xref: /openbmc/linux/fs/dax.c (revision 2359ccdd)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
48 
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 
51 static int __init init_dax_wait_table(void)
52 {
53 	int i;
54 
55 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 		init_waitqueue_head(wait_table + i);
57 	return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60 
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 	return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80 
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 			(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86 
87 static unsigned int dax_radix_order(void *entry)
88 {
89 	if ((unsigned long)entry & RADIX_DAX_PMD)
90 		return PMD_SHIFT - PAGE_SHIFT;
91 	return 0;
92 }
93 
94 static int dax_is_pmd_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98 
99 static int dax_is_pte_entry(void *entry)
100 {
101 	return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103 
104 static int dax_is_zero_entry(void *entry)
105 {
106 	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108 
109 static int dax_is_empty_entry(void *entry)
110 {
111 	return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113 
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118 	struct address_space *mapping;
119 	pgoff_t entry_start;
120 };
121 
122 struct wait_exceptional_entry_queue {
123 	wait_queue_entry_t wait;
124 	struct exceptional_entry_key key;
125 };
126 
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 	unsigned long hash;
131 
132 	/*
133 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 	 * queue to the start of that PMD.  This ensures that all offsets in
135 	 * the range covered by the PMD map to the same bit lock.
136 	 */
137 	if (dax_is_pmd_entry(entry))
138 		index &= ~PG_PMD_COLOUR;
139 
140 	key->mapping = mapping;
141 	key->entry_start = index;
142 
143 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 	return wait_table + hash;
145 }
146 
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 				       int sync, void *keyp)
149 {
150 	struct exceptional_entry_key *key = keyp;
151 	struct wait_exceptional_entry_queue *ewait =
152 		container_of(wait, struct wait_exceptional_entry_queue, wait);
153 
154 	if (key->mapping != ewait->key.mapping ||
155 	    key->entry_start != ewait->key.entry_start)
156 		return 0;
157 	return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159 
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 		pgoff_t index, void *entry, bool wake_all)
167 {
168 	struct exceptional_entry_key key;
169 	wait_queue_head_t *wq;
170 
171 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
172 
173 	/*
174 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 	 * under the i_pages lock, ditto for entry handling in our callers.
176 	 * So at this point all tasks that could have seen our entry locked
177 	 * must be in the waitqueue and the following check will see them.
178 	 */
179 	if (waitqueue_active(wq))
180 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182 
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 	unsigned long entry = (unsigned long)
190 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 	return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193 
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 	unsigned long entry = (unsigned long)
200 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201 
202 	entry |= RADIX_DAX_ENTRY_LOCK;
203 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 	return (void *)entry;
205 }
206 
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 	unsigned long entry = (unsigned long)
213 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214 
215 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 	return (void *)entry;
218 }
219 
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *get_unlocked_mapping_entry(struct address_space *mapping,
230 					pgoff_t index, void ***slotp)
231 {
232 	void *entry, **slot;
233 	struct wait_exceptional_entry_queue ewait;
234 	wait_queue_head_t *wq;
235 
236 	init_wait(&ewait.wait);
237 	ewait.wait.func = wake_exceptional_entry_func;
238 
239 	for (;;) {
240 		entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
241 					  &slot);
242 		if (!entry ||
243 		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
244 		    !slot_locked(mapping, slot)) {
245 			if (slotp)
246 				*slotp = slot;
247 			return entry;
248 		}
249 
250 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
251 		prepare_to_wait_exclusive(wq, &ewait.wait,
252 					  TASK_UNINTERRUPTIBLE);
253 		xa_unlock_irq(&mapping->i_pages);
254 		schedule();
255 		finish_wait(wq, &ewait.wait);
256 		xa_lock_irq(&mapping->i_pages);
257 	}
258 }
259 
260 static void dax_unlock_mapping_entry(struct address_space *mapping,
261 				     pgoff_t index)
262 {
263 	void *entry, **slot;
264 
265 	xa_lock_irq(&mapping->i_pages);
266 	entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
267 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268 			 !slot_locked(mapping, slot))) {
269 		xa_unlock_irq(&mapping->i_pages);
270 		return;
271 	}
272 	unlock_slot(mapping, slot);
273 	xa_unlock_irq(&mapping->i_pages);
274 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275 }
276 
277 static void put_locked_mapping_entry(struct address_space *mapping,
278 		pgoff_t index)
279 {
280 	dax_unlock_mapping_entry(mapping, index);
281 }
282 
283 /*
284  * Called when we are done with radix tree entry we looked up via
285  * get_unlocked_mapping_entry() and which we didn't lock in the end.
286  */
287 static void put_unlocked_mapping_entry(struct address_space *mapping,
288 				       pgoff_t index, void *entry)
289 {
290 	if (!entry)
291 		return;
292 
293 	/* We have to wake up next waiter for the radix tree entry lock */
294 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295 }
296 
297 static unsigned long dax_entry_size(void *entry)
298 {
299 	if (dax_is_zero_entry(entry))
300 		return 0;
301 	else if (dax_is_empty_entry(entry))
302 		return 0;
303 	else if (dax_is_pmd_entry(entry))
304 		return PMD_SIZE;
305 	else
306 		return PAGE_SIZE;
307 }
308 
309 static unsigned long dax_radix_end_pfn(void *entry)
310 {
311 	return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312 }
313 
314 /*
315  * Iterate through all mapped pfns represented by an entry, i.e. skip
316  * 'empty' and 'zero' entries.
