1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 148 void *entry, struct exceptional_entry_key *key) 149 { 150 unsigned long hash; 151 unsigned long index = xas->xa_index; 152 153 /* 154 * If 'entry' is a PMD, align the 'index' that we use for the wait 155 * queue to the start of that PMD. This ensures that all offsets in 156 * the range covered by the PMD map to the same bit lock. 157 */ 158 if (dax_is_pmd_entry(entry)) 159 index &= ~PG_PMD_COLOUR; 160 key->xa = xas->xa; 161 key->entry_start = index; 162 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 164 return wait_table + hash; 165 } 166 167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 168 unsigned int mode, int sync, void *keyp) 169 { 170 struct exceptional_entry_key *key = keyp; 171 struct wait_exceptional_entry_queue *ewait = 172 container_of(wait, struct wait_exceptional_entry_queue, wait); 173 174 if (key->xa != ewait->key.xa || 175 key->entry_start != ewait->key.entry_start) 176 return 0; 177 return autoremove_wake_function(wait, mode, sync, NULL); 178 } 179 180 /* 181 * @entry may no longer be the entry at the index in the mapping. 182 * The important information it's conveying is whether the entry at 183 * this index used to be a PMD entry. 184 */ 185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 186 { 187 struct exceptional_entry_key key; 188 wait_queue_head_t *wq; 189 190 wq = dax_entry_waitqueue(xas, entry, &key); 191 192 /* 193 * Checking for locked entry and prepare_to_wait_exclusive() happens 194 * under the i_pages lock, ditto for entry handling in our callers. 195 * So at this point all tasks that could have seen our entry locked 196 * must be in the waitqueue and the following check will see them. 197 */ 198 if (waitqueue_active(wq)) 199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 200 } 201 202 /* 203 * Look up entry in page cache, wait for it to become unlocked if it 204 * is a DAX entry and return it. The caller must subsequently call 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 206 * if it did. The entry returned may have a larger order than @order. 207 * If @order is larger than the order of the entry found in i_pages, this 208 * function returns a dax_is_conflict entry. 209 * 210 * Must be called with the i_pages lock held. 211 */ 212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 213 { 214 void *entry; 215 struct wait_exceptional_entry_queue ewait; 216 wait_queue_head_t *wq; 217 218 init_wait(&ewait.wait); 219 ewait.wait.func = wake_exceptional_entry_func; 220 221 for (;;) { 222 entry = xas_find_conflict(xas); 223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 224 return entry; 225 if (dax_entry_order(entry) < order) 226 return XA_RETRY_ENTRY; 227 if (!dax_is_locked(entry)) 228 return entry; 229 230 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 231 prepare_to_wait_exclusive(wq, &ewait.wait, 232 TASK_UNINTERRUPTIBLE); 233 xas_unlock_irq(xas); 234 xas_reset(xas); 235 schedule(); 236 finish_wait(wq, &ewait.wait); 237 xas_lock_irq(xas); 238 } 239 } 240 241 /* 242 * The only thing keeping the address space around is the i_pages lock 243 * (it's cycled in clear_inode() after removing the entries from i_pages) 244 * After we call xas_unlock_irq(), we cannot touch xas->xa. 245 */ 246 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 247 { 248 struct wait_exceptional_entry_queue ewait; 249 wait_queue_head_t *wq; 250 251 init_wait(&ewait.wait); 252 ewait.wait.func = wake_exceptional_entry_func; 253 254 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 255 /* 256 * Unlike get_unlocked_entry() there is no guarantee that this 257 * path ever successfully retrieves an unlocked entry before an 258 * inode dies. Perform a non-exclusive wait in case this path 259 * never successfully performs its own wake up. 260 */ 261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 262 xas_unlock_irq(xas); 263 schedule(); 264 finish_wait(wq, &ewait.wait); 265 } 266 267 static void put_unlocked_entry(struct xa_state *xas, void *entry) 268 { 269 /* If we were the only waiter woken, wake the next one */ 270 if (entry && !dax_is_conflict(entry)) 271 dax_wake_entry(xas, entry, false); 272 } 273 274 /* 275 * We used the xa_state to get the entry, but then we locked the entry and 276 * dropped the xa_lock, so we know the xa_state is stale and must be reset 277 * before use. 278 */ 279 static void dax_unlock_entry(struct xa_state *xas, void *entry) 280 { 281 void *old; 282 283 BUG_ON(dax_is_locked(entry)); 284 xas_reset(xas); 285 xas_lock_irq(xas); 286 old = xas_store(xas, entry); 287 xas_unlock_irq(xas); 288 BUG_ON(!dax_is_locked(old)); 289 dax_wake_entry(xas, entry, false); 290 } 291 292 /* 293 * Return: The entry stored at this location before it was locked. 294 */ 295 static void *dax_lock_entry(struct xa_state *xas, void *entry) 296 { 297 unsigned long v = xa_to_value(entry); 298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 299 } 300 301 static unsigned long dax_entry_size(void *entry) 302 { 303 if (dax_is_zero_entry(entry)) 304 return 0; 305 else if (dax_is_empty_entry(entry)) 306 return 0; 307 else if (dax_is_pmd_entry(entry)) 308 return PMD_SIZE; 309 else 310 return PAGE_SIZE; 311 } 312 313 static unsigned long dax_end_pfn(void *entry) 314 { 315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 316 } 317 318 /* 319 * Iterate through all mapped pfns represented by an entry, i.e. skip 320 * 'empty' and 'zero' entries. 321 */ 322 #define for_each_mapped_pfn(entry, pfn) \ 323 for (pfn = dax_to_pfn(entry); \ 324 pfn < dax_end_pfn(entry); pfn++) 325 326 /* 327 * TODO: for reflink+dax we need a way to associate a single page with 328 * multiple address_space instances at different linear_page_index() 329 * offsets. 