = VM_FAULT_NOPAGE; 624 spin_unlock(ptl); 625 } else { 626 sector = bh.b_blocknr << (blkbits - 9); 627 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn, 628 bh.b_size); 629 if (length < 0) { 630 result = VM_FAULT_SIGBUS; 631 goto out; 632 } 633 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR)) 634 goto fallback; 635 636 /* 637 * TODO: teach vmf_insert_pfn_pmd() to support 638 * 'pte_special' for pmds 639 */ 640 if (pfn_valid(pfn)) 641 goto fallback; 642 643 if (buffer_unwritten(&bh) || buffer_new(&bh)) { 644 int i; 645 for (i = 0; i < PTRS_PER_PMD; i++) 646 clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE); 647 wmb_pmem(); 648 count_vm_event(PGMAJFAULT); 649 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 650 result |= VM_FAULT_MAJOR; 651 } 652 653 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write); 654 } 655 656 out: 657 i_mmap_unlock_read(mapping); 658 659 if (buffer_unwritten(&bh)) 660 complete_unwritten(&bh, !(result & VM_FAULT_ERROR)); 661 662 return result; 663 664 fallback: 665 count_vm_event(THP_FAULT_FALLBACK); 666 result = VM_FAULT_FALLBACK; 667 goto out; 668 } 669 EXPORT_SYMBOL_GPL(__dax_pmd_fault); 670 671 /** 672 * dax_pmd_fault - handle a PMD fault on a DAX file 673 * @vma: The virtual memory area where the fault occurred 674 * @vmf: The description of the fault 675 * @get_block: The filesystem method used to translate file offsets to blocks 676 * 677 * When a page fault occurs, filesystems may call this helper in their 678 * pmd_fault handler for DAX files. 679 */ 680 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, 681 pmd_t *pmd, unsigned int flags, get_block_t get_block, 682 dax_iodone_t complete_unwritten) 683 { 684 int result; 685 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 686 687 if (flags & FAULT_FLAG_WRITE) { 688 sb_start_pagefault(sb); 689 file_update_time(vma->vm_file); 690 } 691 result = __dax_pmd_fault(vma, address, pmd, flags, get_block, 692 complete_unwritten); 693 if (flags & FAULT_FLAG_WRITE) 694 sb_end_pagefault(sb); 695 696 return result; 697 } 698 EXPORT_SYMBOL_GPL(dax_pmd_fault); 699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 700 701 /** 702 * dax_pfn_mkwrite - handle first write to DAX page 703 * @vma: The virtual memory area where the fault occurred 704 * @vmf: The description of the fault 705 * 706 */ 707 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 708 { 709 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 710 711 sb_start_pagefault(sb); 712 file_update_time(vma->vm_file); 713 sb_end_pagefault(sb); 714 return VM_FAULT_NOPAGE; 715 } 716 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 717 718 /** 719 * dax_zero_page_range - zero a range within a page of a DAX file 720 * @inode: The file being truncated 721 * @from: The file offset that is being truncated to 722 * @length: The number of bytes to zero 723 * @get_block: The filesystem method used to translate file offsets to blocks 724 * 725 * This function can be called by a filesystem when it is zeroing part of a 726 * page in a DAX file. This is intended for hole-punch operations. If 727 * you are truncating a file, the helper function dax_truncate_page() may be 728 * more convenient. 729 * 730 * We work in terms of PAGE_CACHE_SIZE here for commonality with 731 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 732 * took care of disposing of the unnecessary blocks. Even if the filesystem 733 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 734 * since the file might be mmapped. 735 */ 736 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, 737 get_block_t get_block) 738 { 739 struct buffer_head bh; 740 pgoff_t index = from >> PAGE_CACHE_SHIFT; 741 unsigned offset = from & (PAGE_CACHE_SIZE-1); 742 int err; 743 744 /* Block boundary? Nothing to do */ 745 if (!length) 746 return 0; 747 BUG_ON((offset + length) > PAGE_CACHE_SIZE); 748 749 memset(&bh, 0, sizeof(bh)); 750 bh.b_size = PAGE_CACHE_SIZE; 751 err = get_block(inode, index, &bh, 0); 752 if (err < 0) 753 return err; 754 if (buffer_written(&bh)) { 755 void __pmem *addr; 756 err = dax_get_addr(&bh, &addr, inode->i_blkbits); 757 if (err < 0) 758 return err; 759 clear_pmem(addr + offset, length); 760 wmb_pmem(); 761 } 762 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(dax_zero_page_range); 766 767 /** 768 * dax_truncate_page - handle a partial page being truncated in a DAX file 769 * @inode: The file being truncated 770 * @from: The file offset that is being truncated to 771 * @get_block: The filesystem method used to translate file offsets to blocks 772 * 773 * Similar to block_truncate_page(), this function can be called by a 774 * filesystem when it is truncating a DAX file to handle the partial page. 775 * 776 * We work in terms of PAGE_CACHE_SIZE here for commonality with 777 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem 778 * took care of disposing of the unnecessary blocks. Even if the filesystem 779 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page 780 * since the file might be mmapped. 781 */ 782 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) 783 { 784 unsigned length = PAGE_CACHE_ALIGN(from) - from; 785 return dax_zero_page_range(inode, from, length, get_block); 786 } 787 EXPORT_SYMBOL_GPL(dax_truncate_page); 788