317  */
318 #define for_each_mapped_pfn(entry, pfn) \
319 	for (pfn = dax_radix_pfn(entry); \
320 			pfn < dax_radix_end_pfn(entry); pfn++)
321 
322 static void dax_associate_entry(void *entry, struct address_space *mapping)
323 {
324 	unsigned long pfn;
325 
326 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327 		return;
328 
329 	for_each_mapped_pfn(entry, pfn) {
330 		struct page *page = pfn_to_page(pfn);
331 
332 		WARN_ON_ONCE(page->mapping);
333 		page->mapping = mapping;
334 	}
335 }
336 
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 		bool trunc)
339 {
340 	unsigned long pfn;
341 
342 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 		return;
344 
345 	for_each_mapped_pfn(entry, pfn) {
346 		struct page *page = pfn_to_page(pfn);
347 
348 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 		page->mapping = NULL;
351 	}
352 }
353 
354 /*
355  * Find radix tree entry at given index. If it points to an exceptional entry,
356  * return it with the radix tree entry locked. If the radix tree doesn't
357  * contain given index, create an empty exceptional entry for the index and
358  * return with it locked.
359  *
360  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
361  * either return that locked entry or will return an error.  This error will
362  * happen if there are any 4k entries within the 2MiB range that we are
363  * requesting.
364  *
365  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
366  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
367  * insertion will fail if it finds any 4k entries already in the tree, and a
368  * 4k insertion will cause an existing 2MiB entry to be unmapped and
369  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
370  * well as 2MiB empty entries.
371  *
372  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
373  * real storage backing them.  We will leave these real 2MiB DAX entries in
374  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
375  *
376  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
377  * persistent memory the benefit is doubtful. We can add that later if we can
378  * show it helps.
379  */
380 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
381 		unsigned long size_flag)
382 {
383 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
384 	void *entry, **slot;
385 
386 restart:
387 	xa_lock_irq(&mapping->i_pages);
388 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
389 
390 	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
391 		entry = ERR_PTR(-EIO);
392 		goto out_unlock;
393 	}
394 
395 	if (entry) {
396 		if (size_flag & RADIX_DAX_PMD) {
397 			if (dax_is_pte_entry(entry)) {
398 				put_unlocked_mapping_entry(mapping, index,
399 						entry);
400 				entry = ERR_PTR(-EEXIST);
401 				goto out_unlock;
402 			}
403 		} else { /* trying to grab a PTE entry */
404 			if (dax_is_pmd_entry(entry) &&
405 			    (dax_is_zero_entry(entry) ||
406 			     dax_is_empty_entry(entry))) {
407 				pmd_downgrade = true;
408 			}
409 		}
410 	}
411 
412 	/* No entry for given index? Make sure radix tree is big enough. */
413 	if (!entry || pmd_downgrade) {
414 		int err;
415 
416 		if (pmd_downgrade) {
417 			/*
418 			 * Make sure 'entry' remains valid while we drop
419 			 * the i_pages lock.
420 			 */
421 			entry = lock_slot(mapping, slot);
422 		}
423 
424 		xa_unlock_irq(&mapping->i_pages);
425 		/*
426 		 * Besides huge zero pages the only other thing that gets
427 		 * downgraded are empty entries which don't need to be
428 		 * unmapped.
429 		 */
430 		if (pmd_downgrade && dax_is_zero_entry(entry))
431 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
432 							PG_PMD_NR, false);
433 
434 		err = radix_tree_preload(
435 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
436 		if (err) {
437 			if (pmd_downgrade)
438 				put_locked_mapping_entry(mapping, index);
439 			return ERR_PTR(err);
440 		}
441 		xa_lock_irq(&mapping->i_pages);
442 
443 		if (!entry) {
444 			/*
445 			 * We needed to drop the i_pages lock while calling
446 			 * radix_tree_preload() and we didn't have an entry to
447 			 * lock.  See if another thread inserted an entry at
448 			 * our index during this time.
449 			 */
450 			entry = __radix_tree_lookup(&mapping->i_pages, index,
451 					NULL, &slot);
452 			if (entry) {
453 				radix_tree_preload_end();
454 				xa_unlock_irq(&mapping->i_pages);
455 				goto restart;
456 			}
457 		}
458 
459 		if (pmd_downgrade) {
460 			dax_disassociate_entry(entry, mapping, false);
461 			radix_tree_delete(&mapping->i_pages, index);
462 			mapping->nrexceptional--;
463 			dax_wake_mapping_entry_waiter(mapping, index, entry,
464 					true);
465 		}
466 
467 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
468 
469 		err = __radix_tree_insert(&mapping->i_pages, index,
470 				dax_radix_order(entry), entry);
471 		radix_tree_preload_end();
472 		if (err) {
473 			xa_unlock_irq(&mapping->i_pages);
474 			/*
475 			 * Our insertion of a DAX entry failed, most likely
476 			 * because we were inserting a PMD entry and it
477 			 * collided with a PTE sized entry at a different
478 			 * index in the PMD range.  We haven't inserted
479 			 * anything into the radix tree and have no waiters to
480 			 * wake.
481 			 */
482 			return ERR_PTR(err);
483 		}
484 		/* Good, we have inserted empty locked entry into the tree. */
485 		mapping->nrexceptional++;
486 		xa_unlock_irq(&mapping->i_pages);
487 		return entry;
488 	}
489 	entry = lock_slot(mapping, slot);
490  out_unlock:
491 	xa_unlock_irq(&mapping->i_pages);
492 	return entry;
493 }
494 
495 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
496 					  pgoff_t index, bool trunc)
497 {
498 	int ret = 0;
499 	void *entry;
500 	struct radix_tree_root *pages = &mapping->i_pages;
501 
502 	xa_lock_irq(pages);
503 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
504 	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
505 		goto out;
506 	if (!trunc &&
507 	    (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
508 	     radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
509 		goto out;
510 	dax_disassociate_entry(entry, mapping, trunc);
511 	radix_tree_delete(pages, index);
512 	mapping->nrexceptional--;
513 	ret = 1;
514 out:
515 	put_unlocked_mapping_entry(mapping, index, entry);
516 	xa_unlock_irq(pages);
517 	return ret;
518 }
519 /*
520  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
521  * entry to get unlocked before deleting it.