330 */ 331 static void dax_associate_entry(void *entry, struct address_space *mapping, 332 struct vm_area_struct *vma, unsigned long address) 333 { 334 unsigned long size = dax_entry_size(entry), pfn, index; 335 int i = 0; 336 337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 338 return; 339 340 index = linear_page_index(vma, address & ~(size - 1)); 341 for_each_mapped_pfn(entry, pfn) { 342 struct page *page = pfn_to_page(pfn); 343 344 WARN_ON_ONCE(page->mapping); 345 page->mapping = mapping; 346 page->index = index + i++; 347 } 348 } 349 350 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 351 bool trunc) 352 { 353 unsigned long pfn; 354 355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 356 return; 357 358 for_each_mapped_pfn(entry, pfn) { 359 struct page *page = pfn_to_page(pfn); 360 361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 362 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 363 page->mapping = NULL; 364 page->index = 0; 365 } 366 } 367 368 static struct page *dax_busy_page(void *entry) 369 { 370 unsigned long pfn; 371 372 for_each_mapped_pfn(entry, pfn) { 373 struct page *page = pfn_to_page(pfn); 374 375 if (page_ref_count(page) > 1) 376 return page; 377 } 378 return NULL; 379 } 380 381 /* 382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 383 * @page: The page whose entry we want to lock 384 * 385 * Context: Process context. 386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 387 * not be locked. 388 */ 389 dax_entry_t dax_lock_page(struct page *page) 390 { 391 XA_STATE(xas, NULL, 0); 392 void *entry; 393 394 /* Ensure page->mapping isn't freed while we look at it */ 395 rcu_read_lock(); 396 for (;;) { 397 struct address_space *mapping = READ_ONCE(page->mapping); 398 399 entry = NULL; 400 if (!mapping || !dax_mapping(mapping)) 401 break; 402 403 /* 404 * In the device-dax case there's no need to lock, a 405 * struct dev_pagemap pin is sufficient to keep the 406 * inode alive, and we assume we have dev_pagemap pin 407 * otherwise we would not have a valid pfn_to_page() 408 * translation. 409 */ 410 entry = (void *)~0UL; 411 if (S_ISCHR(mapping->host->i_mode)) 412 break; 413 414 xas.xa = &mapping->i_pages; 415 xas_lock_irq(&xas); 416 if (mapping != page->mapping) { 417 xas_unlock_irq(&xas); 418 continue; 419 } 420 xas_set(&xas, page->index); 421 entry = xas_load(&xas); 422 if (dax_is_locked(entry)) { 423 rcu_read_unlock(); 424 wait_entry_unlocked(&xas, entry); 425 rcu_read_lock(); 426 continue; 427 } 428 dax_lock_entry(&xas, entry); 429 xas_unlock_irq(&xas); 430 break; 431 } 432 rcu_read_unlock(); 433 return (dax_entry_t)entry; 434 } 435 436 void dax_unlock_page(struct page *page, dax_entry_t cookie) 437 { 438 struct address_space *mapping = page->mapping; 439 XA_STATE(xas, &mapping->i_pages, page->index); 440 441 if (S_ISCHR(mapping->host->i_mode)) 442 return; 443 444 dax_unlock_entry(&xas, (void *)cookie); 445 } 446 447 /* 448 * Find page cache entry at given index. If it is a DAX entry, return it 449 * with the entry locked. If the page cache doesn't contain an entry at 450 * that index, add a locked empty entry. 451 * 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 453 * either return that locked entry or will return VM_FAULT_FALLBACK. 454 * This will happen if there are any PTE entries within the PMD range 455 * that we are requesting. 456 * 457 * We always favor PTE entries over PMD entries. There isn't a flow where we 458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 459 * insertion will fail if it finds any PTE entries already in the tree, and a 460 * PTE insertion will cause an existing PMD entry to be unmapped and 461 * downgraded to PTE entries. This happens for both PMD zero pages as 462 * well as PMD empty entries. 463 * 464 * The exception to this downgrade path is for PMD entries that have 465 * real storage backing them. We will leave these real PMD entries in 466 * the tree, and PTE writes will simply dirty the entire PMD entry. 467 * 468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 469 * persistent memory the benefit is doubtful. We can add that later if we can 470 * show it helps. 471 * 472 * On error, this function does not return an ERR_PTR. Instead it returns 473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 474 * overlap with xarray value entries. 475 */ 476 static void *grab_mapping_entry(struct xa_state *xas, 477 struct address_space *mapping, unsigned int order) 478 { 479 unsigned long index = xas->xa_index; 480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 481 void *entry; 482 483 retry: 484 xas_lock_irq(xas); 485 entry = get_unlocked_entry(xas, order); 486 487 if (entry) { 488 if (dax_is_conflict(entry)) 489 goto fallback; 490 if (!xa_is_value(entry)) { 491 xas_set_err(xas, EIO); 492 goto out_unlock; 493 } 494 495 if (order == 0) { 496 if (dax_is_pmd_entry(entry) && 497 (dax_is_zero_entry(entry) || 498 dax_is_empty_entry(entry))) { 499 pmd_downgrade = true; 500 } 501 } 502 } 503 504 if (pmd_downgrade) { 505 /* 506 * Make sure 'entry' remains valid while we drop 507 * the i_pages lock. 508 */ 509 dax_lock_entry(xas, entry); 510 511 /* 512 * Besides huge zero pages the only other thing that gets 513 * downgraded are empty entries which don't need to be 514 * unmapped. 