522  */
523 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
524 {
525 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
526 
527 	/*
528 	 * This gets called from truncate / punch_hole path. As such, the caller
529 	 * must hold locks protecting against concurrent modifications of the
530 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
531 	 * caller has seen exceptional entry for this index, we better find it
532 	 * at that index as well...
533 	 */
534 	WARN_ON_ONCE(!ret);
535 	return ret;
536 }
537 
538 /*
539  * Invalidate exceptional DAX entry if it is clean.
540  */
541 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
542 				      pgoff_t index)
543 {
544 	return __dax_invalidate_mapping_entry(mapping, index, false);
545 }
546 
547 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
548 		sector_t sector, size_t size, struct page *to,
549 		unsigned long vaddr)
550 {
551 	void *vto, *kaddr;
552 	pgoff_t pgoff;
553 	pfn_t pfn;
554 	long rc;
555 	int id;
556 
557 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
558 	if (rc)
559 		return rc;
560 
561 	id = dax_read_lock();
562 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
563 	if (rc < 0) {
564 		dax_read_unlock(id);
565 		return rc;
566 	}
567 	vto = kmap_atomic(to);
568 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
569 	kunmap_atomic(vto);
570 	dax_read_unlock(id);
571 	return 0;
572 }
573 
574 /*
575  * By this point grab_mapping_entry() has ensured that we have a locked entry
576  * of the appropriate size so we don't have to worry about downgrading PMDs to
577  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
578  * already in the tree, we will skip the insertion and just dirty the PMD as
579  * appropriate.
580  */
581 static void *dax_insert_mapping_entry(struct address_space *mapping,
582 				      struct vm_fault *vmf,
583 				      void *entry, pfn_t pfn_t,
584 				      unsigned long flags, bool dirty)
585 {
586 	struct radix_tree_root *pages = &mapping->i_pages;
587 	unsigned long pfn = pfn_t_to_pfn(pfn_t);
588 	pgoff_t index = vmf->pgoff;
589 	void *new_entry;
590 
591 	if (dirty)
592 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
593 
594 	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
595 		/* we are replacing a zero page with block mapping */
596 		if (dax_is_pmd_entry(entry))
597 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
598 							PG_PMD_NR, false);
599 		else /* pte entry */
600 			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
601 	}
602 
603 	xa_lock_irq(pages);
604 	new_entry = dax_radix_locked_entry(pfn, flags);
605 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
606 		dax_disassociate_entry(entry, mapping, false);
607 		dax_associate_entry(new_entry, mapping);
608 	}
609 
610 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
611 		/*
612 		 * Only swap our new entry into the radix tree if the current
613 		 * entry is a zero page or an empty entry.  If a normal PTE or
614 		 * PMD entry is already in the tree, we leave it alone.  This
615 		 * means that if we are trying to insert a PTE and the
616 		 * existing entry is a PMD, we will just leave the PMD in the
617 		 * tree and dirty it if necessary.
618 		 */
619 		struct radix_tree_node *node;
620 		void **slot;
621 		void *ret;
622 
623 		ret = __radix_tree_lookup(pages, index, &node, &slot);
624 		WARN_ON_ONCE(ret != entry);
625 		__radix_tree_replace(pages, node, slot,
626 				     new_entry, NULL);
627 		entry = new_entry;
628 	}
629 
630 	if (dirty)
631 		radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
632 
633 	xa_unlock_irq(pages);
634 	return entry;
635 }
636 
637 static inline unsigned long
638 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
639 {
640 	unsigned long address;
641 
642 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
643 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
644 	return address;
645 }
646 
647 /* Walk all mappings of a given index of a file and writeprotect them */
648 static void dax_mapping_entry_mkclean(struct address_space *mapping,
649 				      pgoff_t index, unsigned long pfn)
650 {
651 	struct vm_area_struct *vma;
652 	pte_t pte, *ptep = NULL;
653 	pmd_t *pmdp = NULL;
654 	spinlock_t *ptl;
655 
656 	i_mmap_lock_read(mapping);
657 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
658 		unsigned long address, start, end;
659 
660 		cond_resched();
661 
662 		if (!(vma->vm_flags & VM_SHARED))
663 			continue;
664 
665 		address = pgoff_address(index, vma);
666 
667 		/*
668 		 * Note because we provide start/end to follow_pte_pmd it will
669 		 * call mmu_notifier_invalidate_range_start() on our behalf
670 		 * before taking any lock.
671 		 */
672 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
673 			continue;
674 
675 		/*
676 		 * No need to call mmu_notifier_invalidate_range() as we are
677 		 * downgrading page table protection not changing it to point
678 		 * to a new page.
679 		 *
680 		 * See Documentation/vm/mmu_notifier.txt
681 		 */
682 		if (pmdp) {
683 #ifdef CONFIG_FS_DAX_PMD
684 			pmd_t pmd;
685 
686 			if (pfn != pmd_pfn(*pmdp))
687 				goto unlock_pmd;
688 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
689 				goto unlock_pmd;
690 
691 			flush_cache_page(vma, address, pfn);
692 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
693 			pmd = pmd_wrprotect(pmd);
694 			pmd = pmd_mkclean(pmd);
695 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
696 unlock_pmd:
697 #endif
698 			spin_unlock(ptl);
699 		} else {
700 			if (pfn != pte_pfn(*ptep))
701 				goto unlock_pte;
702 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
703 				goto unlock_pte;
704 
705 			flush_cache_page(vma, address, pfn);
706 			pte = ptep_clear_flush(vma, address, ptep);
707 			pte = pte_wrprotect(pte);
708 			pte = pte_mkclean(pte);
709 			set_pte_at(vma->vm_mm, address, ptep, pte);
710 unlock_pte:
711 			pte_unmap_unlock(ptep, ptl);
712 		}
713 
714 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
715 	}
716 	i_mmap_unlock_read(mapping);
717 }
718 
719 static int dax_writeback_one(struct dax_device *dax_dev,
720 		struct address_space *mapping, pgoff_t index, void *entry)
721 {
722 	struct radix_tree_root *pages = &mapping->i_pages;
723 	void *entry2, **slot;
724 	unsigned long pfn;
725 	long ret = 0;
726 	size_t size;
727 
728 	/*
729 	 * A page got tagged dirty in DAX mapping? Something is seriously
730 	 * wrong.