515 */ 516 if (dax_is_zero_entry(entry)) { 517 xas_unlock_irq(xas); 518 unmap_mapping_pages(mapping, 519 xas->xa_index & ~PG_PMD_COLOUR, 520 PG_PMD_NR, false); 521 xas_reset(xas); 522 xas_lock_irq(xas); 523 } 524 525 dax_disassociate_entry(entry, mapping, false); 526 xas_store(xas, NULL); /* undo the PMD join */ 527 dax_wake_entry(xas, entry, true); 528 mapping->nrexceptional--; 529 entry = NULL; 530 xas_set(xas, index); 531 } 532 533 if (entry) { 534 dax_lock_entry(xas, entry); 535 } else { 536 unsigned long flags = DAX_EMPTY; 537 538 if (order > 0) 539 flags |= DAX_PMD; 540 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 541 dax_lock_entry(xas, entry); 542 if (xas_error(xas)) 543 goto out_unlock; 544 mapping->nrexceptional++; 545 } 546 547 out_unlock: 548 xas_unlock_irq(xas); 549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 550 goto retry; 551 if (xas->xa_node == XA_ERROR(-ENOMEM)) 552 return xa_mk_internal(VM_FAULT_OOM); 553 if (xas_error(xas)) 554 return xa_mk_internal(VM_FAULT_SIGBUS); 555 return entry; 556 fallback: 557 xas_unlock_irq(xas); 558 return xa_mk_internal(VM_FAULT_FALLBACK); 559 } 560 561 /** 562 * dax_layout_busy_page - find first pinned page in @mapping 563 * @mapping: address space to scan for a page with ref count > 1 564 * 565 * DAX requires ZONE_DEVICE mapped pages. These pages are never 566 * 'onlined' to the page allocator so they are considered idle when 567 * page->count == 1. A filesystem uses this interface to determine if 568 * any page in the mapping is busy, i.e. for DMA, or other 569 * get_user_pages() usages. 570 * 571 * It is expected that the filesystem is holding locks to block the 572 * establishment of new mappings in this address_space. I.e. it expects 573 * to be able to run unmap_mapping_range() and subsequently not race 574 * mapping_mapped() becoming true. 575 */ 576 struct page *dax_layout_busy_page(struct address_space *mapping) 577 { 578 XA_STATE(xas, &mapping->i_pages, 0); 579 void *entry; 580 unsigned int scanned = 0; 581 struct page *page = NULL; 582 583 /* 584 * In the 'limited' case get_user_pages() for dax is disabled. 585 */ 586 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 587 return NULL; 588 589 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 590 return NULL; 591 592 /* 593 * If we race get_user_pages_fast() here either we'll see the 594 * elevated page count in the iteration and wait, or 595 * get_user_pages_fast() will see that the page it took a reference 596 * against is no longer mapped in the page tables and bail to the 597 * get_user_pages() slow path. The slow path is protected by 598 * pte_lock() and pmd_lock(). New references are not taken without 599 * holding those locks, and unmap_mapping_range() will not zero the 600 * pte or pmd without holding the respective lock, so we are 601 * guaranteed to either see new references or prevent new 602 * references from being established. 603 */ 604 unmap_mapping_range(mapping, 0, 0, 0); 605 606 xas_lock_irq(&xas); 607 xas_for_each(&xas, entry, ULONG_MAX) { 608 if (WARN_ON_ONCE(!xa_is_value(entry))) 609 continue; 610 if (unlikely(dax_is_locked(entry))) 611 entry = get_unlocked_entry(&xas, 0); 612 if (entry) 613 page = dax_busy_page(entry); 614 put_unlocked_entry(&xas, entry); 615 if (page) 616 break; 617 if (++scanned % XA_CHECK_SCHED) 618 continue; 619 620 xas_pause(&xas); 621 xas_unlock_irq(&xas); 622 cond_resched(); 623 xas_lock_irq(&xas); 624 } 625 xas_unlock_irq(&xas); 626 return page; 627 } 628 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 629 630 static int __dax_invalidate_entry(struct address_space *mapping, 631 pgoff_t index, bool trunc) 632 { 633 XA_STATE(xas, &mapping->i_pages, index); 634 int ret = 0; 635 void *entry; 636 637 xas_lock_irq(&xas); 638 entry = get_unlocked_entry(&xas, 0); 639 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 640 goto out; 641 if (!trunc && 642 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 643 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 644 goto out; 645 dax_disassociate_entry(entry, mapping, trunc); 646 xas_store(&xas, NULL); 647 mapping->nrexceptional--; 648 ret = 1; 649 out: 650 put_unlocked_entry(&xas, entry); 651 xas_unlock_irq(&xas); 652 return ret; 653 } 654 655 /* 656 * Delete DAX entry at @index from @mapping. Wait for it 657 * to be unlocked before deleting it. 658 */ 659 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 660 { 661 int ret = __dax_invalidate_entry(mapping, index, true); 662 663 /* 664 * This gets called from truncate / punch_hole path. As such, the caller 665 * must hold locks protecting against concurrent modifications of the 666 * page cache (usually fs-private i_mmap_sem for writing). Since the 667 * caller has seen a DAX entry for this index, we better find it 668 * at that index as well... 669 */ 670 WARN_ON_ONCE(!ret); 671 return ret; 672 } 673 674 /* 675 * Invalidate DAX entry if it is clean. 676 */ 677 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 678 pgoff_t index) 679 { 680 return __dax_invalidate_entry(mapping, index, false); 681 } 682 683 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 684 sector_t sector, size_t size, struct page *to, 685 unsigned long vaddr) 686 { 687 void *vto, *kaddr; 688 pgoff_t pgoff; 689 long rc; 690 int id; 691 692 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 693 if (rc) 694 return rc; 695 696 id = dax_read_lock(); 697 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 698 if (rc < 0) { 699 dax_read_unlock(id); 700 return rc; 701 } 702 vto = kmap_atomic(to); 703 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 704 kunmap_atomic(vto); 705 dax_read_unlock(id); 706 return 0; 707 } 708 709 /* 710 * By this point grab_mapping_entry() has ensured that we have a locked entry 711 * of the appropriate size so we don't have to worry about downgrading PMDs to 712 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 713 * already in the tree, we will skip the insertion and just dirty the PMD as 714 * appropriate. 715 */ 716 static void *dax_insert_entry(struct xa_state *xas, 717 struct address_space *mapping, struct vm_fault *vmf, 718 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 719 { 720 void *new_entry = dax_make_entry(pfn, flags); 721 722 if (dirty) 723 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 724 725 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 726 unsigned long index = xas->xa_index; 727 /* we are replacing a zero page with block mapping */ 728 if (dax_is_pmd_entry(entry)) 729 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 730 PG_PMD_NR, false); 731 else /* pte entry */ 732 unmap_mapping_pages(mapping, index, 1, false); 733 } 734 735 xas_reset(xas); 736 xas_lock_irq(xas); 737 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 738 void *old; 739 740 dax_disassociate_entry(entry, mapping, false); 741 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 742 /* 743 * Only swap our new entry into the page cache if the current 744 * entry is a zero page or an empty entry. If a normal PTE or 745 * PMD entry is already in the cache, we leave it alone. This 746 * means that if we are trying to insert a PTE and the 747 * existing entry is a PMD, we will just leave the PMD in the 748 * tree and dirty it if necessary. 749 */ 750 old = dax_lock_entry(xas, new_entry); 751 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 752 DAX_LOCKED)); 753 entry = new_entry; 754 } else { 755 xas_load(xas); /* Walk the xa_state */ 756 } 757 758 if (dirty) 759 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 760 761 xas_unlock_irq(xas); 762 return entry; 763 } 764 765 static inline 766 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 767 { 768 unsigned long address; 769 770 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 771 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 772 return address; 773 } 774 775 /* Walk all mappings of a given index of a file and writeprotect them */ 776 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 777 unsigned long pfn) 778 { 779 struct vm_area_struct *vma; 780 pte_t pte, *ptep = NULL; 781 pmd_t *pmdp = NULL; 782 spinlock_t *ptl; 783 784 i_mmap_lock_read(mapping); 785 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 786 struct mmu_notifier_range range; 787 unsigned long address; 788 789 cond_resched(); 790 791 if (!(vma->vm_flags & VM_SHARED)) 792 continue; 793 794 address = pgoff_address(index, vma); 795 796 /* 797 * Note because we provide range to follow_pte_pmd it will 798 * call mmu_notifier_invalidate_range_start() on our behalf 799 * before taking any lock. 800 */ 801 if (follow_pte_pmd(vma->vm_mm, address, &range, 802 &ptep, &pmdp, &ptl)) 803 continue; 804 805 /* 806 * No need to call mmu_notifier_invalidate_range() as we are 807 * downgrading page table protection not changing it to point 808 * to a new page. 809 * 810 * See Documentation/vm/mmu_notifier.rst 811 */ 812 if (pmdp) { 813 #ifdef CONFIG_FS_DAX_PMD 814 pmd_t pmd; 815 816 if (pfn != pmd_pfn(*pmdp)) 817 goto unlock_pmd; 818 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 819 goto unlock_pmd; 820 821 flush_cache_page(vma, address, pfn); 822 pmd = pmdp_invalidate(vma, address, pmdp); 823 pmd = pmd_wrprotect(pmd); 824 pmd = pmd_mkclean(pmd); 825 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 826 unlock_pmd: 827 #endif 828 spin_unlock(ptl); 829 } else { 830 if (pfn != pte_pfn(*ptep)) 831 goto unlock_pte; 832 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 833 goto unlock_pte; 834 835 flush_cache_page(vma, address, pfn); 836 pte = ptep_clear_flush(vma, address, ptep); 837 pte = pte_wrprotect(pte); 838 pte = pte_mkclean(pte); 839 set_pte_at(vma->vm_mm, address, ptep, pte); 840 unlock_pte: 841 pte_unmap_unlock(ptep, ptl); 842 } 843 844 mmu_notifier_invalidate_range_end(&range); 845 } 846 i_mmap_unlock_read(mapping); 847 } 848 849 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 850 struct address_space *mapping, void *entry) 851 { 852 unsigned long pfn, index, count; 853 long ret = 0; 854 855 /* 856 * A page got tagged dirty in DAX mapping? Something is seriously 857 * wrong. 858 */ 859 if (WARN_ON(!xa_is_value(entry))) 860 return -EIO; 861 862 if (unlikely(dax_is_locked(entry))) { 863 void *old_entry = entry; 864 865 entry = get_unlocked_entry(xas, 0); 866 867 /* Entry got punched out / reallocated? */ 868 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 869 goto put_unlocked; 870 /* 871 * Entry got reallocated elsewhere? No need to writeback. 872 * We have to compare pfns as we must not bail out due to 873 * difference in lockbit or entry type. 874 */ 875 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 876 goto put_unlocked; 877 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 878 dax_is_zero_entry(entry))) { 879 ret = -EIO; 880 goto put_unlocked; 881 } 882 883 /* Another fsync thread may have already done this entry */ 884 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 885 goto put_unlocked; 886 } 887 888 /* Lock the entry to serialize with page faults */ 889 dax_lock_entry(xas, entry); 890 891 /* 892 * We can clear the tag now but we have to be careful so that concurrent 893 * dax_writeback_one() calls for the same index cannot finish before we 894 * actually flush the caches. This is achieved as the calls will look 895 * at the entry only under the i_pages lock and once they do that 896 * they will see the entry locked and wait for it to unlock. 897 */ 898 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 899 xas_unlock_irq(xas); 900 901 /* 902 * If dax_writeback_mapping_range() was given a wbc->range_start 903 * in the middle of a PMD, the 'index' we use needs to be 904 * aligned to the start of the PMD. 905 * This allows us to flush for PMD_SIZE and not have to worry about 906 * partial PMD writebacks. 907 */ 908 pfn = dax_to_pfn(entry); 909 count = 1UL << dax_entry_order(entry); 910 index = xas->xa_index & ~(count - 1); 911 912 dax_entry_mkclean(mapping, index, pfn); 913 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 914 /* 915 * After we have flushed the cache, we can clear the dirty tag. There 916 * cannot be new dirty data in the pfn after the flush has completed as 917 * the pfn mappings are writeprotected and fault waits for mapping 918 * entry lock. 919 */ 920 xas_reset(xas); 921 xas_lock_irq(xas); 922 xas_store(xas, entry); 923 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 924 dax_wake_entry(xas, entry, false); 925 926 trace_dax_writeback_one(mapping->host, index, count); 927 return ret; 928 929 put_unlocked: 930 put_unlocked_entry(xas, entry); 931 return ret; 932 } 933 934 /* 935 * Flush the mapping to the persistent domain within the byte range of [start, 936 * end]. This is required by data integrity operations to ensure file data is 937 * on persistent storage prior to completion of the operation. 