731 	 */
732 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
733 		return -EIO;
734 
735 	xa_lock_irq(pages);
736 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
737 	/* Entry got punched out / reallocated? */
738 	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
739 		goto put_unlocked;
740 	/*
741 	 * Entry got reallocated elsewhere? No need to writeback. We have to
742 	 * compare pfns as we must not bail out due to difference in lockbit
743 	 * or entry type.
744 	 */
745 	if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
746 		goto put_unlocked;
747 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
748 				dax_is_zero_entry(entry))) {
749 		ret = -EIO;
750 		goto put_unlocked;
751 	}
752 
753 	/* Another fsync thread may have already written back this entry */
754 	if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
755 		goto put_unlocked;
756 	/* Lock the entry to serialize with page faults */
757 	entry = lock_slot(mapping, slot);
758 	/*
759 	 * We can clear the tag now but we have to be careful so that concurrent
760 	 * dax_writeback_one() calls for the same index cannot finish before we
761 	 * actually flush the caches. This is achieved as the calls will look
762 	 * at the entry only under the i_pages lock and once they do that
763 	 * they will see the entry locked and wait for it to unlock.
764 	 */
765 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
766 	xa_unlock_irq(pages);
767 
768 	/*
769 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
770 	 * in the middle of a PMD, the 'index' we are given will be aligned to
771 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
772 	 * This allows us to flush for PMD_SIZE and not have to worry about
773 	 * partial PMD writebacks.
774 	 */
775 	pfn = dax_radix_pfn(entry);
776 	size = PAGE_SIZE << dax_radix_order(entry);
777 
778 	dax_mapping_entry_mkclean(mapping, index, pfn);
779 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
780 	/*
781 	 * After we have flushed the cache, we can clear the dirty tag. There
782 	 * cannot be new dirty data in the pfn after the flush has completed as
783 	 * the pfn mappings are writeprotected and fault waits for mapping
784 	 * entry lock.
785 	 */
786 	xa_lock_irq(pages);
787 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
788 	xa_unlock_irq(pages);
789 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
790 	put_locked_mapping_entry(mapping, index);
791 	return ret;
792 
793  put_unlocked:
794 	put_unlocked_mapping_entry(mapping, index, entry2);
795 	xa_unlock_irq(pages);
796 	return ret;
797 }
798 
799 /*
800  * Flush the mapping to the persistent domain within the byte range of [start,
801  * end]. This is required by data integrity operations to ensure file data is
802  * on persistent storage prior to completion of the operation.
803  */
804 int dax_writeback_mapping_range(struct address_space *mapping,
805 		struct block_device *bdev, struct writeback_control *wbc)
806 {
807 	struct inode *inode = mapping->host;
808 	pgoff_t start_index, end_index;
809 	pgoff_t indices[PAGEVEC_SIZE];
810 	struct dax_device *dax_dev;
811 	struct pagevec pvec;
812 	bool done = false;
813 	int i, ret = 0;
814 
815 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
816 		return -EIO;
817 
818 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
819 		return 0;
820 
821 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
822 	if (!dax_dev)
823 		return -EIO;
824 
825 	start_index = wbc->range_start >> PAGE_SHIFT;
826 	end_index = wbc->range_end >> PAGE_SHIFT;
827 
828 	trace_dax_writeback_range(inode, start_index, end_index);
829 
830 	tag_pages_for_writeback(mapping, start_index, end_index);
831 
832 	pagevec_init(&pvec);
833 	while (!done) {
834 		pvec.nr = find_get_entries_tag(mapping, start_index,
835 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
836 				pvec.pages, indices);
837 
838 		if (pvec.nr == 0)
839 			break;
840 
841 		for (i = 0; i < pvec.nr; i++) {
842 			if (indices[i] > end_index) {
843 				done = true;
844 				break;
845 			}
846 
847 			ret = dax_writeback_one(dax_dev, mapping, indices[i],
848 					pvec.pages[i]);
849 			if (ret < 0) {
850 				mapping_set_error(mapping, ret);
851 				goto out;
852 			}
853 		}
854 		start_index = indices[pvec.nr - 1] + 1;
855 	}
856 out:
857 	put_dax(dax_dev);
858 	trace_dax_writeback_range_done(inode, start_index, end_index);
859 	return (ret < 0 ? ret : 0);
860 }
861 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
862 
863 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
864 {
865 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
866 }
867 
868 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
869 			 pfn_t *pfnp)
870 {
871 	const sector_t sector = dax_iomap_sector(iomap, pos);
872 	pgoff_t pgoff;
873 	void *kaddr;
874 	int id, rc;
875 	long length;
876 
877 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
878 	if (rc)
879 		return rc;
880 	id = dax_read_lock();
881 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
882 				   &kaddr, pfnp);
883 	if (length < 0) {
884 		rc = length;
885 		goto out;
886 	}
887 	rc = -EINVAL;
888 	if (PFN_PHYS(length) < size)
889 		goto out;
890 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
891 		goto out;
892 	/* For larger pages we need devmap */
893 	if (length > 1 && !pfn_t_devmap(*pfnp))
894 		goto out;
895 	rc = 0;
896 out:
897 	dax_read_unlock(id);
898 	return rc;
899 }
900 
901 /*
902  * The user has performed a load from a hole in the file.  Allocating a new
903  * page in the file would cause excessive storage usage for workloads with
904  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
905  * If this page is ever written to we will re-fault and change the mapping to
906  * point to real DAX storage instead.
907  */
908 static int dax_load_hole(struct address_space *mapping, void *entry,
909 			 struct vm_fault *vmf)
910 {
911 	struct inode *inode = mapping->host;
912 	unsigned long vaddr = vmf->address;
913 	int ret = VM_FAULT_NOPAGE;
914 	struct page *zero_page;
915 	void *entry2;
916 	pfn_t pfn;
917 
918 	zero_page = ZERO_PAGE(0);
919 	if (unlikely(!zero_page)) {
920 		ret = VM_FAULT_OOM;
921 		goto out;
922 	}
923 
924 	pfn = page_to_pfn_t(zero_page);
925 	entry2 = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
926 			RADIX_DAX_ZERO_PAGE, false);
927 	if (IS_ERR(entry2)) {
928 		ret = VM_FAULT_SIGBUS;
929 		goto out;
930 	}
931 
932 	vm_insert_mixed(vmf->vma, vaddr, pfn);
933 out:
934 	trace_dax_load_hole(inode, vmf, ret);
935 	return ret;
936 }
937 
938 static bool dax_range_is_aligned(struct block_device *bdev,
939 				 unsigned int offset, unsigned int length)
940 {
941 	unsigned short sector_size = bdev_logical_block_size(bdev);
942 
943 	if (!IS_ALIGNED(offset, sector_size))
944 		return false;
945 	if (!IS_ALIGNED(length, sector_size))
946 		return false;
947 
948 	return true;
949 }
950 
951 int __dax_zero_page_range(struct block_device *bdev,
952 		struct dax_device *dax_dev, sector_t sector,
953 		unsigned int offset, unsigned int size)
954 {
955 	if (dax_range_is_aligned(bdev, offset, size)) {
956 		sector_t start_sector = sector + (offset >> 9);
957 
958 		return blkdev_issue_zeroout(bdev, start_sector,
959 				size >> 9, GFP_NOFS, 0);
960 	} else {
961 		pgoff_t pgoff;
962 		long rc, id;
963 		void *kaddr;
964 		pfn_t pfn;
965 
966 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
967 		if (rc)
968 			return rc;
969 
970 		id = dax_read_lock();
971 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
972 				&pfn);
973 		if (rc < 0) {
974 			dax_read_unlock(id);
975 			return rc;
976 		}
977 		memset(kaddr + offset, 0, size);
978 		dax_flush(dax_dev, kaddr + offset, size);
979 		dax_read_unlock(id);
980 	}
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
984 
985 static loff_t
986 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
987 		struct iomap *iomap)
988 {
989 	struct block_device *bdev = iomap->bdev;
990 	struct dax_device *dax_dev = iomap->dax_dev;
991 	struct iov_iter *iter = data;
992 	loff_t end = pos + length, done = 0;
993 	ssize_t ret = 0;
994 	int id;
995 
996 	if (iov_iter_rw(iter) == READ) {
997 		end = min(end, i_size_read(inode));
998 		if (pos >= end)
999 			return 0;
1000 
1001 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1002 			return iov_iter_zero(min(length, end - pos), iter);
1003 	}
1004 
1005 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1006 		return -EIO;
1007 
1008 	/*
1009 	 * Write can allocate block for an area which has a hole page mapped
1010 	 * into page tables. We have to tear down these mappings so that data
1011 	 * written by write(2) is visible in mmap.
1012 	 */
1013 	if (iomap->flags & IOMAP_F_NEW) {
1014 		invalidate_inode_pages2_range(inode->i_mapping,
1015 					      pos >> PAGE_SHIFT,
1016 					      (end - 1) >> PAGE_SHIFT);
1017 	}
1018 
1019 	id = dax_read_lock();
1020 	while (pos < end) {
1021 		unsigned offset = pos & (PAGE_SIZE - 1);
1022 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1023 		const sector_t sector = dax_iomap_sector(iomap, pos);
1024 		ssize_t map_len;
1025 		pgoff_t pgoff;
1026 		void *kaddr;
1027 		pfn_t pfn;
1028 
1029 		if (fatal_signal_pending(current)) {
1030 			ret = -EINTR;
1031 			break;
1032 		}
1033 
1034 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1035 		if (ret)
1036 			break;
1037 
1038 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1039 				&kaddr, &pfn);
1040 		if (map_len < 0) {
1041 			ret = map_len;
1042 			break;
1043 		}
1044 
1045 		map_len = PFN_PHYS(map_len);
1046 		kaddr += offset;
1047 		map_len -= offset;
1048 		if (map_len > end - pos)
1049 			map_len = end - pos;
1050 
1051 		/*
1052 		 * The userspace address for the memory copy has already been
1053 		 * validated via access_ok() in either vfs_read() or
1054 		 * vfs_write(), depending on which operation we are doing.
1055 		 */
1056 		if (iov_iter_rw(iter) == WRITE)
1057 			map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1058 					map_len, iter);
1059 		else
1060 			map_len = copy_to_iter(kaddr, map_len, iter);
1061 		if (map_len <= 0) {
1062 			ret = map_len ? map_len : -EFAULT;
1063 			break;
1064 		}
1065 
1066 		pos += map_len;
1067 		length -= map_len;
1068 		done += map_len;
1069 	}
1070 	dax_read_unlock(id);
1071 
1072 	return done ? done : ret;
1073 }
1074 
1075 /**
1076  * dax_iomap_rw - Perform I/O to a DAX file
1077  * @iocb:	The control block for this I/O
1078  * @iter:	The addresses to do I/O from or to
1079  * @ops:	iomap ops passed from the file system
1080  *
1081  * This function performs read and write operations to directly mapped
1082  * persistent memory.  The callers needs to take care of read/write exclusion
1083  * and evicting any page cache pages in the region under I/O.