938 */ 939 int dax_writeback_mapping_range(struct address_space *mapping, 940 struct block_device *bdev, struct writeback_control *wbc) 941 { 942 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 943 struct inode *inode = mapping->host; 944 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 945 struct dax_device *dax_dev; 946 void *entry; 947 int ret = 0; 948 unsigned int scanned = 0; 949 950 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 951 return -EIO; 952 953 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 954 return 0; 955 956 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 957 if (!dax_dev) 958 return -EIO; 959 960 trace_dax_writeback_range(inode, xas.xa_index, end_index); 961 962 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 963 964 xas_lock_irq(&xas); 965 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 966 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 967 if (ret < 0) { 968 mapping_set_error(mapping, ret); 969 break; 970 } 971 if (++scanned % XA_CHECK_SCHED) 972 continue; 973 974 xas_pause(&xas); 975 xas_unlock_irq(&xas); 976 cond_resched(); 977 xas_lock_irq(&xas); 978 } 979 xas_unlock_irq(&xas); 980 put_dax(dax_dev); 981 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 985 986 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 987 { 988 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 989 } 990 991 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 992 pfn_t *pfnp) 993 { 994 const sector_t sector = dax_iomap_sector(iomap, pos); 995 pgoff_t pgoff; 996 int id, rc; 997 long length; 998 999 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 1000 if (rc) 1001 return rc; 1002 id = dax_read_lock(); 1003 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1004 NULL, pfnp); 1005 if (length < 0) { 1006 rc = length; 1007 goto out; 1008 } 1009 rc = -EINVAL; 1010 if (PFN_PHYS(length) < size) 1011 goto out; 1012 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1013 goto out; 1014 /* For larger pages we need devmap */ 1015 if (length > 1 && !pfn_t_devmap(*pfnp)) 1016 goto out; 1017 rc = 0; 1018 out: 1019 dax_read_unlock(id); 1020 return rc; 1021 } 1022 1023 /* 1024 * The user has performed a load from a hole in the file. Allocating a new 1025 * page in the file would cause excessive storage usage for workloads with 1026 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1027 * If this page is ever written to we will re-fault and change the mapping to 1028 * point to real DAX storage instead. 1029 */ 1030 static vm_fault_t dax_load_hole(struct xa_state *xas, 1031 struct address_space *mapping, void **entry, 1032 struct vm_fault *vmf) 1033 { 1034 struct inode *inode = mapping->host; 1035 unsigned long vaddr = vmf->address; 1036 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1037 vm_fault_t ret; 1038 1039 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1040 DAX_ZERO_PAGE, false); 1041 1042 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1043 trace_dax_load_hole(inode, vmf, ret); 1044 return ret; 1045 } 1046 1047 static bool dax_range_is_aligned(struct block_device *bdev, 1048 unsigned int offset, unsigned int length) 1049 { 1050 unsigned short sector_size = bdev_logical_block_size(bdev); 1051 1052 if (!IS_ALIGNED(offset, sector_size)) 1053 return false; 1054 if (!IS_ALIGNED(length, sector_size)) 1055 return false; 1056 1057 return true; 1058 } 1059 1060 int __dax_zero_page_range(struct block_device *bdev, 1061 struct dax_device *dax_dev, sector_t sector, 1062 unsigned int offset, unsigned int size) 1063 { 1064 if (dax_range_is_aligned(bdev, offset, size)) { 1065 sector_t start_sector = sector + (offset >> 9); 1066 1067 return blkdev_issue_zeroout(bdev, start_sector, 1068 size >> 9, GFP_NOFS, 0); 1069 } else { 1070 pgoff_t pgoff; 1071 long rc, id; 1072 void *kaddr; 1073 1074 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1075 if (rc) 1076 return rc; 1077 1078 id = dax_read_lock(); 1079 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1080 if (rc < 0) { 1081 dax_read_unlock(id); 1082 return rc; 1083 } 1084 memset(kaddr + offset, 0, size); 1085 dax_flush(dax_dev, kaddr + offset, size); 1086 dax_read_unlock(id); 1087 } 1088 return 0; 1089 } 1090 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1091 1092 static loff_t 1093 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1094 struct iomap *iomap) 1095 { 1096 struct block_device *bdev = iomap->bdev; 1097 struct dax_device *dax_dev = iomap->dax_dev; 1098 struct iov_iter *iter = data; 1099 loff_t end = pos + length, done = 0; 1100 ssize_t ret = 0; 1101 size_t xfer; 1102 int id; 1103 1104 if (iov_iter_rw(iter) == READ) { 1105 end = min(end, i_size_read(inode)); 1106 if (pos >= end) 1107 return 0; 1108 1109 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1110 return iov_iter_zero(min(length, end - pos), iter); 1111 } 1112 1113 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1114 return -EIO; 1115 1116 /* 1117 * Write can allocate block for an area which has a hole page mapped 1118 * into page tables. We have to tear down these mappings so that data 1119 * written by write(2) is visible in mmap. 1120 */ 1121 if (iomap->flags & IOMAP_F_NEW) { 1122 invalidate_inode_pages2_range(inode->i_mapping, 1123 pos >> PAGE_SHIFT, 1124 (end - 1) >> PAGE_SHIFT); 1125 } 1126 1127 id = dax_read_lock(); 1128 while (pos < end) { 1129 unsigned offset = pos & (PAGE_SIZE - 1); 1130 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1131 const sector_t sector = dax_iomap_sector(iomap, pos); 1132 ssize_t map_len; 1133 pgoff_t pgoff; 1134 void *kaddr; 1135 1136 if (fatal_signal_pending(current)) { 1137 ret = -EINTR; 1138 break; 1139 } 1140 1141 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1142 if (ret) 1143 break; 1144 1145 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1146 &kaddr, NULL); 1147 if (map_len < 0) { 1148 ret = map_len; 1149 break; 1150 } 1151 1152 map_len = PFN_PHYS(map_len); 1153 kaddr += offset; 1154 map_len -= offset; 1155 if (map_len > end - pos) 1156 map_len = end - pos; 1157 1158 /* 1159 * The userspace address for the memory copy has already been 1160 * validated via access_ok() in either vfs_read() or 1161 * vfs_write(), depending on which operation we are doing. 