1084  */
1085 ssize_t
1086 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1087 		const struct iomap_ops *ops)
1088 {
1089 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1090 	struct inode *inode = mapping->host;
1091 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1092 	unsigned flags = 0;
1093 
1094 	if (iov_iter_rw(iter) == WRITE) {
1095 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1096 		flags |= IOMAP_WRITE;
1097 	} else {
1098 		lockdep_assert_held(&inode->i_rwsem);
1099 	}
1100 
1101 	while (iov_iter_count(iter)) {
1102 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1103 				iter, dax_iomap_actor);
1104 		if (ret <= 0)
1105 			break;
1106 		pos += ret;
1107 		done += ret;
1108 	}
1109 
1110 	iocb->ki_pos += done;
1111 	return done ? done : ret;
1112 }
1113 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1114 
1115 static int dax_fault_return(int error)
1116 {
1117 	if (error == 0)
1118 		return VM_FAULT_NOPAGE;
1119 	if (error == -ENOMEM)
1120 		return VM_FAULT_OOM;
1121 	return VM_FAULT_SIGBUS;
1122 }
1123 
1124 /*
1125  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1126  * flushed on write-faults (non-cow), but not read-faults.
1127  */
1128 static bool dax_fault_is_synchronous(unsigned long flags,
1129 		struct vm_area_struct *vma, struct iomap *iomap)
1130 {
1131 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1132 		&& (iomap->flags & IOMAP_F_DIRTY);
1133 }
1134 
1135 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1136 			       int *iomap_errp, const struct iomap_ops *ops)
1137 {
1138 	struct vm_area_struct *vma = vmf->vma;
1139 	struct address_space *mapping = vma->vm_file->f_mapping;
1140 	struct inode *inode = mapping->host;
1141 	unsigned long vaddr = vmf->address;
1142 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1143 	struct iomap iomap = { 0 };
1144 	unsigned flags = IOMAP_FAULT;
1145 	int error, major = 0;
1146 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1147 	bool sync;
1148 	int vmf_ret = 0;
1149 	void *entry;
1150 	pfn_t pfn;
1151 
1152 	trace_dax_pte_fault(inode, vmf, vmf_ret);
1153 	/*
1154 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1155 	 * to hold locks serializing us with truncate / punch hole so this is
1156 	 * a reliable test.
1157 	 */
1158 	if (pos >= i_size_read(inode)) {
1159 		vmf_ret = VM_FAULT_SIGBUS;
1160 		goto out;
1161 	}
1162 
1163 	if (write && !vmf->cow_page)
1164 		flags |= IOMAP_WRITE;
1165 
1166 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1167 	if (IS_ERR(entry)) {
1168 		vmf_ret = dax_fault_return(PTR_ERR(entry));
1169 		goto out;
1170 	}
1171 
1172 	/*
1173 	 * It is possible, particularly with mixed reads & writes to private
1174 	 * mappings, that we have raced with a PMD fault that overlaps with
1175 	 * the PTE we need to set up.  If so just return and the fault will be
1176 	 * retried.
1177 	 */
1178 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1179 		vmf_ret = VM_FAULT_NOPAGE;
1180 		goto unlock_entry;
1181 	}
1182 
1183 	/*
1184 	 * Note that we don't bother to use iomap_apply here: DAX required
1185 	 * the file system block size to be equal the page size, which means
1186 	 * that we never have to deal with more than a single extent here.
1187 	 */
1188 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1189 	if (iomap_errp)
1190 		*iomap_errp = error;
1191 	if (error) {
1192 		vmf_ret = dax_fault_return(error);
1193 		goto unlock_entry;
1194 	}
1195 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1196 		error = -EIO;	/* fs corruption? */
1197 		goto error_finish_iomap;
1198 	}
1199 
1200 	if (vmf->cow_page) {
1201 		sector_t sector = dax_iomap_sector(&iomap, pos);
1202 
1203 		switch (iomap.type) {
1204 		case IOMAP_HOLE:
1205 		case IOMAP_UNWRITTEN:
1206 			clear_user_highpage(vmf->cow_page, vaddr);
1207 			break;
1208 		case IOMAP_MAPPED:
1209 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1210 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1211 			break;
1212 		default:
1213 			WARN_ON_ONCE(1);
1214 			error = -EIO;
1215 			break;
1216 		}
1217 
1218 		if (error)
1219 			goto error_finish_iomap;
1220 
1221 		__SetPageUptodate(vmf->cow_page);
1222 		vmf_ret = finish_fault(vmf);
1223 		if (!vmf_ret)
1224 			vmf_ret = VM_FAULT_DONE_COW;
1225 		goto finish_iomap;
1226 	}
1227 
1228 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1229 
1230 	switch (iomap.type) {
1231 	case IOMAP_MAPPED:
1232 		if (iomap.flags & IOMAP_F_NEW) {
1233 			count_vm_event(PGMAJFAULT);
1234 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1235 			major = VM_FAULT_MAJOR;
1236 		}
1237 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1238 		if (error < 0)
1239 			goto error_finish_iomap;
1240 
1241 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1242 						 0, write && !sync);
1243 		if (IS_ERR(entry)) {
1244 			error = PTR_ERR(entry);
1245 			goto error_finish_iomap;
1246 		}
1247 
1248 		/*
1249 		 * If we are doing synchronous page fault and inode needs fsync,
1250 		 * we can insert PTE into page tables only after that happens.
1251 		 * Skip insertion for now and return the pfn so that caller can
1252 		 * insert it after fsync is done.
1253 		 */
1254 		if (sync) {
1255 			if (WARN_ON_ONCE(!pfnp)) {
1256 				error = -EIO;
1257 				goto error_finish_iomap;
1258 			}
1259 			*pfnp = pfn;
1260 			vmf_ret = VM_FAULT_NEEDDSYNC | major;
1261 			goto finish_iomap;
1262 		}
1263 		trace_dax_insert_mapping(inode, vmf, entry);
1264 		if (write)
1265 			error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
1266 		else
1267 			error = vm_insert_mixed(vma, vaddr, pfn);
1268 
1269 		/* -EBUSY is fine, somebody else faulted on the same PTE */
1270 		if (error == -EBUSY)
1271 			error = 0;
1272 		break;
1273 	case IOMAP_UNWRITTEN:
1274 	case IOMAP_HOLE:
1275 		if (!write) {
1276 			vmf_ret = dax_load_hole(mapping, entry, vmf);
1277 			goto finish_iomap;
1278 		}
1279 		/*FALLTHRU*/
1280 	default:
1281 		WARN_ON_ONCE(1);
1282 		error = -EIO;
1283 		break;
1284 	}
1285 
1286  error_finish_iomap:
1287 	vmf_ret = dax_fault_return(error) | major;
1288  finish_iomap:
1289 	if (ops->iomap_end) {
1290 		int copied = PAGE_SIZE;
1291 
1292 		if (vmf_ret & VM_FAULT_ERROR)
1293 			copied = 0;
1294 		/*
1295 		 * The fault is done by now and there's no way back (other
1296 		 * thread may be already happily using PTE we have installed).
1297 		 * Just ignore error from ->iomap_end since we cannot do much
1298 		 * with it.
1299 		 */
1300 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1301 	}
1302  unlock_entry:
1303 	put_locked_mapping_entry(mapping, vmf->pgoff);
1304  out:
1305 	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1306 	return vmf_ret;
1307 }
1308 
1309 #ifdef CONFIG_FS_DAX_PMD
1310 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1311 		void *entry)
1312 {
1313 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1314 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1315 	struct inode *inode = mapping->host;
1316 	struct page *zero_page;
1317 	void *ret = NULL;
1318 	spinlock_t *ptl;
1319 	pmd_t pmd_entry;
1320 	pfn_t pfn;
1321 
1322 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1323 
1324 	if (unlikely(!zero_page))
1325 		goto fallback;
1326 
1327 	pfn = page_to_pfn_t(zero_page);
1328 	ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1329 			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1330 	if (IS_ERR(ret))
1331 		goto fallback;
1332 
1333 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1334 	if (!pmd_none(*(vmf->pmd))) {
1335 		spin_unlock(ptl);
1336 		goto fallback;
1337 	}
1338 
1339 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1340 	pmd_entry = pmd_mkhuge(pmd_entry);
1341 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1342 	spin_unlock(ptl);
1343 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1344 	return VM_FAULT_NOPAGE;
1345 
1346 fallback:
1347 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1348 	return VM_FAULT_FALLBACK;
1349 }
1350 
1351 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1352 			       const struct iomap_ops *ops)
1353 {
1354 	struct vm_area_struct *vma = vmf->vma;
1355 	struct address_space *mapping = vma->vm_file->f_mapping;
1356 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1357 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1358 	bool sync;
1359 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1360 	struct inode *inode = mapping->host;
1361 	int result = VM_FAULT_FALLBACK;
1362 	struct iomap iomap = { 0 };
1363 	pgoff_t max_pgoff, pgoff;
1364 	void *entry;
1365 	loff_t pos;
1366 	int error;
1367 	pfn_t pfn;
1368 
1369 	/*
1370 	 * Check whether offset isn't beyond end of file now. Caller is
1371 	 * supposed to hold locks serializing us with truncate / punch hole so
1372 	 * this is a reliable test.
1373 	 */
1374 	pgoff = linear_page_index(vma, pmd_addr);
1375 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1376 
1377 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1378 
1379 	/*
1380 	 * Make sure that the faulting address's PMD offset (color) matches
1381 	 * the PMD offset from the start of the file.  This is necessary so
1382 	 * that a PMD range in the page table overlaps exactly with a PMD
1383 	 * range in the radix tree.
1384 	 */
1385 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1386 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1387 		goto fallback;
1388 
1389 	/* Fall back to PTEs if we're going to COW */
1390 	if (write && !(vma->vm_flags & VM_SHARED))
1391 		goto fallback;
1392 
1393 	/* If the PMD would extend outside the VMA */
1394 	if (pmd_addr < vma->vm_start)
1395 		goto fallback;
1396 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1397 		goto fallback;
1398 
1399 	if (pgoff >= max_pgoff) {
1400 		result = VM_FAULT_SIGBUS;
1401 		goto out;
1402 	}
1403 
1404 	/* If the PMD would extend beyond the file size */
1405 	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1406 		goto fallback;
1407 
1408 	/*
1409 	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1410 	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1411 	 * is already in the tree, for instance), it will return -EEXIST and
1412 	 * we just fall back to 4k entries.
1413 	 */
1414 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1415 	if (IS_ERR(entry))
1416 		goto fallback;
1417 
1418 	/*
1419 	 * It is possible, particularly with mixed reads & writes to private
1420 	 * mappings, that we have raced with a PTE fault that overlaps with
1421 	 * the PMD we need to set up.  If so just return and the fault will be
1422 	 * retried.
1423 	 */
1424 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1425 			!pmd_devmap(*vmf->pmd)) {
1426 		result = 0;
1427 		goto unlock_entry;
1428 	}
1429 
1430 	/*
1431 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1432 	 * setting up a mapping, so really we're using iomap_begin() as a way
1433 	 * to look up our filesystem block.