1162 */ 1163 if (iov_iter_rw(iter) == WRITE) 1164 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1165 map_len, iter); 1166 else 1167 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1168 map_len, iter); 1169 1170 pos += xfer; 1171 length -= xfer; 1172 done += xfer; 1173 1174 if (xfer == 0) 1175 ret = -EFAULT; 1176 if (xfer < map_len) 1177 break; 1178 } 1179 dax_read_unlock(id); 1180 1181 return done ? done : ret; 1182 } 1183 1184 /** 1185 * dax_iomap_rw - Perform I/O to a DAX file 1186 * @iocb: The control block for this I/O 1187 * @iter: The addresses to do I/O from or to 1188 * @ops: iomap ops passed from the file system 1189 * 1190 * This function performs read and write operations to directly mapped 1191 * persistent memory. The callers needs to take care of read/write exclusion 1192 * and evicting any page cache pages in the region under I/O. 1193 */ 1194 ssize_t 1195 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1196 const struct iomap_ops *ops) 1197 { 1198 struct address_space *mapping = iocb->ki_filp->f_mapping; 1199 struct inode *inode = mapping->host; 1200 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1201 unsigned flags = 0; 1202 1203 if (iov_iter_rw(iter) == WRITE) { 1204 lockdep_assert_held_write(&inode->i_rwsem); 1205 flags |= IOMAP_WRITE; 1206 } else { 1207 lockdep_assert_held(&inode->i_rwsem); 1208 } 1209 1210 while (iov_iter_count(iter)) { 1211 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1212 iter, dax_iomap_actor); 1213 if (ret <= 0) 1214 break; 1215 pos += ret; 1216 done += ret; 1217 } 1218 1219 iocb->ki_pos += done; 1220 return done ? done : ret; 1221 } 1222 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1223 1224 static vm_fault_t dax_fault_return(int error) 1225 { 1226 if (error == 0) 1227 return VM_FAULT_NOPAGE; 1228 return vmf_error(error); 1229 } 1230 1231 /* 1232 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1233 * flushed on write-faults (non-cow), but not read-faults. 1234 */ 1235 static bool dax_fault_is_synchronous(unsigned long flags, 1236 struct vm_area_struct *vma, struct iomap *iomap) 1237 { 1238 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1239 && (iomap->flags & IOMAP_F_DIRTY); 1240 } 1241 1242 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1243 int *iomap_errp, const struct iomap_ops *ops) 1244 { 1245 struct vm_area_struct *vma = vmf->vma; 1246 struct address_space *mapping = vma->vm_file->f_mapping; 1247 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1248 struct inode *inode = mapping->host; 1249 unsigned long vaddr = vmf->address; 1250 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1251 struct iomap iomap = { 0 }; 1252 unsigned flags = IOMAP_FAULT; 1253 int error, major = 0; 1254 bool write = vmf->flags & FAULT_FLAG_WRITE; 1255 bool sync; 1256 vm_fault_t ret = 0; 1257 void *entry; 1258 pfn_t pfn; 1259 1260 trace_dax_pte_fault(inode, vmf, ret); 1261 /* 1262 * Check whether offset isn't beyond end of file now. Caller is supposed 1263 * to hold locks serializing us with truncate / punch hole so this is 1264 * a reliable test. 1265 */ 1266 if (pos >= i_size_read(inode)) { 1267 ret = VM_FAULT_SIGBUS; 1268 goto out; 1269 } 1270 1271 if (write && !vmf->cow_page) 1272 flags |= IOMAP_WRITE; 1273 1274 entry = grab_mapping_entry(&xas, mapping, 0); 1275 if (xa_is_internal(entry)) { 1276 ret = xa_to_internal(entry); 1277 goto out; 1278 } 1279 1280 /* 1281 * It is possible, particularly with mixed reads & writes to private 1282 * mappings, that we have raced with a PMD fault that overlaps with 1283 * the PTE we need to set up. If so just return and the fault will be 1284 * retried. 1285 */ 1286 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1287 ret = VM_FAULT_NOPAGE; 1288 goto unlock_entry; 1289 } 1290 1291 /* 1292 * Note that we don't bother to use iomap_apply here: DAX required 1293 * the file system block size to be equal the page size, which means 1294 * that we never have to deal with more than a single extent here. 1295 */ 1296 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1297 if (iomap_errp) 1298 *iomap_errp = error; 1299 if (error) { 1300 ret = dax_fault_return(error); 1301 goto unlock_entry; 1302 } 1303 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1304 error = -EIO; /* fs corruption? */ 1305 goto error_finish_iomap; 1306 } 1307 1308 if (vmf->cow_page) { 1309 sector_t sector = dax_iomap_sector(&iomap, pos); 1310 1311 switch (iomap.type) { 1312 case IOMAP_HOLE: 1313 case IOMAP_UNWRITTEN: 1314 clear_user_highpage(vmf->cow_page, vaddr); 1315 break; 1316 case IOMAP_MAPPED: 1317 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1318 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1319 break; 1320 default: 1321 WARN_ON_ONCE(1); 1322 error = -EIO; 1323 break; 1324 } 1325 1326 if (error) 1327 goto error_finish_iomap; 1328 1329 __SetPageUptodate(vmf->cow_page); 1330 ret = finish_fault(vmf); 1331 if (!ret) 1332 ret = VM_FAULT_DONE_COW; 1333 goto finish_iomap; 1334 } 1335 1336 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1337 1338 switch (iomap.type) { 1339 case IOMAP_MAPPED: 1340 if (iomap.flags & IOMAP_F_NEW) { 1341 count_vm_event(PGMAJFAULT); 1342 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1343 major = VM_FAULT_MAJOR; 1344 } 1345 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1346 if (error < 0) 1347 goto error_finish_iomap; 1348 1349 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1350 0, write && !sync); 1351 1352 /* 1353 * If we are doing synchronous page fault and inode needs fsync, 1354 * we can insert PTE into page tables only after that happens. 1355 * Skip insertion for now and return the pfn so that caller can 1356 * insert it after fsync is done. 1357 */ 1358 if (sync) { 1359 if (WARN_ON_ONCE(!pfnp)) { 1360 error = -EIO; 1361 goto error_finish_iomap; 1362 } 1363 *pfnp = pfn; 1364 ret = VM_FAULT_NEEDDSYNC | major; 1365 goto finish_iomap; 1366 } 1367 trace_dax_insert_mapping(inode, vmf, entry); 1368 if (write) 1369 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1370 else 1371 ret = vmf_insert_mixed(vma, vaddr, pfn); 1372 1373 goto finish_iomap; 1374 case IOMAP_UNWRITTEN: 1375 case IOMAP_HOLE: 1376 if (!write) { 1377 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1378 goto finish_iomap; 1379 } 1380 /*FALLTHRU*/ 1381 default: 1382 WARN_ON_ONCE(1); 1383 error = -EIO; 1384 break; 1385 } 1386 1387 error_finish_iomap: 1388 ret = dax_fault_return(error); 1389 finish_iomap: 1390 if (ops->iomap_end) { 1391 int copied = PAGE_SIZE; 1392 1393 if (ret & VM_FAULT_ERROR) 1394 copied = 0; 1395 /* 1396 * The fault is done by now and there's no way back (other 1397 * thread may be already happily using PTE we have installed). 1398 * Just ignore error from ->iomap_end since we cannot do much 1399 * with it. 1400 */ 1401 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1402 } 1403 unlock_entry: 1404 dax_unlock_entry(&xas, entry); 1405 out: 1406 trace_dax_pte_fault_done(inode, vmf, ret); 1407 return ret | major; 1408 } 1409 1410 #ifdef CONFIG_FS_DAX_PMD 1411 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1412 struct iomap *iomap, void **entry) 1413 { 1414 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1415 unsigned long pmd_addr = vmf->address & PMD_MASK; 1416 struct vm_area_struct *vma = vmf->vma; 1417 struct inode *inode = mapping->host; 1418 pgtable_t pgtable = NULL; 1419 struct page *zero_page; 1420 spinlock_t *ptl; 1421 pmd_t pmd_entry; 1422 pfn_t pfn; 1423 1424 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1425 1426 if (unlikely(!zero_page)) 1427 goto fallback; 1428 1429 pfn = page_to_pfn_t(zero_page); 1430 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1431 DAX_PMD | DAX_ZERO_PAGE, false); 1432 1433 if (arch_needs_pgtable_deposit()) { 1434 pgtable = pte_alloc_one(vma->vm_mm); 1435 if (!pgtable) 1436 return VM_FAULT_OOM; 1437 } 1438 1439 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1440 if (!pmd_none(*(vmf->pmd))) { 1441 spin_unlock(ptl); 1442 goto fallback; 1443 } 1444 1445 if (pgtable) { 1446 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1447 mm_inc_nr_ptes(vma->vm_mm); 1448 } 1449 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1450 pmd_entry = pmd_mkhuge(pmd_entry); 1451 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1452 spin_unlock(ptl); 1453 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1454 return VM_FAULT_NOPAGE; 1455 1456 fallback: 1457 if (pgtable) 1458 pte_free(vma->vm_mm, pgtable); 1459 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1460 return VM_FAULT_FALLBACK; 1461 } 1462 1463 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1464 const struct iomap_ops *ops) 1465 { 1466 struct vm_area_struct *vma = vmf->vma; 1467 struct address_space *mapping = vma->vm_file->f_mapping; 1468 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1469 unsigned long pmd_addr = vmf->address & PMD_MASK; 1470 bool write = vmf->flags & FAULT_FLAG_WRITE; 1471 bool sync; 1472 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1473 struct inode *inode = mapping->host; 1474 vm_fault_t result = VM_FAULT_FALLBACK; 1475 struct iomap iomap = { 0 }; 1476 pgoff_t max_pgoff; 1477 void *entry; 1478 loff_t pos; 1479 int error; 1480 pfn_t pfn; 1481 1482 /* 1483 * Check whether offset isn't beyond end of file now. Caller is 1484 * supposed to hold locks serializing us with truncate / punch hole so 1485 * this is a reliable test. 1486 */ 1487 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1488 1489 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1490 1491 /* 1492 * Make sure that the faulting address's PMD offset (color) matches 1493 * the PMD offset from the start of the file. This is necessary so 1494 * that a PMD range in the page table overlaps exactly with a PMD 1495 * range in the page cache. 1496 */ 1497 if ((vmf->pgoff & PG_PMD_COLOUR) != 1498 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1499 goto fallback; 1500 1501 /* Fall back to PTEs if we're going to COW */ 1502 if (write && !(vma->vm_flags & VM_SHARED)) 1503 goto fallback; 1504 1505 /* If the PMD would extend outside the VMA */ 1506 if (pmd_addr < vma->vm_start) 1507 goto fallback; 1508 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1509 goto fallback; 1510 1511 if (xas.xa_index >= max_pgoff) { 1512 result = VM_FAULT_SIGBUS; 1513 goto out; 1514 } 1515 1516 /* If the PMD would extend beyond the file size */ 1517 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1518 goto fallback; 1519 1520 /* 1521 * grab_mapping_entry() will make sure we get an empty PMD entry, 1522 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1523 * entry is already in the array, for instance), it will return 1524 * VM_FAULT_FALLBACK. 1525 */ 1526 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1527 if (xa_is_internal(entry)) { 1528 result = xa_to_internal(entry); 1529 goto fallback; 1530 } 1531 1532 /* 1533 * It is possible, particularly with mixed reads & writes to private 1534 * mappings, that we have raced with a PTE fault that overlaps with 1535 * the PMD we need to set up. If so just return and the fault will be 1536 * retried. 