1434 	 */
1435 	pos = (loff_t)pgoff << PAGE_SHIFT;
1436 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1437 	if (error)
1438 		goto unlock_entry;
1439 
1440 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1441 		goto finish_iomap;
1442 
1443 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1444 
1445 	switch (iomap.type) {
1446 	case IOMAP_MAPPED:
1447 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1448 		if (error < 0)
1449 			goto finish_iomap;
1450 
1451 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1452 						RADIX_DAX_PMD, write && !sync);
1453 		if (IS_ERR(entry))
1454 			goto finish_iomap;
1455 
1456 		/*
1457 		 * If we are doing synchronous page fault and inode needs fsync,
1458 		 * we can insert PMD into page tables only after that happens.
1459 		 * Skip insertion for now and return the pfn so that caller can
1460 		 * insert it after fsync is done.
1461 		 */
1462 		if (sync) {
1463 			if (WARN_ON_ONCE(!pfnp))
1464 				goto finish_iomap;
1465 			*pfnp = pfn;
1466 			result = VM_FAULT_NEEDDSYNC;
1467 			goto finish_iomap;
1468 		}
1469 
1470 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1471 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1472 					    write);
1473 		break;
1474 	case IOMAP_UNWRITTEN:
1475 	case IOMAP_HOLE:
1476 		if (WARN_ON_ONCE(write))
1477 			break;
1478 		result = dax_pmd_load_hole(vmf, &iomap, entry);
1479 		break;
1480 	default:
1481 		WARN_ON_ONCE(1);
1482 		break;
1483 	}
1484 
1485  finish_iomap:
1486 	if (ops->iomap_end) {
1487 		int copied = PMD_SIZE;
1488 
1489 		if (result == VM_FAULT_FALLBACK)
1490 			copied = 0;
1491 		/*
1492 		 * The fault is done by now and there's no way back (other
1493 		 * thread may be already happily using PMD we have installed).
1494 		 * Just ignore error from ->iomap_end since we cannot do much
1495 		 * with it.
1496 		 */
1497 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1498 				&iomap);
1499 	}
1500  unlock_entry:
1501 	put_locked_mapping_entry(mapping, pgoff);
1502  fallback:
1503 	if (result == VM_FAULT_FALLBACK) {
1504 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1505 		count_vm_event(THP_FAULT_FALLBACK);
1506 	}
1507 out:
1508 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1509 	return result;
1510 }
1511 #else
1512 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1513 			       const struct iomap_ops *ops)
1514 {
1515 	return VM_FAULT_FALLBACK;
1516 }
1517 #endif /* CONFIG_FS_DAX_PMD */
1518 
1519 /**
1520  * dax_iomap_fault - handle a page fault on a DAX file
1521  * @vmf: The description of the fault
1522  * @pe_size: Size of the page to fault in
1523  * @pfnp: PFN to insert for synchronous faults if fsync is required
1524  * @iomap_errp: Storage for detailed error code in case of error
1525  * @ops: Iomap ops passed from the file system
1526  *
1527  * When a page fault occurs, filesystems may call this helper in
1528  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1529  * has done all the necessary locking for page fault to proceed
1530  * successfully.
1531  */
1532 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1533 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1534 {
1535 	switch (pe_size) {
1536 	case PE_SIZE_PTE:
1537 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1538 	case PE_SIZE_PMD:
1539 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1540 	default:
1541 		return VM_FAULT_FALLBACK;
1542 	}
1543 }
1544 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1545 
1546 /**
1547  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1548  * @vmf: The description of the fault
1549  * @pe_size: Size of entry to be inserted
1550  * @pfn: PFN to insert
1551  *
1552  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1553  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1554  * as well.
1555  */
1556 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1557 				  enum page_entry_size pe_size,
1558 				  pfn_t pfn)
1559 {
1560 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1561 	void *entry, **slot;
1562 	pgoff_t index = vmf->pgoff;
1563 	int vmf_ret, error;
1564 
1565 	xa_lock_irq(&mapping->i_pages);
1566 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
1567 	/* Did we race with someone splitting entry or so? */
1568 	if (!entry ||
1569 	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1570 	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1571 		put_unlocked_mapping_entry(mapping, index, entry);
1572 		xa_unlock_irq(&mapping->i_pages);
1573 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1574 						      VM_FAULT_NOPAGE);
1575 		return VM_FAULT_NOPAGE;
1576 	}
1577 	radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1578 	entry = lock_slot(mapping, slot);
1579 	xa_unlock_irq(&mapping->i_pages);
1580 	switch (pe_size) {
1581 	case PE_SIZE_PTE:
1582 		error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1583 		vmf_ret = dax_fault_return(error);
1584 		break;
1585 #ifdef CONFIG_FS_DAX_PMD
1586 	case PE_SIZE_PMD:
1587 		vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1588 			pfn, true);
1589 		break;
1590 #endif
1591 	default:
1592 		vmf_ret = VM_FAULT_FALLBACK;
1593 	}
1594 	put_locked_mapping_entry(mapping, index);
1595 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
1596 	return vmf_ret;
1597 }
1598 
1599 /**
1600  * dax_finish_sync_fault - finish synchronous page fault
1601  * @vmf: The description of the fault
1602  * @pe_size: Size of entry to be inserted
1603  * @pfn: PFN to insert
1604  *
1605  * This function ensures that the file range touched by the page fault is
1606  * stored persistently on the media and handles inserting of appropriate page
1607  * table entry.
1608  */
1609 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1610 			  pfn_t pfn)
1611 {
1612 	int err;
1613 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1614 	size_t len = 0;
1615 
1616 	if (pe_size == PE_SIZE_PTE)
1617 		len = PAGE_SIZE;
1618 	else if (pe_size == PE_SIZE_PMD)
1619 		len = PMD_SIZE;
1620 	else
1621 		WARN_ON_ONCE(1);
1622 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1623 	if (err)
1624 		return VM_FAULT_SIGBUS;
1625 	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1626 }
1627 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1628