1537 */ 1538 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1539 !pmd_devmap(*vmf->pmd)) { 1540 result = 0; 1541 goto unlock_entry; 1542 } 1543 1544 /* 1545 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1546 * setting up a mapping, so really we're using iomap_begin() as a way 1547 * to look up our filesystem block. 1548 */ 1549 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1550 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1551 if (error) 1552 goto unlock_entry; 1553 1554 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1555 goto finish_iomap; 1556 1557 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1558 1559 switch (iomap.type) { 1560 case IOMAP_MAPPED: 1561 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1562 if (error < 0) 1563 goto finish_iomap; 1564 1565 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1566 DAX_PMD, write && !sync); 1567 1568 /* 1569 * If we are doing synchronous page fault and inode needs fsync, 1570 * we can insert PMD into page tables only after that happens. 1571 * Skip insertion for now and return the pfn so that caller can 1572 * insert it after fsync is done. 1573 */ 1574 if (sync) { 1575 if (WARN_ON_ONCE(!pfnp)) 1576 goto finish_iomap; 1577 *pfnp = pfn; 1578 result = VM_FAULT_NEEDDSYNC; 1579 goto finish_iomap; 1580 } 1581 1582 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1583 result = vmf_insert_pfn_pmd(vmf, pfn, write); 1584 break; 1585 case IOMAP_UNWRITTEN: 1586 case IOMAP_HOLE: 1587 if (WARN_ON_ONCE(write)) 1588 break; 1589 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1590 break; 1591 default: 1592 WARN_ON_ONCE(1); 1593 break; 1594 } 1595 1596 finish_iomap: 1597 if (ops->iomap_end) { 1598 int copied = PMD_SIZE; 1599 1600 if (result == VM_FAULT_FALLBACK) 1601 copied = 0; 1602 /* 1603 * The fault is done by now and there's no way back (other 1604 * thread may be already happily using PMD we have installed). 1605 * Just ignore error from ->iomap_end since we cannot do much 1606 * with it. 1607 */ 1608 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1609 &iomap); 1610 } 1611 unlock_entry: 1612 dax_unlock_entry(&xas, entry); 1613 fallback: 1614 if (result == VM_FAULT_FALLBACK) { 1615 split_huge_pmd(vma, vmf->pmd, vmf->address); 1616 count_vm_event(THP_FAULT_FALLBACK); 1617 } 1618 out: 1619 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1620 return result; 1621 } 1622 #else 1623 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1624 const struct iomap_ops *ops) 1625 { 1626 return VM_FAULT_FALLBACK; 1627 } 1628 #endif /* CONFIG_FS_DAX_PMD */ 1629 1630 /** 1631 * dax_iomap_fault - handle a page fault on a DAX file 1632 * @vmf: The description of the fault 1633 * @pe_size: Size of the page to fault in 1634 * @pfnp: PFN to insert for synchronous faults if fsync is required 1635 * @iomap_errp: Storage for detailed error code in case of error 1636 * @ops: Iomap ops passed from the file system 1637 * 1638 * When a page fault occurs, filesystems may call this helper in 1639 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1640 * has done all the necessary locking for page fault to proceed 1641 * successfully. 1642 */ 1643 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1644 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1645 { 1646 switch (pe_size) { 1647 case PE_SIZE_PTE: 1648 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1649 case PE_SIZE_PMD: 1650 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1651 default: 1652 return VM_FAULT_FALLBACK; 1653 } 1654 } 1655 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1656 1657 /* 1658 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1659 * @vmf: The description of the fault 1660 * @pfn: PFN to insert 1661 * @order: Order of entry to insert. 1662 * 1663 * This function inserts a writeable PTE or PMD entry into the page tables 1664 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1665 */ 1666 static vm_fault_t 1667 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1668 { 1669 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1670 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1671 void *entry; 1672 vm_fault_t ret; 1673 1674 xas_lock_irq(&xas); 1675 entry = get_unlocked_entry(&xas, order); 1676 /* Did we race with someone splitting entry or so? */ 1677 if (!entry || dax_is_conflict(entry) || 1678 (order == 0 && !dax_is_pte_entry(entry))) { 1679 put_unlocked_entry(&xas, entry); 1680 xas_unlock_irq(&xas); 1681 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1682 VM_FAULT_NOPAGE); 1683 return VM_FAULT_NOPAGE; 1684 } 1685 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1686 dax_lock_entry(&xas, entry); 1687 xas_unlock_irq(&xas); 1688 if (order == 0) 1689 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1690 #ifdef CONFIG_FS_DAX_PMD 1691 else if (order == PMD_ORDER) 1692 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1693 #endif 1694 else 1695 ret = VM_FAULT_FALLBACK; 1696 dax_unlock_entry(&xas, entry); 1697 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1698 return ret; 1699 } 1700 1701 /** 1702 * dax_finish_sync_fault - finish synchronous page fault 1703 * @vmf: The description of the fault 1704 * @pe_size: Size of entry to be inserted 1705 * @pfn: PFN to insert 1706 * 1707 * This function ensures that the file range touched by the page fault is 1708 * stored persistently on the media and handles inserting of appropriate page 1709 * table entry. 1710 */ 1711 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1712 enum page_entry_size pe_size, pfn_t pfn) 1713 { 1714 int err; 1715 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1716 unsigned int order = pe_order(pe_size); 1717 size_t len = PAGE_SIZE << order; 1718 1719 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1720 if (err) 1721 return VM_FAULT_SIGBUS; 1722 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1723 } 1724 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1725